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Verifying floating-point programs with constraint
programming and abstract interpretation techniques

Olivier Ponsini · Claude Michel ·
Michel Rueher

Abstract Static value analysis is a classical approach for verifying programs with
floating-point computations. Value analysis mainly relies on abstract interpretation
and over-approximates the possible values of program variables. State-of-the-art tools
may however compute over-approximations that can be rather coarse for some very
usual program expressions. In this paper, we show that constraint solvers can sig-
nificantly refine approximations computed with abstract interpretation tools. More
precisely, we introduce a hybrid approach that combines abstract interpretation and
constraint programming techniques in a single static and automatic analysis. We com-
pared the efficiency of the system we developed—named RAICP—with state-of-the-
art static analyzers: RAICP produces substantially more precise approximations and
is able to check program properties on both academic and industrial benchmarks.

Keywords Program verification · Floating-point computation · Constraint solving
over floating-point numbers · Constraint solving over real number intervals ·Abstract
interpretation-based approximation

1 Introduction

Programs with floating-point computations control complex and critical systems in
numerous domains, including cars and other transportation systems, nuclear energy
plants, or medical devices. Floating-point computations are derived from mathemat-
ical models on real numbers (Goldberg, 1991), but computations on floating-point
numbers are different from computations on real numbers. For instance, with binary
floating-point numbers, some real numbers are not representable (e.g. 0.1 does not
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have any exact representation). Floating point arithmetic operators are neither asso-
ciative nor distributive, and may be subject to phenomena such as absorption and
cancellation. Furthermore, the behavior of programs containing floating-point com-
putations varies with the programming language, the compiler, the operating system,
or the hardware architecture.

For all these reasons, floating-point computations are an additional source of er-
rors in embedded programs. But there is much more, including the fact that most
programs are written with the semantics of real numbers in mind. That’s why it is
very important to estimate the accuracy of floating-point computations with respect
to the same sequence of operations in an idealized semantics of real numbers. The
goal of this estimation is to identify suspicious values, i.e. values for which the behav-
ior of the program over the floating-point numbers is different from the behavior one
could expect over the real numbers. Identifying such suspicious values is a critical
issue in embedded program verification.

1.1 Value analysis

Static value analysis is a classical approach for verifying programs with floating-point
computations. Value analysis can deal with properties ranging from the absence of
run-time errors to simple user assertions (Cousot et al, 2007). Value analysis consists
in approximating variable domains, i.e. the set of possible values that each variable
can take at a program point. Approximations are mainly worked out with abstract
interpretation techniques. They are used to estimate the accuracy of floating-point
computations with respect to the same sequence of operations in an idealized seman-
tics of real numbers.

Value analysis is also used to check program properties: if none of the values
in variable domains can violate a property, then the property holds. However, value
analysis over-approximates domains and thus, some values in a domain may not ac-
tually be reachable for the corresponding variable. Therefore, value analysis usually
cannot ensure that a property is violated: when some values may violate a property,
the analysis just reports a potential error in the program. If such a potential error is
reported for a property that turns out to be true, it is called a false alarm. This issue
is intensified by the fact that state-of-the-art systems for value analysis may compute
rather coarse approximations for very usual programming constructs and expressions
(Ghorbal et al (2010); see also example in Sect. 1.3).

1.2 Contribution

The main goal of the approach introduced in this paper is to compute tight approx-
imations for value analysis, and thus to reduce the number of false alarms it may
generate. To achieve this goal, we introduce a hybrid approach for value analysis
of floating-point programs that combines abstract interpretation (AI) and constraint
programming (CP) techniques. More precisely, we propose to exploit the refutation
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capabilities of constraint solvers to refine domains computed by abstract interpreta-
tion. We show that constraint solvers over floating-point numbers and over real num-
bers can significantly improve the precision of the value analysis. Experiments on
academic programs demonstrate that our system—named RAICP—is substantially
more precise than FLUCTUAT (Delmas et al, 2009), a state-of-the-art AI analyzer
dedicated to floating-point computations; especially on programs that are difficult to
handle with abstract interpretation techniques.

We also evaluated RAICP on a set of 55 benchmarks proposed by D’Silva et al
(2012) to demonstrate the capabilities of CDFL, a program analysis tool that embeds
an abstract domain in the conflict driven clause learning algorithm of a SAT solver.
RAICP was on average 4 times faster than CDFL, and it did not produce any false
alarm whereas FLUCTUAT did generate 11 false alarms.

We also applied RAICP to check a property of a real time software application
embedded in a car provided by Geensys/Dassault Systems1. RAICP proved the prop-
erty for a realistic system service time. RAICP also compared well on this example
with CBMC, a state-of-the-art bounded model checker based on a SAT solver.

To sum up, RAICP is a promising framework for computing accurate domain
approximations in floating-point programs and thus for proving properties of hybrid
systems with floating-point and integer computations.

Before going into the details, we illustrate in the next subsection how our ap-
proach works on a small example.

1.3 Motivating example

The program in Fig. 1 contains only linear expressions and a sequence of two condi-
tional statements. This quite simple program is difficult to handle for AI-based anal-
yses. On floating-point numbers—as well as on real numbers—this function returns
a value in the interval [0,50]. Indeed, the pre-condition and the assignment of line 5
state the following constraints on g and y: {x = f +2∗g and f ,g ∈ [−10,10]}. Thus,
from the conditional statement of line 7 we can derive the following information:

– then branch, line 8: g ∈ [−10,5], and thus y ∈ [−10,5] at the end of this branch;
– else branch, line 11: g∈]−5,10], and thus y∈ [−10,5[ at the end of this branch.

Then, from the conditional statement of line 14, we obtain z ∈ [0,50].
However, FLUCTUAT fails to compute a good approximation for z. With zono-

tope-based abstract domains, FLUCTUAT over-approximates z to [0,100], both over
the real numbers and the floating-point numbers. The difficulty for AI techniques
is to intersect the abstract domains computed for x at lines 5 and 7. Actually, AI
techniques are unable to derive from these statements any constraint on g. As a con-
sequence, FLUCTUAT estimates that g ranges over [−10,10] in the then and else

branches of the first conditional statement. FLUCTUAT’s analysis of the second con-
ditional statement is more precise, but the upper bound of z is overestimated since it
relies on the coarse over-approximation of g and y computed previously.

1 http://www.3ds.com/
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1 /∗ Pre−condition : f ,g ∈ [−10,10] ∗/
2 float foo(float f, float g) {

3 float x, y, z;

4

5 x = f + 2 * g;

6

7 if (x <= 0) {

8 y = g;

9 }

10 else {

11 y = -g;

12 }

13

14 if (y >= 0) {

15 z = 10*y;

16 }

17 else {

18 z = -y;

19 }

20

21 return z;

22 }

Fig. 1 Function foo

On this example, RAICP managed to shrink the domain of z to [0,50]. To do
so, it successively used AI techniques and CP techniques between consecutive merge
points of the control flow graph of the program. The key idea is to build one constraint
system for each path between successive merge points, and to apply CP filtering
techniques on each of these systems to refine the approximations computed by AI on
the corresponding path. Merge points of program foo are at lines 13 and 21; for the
sake of uniformity, we consider also the program’s entry point as a merge point.

There are two paths between the program’s entry point and the first merge point.
Consider the path through the then branch of the first conditional statement. AI
techniques compute on this path the following approximations: f ,g,y ∈ [−10,10],
x ∈ [−10,0]. So, the constraint system built for this path is:

C1 = {x = f +2∗g∧ x≤ 0∧ y = g∧−10≤ f ∧ f ≤ 10∧−10≤ g∧g≤ 10
∧−10≤ y∧ y≤ 10∧−10≤ x∧ x≤ 0}

CP filtering techniques reduce the domain of g to [−10,5] and shrink the domain of
y to [−10,5] with constraint system C1. In a similar way, for the path going through
the else branch of the first conditional statement, we obtain the constraint system:

C2 = {x = f +2∗g∧ x > 0∧ y =−g∧−10≤ f ∧ f ≤ 10∧−10≤ g∧g≤ 10
∧−10≤ y∧ y≤ 10∧0 < x∧ x≤ 10}

Here, CP techniques shrink the domain of y to [−10,5[ with constraint system C2.
We merge the domains computed for every variable on the different paths reach-

ing a merge point. So, at line 13, the domain of y becomes [−10,5], that is the smallest
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closed interval including all the values in [−10,5]∪ [−10,5[. Note that this domain is
sharper than the one computed by FLUCTUAT, i.e. y ∈ [−10,10]. These new domains
are then used for analyzing the rest of the program.
On program foo, the analysis goes on from line 13 to the next merge point at line 21.
Again, we generate a constraint system for each of the two paths. For the path through
the then branch of the second conditional statement, AI techniques shrink the do-
main of y to [0,5] and of z to [0,50]. Hence, the constraint system for this path is
{y≥ 0∧ z = 10∗ y∧−10≤ y∧ y≤ 5∧0≤ z∧ z≤ 50}. CP filtering techniques can-
not reduce anymore the domain of z with this constraint system. Likewise, for the
path going through the second conditional statement, RAICP builds the constraint
system {y < 0∧ z =−y∧−10≤ y∧y≤ 5∧0 < z∧ z≤ 10}. Here again, CP filtering
techniques cannot achieve any reduction of the domain of z. Finally, at the last merge
point, RAICP computes the union of domains and we obtain z ∈ [0,50]∪]0,10] =
[0,50].

It is worth noting that RAICP does not generate one constraint system for each
execution path in the control flow graph (CFG) of a program. We split programs
according to the merge points in the CFG and we generate one constraint system per
path going from one merge point to the next merge point. Thus, for a program with a
succession of n conditional statements, we would only generate 2n constraint systems
whereas the program includes 2n execution paths. At each merge point, we use CP
filtering techniques to shrink the domains computed by abstract interpretation. Then
the analysis goes on with the reduced domains. Note also that the CFG exploration
is performed on-the-fly: exploration stops as soon as we detect that the constraint
system of the current path is inconsistent, i.e. when we detect that the current path is
infeasible.

Now, assume we want to verify a post-condition p1 that states that the value re-
turned by function foo is always less than 75. Since AI-based analysis approximates
the domain of z by ∈ [0,100], it would infer that the post-condition may not hold, and
hence generating a false alarm. In contrast, RAICP can ensure that post-condition p1
holds. Here, the proof is trivial since the upper bound of z is strictly smaller than 75.
However, in practice this proof may be more difficult and we apply the following pro-
cess: to check a property defined over the program variables, we add the negation of
this property to each of the constraint systems generated between the last merge point
and the end of the program. If all these systems are inconsistent, we can conclude that
the post-condition holds; otherwise, the post-condition may be violated.

In program foo, we have two paths from the merge point at line 13 to the end
of the program. So, to prove post-condition p1, we generate the following constraint
systems:

{y≥ 0∧ z = 10∗ y∧ z≥ 75∧ z≤ 50∧·· ·}
{y < 0∧ z =−y∧ z≥ 75∧ z≤ 50∧·· ·}

Both systems are trivially inconsistent and thus, we can ensure that post-condition p1
holds.

For program properties specified as assertions inside the program, we apply the
same reasoning as for a post-condition: we consider the constraint systems that cor-
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Fig. 2 Half-disk approximations by intervals (in red), zonotope (in green), and polyhedron (in blue)

respond to paths reaching the assertion from previous merge points together with the
negation of the assertion.

1.4 Outline of the paper

In Sect. 2, we recall basics on abstract interpretation and constraint programming.
Sect. 3 concerns related works. RAICP is described in details in Sect. 4. Section 5
gives some insights into the implementation and analyses the experiments and their
results.

2 Background

Before going into the details, we recall basics on abstract interpretation and constraint
programming techniques that are useful to understand the rest of this paper. Readers
familiar with these techniques may skip the corresponding sections.

2.1 Abstract interpretation

Abstract interpretation methods define an abstract semantics that approximates the
concrete semantics of programs. An abstract semantics is built upon an abstract do-
main that determines a trade-off between precision and speed of the analysis.

An abstract domain approximates the concrete state of a program by considering
only some specific properties of the state. Then, all concrete operations are mapped to
corresponding operations in the abstract domain. Special operations allow to approx-
imate program loops in very short time. These operations are designed to preserve all
the concrete behaviors of the program.

The choice of an abstract domain is a critical issue. As we can observe on Fig. 2,
the approximation of the half-disk in black by a polyhedron is much more precise than
the approximation by a box of intervals. The issue is that operations like intersection
between polyhedra require computationally expensive algorithms whereas these op-
erations are trivial on intervals. Zonotopes (Goubault and Putot, 2006) offer a good
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Fig. 3 A false alarm occurs when the abstract semantics intersects the forbidden zone while the concrete
semantics does not intersect this zone. Forbidden zones are in red, the abstract semantics is in green, and
the concrete semantics is the set of curves.

trade-off between performance and precision. Zonotopes are sets of affine forms that
preserve linear correlations between variables and keep track of the statements in-
volved in the loss of accuracy of floating-point computations. Zonotopes have never-
theless some drawbacks: approximations of some common program constructs, such
as conditionals and nonlinear expressions, are not accurate.

An abstract semantics is a super-set of the concrete program semantics, and thus
AI-based analyses are sound but incomplete. In other words, since the domains of
the variables are over-approximated by value analysis, properties proved true with
the abstract semantics are actually true on the concrete one, but properties violated
with the abstract semantics may hold with the concrete one. The latter case is called
a false alarm when properties represent desired behaviors of the program (see Fig. 3
extracted from Cousot’s informal introduction to abstract interpretation2).

To sum up, AI techniques provide a good trade-off between precision and per-
formance. They scale well, but they lack of precision for programs with non-linear
expressions and with numerous conditionals.

2.2 Constraint programming

Constraint Programming (CP) is a way of modeling and solving combinatorial op-
timization problems. CP combines techniques from artificial intelligence, logic pro-
gramming, and operations research. Several industrial solvers and academic solvers
are available, e.g. ILOG/IBM3, Gecode4. There are many successful industrial ap-
plications, e.g. timetabling (Dutch railway), hardware verification (Hentenryck et al,
2009), scheduling, planning (Rossi et al, 2006, Part II).

2 http://www.di.ens.fr/~cousot/AI/IntroAbsInt.html
3 http://www-01.ibm.com/software/integration/optimization/cplex-optimizer
4 http://www.gecode.org



8 Olivier Ponsini et al.

The key features of CP are domain filtering and search strategies. Domain filter-
ing algorithms consider each constraint separately and remove values that are trivially
inconsistent. Search strategies try to exploit the structure of the problem to guide the
variable instantiation process. In this paper we mainly use constraint techniques over
continuous domains5.

A numeric constraint satisfaction problem (X ,D ,C ) is defined by:

– X = {x1, . . . ,xn}, a set of variables;
– D = {Dx1 , . . . ,Dxn}, a set of domains. Dxi contains all acceptable values for vari-

able xi;
– C = {c1, . . . ,cm}, a set of constraints

The constraint programming framework over continuous domains is based on a
branch & prune schema which is best viewed as an iteration of two steps:

1. Pruning the search space
2. Making a choice to generate two (or more) sub-problems

The pruning step reduces an interval when it can prove that the upper bound or the
lower bound does not satisfy some constraint. The branching step splits the interval
associated to some variable in two or more intervals (often with the same width).

Pruning techniques on continuous domains are based on partial consistencies,
that is to say a consistency of a relaxation of the system. More precisely, it is a prop-
erty that holds on a subset of variables or constraints and that is associated with a
filtering algorithm. Informally speaking, a constraint system C satisfies a partial con-
sistency property if a relaxation of C is consistent. For instance, consider X = [x,x]
and C(x,x1, ...,xn) ∈ C : if C(x,x1, ...,xn) does not hold for any values v ∈ [x,x′], then
X may be shrunken to X = [x′,x].

2B-consistency (Lhomme, 1993) states a local property on the bounds of the do-
mains of a variable at a single constraint level. In other words, the domain of variable
x is 2B-consistent if, for any constraint c, there exists at least one value in the domains
of all other variables such that c can be satisfied when x is set to the upper or lower
bound of its domain.
Example: Let S1 = {x+ y = 2,y≤ x−1,x ∈ [0,100],y ∈ [0,100]} and S2 = {x+ y =
2,y ≤ x− 1,x ∈ [1,2],y ∈ [0,1]} be two constraint systems. S1 is not 2B-consistent.
Indeed, the domain of x is not 2B-consistent since 100 + y = 2 is not satisfiable
when Dy = [0,100]. S2 is 2B-consistent. Indeed, Dx is 2B-consistent since 1+ y = 2,
2+ y = 2, y ≤ 1− 1 and y ≤ 2− 1 are all satisfiable when Dy = [0,1]. A similar
reasoning can show that Dy is 2B-consistent in S2.

2B-consistency pruning algorithms successively narrow the domains of the vari-
ables. The approximation of the projection of a constraint c on its variables is the basic
tool for narrowing domains. The projection Πx(c) of the constraint c(x,x1, · · · ,xn) on
x is the set defined as follows:

Πx(c) = {v ∈ Dx | ∃(v1, · · · ,vn) ∈ Dx1 ×·· ·×Dxn s.t. c(v,v1, · · · ,vn) holds}.

5 For an informal introduction, see http://www.it.uu.se/research/group/astra/

CPmeetsCAV/slides/rueher_Continuous_Domains.pdf
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The approximation of Πx(c) is the interval [min(Πx(c)),max(Πx(c))]. In practice,
this approximation is often computed on constraints where the multiple occurrences
of variables have been replaced by fresh variables with the same domain.
When the domain of a variable has been narrowed, all the constraints in which this
variable occurs will be processed again. The filtering ends when none of the domains
cannot be narrowed anymore. If at least one domain becomes empty, the system is
not 2B-consistent.

Stronger consistencies have also been defined. For instance, 3B-consistency (Lhomme,
1993) checks whether 2B-Consistency can be enforced when the domain of a variable
is reduced to the value of one of its bounds in the whole system. Roughly speaking,
3B-pruning algorithms are based on a shaving process that tries to shrink the interval
of a given variable. For instance, let x be a variable the domain of which is X = [x,x].
A standard 3B-pruning algorithm will first try to show that the constraint system is
not 2B-consistent when X is set to [x, x+x

2 ]; if it succeeds, it will remove [x, x+x
2 ] from

X and the process goes on; otherwise, the pruning process restarts with a smaller do-
main for X , e.g., [x, x+x

4 ]. The process stops when the domain of X becomes smaller
than a given ε .

To sum up, the strong points of CP are its refutation capabilities and its great
flexibility. However, the pruning algorithm may be time consuming on large domains.

3 Related works

Various methods address static validation of programs with floating-point computa-
tions: abstract interpretation based analyses, proofs of programs with proof assistants
or with decision procedures in automatic solvers.

Analyses based on abstract interpretation capture rounding errors due to floating-
point computation in their abstract domains. They are usually fast, automatic, and
scalable. However, they may lack of precision. ASTRÉE (Cousot et al, 2007) is one of
the most famous tool in this family of methods: it estimates the value of the program
variables at every program point and can show the absence of run-time errors, e.g.
division by zero, arithmetic overflow. FLUCTUAT (Delmas et al, 2009) estimates in
addition the accuracy of the floating-point computations: it bounds the difference
between the values taken by variables when the program is given a real semantics
and when it is given a floating-point semantics.

Proof assistants like Coq (Boldo and Filliâtre, 2007) or HOL (Harrison, 1999)
allow their users to formalize floating-point arithmetic. Proofs of program properties
are done manually in the proof assistants that only guarantee the correctness of the
proof. Even though some parts of the proofs may be automatized, the user must still
make a significant effort to conduct the proof. Moreover, when a proof strategy fails
to prove a property, the user often does not know whether the property is false or
whether he could prove it with another strategy. The Gappa tool (de Dinechin et al,
2011) combines interval arithmetic and term rewriting from a base of theorems. The
theorems rewrite arithmetic expressions so as to compensate for the shortcomings of
interval arithmetic, e.g. loss of dependency between variables. Whenever the com-
puted intervals are not precise enough, theorems can be manually introduced or the
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input domains can be subdivided. Again, the cost for the user of this semi-automatic
method is considerable. Ayad and Marché (2010) propose axiomatizing floating-point
arithmetic within first-order logic to automate the proofs conducted in proof assis-
tants such as Coq by calling external SMT (Satisfiability Modulo Theories) solvers
and Gappa. Their experiments show that human interaction with the proof assistant
is still required.

The classical bit-vector approach of SAT solvers is ineffective on programs with
floating-point computations because of the size of the domains of floating-point vari-
ables and the cost of bit-vector operations. An abstraction technique was devised
for CBMC by Brillout et al (2009). It is based on under and over-approximation of
floating-point numbers with respect to a given precision expressed as a number of
bits of the mantissa. However, this technique remains slow. D’Silva et al (2012) de-
veloped recently CDFL, a program analysis tool that embeds an abstract domain in
the conflict driven clause learning algorithm of a SAT solver. CDFL is based on a
sound and complete analysis for determining the range of floating-point variables in
loop-free control software. The authors state that CDFL is more than 200 times faster
than CBMC (D’Silva et al, 2012). In Section 5.3, we compare the performances of
CDFL and RAICP on a set of benchmarks proposed by D’Silva et al.

Links between abstract interpretation and constraint logic programming have
been studied at a theoretical level for a long time (Codognet and Filé, 1992). More
recently, Denmat et al (2007) introduced a new global constraint to model itera-
tive arithmetic relations between integer variables. The associated filtering algorithm
is based on abstract interpretation over polyhedra. Pelleau et al (2013) designed a
generic constraint solver parametrized by abstract domains. They focus on mixed
discrete-continuous problems over the integer and real numbers. In this paper, we
show how abstract interpretation and constraint programming techniques can com-
plement each other for the static analysis of floating-point programs.

4 RAICP, a hybrid approach

As said before, RAICP, the approach we introduce in this paper, is based on a piece-
wise exploration of a program CFG that alternates path analysis and merging steps.
Nodes of the CFG where two branches join are selected as merge points. We build
one constraint system per path between two successive merge points. We use CP fil-
tering techniques on these systems to reduce variable domains first computed with AI
techniques. At merge points, the reduced domains for the different paths are merged
and exploration goes on with the next part of the CFG.

In Sect. 4.1, we detail the notions of merge point and path exploration of a CFG.
Then, in Sect. 4.2, we give the algorithms implemented in RAICP to perform piece-
wise exploration of the CFG and compute domain approximations on each piece of
the CFG.
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Fig. 4 CFG of program foo from Fig 1: nodes with black circles are merge points

4.1 Control flow graph exploration

A control flow graph is a standard graph representation of computations and con-
trol flow in a program. Nodes in the graph are basic blocks of the program, that is a
sequence of consecutive statements without any branching in it. Directed edges rep-
resent possible flow of control from the end of one block to the beginning of another.
A control flow graph contains one entry node, a node without incoming edge, and
one exit node, a node without outgoing edge.

In our CFGs, we will consider the following types of nodes:

– assignment nodes containing a program assignment;
– assertion nodes containing a logical expression to be checked;
– while nodes containing a loop condition and a loop body;
– if nodes containing a branching condition;

We define specific locations in the program that correspond to nodes in the CFG
where two branches join. We call these locations merge points. In addition, the exit
node is always a merge point. Our CFGs are acyclic graphs since we unfold loops a
bounded number of times before enclosing them in a while node.

For instance, the graph in Fig. 4 is the CFG of function foo described in Fig. 1.
Edges labeled T (resp. F) represent the control flow when the associated condition
is true (resp. false). The merge points are the nodes with a black circle. The second
merge point is not the assignment node that follows the branch junction but the exit
node: a merge point is always the last node of a straight sequence of nodes after a
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Algorithm 1: RAICP

Data:
Q, a queue of merge points.
D, an array of sets s.t. D[m] is the set of variable domains at merge point m.
D I , the initial variable domains.
nI , the CFG’s entry node.
nE , the CFG’s exit node.

Result:
D[nE ] is the set of variable domains at the end of the program.
error is a set of domains when an assertion may be violated; otherwise it is the empty set.

1 error←− explorePaths(nI , D I , /0)
2 while error = /0 and Q 6= /0 do
3 n←− pop(Q)
4 if n 6= nE then
5 error←− explorePaths(n, D[n], /0)
6 end
7 end

junction. Note that program expressions were put into DSA-like form6 to facilitate
constraint generation.

As said before, we only explore paths between two successive merge points. Of
course, this process may be less precise than an exploration of the full length paths,
but it is sound: variable domains are over-approximated for value analysis and prop-
erties found to be true hold over the full length paths too.
The CFG is explored using a forward analysis starting at the beginning of the pro-
gram. We generate one constraint system for each path between two consecutive
merge points. At any point of a path, the possible states of the program are repre-
sented by a constraint system over the program variables. To this end, the semantics
of each program statement is expressed by constraints. Variable domains are inter-
vals over the integers, the floating-point numbers, or the real numbers depending on
the type of the variable. This technique for representing programs by constraint sys-
tems was introduced for bounded program verification in CPBPV by Collavizza et al
(2010).

4.2 RAICP algorithm

In this section, we detail how RAICP explores the CFG between consecutive merge
points. We also describe the process for computing domain approximations.

4.2.1 Exploring paths

Algorithm 1 launches the exploration of the paths from each merge point. It uses a
queue of merge points ordered by increasing depth in the CFG, i.e. the number of
nodes from the entry node to the merge point. RAICP stores in D the result of the

6 DSA (Dynamic Single Assignment) is a semantic preserving program transformation in which each
variable is assigned at most once on each program path (Barnett and Leino, 2005).
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value analysis of the program. Initially, all elements of D are empty sets and at the
end D[m] contains the domain approximations computed at merge point m.

When the program contains a user assertion, RAICP stores in set error the result
of the assertion checking process: error is empty if the assertion holds; otherwise,
error contains values that may violate the assertion.

Algorithm 1 calls function explorePaths to explore all the paths between a
given node and the next merge points. Exploration of the CFG stops when a prop-
erty may be violated or all merge points were considered. Function explorePaths

updates the domains stored in D during path exploration. To this end, the function
generates on-the-fly one constraint system per path while visiting successively the
nodes of the path. At an if node, explorePaths explores successively the paths in
each branch of the control flow. Note that the function checks the consistency of the
constraint system of a branch before exploring it.

At each merge point m, explorePaths calls function approximate for comput-
ing an approximation of the domains for the current path. Function approximate

combines AI and CP techniques (see Sect. 4.2.2). Function explorePaths updates
D[m] with the smallest closed interval including all the values in the union of the
domains computed for the different paths.

For while nodes, explorePaths uses AI techniques to approximate the domains
at the end of the loop. The function then goes on exploring the path with these do-
mains and the negation of the loop condition in the constraint system. Approximating
loops with AI techniques ensures that the length of paths are bounded, and as a result
the constraint system generation always terminates.

When explorePaths reaches an assertion node, it will check whether the asser-
tion holds on the current path. To this end, explorePaths calls function approximate
with a constraint system made up of the negation of the assertion to check and of the
constraints collected on the path starting at the previous merge point. When function
approximate can detect an inconsistency, the assertion holds and exploration goes
on with the next node on the path. Otherwise, the property checking process is in-
conclusive: path exploration stops and the domains computed by approximate are
returned.

4.2.2 Computing approximations

Function approximate computes an approximation of the variable domains for a
given path between two successive merge points. It takes the domains defined at
the beginning of the path (D) and the constraints collected on the path (C ). The
function returns domains reduced according to the constraints, or an empty set if an
inconsistency of the constraint system has been detected.

Function approximate starts by checking whether the set of constraints C is not
trivially inconsistent: consistentsynt just checks whether a constraint and its syntactic
negation are in C . This removes some slow convergence issues that may occur when
trying to solve pathological systems such as {a≥ b∧a < b}. Note that a and b must
be identical expressions in both constraints: we do not perform any formal expression
simplification.
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Function approximate
Input:

D , current variable domains.
C , current set of constraints.

Output: A set of domains. If C is found inconsistent, the returned set is empty.

1 Function approximate(D , C ) is
2 if ¬consistentsynt(C ) then
3 return /0
4 else
5 DAI ←− filterAI(D , C )
6 if DAI = /0 then
7 return /0
8 else
9 return filterCP(DAI , C )

10 end
11 end
12 end

Function f ilterAI calls an AI library to analyze the part of the program corre-
sponding to the path between the two considered merge points. It returns an empty
set when it detects that the path is infeasible. Function f ilterCP applies strong partial
consistencies to the constraint system of the path updated with the domains computed
by f ilterAI .

5 Experiments

In this section, we first describe the prototype of RAICP we have implemented.
Then, we report the experiments we have performed to evaluate RAICP. We com-
pare RAICP with FLUCTUAT on academic programs, and we evaluate the property
checking capabilities of RAICP both on a set of academic benchmarks provided by
the authors of CDFL and on an industrial benchmark.

Academic programs are available at http://users.polytech.unice.fr/~rueher/
Benchs/ASE_RAICP. All results were obtained on an Intel Core 2 Duo at 2.8 GHz
with 4 GB of memory running Linux using FLUCTUAT version 3.1247, REALPAVER
version 0.4, CPLEX version 12.3, CBMC version 4.5 and the downloadable version
of CDFL.

5.1 Implementation

We implemented a prototype of RAICP that uses:

– FLUCTUAT for AI-based computations,
– REALPAVER for constraint solving over real numbers, and
– FPCS for constraint solving over floating-point numbers.

More precisely, RAICP takes as input a C program and builds the corresponding CFG.
Each explored path of the CFG between two merge points is transformed into both
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a set of constraints and a C program. RAICP calls the FLUCTUAT library on these
generated C programs. Then, RAICP passes the domains returned by FLUCTUAT and
the set of constraints to the constraint solver FPCS (resp. REALPAVER) to reduce
the domains over the floating-point numbers (resp. the real numbers). The domains
returned by the constraint solver will be used by RAICP for the next steps of the
analysis.

Neither REALPAVER nor FPCS can deal with constraints over integers. As a
workaround, the prototype handles constraints over integers with the MILP solver
IBM ILOG CPLEX in separate constraint systems. The current prototype does not
yet handle variables that appear both in constraints over integers and floating-points.

Our prototype uses 2B-like partial consistencies7 to cut infeasible paths dur-
ing CFG exploration and 3B-like partial consistencies8 to reduce domains at merge
points. This choice is motivated by performance: 2B-like consistency algorithms are
much faster than 3B-like consistency algorithms, but the latter may achieve a much
stronger pruning.

RAICP analyzes C programs that conform to IEEE 754 standard with the follow-
ing restrictions: size of arrays are bounded; pointers, bitwise operators and statements
that interrupt the control flow (goto, continue, and break) are not handled. How-
ever, all aspects of computations over floating-point numbers are not specified in the
IEEE 754 standard and so are implementation-dependent. We assume here that the
C programs will be compiled with GCC without any optimization option and run on
an x86 architecture managed by a 32-bit Linux operating system9. In the current im-
plementation, we handle basic arithmetic operations, comparisons and some classical
functions like square root.

5.1.1 AI-based static analyzer

FLUCTUAT is a static analyzer for C programs that proceeds by abstract interpreta-
tion. It is specialized in estimating the precision of floating-point computations (Del-
mas et al, 2009). FLUCTUAT is developed by CEA-LIST10 and was successfully used
for industrial applications of several tens of thousands of lines of code in transporta-
tion, nuclear energy, or avionics areas. FLUCTUAT compares the behavior of the ana-
lyzed program over real numbers and over floating-point numbers. In other words, it
allows to specify ranges of values for the program input variables and computes for
each program variable v:

– bounds for the domain of variable v considered as a real number;
– bounds for the domain of variable v considered as a floating-point number;
– bounds for the maximum error between real and floating-point values;
– the contribution of each statement to the error associated with variable v ;

7 The prototype uses REALPAVER’s HC4-consistency or FPCS’s 2B(w)-consistency.
8 The prototype uses REALPAVER’s BC5-consistency in paving mode or FPCS’s 3B(w)-consistency.
9 All computations are done using 80 bits floating point numbers (long double). Inputs are first con-

verted from their base type to long double while the computation result is converted from double to the
awaited result base type.

10 http://www-list.cea.fr/validation_en.html
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– the contribution of the input variables to the error associated with variable v.

FLUCTUAT uses the weakly relational abstract domain of zonotopes (Goubault
and Putot, 2006). Zonotopes are sets of affine forms that preserve linear correlations
between variables. They offer a good trade-off between performance and precision for
floating-point and real number computations. Indeed, the analysis is fast and scales
well, processes accurately linear expressions, and keeps track of the statements in-
volved in the loss of accuracy of floating-point computations. To increase the analy-
sis precision, FLUCTUAT allows to use arbitrary precision numbers or to subdivide up
to two input variable intervals. However, over-approximations computed by FLUC-
TUAT may be very large because the abstract domains do not handle well conditional
statements and non-linear expressions.

5.1.2 Constraint solver over the real numbers

REALPAVER is an interval solver for numerical constraint systems over the real num-
bers11 (Granvilliers and Benhamou, 2006). It handles non-linear constraints defined
with the usual arithmetic operations as well as transcendental elementary functions.

REALPAVER computes reliable approximations of continuous solution sets using
correctly rounded interval methods and constraint satisfaction techniques. More pre-
cisely, the computed domains are closed intervals bounded by floating-point numbers.
REALPAVER implements several partial consistencies. An approximation of a solu-
tion is described by a box, i.e., the Cartesian product of the domains of the variables.
REALPAVER either proves the unsatisfiability of the constraint system or computes
small boxes that contains all the solutions of the system.

The REALPAVER modeling language does not provide strict inequality and not-
equal operators, which can be found in conditional expressions in programs. As a
consequence, in the constraint systems generated for REALPAVER, strict inequalities
are replaced by non strict ones and constraints with a not-equal operator are ignored.
This may lead to over-approximations but it is safe since no solutions are lost.

We experimented with various consistencies implemented in REALPAVER: BC5,
a combination of 2B and box consistencies with interval Newton method, provided
the best trade-off between time cost and domain reduction.

5.1.3 Constraint solver over the floating-point numbers

Constraint solvers over the real numbers based on interval arithmetic cannot handle
constraints over the floating-point numbers because of the specific properties of the
floating-point numbers. The tricky point is that constraints that do not have any solu-
tions over the real numbers may hold over the floating-point numbers. Moreover, re-
lations that hold over the real numbers may not hold over the floating-point numbers.
Finite domain solvers are ineffective for handling constraints over the floating-point
numbers due to the huge size of the domains.

11 REALPAVER web site: http://pagesperso.lina.univ-nantes.fr/info/perso/

permanents/granvil/realpaver/
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That’s why we use here FPCS, a constraint solver designed to solve a set of
constraints over floating-point numbers without losing any solution (Michel, 2002;
Marre and Michel, 2010). FPCS implements 2B-consistency with projection func-
tions adapted to floating-point arithmetic (Michel et al, 2001; Botella et al, 2006).

Inverse projection functions that keep all the solutions are the most difficult to
implement. Indeed, direct projections only requires a slight adaptation of classical
results on interval arithmetic, but inverse projections do not follow the same rules be-
cause of the properties of floating-point arithmetic. More precisely, each constraint is
decomposed into an equivalent binary or ternary constraint by introducing new vari-
ables if necessary. A ternary constraint x = y� f z, where� f is an arithmetic operator
over the floating-point numbers, is decomposed into three projection functions:

– the direct projection, Πx(x = y� f z);
– the first inverse projection, Πy(x = y� f z);
– the second inverse projection, Πz(x = y� f z).

A binary constraint of the form x� f y, where � f is a relational operator among
==, !=, <, <=, >, and >=, is decomposed into two projection functions: Πx(x� f y)
and Πy(x� f y). The computation of the approximation of these projection functions
is mainly derived from interval arithmetic and benefits from floating-point numbers
being a totally ordered finite set.

FPCS also implements stronger consistencies—e.g., kB-consistencies (Lhomme,
1993)—to deal with the classical issues of multiple occurrences and to reduce more
substantially the bounds of the domains of the variables.

The floating-point domains handled by FPCS also include infinities. Moreover,
FPCS handles all the basic arithmetic operations, as well as most of the usual math-
ematical functions. Type conversions are also correctly processed.

On our experiments, 3B-consistency pruning worked well with FPCS whereas
2B-consistency was not strong enough to reduce the domains computed by FLUC-
TUAT.

5.2 Comparison with FLUCTUAT for value analysis

We report here experiments on a set of academic programs with conditionals, non-
linearities, and loops. We show that RAICP is more efficient than FLUCTUAT alone
on these benchmarks.

5.2.1 Conditionals

The first benchmark concerns conditional statements, for which abstract domains
need to be intersected with the condition of the conditional statement. The function
gsl poly solve quadratic comes from the GNU scientific library and contains
several conditional statements. It computes the two real roots of a quadratic equation
ax2 +bx+ c and puts the results in variables x0 and x1.

Table 1 shows analysis times and approximations of the domains of variables x0
and x1 for a given configuration of the input variables. The first two rows present
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Table 1 Domains of the roots of the gsl_poly_solve_quadratic function

a ∈ [−1,1] b ∈ [0.01,1] c ∈ [0.01,1]
x0 x1 Time

R FLUCTUAT [−∞,∞] [−∞,∞] 0.02 s
RAICP [−∞,0] [−200.1,∞] 1.66 s

F FLUCTUAT [−∞,∞] [−∞,∞] 0.02 s
RAICP [−∞,0] [−312.51,∞] 0.95 s

Table 2 Domains of the return value of sinus and rump functions

sinus

x ∈ [−1,1]

rump

x ∈ [7×104,8×104]
y ∈ [3×104,4×104]

Domain Time Domain Time

R FLUCTUAT [−1.009,1.009] 0.02 s [−1.168×1037,1.992×1037] 0.02 s
RAICP [−0.842,0.842] 0.93 s [−1.144×1036,1.606×1037] 1.82 s

F FLUCTUAT [−1.009,1.009] 0.02 s [−1.168×1037,1.992×1037] 0.02 s
RAICP [−0.855,0.85] 0.86 s [−1.168×1037,1.992×1037] 0.86 s

the results of FLUCTUAT and RAICP (with REALPAVER) over the real numbers. The
next two rows present the results of FLUCTUAT and RAICP (with FPCS) over the
floating-point numbers. FLUCTUAT’s over-approximation is so large that it does not
give any information on the domain of the roots, whereas RAICP drastically reduce
these domains both over R and F.

5.2.2 Non-linearity

The abstract domain used by FLUCTUAT is based on affine forms that do not allow
an exact representation of non-linear operations: the image of a zonotope by a non-
linear function is not a zonotope in general. Non-linear operations are thus over-
approximated very roughly. FPCS handles the non-linear expressions better. This is
illustrated on function sinus (see Table 2, column sinus). This function computes
the 7th-order Taylor series of function sinus: x− x3

6 + x5

120 −
x7

5040 .
FPCS and REALPAVER also use approximations to handle non-linear terms and

thus cannot always achieve a significant pruning. This is outlined in Table 2 by pro-
gram rump. This program computes a very particular polynomial designed by Rump
(2010) to illustrate a catastrophic cancellation phenomenon:

333.75y6 + x2(11x2y2− y6−121y4−2)+5.5y8 +
x
2y

5.2.3 Loops

FLUCTUAT unfolds loops a bounded number of times12 before applying a widening
operator to find a fixed point for the domains at the end of the loop. In RAICP, by
default, we let FLUCTUAT compute the domains for a loop. However, RAICP can also

12 Default value is ten times.
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Table 3 Domain of the return value of the sqrt and bigLoop functions

sqrt #1: x ∈ [4.5,5.5] sqrt #2: x ∈ [5,10] bigLoop
Domain Time Domain Time Domain Time

R FLUCTUAT [2.116,2.354] 0.02 s [2.098,3.435] 0.06 s [−∞,∞] 0.03 s
RAICP [2.121,2.346] 0.97 s [2.232,3.165] 1.06 s [0,10] 1.09 s

F FLUCTUAT [2.116,2.354] 0.02 s [−∞,∞] 0.06 s [−∞,∞] 0.03 s
RAICP [2.120,2.351] 1.5 s [2.232,3.193] 4.97 s [0,10] 0.94 s

/∗ Pre−condition : x ∈ [4.5,5.5] ∗/
double sqrt(double x) {

double xn, xn1;

xn = x/2.0;

xn1 = 0.5*(xn + x/xn);

while (xn-xn1 > 1e-2) {

xn = xn1;

xn1 = 0.5*(xn + x/xn);

}

return xn1;

}

(a)

/∗ Pre−condition : x ∈ [0,10]
N ∈ [1,1000000] ∗/

double bigLoop(double x, int N) {

double a = 0.1;

int i = 1;

double y = x*x-x;

if (y < 0) {

if (x > 1.2) {

a = -2;

}

}

while (N > i) {

x = a * x;

i = i + 1;

}

return x;

}

(b)

Fig. 5 Programs (a) sqrt with input domain #1 and (b) bigLoop

unfold loops until either the exit condition of the loop becomes true or a given bound
is reached. In the latter case, we rely again on FLUCTUAT to compute the domains
for the loop after the unfolding process.

Program sqrt (see Fig. 5a) is based on the so-called Babylonian method that
computes an approximate value, with an error of 1× 10−2, of the square root of a
number greater than 4. Ten unfoldings are sufficient to exit the loop with the two
different input domains used in this benchmark (see Table 3). FLUCTUAT obtains ac-
curate results except in the second configuration over F where it could not achieve
any reduction: the different interpretation of a conditional statement over R and over
F leads to different paths in the program. With an unfolding bound of ten—like in
FLUCTUAT—RAICP shrinks the domain over F to [2.232,3.193] in the second con-
figuration.

Program bigLoop (see Fig. 5b) contains very simple non-linear expressions fol-
lowed by a loop that iterates one million times. FLUCTUAT alone fails to analyze
accurately the loop in this program because of the over-approximation of the non-
linear expressions before the loop. CP techniques alone run out of time and memory



20 Olivier Ponsini et al.

Table 4 Execution times and number of false alarms of CDFL, FLUCTUAT and RAICP

CDFL FLUCTUAT RAICP

Total execution time 208.99 s 16.06 s 56.25 s
False alarms 0 11 0

since it is far too expensive to unfold completely such loops. However, CP techniques
computed a good approximation of the non-linear expressions at the beginning of the
program. That’s why RAICP refined significantly the domains of the variables. This
example illustrates well that a tight cooperation between CP and AI techniques can
be very efficient.

5.3 Property checking on academic benchmarks

We used RAICP to check simple assertions that state numeric bounds on floating-
point program variables. These assertions come from benchmarks proposed by D’Silva
et al (2012) to evaluate CDFL13. CDFL is a program analysis tool that embeds the
interval abstract domain in the conflict driven clause learning algorithm of a SAT
solver. The benchmarks are made from 12 programs by varying the input variable
domains, the loop bounds, and the constants in the properties to check. All the pro-
grams are based on academic numerical algorithms, except Sac which is generated
from a Simulink controller model. We discarded 2 out of 57 benchmarks: one that is
related to integers only, and another one that merge integers and floats in the same
expressions.

On these benchmarks, CDFL was much more efficient than CBMC and much
more precise than ASTRÉE for approximating floating-point variable domains (D’Silva
et al, 2012). We compare in Table 4 the efficiency of RAICP, FLUCTUAT and CDFL
on these benchmarks. RAICP is on average 3.5 times slower than FLUCTUAT used
alone, but it is much more precise than FLUCTUAT: FLUCTUAT produced 11 false
alarms whereas RAICP successfully eliminated all these false alarms and reported
correctly all the 33 true properties.
In other words, RAICP is as effective as CDFL on these benchmarks for checking
assertions that state numeric bounds on floating-point program variables. On top of
it, RAICP is on average 3.5 times faster than CDFL.

It is however important to note that all of these systems may produce false alarms
in the general case.

5.4 Property checking on an industrial benchmark

Finally, we applied RAICP to an industrial system provided by Geensys/Dassault
Systems. The anti-lock braking system (ABS) is a real time software application run-
ning on an electronic unit embedded in a car. The system was designed with Simulink
and the embedded code was automatically generated from the Simulink model. The

13 These benchmarks are available at http://www.cprover.org/cdfpl
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Table 5 Validity results and execution times of CBMC, FLUCTUAT and RAICP on property P1 when
varying unfoldings

Number of CBMC FLUCTUAT RAICP
unfoldings Validity Time Validity Time Validity Time

1 valid 0.4 s valid 0.04 s valid 0.9 s
2 - > 3600 s unknown 0.03 s valid 1 s

100 - - unknown 1.47 s valid 19.2 s
1000 - - unknown 77.3 s valid 338.7 s
2000 - - unknown 413.9 s valid 1217.8 s

code contains computations over integer and floating-point variables and consists of
an infinite loop that repeatedly reads inputs and computes the output every 0.01 s.
Since we bound the number of unfoldings of the real-time loop, we can only check
assertions for a limited service time of the system. ABS will be active for at most
20 s when braking on a wet road with a maximum vehicle speed of 180 kilometers
per hour and a cautious deceleration value of 2.5 meters per squared second. This
means that at most 2 000 unfoldings of the real-time loop are required.

ABS prevents wheel lock when braking. It monitors wheel speed through sensors
and acts on an hydraulic valve. ABS looks for the tendency to lock of a wheel. It
computes the skidding rate of the slowest wheel as rs = 1− vslow

vcar
. ABS tries to main-

tain the optimal rate ro = 20%14. When rs is greater than ro, ABS starts controlling
braking.

Our industrial partner had specified property P1 as follows: ABS enters controlled
braking as soon as skidding rate is greater than 20%. The state of the ABS is an
internal variable, abs_state, that can take two predefined values: CONTROLLED or
UNCONTROLLED. The assertion to be checked for P1 is then:

(vslow < 0.8∗ vcar) =⇒ (abs_state= CONTROLLED)

We compared CBMC, FLUCTUAT, and RAICP on the checking of property P1.
We did not manage to run CDFL on these benchmarks. For checking this property,
the user was only interested by the behavior of the program with a semantics over the
floating-point numbers. We fixed a time-out of one hour. Table 5 shows that RAICP
could prove quite efficiently that property P1 holds up to the fixed 2 000 unfoldings
limit. Property P1 trivially holds at the first unfolding which corresponds to the ini-
tialization phase of the ABS. CBMC reached the time limit on the second unfolding.
This is probably due to the fact that CBMC falls into a slow convergence process.
FLUCTUAT is very fast, but it computes such coarse over-approximations that one
cannot determine whether the property holds or not.

6 Conclusion

In this paper, we introduced a new approach for computing tight intervals of floating-
point variables of C programs. The prototype of RAICP we developed relies on the

14 Actually, optimal rate depends on the road surface and varies between 30% and 10% .
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static analyzer FLUCTUAT, on the floating-point solver FPCS, and the real number
solver REALPAVER. Thanks to these solvers, RAICP can exploit the refutation capa-
bilities of constraint techniques to refine the domains computed by FLUCTUAT.

This integration of AI and CP works well because the approximation of vari-
able bounds computed by AI is often small enough to allow efficient pruning with
partial consistencies. Even though the same domain reductions could sometimes be
achieved without starting from the approximation computed by FLUCTUAT, our ex-
periments show that the approximation computed by FLUCTUAT is required in pro-
grams with loops. In FLUCTUAT, sets of affine forms abstract non-linear expressions
and constraints. These sets constitute better approximations of linear constraint sys-
tems than the boxes used in interval-based constraint solvers. Nevertheless, they are
less adapted for non-linear constraint systems where filtering techniques used in nu-
meric CSP solving offer a more flexible and extensible framework.

We showed that RAICP is fast and efficient on programs that are representative of
the difficulties of FLUCTUAT (conditional constructs and non-linearities). The com-
puted approximations both over the real numbers and the floating-point numbers are
much sharper than the ones computed by AI techniques. The user has therefore more
facilities to identify suspicious values for which the behavior of the program over
the floating-point numbers is different from the behavior the user could expect over
the real numbers. Experiments on a significant set of benchmarks showed also that
RAICP is as precise and faster than CDFL, a state-of-the-art tool for bound analysis
and assertion checking on programs with floating-point computations.

Further work concerns a tighter integration of abstract interpretation and con-
straint solvers and the generation of counter-examples. For instance, the integration
of AI and CP could be done at the abstract domain level instead of the interval do-
main level. Likewise, the constraint systems generated by RAICP could be used for
generating counter-examples when we cannot prove that a property holds.
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