
HAL Id: hal-00860669
https://hal.science/hal-00860669

Submitted on 10 Sep 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An Approach Using Style Classification Features for
Quality Estimation

Erwan Moreau, Raphaël Rubino

To cite this version:
Erwan Moreau, Raphaël Rubino. An Approach Using Style Classification Features for Quality Esti-
mation. Workshop on Statistical Machine Translation (WMT 2013), Aug 2013, Sofia, Bulgaria. pp
429-434. �hal-00860669�

https://hal.science/hal-00860669
https://hal.archives-ouvertes.fr


Proceedings of the Eighth Workshop on Statistical Machine Translation, pages 429–434,
Sofia, Bulgaria, August 8-9, 2013 c©2013 Association for Computational Linguistics

An approach using style classification features for Quality Estimation

Erwan Moreau
CNGL and Computational Linguistics Group
Centre for Computing and Language Studies
School of Computer Science and Statistics

Trinity College Dublin
Dublin 2, Ireland

moreaue@cs.tcd.ie

Raphael Rubino
NCLT

Dublin City University
Dublin 9, Ireland

rrubino@computing.dcu.ie

Abstract

In this paper we describe our participation
to the WMT13 Shared Task on Quality Es-
timation. The main originality of our ap-
proach is to include features originally de-
signed to classify text according to some
author’s style. This implies the use of ref-
erence categories, which are meant to rep-
resent the quality of the MT output.

Preamble

This paper describes the approach followed in the
two systems that we submitted to subtask 1.3 of
the WMT13 Shared Task on Quality Estimation,
identified as TCD-DCU-CNGL 1-3 SVM1 and
TCD-DCU-CNGL 1-3 SVM2. This approach
was also used by the first author in his submissions
to subtask 1.1, identified as TCD-CNGL OPEN
and TCD-CNGL RESTRICTED1. In the remain-
ing of this paper we focus on subtask 1.3, but there
is very little difference in the application of the ap-
proach to task 1.1.

1 Introduction

Quality Estimation (QE) aims to provide a quality
indicator for machine translated sentences. There
are many cases where such an indicator would be
useful in a translation process: to compare differ-
ent Machine Translation (MT) models on a given
set of sentences, to tune automatically the param-
eters of a MT model, to select the bad sentences
for human translation or post-editing, to select the
good sentences for immediate publication and try
to apply automatic post-editing to the others, or
simply to provide users who are not fluent in the
source language information about the fluency of

1The second author’s submission to subtask 1.1 is inde-
pendent from this approach and is described in a different
paper in this volume.

the translated text they are reading. As long as ma-
chine translated text cannot be of reasonably con-
sistent quality, QE is helpful in indicating linguis-
tic quality variability.2

After focusing on automatic prediction of ad-
hoc quality scores (as estimated by professional
annotators) in the previous edition (Callison-
Burch et al., 2012), the WMT Shared Task on
Quality Estimation 2013 proposes several variants
of the task. We participated in task 1.1 which aims
to predict HTER scores (edit distance between the
MT output and its manually post-edited version),
and in task 1.3 which aims to predict the expected
time needed to post-edit the MT output.

The originality of our participation lies in the
fact that we intended to test “style classification”
features for the task of QE: the idea is to select a
set of n-grams which are particularly representa-
tive of a given level of quality. In practice we use
only two levels which simply represent low and
high quality. We explore various ways to build
these two reference categories and to select the n-
grams, as described in §2. The goal was to see
if such features can contribute to the task of pre-
dicting quality of MT. As explained in §3, how-
ever, various constraints forced us to somehow cut
corners in some parts of the features selection and
training process; therefore we think that the mod-
est results presented and discussed in §4 might not
necessarily reflect the real contribution of these
features.

2 Features

2.1 Classical features

We extract a set of features inspired by the ones
provided by the shared task organisers in their 17
baseline feature set. Using the corpora provided
for the task, we extract for each source and target

2We focus on translation fluency rather than target lan-
guage faithfulness to sources.

429



segments pair:

• 24 surface features, such as the segment
length, the number of punctuation marks and
uppercased letters, words with mixed case,
etc.

• 30 language Model (LM) features, n-gram
log-probability and perplexity (with and
without start and end of sentence tags) with
n ∈ [1; 5].

• 30 backward LM features, n-gram log-
probability and perplexity (with and without
start and end of sentence tags) with n ∈
[1; 5].

• 44 n-gram frequency features, with n ∈
[1; 5], extracted from frequency quartiles.

• 24 word-alignment features according to the
alignment probability thresholds: 0.01, 0.1,
0.25, 0.5, 0.75 and 1.0, with or without words
frequency weighting.

For all these features, except the ones with binary
values, we compute the ratio between the source
and target feature values and add them to our fea-
ture set, which contains 223 classical features.

2.2 Style classification features

We call the features described below “style
classification” features because they have been
used recently in the context of author identifica-
tion/profiling (Moreau and Vogel, 2013a; Moreau
and Vogel, 2013b) (quite sucessfully in some
cases). The idea consists in representing the n-
grams which are very specific to a given “cate-
gory”, a category being a level of quality in the
context of QE, and more precisely we use only the
“good” and “bad” categories here.

Thus this approach requires the following pa-
rameters:

• At least two datasets used as reference for the
categories;

• Various n-grams patterns, from which com-
parisons based on frequency can be done;

• One or several methods to compare a sen-
tence to a category.

2.2.1 Reference categories
As reference categories we use both the training
datasets provided for task 1.1 and 1.3: both are
used in each task, that is, categories are extracted
from subtasks 1.1 dataset and 1.3 dataset and used
in task 1.1 and 1.3 as well. However we use only
half of the sentences of task 1.1 in 1.1 and sim-
ilarly in 1.3, in order to keep the other half for
the classical training process. This is necessary to
avoid using (even indirectly) a sentence as both a
fixed parameter from which features are extracted
(the category data) and an actual instance on which
features are computed. In other words this simply
follows the principle of keeping the training and
test data independent, but in this case there are two
stages of training (comparing sentences to a refer-
ence category is also a supervised process).

The two datasets are used in three different
ways, leading to three distinct pairs of categories
“good/bad”:3

• The sentences for which the quality is below
the median form the “bad” category, the one
above form the “good” category;

• The sentences for which the quality is below
the first quartile form the “bad” category, the
one above the third quartile form the “good”
category;

• The complete set of MT output sentences
form the “bad” category, their manually
post-edited counterpart form the “good” cat-
egory.

We use these three different ways to build cate-
gories because there is no way to determine a pri-
ori the optimal choice. For instance, on the one
hand the opposite quartiles probably provide more
discriminative power than the medians, but on the
other hand the latter contains more data and there-
fore possibly more useful cases.4 In the last ver-
sion the idea is to consider that, in average, the
machine translated sentences are of poor quality
compared to the manually post-edited sentences;
in this case the categories contain more data, but it
might be a problem that (1) some of the machine-
translated sentences are actually good and (2) the

3Below we call “quality” the value given by the HTER
score (1.1) or post-editing time (1.3), the level of quality be-
ing of course conversely proportional to these values.

4The datasets are not very big: only 803 sentences in task
1.3 and 2,254 sentences in task 1.1 (and we can only use half
of these for categories, as explained above).

430



right translation of some difficult phrases in the
post-edited sentences might never be found in MT
output. We think that the availability of differ-
ent categories built in various ways is potentially a
good thing, because it lets the learning algorithm
decide which features (based on a particular cate-
gory) are useful and which are not, thus tuning the
model automatically while possibly using several
possibilities together, rather than relying on some
predefined categories.

It is important to notice that the correspondence
between an MT output and its post-edited version
is not used5: in all categories the sentences are
only considered as an unordered set. For instance
it would be possible to use a third-party corpus as
well (provided it shares at least a common domain
with the data).

We use only the target language (Spanish) of the
translation and not the source language in order
not to generate too many categories, and because
it has been shown that there is a high correlation
between the complexity of the source sentence and
the fluency of the translation (Moreau and Vogel,
2012). However it is possible to do so for the cat-
egories based on quantiles.

2.2.2 n-grams patterns, thresholds and
distance measures

We use a large set of 30 n-grams patterns based on
tokens and POS tags. POS tagging has been per-
formed with TreeTagger (Schmid, 1995). Various
combinations of n-grams are considered, includ-
ing standard sequential n-grams, skip-grams, and
combinations of tokens and POS tags.

Since the goal is to compare a sentence to a
category, we consider the frequency in terms of
number of sentences in which the n-gram appears,
rather than the global frequency or the local fre-
quency by sentence.6

Different frequency thresholds are considered,
from 1 to 25. Additionally we can also filter out
n-grams for which the relative frequency is too

5in the categories used as reference data; but it is used in
the final features during the (supervised) training stage (see
§3).

6The frequency by sentence is actually also taken into ac-
count in the following way: instead of considering only the
n-gram, we consider a pair (n-gram, local frequency) as an
observation. This way if a particular frequency is observed
more often in a given category, it can be interpreted as a clue
in favor of this category. However in most cases (long n-
grams sequences) the frequency by sentence is almost always
one, sometimes two. Thus this is only marginally a relevant
criterion to categorize a sentence.

similar between the “good” and “bad” categories.
For instance it is possible to keep only the n-grams
for which 80% of the occurrencies belong to the
“bad” category, thus making it a strong marker
for low quality. Once again different thresholds
are considered, in order to tradeoff between the
amount of cases and their discriminative power.

We use only three simple distance/similarity
measures when comparing a sentence to a cate-
gory:

• Binary match: for each n-gram in the sen-
tence, count 1 if it belongs to the category, 0
otherwise, then divide by the number of n-
grams in the sentence;

• Weighted match: same as above but sum the
proportion of occurrences belonging to the
category instead of 1 (this way an n-gram
which is more discriminative is given more
weight);

• Cosine similarity.

Finally for every tuple formed by the combina-
tion of

• a category,

• a quality level (“good/bad”),

• an n-gram pattern,

• a frequency threshold,

• a threshold for the proportion of the occur-
rences in the given category,

• and a distance measure

a feature is created. For every sentence the value
of the feature is the score computed using the pa-
rameters defined in the tuple. From our set of
parameters we obtain approximately 35,000 fea-
tures.7 It is worth noticing that these features
are not meant to represent the sentence entirely,
but rather particularly noticeable parts (in terms of
quality) of the sentence.

7The number of features depends on the data in the cate-
gory, because if no n-gram at all in the category satisfies the
conditions given by the parameters (which can happen with
very high thresholds), then the feature does not exist.

431



2.3 Features specific to the dataset

In task 1.3 we are provided with a translator id
and a document id for each sentence. The distribu-
tion of the time spent to post-edit the sentence de-
pending on these parameters shows some signifi-
cant differences among translators and documents.
This is why we add several features intended to ac-
count for these parameters: the id itself, the mean
and the median for both the translator and the doc-
ument.

3 Design and training process

The main difficulty with so many features (around
35,000) is of course to select a subset of reason-
able size, in order to train a model which is not
overfitted. This requires an efficient optimization
method, since it is clearly impossible to explore
the search space exhaustively in this case.

Initially it was planned to use an ad-hoc genetic
algorithm to select an optimal subset of features.
But unfortunately the system designed in this goal
did not work as well as expected8, this is why we
had to switch to a different strategy: the two fi-
nal sets of features were obtained through several
stages of selection, mixing several different kinds
of correlation-based features selection methods.

The different steps described below were car-
ried out using the Weka Machine Learning toolkit9

(Hall et al., 2009). Since we have used half of the
training data as a reference corpus for some of the
categories (see §2), we use the other half as train-
ing instances in the selection and learning process,
with 10 folds cross-validation for the latter.

3.1 Iterative selection of features

Because of the failure of the initial strategy, in or-
der to meet the time constraints of the Shared Task
we had to favor speed over performance in the pro-
cess of selecting features and training a model.
This probably had a negative impact on the final
results, as discussed in section §4.

In particular the amount of features was too
big to be processed in the remaining time by a
subset selection method. This is why the fea-
tures were first ranked individually using the Re-
lief attribute estimation method (Robnik-Sikonja

8At the time of writing it is still unclear if this was due to
a design flaw or a bug in the implementation.

9Weka 3.6.9, http://www.cs.waikato.ac.nz/
ml/weka.

and Kononenko, 1997). Only the 20,00010 top fea-
tures were extracted from this ranking and used
further in the selection process.

From this initial subset of features, the follow-
ing heuristic search algorithms combined with a
correlation-based method11 to evaluate subsets of
features (Hall, 1998) are applied iteratively to a
given input set of features:

• Best-first search (forward, backward, bi-
directional);

• Hill-climbing search (forward and back-
ward);

• Genetic search with Bayes Networks.

Each of these algorithms was used with differ-
ent predefined parameters in order to trade off be-
tween time and performance. This selection pro-
cess is iterated as long as the number of features
left is (approximately) higher than 200.

3.2 Training the models

When less than 200 features are obtained, the it-
erative selection process is still applied but a 10
folds cross-validated evaluation is also performed
with the following regression algorithms:

• Support Vector Machines (SVM) (Smola and
Schölkopf, 2004; Shevade et al., 2000);

• Decision trees (Quinlan, 1992; Wang and
Witten, 1996);

• Pace regression (Wang and Witten, 2002).

These learning algorithms are also run with
several possible sets of parameters. Eventually
the submitted models are chosen among those
for which the set of features can not be reduced
anymore without decreasing seriously the perfor-
mance. Most of the best models were obtained
with SVM, although the decision trees regression
algorithm performed almost as well. It was not
possible to decrease the number of features below
60 for task 1.3 (80 for task 1.1) without causing a
loss in performance.

10For subtask 1.3. Only the 8,000 top features for subtask
1.1.

11Weka class
weka.attributeSelection.CfsSubsetEval.

432



4 Results and discussion

The systems are evaluated based on the Mean Av-
erage Error, and every team was allowed to submit
two systems. Our systems ranked 10th and 11th
among 14 for task 1.1, and 13th and 15th among
17 for task 1.1.

4.1 Possible causes of loss in performance
We plan to investigate why our approach does not
perform as well as others, and in particular to
study more exhaustively the different possibilities
in the features selection process.12 It is indeed
very probable that the method can perform better
with an appropriate selection of features and opti-
mization of the parameters, in particular:

• The final number of features is too large,
which can cause overfitting. Most QE system
do not need so many features (only 15 for the
best system in the WMT12 Shared Task on
QE (Soricut et al., 2012)).

• We had to perform a first selection to discard
some of the initial features based on their in-
dividual contribution. This is likely to be a
flaw, since some features can be very useful
in conjuction with other even if poorly infor-
mative by themselves.

• We also probably made a mistake in apply-
ing the selection process to the whole set of
features, including both classical features and
style classification features: it might be rel-
evant to run two independent selection pro-
cesses at first and then gather the resulting
features together only for a more fine-grained
final selection. Indeed, the final models that
we submitted include very few classical fea-
tures; we believe that this might have made
these models less reliable, since our initial
assumption was rather that the style classifi-
cation features would act as secondary clues
in a model primarily relying on the classical
features.

4.2 Selected features
The following observations can be made on the fi-
nal models obtained for task 1.3, keeping in mind
that the models might not be optimal for the rea-
sons explained above:

12Unfortunately the results of this study are not ready yet
at the time of writing.

• Only 5% of the selected features are classical
features;

• The amount of data used in the category
seems to play an important role: most fea-
tures correspond to categories built from the
1.1 dataset (which is bigger), and the pro-
portions between the different kinds of cate-
gories are: 13% for first quartile vs. fourth
quartile (smallest dataset), 25% for below
median vs. above median, and 61% for
MT output vs. postedited sentence (largest
dataset);

• It seems more interesting to identify the low
quality n-grams (i.e. errors) rather than the
high quality ones: 76% of the selected fea-
tures represent the “bad” category;

• 81% of the selected features represent an
n-grams containing at least one POS tag,
whereas only 40% contain a token;

• Most features correspond to selecting n-
grams which are very predictive of the
“good/bad” category (high difference of the
relative proportion between the two cate-
gories), although a significant number of less
predictive n-grams are also selected;

• The cosine distance is selected about three
times more often than the two other distance
methods.

5 Conclusion and future work

In conclusion, the approach performed decently on
the Shared Task test data, but was outperformed
by most other participants systems. Thus cur-
rently it is not proved that style classification fea-
tures help assessing the quality of MT. However
the approach, and especially the contribution of
these features, have yet to be evaluated in a less
constrained environment in order to give a well-
argued answer to this question.

Acknowledgments

This research is supported by the Science Foun-
dation Ireland (Grant 12/CE/I2267) as part of the
Centre for Next Generation Localisation (www.
cngl.ie) funding at Trinity College, University
of Dublin.

433



References
Chris Callison-Burch, Philipp Koehn, Christof Monz,

Matt Post, Radu Soricut, and Lucia Specia. 2012.
Findings of the 2012 workshop on statistical ma-
chine translation. In Proceedings of the Seventh
Workshop on Statistical Machine Translation, Mon-
treal, Canada, June. Association for Computational
Linguistics.

M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reute-
mann, and I.H. Witten. 2009. The weka data mining
software: an update. ACM SIGKDD Explorations
Newsletter, 11(1):10–18.

M. A. Hall. 1998. Correlation-based Feature Subset
Selection for Machine Learning. Ph.D. thesis, Uni-
versity of Waikato, Hamilton, New Zealand.

Erwan Moreau and Carl Vogel. 2012. Quality esti-
mation: an experimental study using unsupervised
similarity measures. In Proceedings of the Seventh
Workshop on Statistical Machine Translation, pages
120–126, Montréal, Canada, June. Association for
Computational Linguistics.

Erwan Moreau and Carl Vogel. 2013a. Participation
to the pan author identification task. In to appear in
the proceeding of CLEF 2013.

Erwan Moreau and Carl Vogel. 2013b. Participation
to the pan author profiling task. In to appear in the
proceeding of CLEF 2013.

J.R. Quinlan. 1992. Learning with continuous classes.
In Proceedings of the 5th Australian joint Confer-
ence on Artificial Intelligence, pages 343–348. Sin-
gapore.

Marko Robnik-Sikonja and Igor Kononenko. 1997.
An adaptation of relief for attribute estimation in
regression. In Douglas H. Fisher, editor, Four-
teenth International Conference on Machine Learn-
ing, pages 296–304. Morgan Kaufmann.

Helmut Schmid. 1995. Improvements in part-of-
speech tagging with an application to german. In
Proceedings of the ACL SIGDAT-Workshop, pages
47–50.

S.K. Shevade, SS Keerthi, C. Bhattacharyya, and
K.R.K. Murthy. 2000. Improvements to the SMO
algorithm for SVM regression. Neural Networks,
IEEE Transactions on, 11(5):1188–1193.

A.J. Smola and B. Schölkopf. 2004. A tutorial on
support vector regression. Statistics and computing,
14(3):199–222.

Radu Soricut, Nguyen Bach, and Ziyuan Wang. 2012.
The SDL Language Weaver systems in the WMT12
Quality Estimation shared task. In Proceedings of
the Seventh Workshop on Statistical Machine Trans-
lation, pages 145–151, Montréal, Canada, June. As-
sociation for Computational Linguistics.

Y. Wang and I.H. Witten. 1996. Induction of model
trees for predicting continuous classes.

Y. Wang and I.H. Witten. 2002. Modeling for optimal
probability prediction. In Proceedings of the Nine-
teenth International Conference on Machine Learn-
ing, pages 650–657. Morgan Kaufmann Publishers
Inc.

434


