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Optimizing the anaerobic digestion of microalgae in a coupled

process

Terence Bayen∗, Francis Mairet†, Pierre Martinon‡, Matthieu Sebbah§

September 10, 2013

Abstract

This work is devoted to the study of an optimal control problem governed by a system describing the
coupling of a culture of micro-algae limited by light and an anaerobic digester. The mathematical model
for the dynamics of the reactors takes into account a periodic day-night model of the light in the culture of
micro-algae and a chemostat model for the digester. Our aim is to optimize the production of methane in
the digester during a certain number of days with respect to the dilution rate (the input flow of micro-algae
in the digester). We first prove existence and attraction of periodic solutions of the problem for a one day
period and we apply Pontryagin Maximum Principle (PMP) in order to characterize optimal controls. We
provide numerical simulations of the problem for different light models by a direct method that we refine
using an indirect shooting method based on the PMP. We also investigate the dependence of the optimal
cost with respect to the ratio of the volumes of the two tanks. Finally, the mean value of the optimal cost
over a large number of days without periodic constraints is compared to the optimal cost over one period.

Introduction

Microalgae are cultivated nowadays for feed, food, or cosmetics [1] and they have recently emerged as an
attractive alternative for sustainable energy production [2]. Anaerobic digestion can be applied to recover
the energy stored in the microalgae biomass by converting it into biogas [3]. This process also leads to
ammonium and phosphate release, which can in turn be source of nutrients for the microalgae culture. Coupling
microalgae culture and anaerobic digestion is therefore a promising approach to convert solar energy into
methane. However, due to their inherent complexity, the control and optimization of such coupled systems
are challenging.

We consider a system with a first reactor for microalgae culture and a second one where microalgae
(serving as input substrate) are digested and converted into biogas. One essential feature of the model is that
the evolution of the concentration of microalgae in the first reactor is limited by light. We assume the light
intensity to be a positive function during the day and zero during night, and study several models: a piecewise
constant light model (see [4]), continuous and C1 regularizations of this first model, and then an oscillating
model that better fits the light distribution during the day. The digestion process in the second reactor is
modeled as a chemostat with one species and one substrate, see [5].

The main axis of this paper is to study the optimal production of methane in the system over a large
timeframe. A first approach is to find an optimal feeding strategy for one day under periodic constraints.
Such a policy has the practical advantage that it can be repeated day after day, see e.g. [6]. However,
optimizing the system directly over a large timeframe without imposing periodic constraints could lead to a
different optimal strategy with a greater production of biogas. One objective of this work is to study precisely
this point.

The model is described by a three-dimensional non-autonomous ODE system with periodic constraints,
which is linear with respect to the control. Characterizing the optimal solution in this setting is usually quite
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difficult. Using the Maximum Principle, we see that optimal control strategies are a concatenation of bang
arcs (i.e the control is extremal) and singular arcs. Singular arcs are important from a practical point of view
as they can be computed in feedback form, see [7, 8, 9].

The numerical simulations presented in this paper use both direct and indirect methods, with the softwares
Bocop[10] and Shoot[11]. The direct method uses a time discretization to transform the infinite-dimensional
optimal control problem into a nonlinear optimization problem, solved here by interior point techniques. The
indirect method uses a shooting (with a quasi-Newton algorithm) to solve the Boundary Value Problem arising
from the Maximum Principle. Indirect methods are extremely fast and can provide very accurate solutions,
but are usually difficult to initialize properly. In this work, we used the solution from the direct method to
obtain a suitable initial guess.

The first section of the paper presents the model and the optimization problem. The second section states
the results on the existence and attraction of periodic solutions, using the theory of Kolmogorov periodic
equations see e.g. [12, 13]. We also give some characterization of the set of admissible initial conditions for
which there exists a periodic solution of the system. In the third section, we apply the Maximum Principle
and derive the expression of the singular control (used in the indirect method). Section four is devoted to the
numerical simulations, with the impact of the light model on the singular control structure, the optimization
of a periodic 1-day cycle, optimization over larger timeframes, and optimization of the volume ratio of the two
reactors. Finally, the appendix contains proof of technical results.

1 Model and statement of the optimal control problem

1.1 Model for the coupled digestion of microalgae

We consider a system of two coupled bioreactors, one for microalgae growth and one for the anaerobic digestion
that produces methane, as shown on Fig. 1.

Figure 1: Coupled bioreactors for microalgae growth and anaerobic digestion. Microalgae y serve as input
substrate in the second reactor.

We begin with describing the growth of microalgae in the first reactor. We use a similar framework as in
[4], and assume that the specific growth rate is a decreasing function of microalgae (because of self-shading),
with a constant respiration rate. The simplified dynamics of microalgae y writes:

dy

dt
=
ν(t)y

κ+ y
− Q1

V1
y − ρy,

where κ > 0 and ν(t) ≥ 0 represent the periodic light forcing, ρ is the respiration rate, V1 is the volume of the
first reactor and Q1 ∈ [0, Qmax1 ] is the input flow. Let T > 0 denote the period corresponding to one day-night
cycle, and T = T

2 . For all time t > 0 such that t ∈ [mT + T , (m+ 1)T ] with m ∈ Z, we take ν(t) = 0 (i.e no
light during the nights).
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The output flow of the microalgae culture is concentrated and sent in a second reactor, the anaerobic
digester. We use a classical bioreactor model (see e.g. [14]) in which the substrate (here the microalgae) is
degraded by the biomass according to{

ds
dt = −kµ2(s)x+ Q2

V2
(αy − s),

dx
dt = (µ2(s)− Q2

V2
)x,

with α > 0 a concentration coefficient, k > 0 a yield coefficient, x(t) the concentration of biomass, s(t) the
concentration of substrate, Q2 = Q1/α the input flow in the second reactor, V2 the volume of this reactor,
and µ2 the growth function for the biomass. Gathering the two processes together yields the system:

dy
dt = ν(t)y

κ+y −
Q1

V1
y − ρy,

ds
dt = −kµ2(s)x+ Q2

V2
(αy − s),

dx
dt = (µ2(s)− Q2

V2
)x.

(1.1)

For convenience, we perform the following change of variable: (t, y, s, x) ← (
Qmax

1

V1
t, yκ ,

s
k , x), and we set the

control function u := Q1

Qmax
1

. The periodic forcing light ν is then changed into µ defined by

µ(t) :=
V1

Qmax1

ν

(
V1t

Qmax1

)
.

In the particular case where ν is constant over [0, T ] and zero over [T , T ], we find that µ(t) = µ0(t) where

µ0(t) :=

{
µ, t ∈ [0, T ],

0, t ∈ (T , T ),
(1.2)

with µ > 0 a given parameter. Now we define r := ρV1

Qmax
1

, β := V1

αV2
, γ := ακ

k , and system (1.1) becomes:
dy
dt = µ(t)y

1+y − ry − uy,
ds
dt = uβ(γy − s)− µ2(s)x,
dx
dt = (µ2(s)− uβ)x.

(1.3)

The coupling of the first reactor containing microalgae and the anaerobic digester is therefore modeled by a
non-autonomous, three-dimensional controlled system that is linear w.r.t. the input flow u. In the case where
µ is given by (1.2), the system is autonomous on each of the two phases (day and night). Next, we assume
that µ2 is of type Monod (see [5]), that is

µ2(s) := µm2
s

Ks + s
,

where Ks > 0 is the half-saturation coefficient and we denote by µ′2(s) the derivative of µ2 w.r.t. s. We also
assume that for all s, we have

µ2(s) < β. (1.4)

This assumption is standard in order to control the variation of the biomass concentration in the anaerobic
digester, see e.g. [15]. The values of all parameters for system (1.3) are

µ̄ = 0.5, r = 0.005, T = 10, µm2 = 0.1,Ks = 0.05, β = 1, γ = 1.

Combining Cauchy-Lipschitz Theorem and Gronwall’s Lemma, we can easily see that the set E := R∗+×R∗+×
R∗+ is an invariant domain for (1.3). In the rest of the paper, we consider only initial conditions in E.

1.2 Optimization problem for methane production

The objective of this study is to maximize the production of biogas in the second reactor, which is proportional
to the production of biomass µ2(s(t))x(t). Recall that the control u has been renormalized by the transfor-
mation of the system. Over a time interval [0, nT ], where n ∈ N∗ is fixed (nT represents the timeframe i.e. a
certain number of days), we consider the set of admissible controls

Un := {u : [0, nT ]→ [0, 1] | meas.}.
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The optimization problem can be then stated as follows:

max
u∈Un

Jn(u) :=

∫ nT

0

µ2(su(t)) xu(t) dt,

where (yu, su, xu) is the unique solution of (1.3) starting at a given point (y0, s0, x0) ∈ E for a given control
u ∈ Un. To do so, we will focus now on the maximization of J1 under periodic constraints, without imposing
initial conditions. Thus, we consider the set of periodic controls:

U := {u : R→ [0, 1] s.t. u(·) meas., T − periodic}.

We say that a solution (yu, su, xu) of (1.3) with a given control u ∈ U is T -periodic if and only if (yu, su, xu)
satisfies:

yu(0) = yu(T ), su(0) = su(T ), xu(0) = xu(T ). (1.5)

Given this constraint, the objective to be maximized becomes

max
u∈U

J1(u) =

∫ T

0

µ2(su(t)) xu(t) dt, s.t. (1.5) holds. (1.6)

Remark 1.1. From an environmental or economic point of view, the cost function to maximize is J̃(u) :=
1

β+cJ(u) where c is a (environmental or economic) cost ratio of the two processes. Thus, β := V1

αV2
is a plant

design parameter which should be chosen adequately in order to optimize the coupled process.

Integrating (1.3) over a period, and taking into account the periodicity of the solution yields the equality:

J1(u) = β

∫ T

0

xu(t) u(t) dt.

This expression is used to derive optimality conditions by Pontryagin’s Maximum Principle. Before this we
will investigate the existence of periodic solutions for system (1.3).

2 Existence of periodic solutions

In this section, we are interested in sufficient conditions on a control u ∈ U that guarantee the existence of
T -periodic solutions of (1.3). We first give a general set of assumptions that ensure existence of periodic
trajectories of the system (Theorem 2.2), and we study their attraction (Theorem 2.3). We then discuss the
case where one hypothesis of Theorem 2.2 is not necessarily satisfied (Theorem 2.4).

2.1 Sufficient conditions for periodic solutions

The proof uses the theory of periodic Kolmogorov equations [12, 16, 17, 13]. As we deal with a controlled
system, the control u is not fixed, and so is the time-dependency of the dynamics of the system. For the sake
of completeness, we have detailed the proof of existence of T -periodic solutions for (1.3) in this setting.

Definition 2.1. Given a function f : Rn+1 → Rn, (t, x) 7−→ f(t, x) which is T -periodic w.r.t. the variable t
and bounded in a neighborhood of every point (t, 0), we say that the differential equation

ẋi = xifi(t, x), 1 ≤ i ≤ n, (t, x) ∈ R× Rn, (2.1)

is of the Kolmogorov type. Whenever f depends on an additional control variable u, we say that (2.1) is a
controlled Kolmogorov equation.

Such systems are useful in biological modeling as the space (R∗+)n is invariant by (2.1). To prove the
existence of periodic solutions of (1.3), we proceed as follows. First, we show that under certain integral as-
sumptions, there exists a unique positive T -periodic solution for the concentration of microalgae y. Next, we
show that x+s, which represents the total mass in the second reactor, admits a unique T -periodic solution. Fi-
nally, we prove the existence of a unique positive periodic solution for the biomass x by a reasoning similar to y.
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Let us define the function F : R× [0,+∞)× [0, 1]→ R by:

F (t, y, u) :=
µ(t)

1 + y
− (r + u), (2.2)

hence the micro-algae concentration can be put into a one-dimensional controlled Kolmogorov equation:

ẏ = yF (t, y, u(t)). (2.3)

We recall the following Theorem, a variation of a result in [13] that is proved in [18]. It provides a general
existence result for a one-dimensional controlled Kolmogorov equation.

Theorem 2.1. Let G : R× [0,+∞)× [0, 1]→ R be a function measurable w.r.t. the pair (t, u), local-Lipschitz
continuous w.r.t. x, and T -periodic w.r.t. to t and non-increasing w.r.t. u. Suppose that there exists M > 0
and s0, s1 ∈ [0, T ] with s0 < s1 such that:

(i)
∫ T
0
G(t, 0, 1)dt > 0 >

∫ T
0
G(t,M, 0)dt.

(ii) For all t ∈ [0, T ], for all u ∈ [0, 1], G(t, ·, u) is non-increasing.
(iii) For all t ∈ [s0, s1], for all u ∈ [0, 1], G(t, ·, u) is decreasing.
Then, the equation

ẏ = yG(t, y, u(t)), (2.4)

admits a unique positive T -periodic solution. Moreover, the set of initial conditions for which there exists a
periodic solution of (2.4) coincides with the interval [z1, z0] where z1 (resp. z0) is the unique initial condition
of the T -periodic positive solution of (2.4) with a constant control u = 1 (resp. u = 0).

Next, we consider the following condition on the system:

Assumption 2.1. We suppose that: ∫ T

0

µ(t)dt > (r + 1)T. (2.5)

Assumption 2.1 means that one cannot operate the digester at a too high dilution rate which prevents
wash-out. Notice that (2.5) implies that: ∫ T

0

µ(t)dt > rT. (2.6)

Inequality (2.6) means that microalgae can survive in batch mode (without dilution) and that there exists a
periodic solution of (2.3) for the control u = 0 (see Proposition 2.1). Whenever the concentration of microalgae
is low, growth during the day will compensate the loss of micro-algae by respiration during the night.

Throughout this section, we will suppose that (2.5) holds whereas in section 2.3, we only suppose (2.6)
(which is less restrictive). The periodicity of y is a direct consequence of Theorem 2.1.

Proposition 2.1. Assume that the parameters of the system satisfy (2.5). Then:
(i) For all u ∈ U there exists a unique T -periodic positive solution of (2.3) denoted ỹu.
(ii) The set of initial conditions for which (2.3) is periodic is the interval [z0, z1], where z1 (resp. z0) is the
initial condition of the T -periodic positive solution y1 (resp. y0) with a constant control u = 1 (resp. u = 0).

Proof. It is straightforward to check that (2.5) implies the inequality:
∫ T
0
F (t, 0, 1)dt > 0. Moreover, one has∫ T

0

F (t,M, 0)dt =
1

1 +M

∫ T

0

µ(t)dt− rT,

which is negative if M is chosen large enough. Assumptions (ii) and (iii) of Theorem 2.1 are easy to verify.
We are now in position to apply Theorem 2.1 which gives the result.

The second step consists in proving the existence of a periodic solution for ψ := x + s which satisfies the
linear equation:

ψ̇ = βu(γỹu − ψ). (2.7)

We denote by ‖u‖1 the L1-norm of the control on the interval [0, T ], that is, ‖u‖1 :=
∫ T
0
u(t)dt. We then have

the following result.
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Proposition 2.2. For all u ∈ U , equation (2.7) admits a unique positive T -periodic solution ψ̃u.

Proof. Whenever u ≡ 0, ψ is constant (equal to x0 + s0 > 0) and T -periodic. We may now assume that
‖u‖1 6= 0. From the linearity of (2.7), one can check immediately that

ψ̃u(t) := βγ

∫ t

0

u(s)ỹu(s)e
∫ s
t
βu(σ)dσds+ βγ

∫ T
0
u(s)ỹu(s)e

∫ s
T
βu(σ)dσds

1− e−
∫ T
0
βu(s)ds

e−
∫ t
0
βu(s)ds, (2.8)

is well defined (as ‖u‖1 6= 0) and is the unique periodic solution of (2.7).

It remains to show the existence of an initial condition for which x is periodic. Given u ∈ U , we can rewrite
the equation satisfied by x as follows:

ẋ = x[µ2(ψ̃u(t)− x)− βu(t)], (2.9)

and we can use the same scheme as for proving the existence of a periodic solution for y. Notice that if u ≡ 0,
then a solution of (2.9) is strictly increasing, so there is no periodic solution of (1.3) for this control. We can
now assume that ‖u‖1 6= 0.

Proposition 2.3. Assume that u ∈ U is such that ‖u‖1 6= 0 and

‖u‖1 <
1

β

∫ T

0

µ2(ψ̃u(t))dt. (2.10)

Then, there exists a T -periodic solution x̃u of (2.9).

Proof. Let us define a function G̃ : R × [0,+∞) × [0, 1] → R be defined by G̃(t, x) := µ2(ψ̃u(t) − x) − βu(t).
Equation (2.9) is a Kolmogorov equation, and it can be written:

ẋ = xG̃(t, x),

Using (2.10), we can apply Theorem 2.3 of [18] which shows the existence of a periodic solution for (2.9).

Now, if we set s̃u := ψ̃u− x̃u, we have ˙̃su = uβ(γỹu− s̃u)−µ2(s̃u)x̃u. Moreover, as initial conditions are in
E which is invariant by (1.3), we have s̃u(t) ≥ 0 for all t. Hence, we have obtained the existence of a positive
periodic solution to (1.3) provided that the additional condition (2.10) is satisfied.

Inequality (2.10) is intricate as ψ̃u depends on the control u. The next lemma provides a sufficient condition
ensuring the existence of controls u which satisfy (2.10). It will lead to Theorem 2.2 which is the main result
of this part.

Lemma 2.1. If Assumption 2.1 is satisfied, any positive T -periodic solution of (2.3) satisfies for all t ∈ [0, T ]:

y(t) ≥ y1(t). (2.11)

Proof. The inequality is a consequence of the monotonicity property of u 7−→ F (t, x, u) and Proposition
2.1.

Next, denote by z−1 the minimum of y1 over [0, T ]. Gathering Propositions 2.1, 2.2, 2.3 and Lemma 2.1
yields the following result.

Theorem 2.2. Suppose that Assumption 2.1 is satisfied. Then, for all u ∈ U with ‖u‖1 6= 0 such that

‖u‖1 <
T

β
µ2(γz−1 ), (2.12)

there exists a T -periodic solution (ỹu(·), s̃u(·), x̃u(·)) of (1.3).

Proof. Combining (2.8) and (2.11) yields that ψ̃u(t) ≥ γz−1 for all t ∈ [0, T ] (notice that if ỹu is constant in

(2.8), then ψ̃u = γỹu). Therefore, (2.12) implies that ‖u‖1 < 1
β

∫ T
0
µ2(ψ̃u(t))dt, and thus (2.10) is satisfied.

We can now apply Propositions 2.1 and 2.3 to get the existence of periodic solutions ỹu and ψ̃u of (2.3)-(2.7).
Moreover, as (2.10) is satisfied, Proposition 2.1 implies the existence of a T -periodic solution x̃u of (2.9). Now,
s̃u := ψ̃u − x̃u is also T -periodic and positive which concludes the proof.
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Notice that initial conditions for which the system is periodic are part of the unknown for problem (1.6).
Hence, Proposition 2.1 provides an exact description of the set of initial conditions for which the solution of
(2.3) is periodic. This property is useful from a numerical point of view for choosing a maximal and a minimal
bound for initial conditions. Characterizing in a similar way the set of initial conditions for which x(·) is
periodic is a more difficult question as ψ̃u depends on the control u. One can prove the following property
concerning the initial value of ψ̃u.

Lemma 2.2. Let z+0 the maximal value of y0. Then, for any u ∈ U , we have ψ̃u(0) ∈ [z−1 , z
+
0 ].

Proof. If ỹu is constant in (2.8), then we have ψ̃u = γỹu (by uniqueness of the periodic solution of (2.7)). This
proves the result.

2.2 Attraction of periodic solutions

In this section, we prove that given a periodic control u ∈ U , the unique periodic solution (ỹu, s̃u, x̃u) of (1.3)
provided by Theorem 2.2 is attractive in the following sense.

Theorem 2.3. Suppose that Assumption 2.1 together with (2.12) hold. Given a non-zero control u ∈ U and
a triple ζ0 := (y0, s0, x0) ∈ R∗+, let (y, s, x) the unique solution of (1.3) starting at ζ0. Then, we have:

lim
t→+∞

|y(t)− ỹu(t)| = lim
t→+∞

|s(t)− s̃u(t)| = lim
t→+∞

|x(t)− x̃u(t)| = 0,

where (ỹu, s̃u, x̃u) is the unique T -periodic solution of (1.3) associated to control u.

Proof. To prove that limt→+∞ |y(t)− ỹu(t)| = 0, we can use the classical property of attraction of Kolmogorov
periodic equations (see [13] or Theorem 2.4 in [18]). Let us now show that x+ s converges to x̃u + s̃u. To this
end, let ψ := x + s, z := y − ỹu, ε > 0 and fix t0 > 0 such that |z(t)| ≤ ε for all t ≥ t0. By using (2.8), we
have:

ψ(t)− ψ̃u(t) = βγ

∫ t

0

z(s)u(s)dse
∫ s
0
βu(σ)dσe−

∫ t
0
βu(s)ds + [ψ(0)− ψ̃u(0)]e−

∫ t
0
βu(s)ds. (2.13)

It is enough to show that the first term in (2.13) goes to zero. We have for t ≥ t0∣∣∣∣∫ t

0

z(s)u(s)e
∫ s
0
βu(σ)dσdse−

∫ t
0
βu(s)ds

∣∣∣∣ ≤ ∫ t0

0

|z(s)|u(s)e
∫ s
0
βu(σ)dσdse−

∫ t
0
βu(s)ds

+

∫ t

t0

|z(s)|u(s)e
∫ s
0
βu(σ)dσdse−

∫ t
0
βu(s)ds

≤
∫ t0

0

|z(s)|u(s)e
∫ s
0
βu(σ)dσdse−

∫ t
0
βu(s)ds + ε

[
1− e−

∫ t
t0
βu(s)ds

]
The second term in the right member of the previous inequality is bounded by ε and the first term goes to
zero when t goes to infinity. Hence, we obtain that ψ(t)− ψ̃u(t) goes to zero when t goes to infinity.

It remains to prove that x(t) − x̃u(t) goes to zero when t goes to infinity. To this end, let us define x as
the unique solution of the Cauchy problem

ẇ = [µ2(ψ̃u(t)− w)− βu(t)]w, w(0) = x0.

As previously, we can use Theorem 2.4 in [18] or [13] to show that x(t) − x̃u(t) goes to zero when t goes to
infinity.

Lemma 2.3. The function x(t)− x(t) converges to zero when t goes to infinity.

This lemma is rather technical and is proved in the appendix. This concludes the proof of the theorem.
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2.3 Discussion of Assumption 2.1

In this part, we prove that there exist T -periodic solutions of (1.3) whenever (2.5) is replaced by (2.6). In fact,
(2.5) can be restrictive from a practical point of view. This will be possible by considering an upper bound in
L∞ for admissible controls (and thus a smaller class of admissible controls).

Let us set δ :=
∫ T
0
µ(t)dt− rT . So, (2.6) implies that δ > 0 and that there exists ε > 0 such that∫ T

0

µ(t)dt > (r + ε)T. (2.14)

We also suppose that Assumption 2.1 does not hold, i.e. δ < T .

Proposition 2.4. (i) If u ∈ U is such that ‖u‖1 < δ, there exists a unique positive periodic solution of (2.3).
(ii) The set of initial conditions for which (2.3) is T -periodic is (0, z0].

Proof. Let us given a control u ∈ U . A direct computation gives:∫ T

0

G(t, 0)dt = δ −
∫ T

0

u(t)dt > 0,

∫ T

0

G(t,M)dt =
1

1 +M

∫ T

0

µ(t)dt− rT −
∫ T

0

u(t)dt, (2.15)

where we have set G(t, y) := F (t, y, u(t)) (recall (2.2)). Moreover, by taking M large enough, it is possible to
assume that the second integral in (2.15) is negative. We can apply Theorem 2.3 in [18] to conclude for (i). To
prove (ii), consider the mapping y0 7−→ y1(T ) where y1 is the unique solution of (2.3) starting at y0 at time
0 with the constant control u = 1. By dividing (2.3) by y and integrating this equation over [0, T ], we obtain
using δ < T that this mapping is decreasing on (0, z0]. Moreover, as z0 is the unique initial condition for the
control u = 0, the mapping y0 7−→ y0(T ) is increasing (where y0 is the unique solution of (2.3) starting at y0
at time 0). We obtain (ii) by a similar argument as for proving Theorem 2.1 in [18].

Remark 2.1. (i) When (2.5) is no longer satisfied, it is delicate to obtain a lower bound on ψ̃u in (2.10)
implying an inequality such as (2.12). In fact, the infimum of the set of initial conditions for which (2.3) is
periodic is zero, see Proposition 2.4 (ii).
(ii) To overcome this difficulty, we will consider controls taking values within [0, ε], and we will repeat the
arguments of section 2.1 by replacing the maximal control value by ε.

Next, we consider the set Uε which consists of admissible controls that are T -periodic and that take values
within [0, ε]. Following Proposition 2.1, one can show that there exists a unique solution yε of (2.3) for the
control u = ε, and we denote by z−ε > 0 its minimal value.

Theorem 2.4. For all u ∈ Uε with ‖u‖1 6= 0 such that

‖u‖1 <
T

β
µ2(γz−ε ), (2.16)

there exists a T -periodic solution (ỹu(·), s̃u(·), x̃u(·)) of (1.3).

Proof. The existence of a T -periodic solution of (2.7) is similar to the proof of Proposition 2.2. To prove the
existence of a periodic solution of (2.9), we proceed as in the proof of Proposition 2.3. Now, inequality (2.16)
implies (2.10) as in Theorem 2.2. This proves the Theorem.

2.4 Existence of an optimal control

The existence of an optimal control for problem (1.6) is rather standard except in the case where µ = µ0.
Indeed, the dynamics is no longer continuous at t = T̄ , but as the discontinuity point of the dynamics is fixed,
the existence of an optimal control can be easily proved by the following proposition.

Proposition 2.5. Assume that µ = µ0 and that there exists a control u ∈ U such that the solution of (1.3)
is T -periodic. Then, there exists an optimal control for problem (1.6).
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Proof. First, admissible controls take values within a compact interval, and system (1.3) is affine w.r.t. the
control. Let us given u ∈ U and let (yu, su, xu) its associated solution. In view of the discontinuity point of µ
at t = T , we set:

y1(t) := yu(t), t ∈ [0, T ], y2(t) := yu

(
T − T
T

t+ T

)
, t ∈ [0, T ].

Similarly, we can define (s1, s2) and (x1, x2). Hence, system (1.3) can be embedded into a six-dimensional
system (y1, y2, s1, s2, x1, x2) with one phase together with additional continuity assumptions y2(0) = y1(T ),
s2(0) = s1(T ) and x2(0) = x1(T ). Similarly, the cost function can be put changed into an integral over
[0, T ]. As a consequence, we can apply Fillipov’s existence Theorem [19] with a continuous dynamics and cost
function, the set of periodic trajectories being non-empty. This concludes the proof.

3 Necessary conditions on optimal trajectories

In this section, we apply the Pontryagin Maximum Principle (see [20]) to derive necessary conditions on
optimal trajectories for problem (1.6) that will be used to implement an indirect shooting method.

3.1 Pontryagin maximum principle

Let z := (y, x, u) and λ := (λ1, λ2, λ3) the adjoint vector. First, we define the Hamiltonian H := H(z, λ, λ0, u)
associated to (1.6) by:

H := λ1

[
µ

y

1 + y
− ry

]
+ (λ3 − λ2)µ2(s)x+ u(−λ1y + λ2β(γy − s)− λ3βx+ λ0x).

Let u an optimal control and zu := (yu(·), xu(·), su(·)) the associated T -periodic trajectory. Then, there
exists λ0 ≤ 0 and an absolutely continuous map λ : [0, T ] → R3 such that the adjoint equations λ̇ =
−∂H∂x (zu(t), λ(t), λ0, u(t)) are satisfied, that is:

dλ1

dt =
(
− µ

(1+y)2 + r + u
)
λ1 − uλ2βγ,

dλ2

dt = x (λ2 − λ3)µ′2(s) + uλ2β,
dλ3

dt = (λ2 − λ3)µ2(s) + uλ3β + λ0u.

As the state is T -periodic, the adjoint vector λ satisfies the following transversality condition:

λ(0) = λ(T ),

i.e. t 7−→ λ(t) is also T -periodic. Finally, we have the maximization condition: for a.e. t ∈ [0, T ], u(t)
maximizes the function

v 7−→ H(t, z(t), λ(t), λ0, v). (3.1)

If the real λ0 can take the value zero, the trajectory is said abnormal. It corresponds to a degenerate case of
the optimization problem where optimal controls are independent of the cost function. Next, we assume that
the optimal trajectory is normal, that is λ0 6= 0 (by homogeneity, we take λ0 = −1). The switching function
associated to the control is

φ := −λ1y + λ2β(γy − s)− λ3βx+ x,

and it is T -periodic. From (3.1) an optimal control satisfies the following control law:{
u = 1 ⇐⇒ φ > 0,

u = 0 ⇐⇒ φ < 0,

When u = 1 (resp. u = 0) on some time interval, we say that the trajectory has an arc Bang+ (resp. Bang−).
We also denote by B± an arc Bang+ or Bang−. If φ is zero on some time interval, we say that the trajectory
has a singular arc which means that the corresponding singular control takes value in (0, 1). We call switching
point a time t0 at which the control is non-constant in any neighborhood of t0. In particular the switching
function satisfies φ(t0) = 0.
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From (1.3) and (1.4), we can see that the constant controls u = 0 and u = 1 are not solution of the
problem (otherwise x would be either increasing or decreasing on [0, T ] in contradiction with the periodicity).
It follows that the optimal solution (yu, su, xu) either contains a switching point or it is singular on [0, T ]. The
periodicity of the switching function implies also the following property.

• If φ(0) > 0, then the control satisfies u = 0 on [0, t0] ∪ [t1, T ] where 0 < t0 < t1 < T . Moreover, the
trajectory contains at least two switching points on [0, T ].

• If φ(0) < 0, then the control satisfies u = 1 on [0, t′0] ∪ [t′1, T ] where 0 < t′0 < t′1 < T . Moreover, the
trajectory contains at least two switching points on [0, T ].

In other words, the periodic assumptions on the state-adjoint system imply that the trajectory has the same
structure in a neigbourhood of t = 0 and of t = T whenever φ(0) > 0 or φ(0) < 0.

3.2 Computation of the singular arcs

In this section, we explain how singular arcs can be computed. The exact computations are given in the
appendix. Let [t1, t2] be a time interval where the optimal trajectory contains a singular arc. We thus have:

φ(t) = 0, ∀ t ∈ [t1, t2]. (3.2)

In order to compute the singular control in terms of the state-adjoint vector, we differentiate φ (which is
absolutely continuous) w.r.t. t. Thus, we obtain for all t ∈ [t1, t2]:

φ̇(t) = (γy − s)(λ2 − λ3)βxµ′2(s) + µ2(s)x+ y

[
−λ1y

µ(t)

(1 + y)2
+ λ2βγ

µ(t)

1 + y
− rβγλ2

]
. (3.3)

When µ(t) is given by (1.2), φ′ is not necessarily continuous by (3.3) as the system is autonomous on each
interval [0, T ) and (T , T ]. Thus, in this case, we differentiate the expression (3.2) on both intervals [0, T ) and
(T , T ]. The derivative of φ̇ can be written:

φ̈(t) = Aµ(z(t), λ(t)) + u(t)Bµ(z(t), λ(t)),

where Aµ and Bµ depend on (z, λ). Exact expressions of φ̈ for a general function µ(·) can be found in the
appendix.

For numerical verifications of optimality of the singular arc, it is important to recall Legendre-Clebsch
condition: if the singular arc is optimal, then we must have:

Bµ(z(t), λ(t)) ≥ 0, (3.4)

see e.g. [21]. Moreover, if Bµ(z(t), λ(t)) > 0, then the singular control us is given by:

us(t) := −Aµ(z(t), λ(t))

Bµ(z(t), λ(t))
. (3.5)

When (3.5) defines a control in [0, 1], we say that the singular arc is controllable.

4 Numerical Results

4.1 Direct and indirect methods

The direct approach transforms the infinite dimensional optimal control problem into a finite dimensional
optimization problem. This is done by a discretization in time applied to the state and control variables, and
dynamics. The resulting problem can be solved by a classical NLP software. We refer the reader to [22] and
[23] for more details on direct transcription methods and NLP algorithms.

The indirect approach relies on Pontryagin’s Maximum Principle to express the optimal control as a max-
imizer of a Hamiltonian. This Hamiltonian depends both on the state and the adjoint variables, which are
solution of a boundary value problem. This BVP is still in an infinite dimensional setting, and it can be solved
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for instance by shooting methods (see [24, 25])

In our experiments, we first try the direct approach, starting from a very simple initialization with constant
values for the control and state variables over time. Then we analyze the obtained solution, and we determine
the structure of the optimal control (number and type of arcs). In addition to this qualitative information,
we also extract numerical estimates for the switching times, state and costate variables. We recall that the
co-state (or adjoint state) for Pontryagin’s Principle correspond to the Lagrange multipliers for the dynamics
constraints in the discretized problem. This allows to verify numerically Legendre-Clebsch condition (3.4).

Here are the settings for both methods.
Direct. Software Bocop[10], discretization by a Lobatto IIIC formula (6th order) with 100 time steps per
day, constant initialization, tolerance for NLP solver set at 10−10.
Indirect. Software Shoot[11], tolerances set at 10−12 for the ODE solver and 10−14 for the quasi-Newton
solver, initialization from the direct solution.

Computation times on a Xeon 3.2GHz are less than one minute for the direct method, and less than one
second for the indirect method. In all the following figures, the x-axis represents time with the scale 10 for
1 day, except when specified otherwise.

4.2 Impact of the light model on the singular control

We begin the numerical simulations with the discontinuous light model (1.2) and some regularized variants.
We observe that these models, while being convenient for the mathematical analysis of the problem, suffer
from their non-smoothness that translates into the singular control. Indeed, for the discontinuous case, the
control structure itself is changed, as the singular arc cannot cross the discontinuity (see section 5.3).

4.2.1 Discontinuous light model

The preliminary simulations use the discontinuous light model (1.2). We first try to solve the problem with
the direct method, from a basic constant initialization. The control structure seems to be B−SB−, namely we
start with a bang arc u = 0, followed by a singular arc that crosses T̄ , and finally a second bang arc u = 0. We
also observe some kind of numerical artifact around T̄ , where the growth function, and therefore the dynamics
of the system, is discontinuous. However, even initialized with the data from the direct solution, the indirect
method fails to converge to a solution with this structure.

Upon closer examination, the direct solution suggests a very small bang arc u = 1 across T̄ . Setting
this time the structure as B−SB+SB−, the indirect method converges easily, with the switching times
[0.558778, 4.999637, 5.000382, 9.309402]. We show on Fig. 2 the control over time, as computed by the direct
and indirect methods. First, the singular arc is controllable. Then, we observe that the singular control found
by the direct method matches very well the analytical expression used in the indirect method (see Appendix
5.2) and that it satisfies Legendre-Clebsch condition (3.4).

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

TIME

IN
P

U
T

 F
L

O
W

 (
u

)

 

 

INDIRECT
DIRECT

Figure 2: Discontinuous light model - Input-flow(u): direct and indirect solutions.
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Table 1: Comparison of the direct and indirect methods.

Method Objective y(0) s(0) x(0)
Direct 4.03635 8.46848 2.812E-04 9.7109
Indirect 4.036346 8.467771 2.829097E-04 9.710909

We also check the control structure and draw the switching function and its first time derivative on Fig.
3. We observe that φ is negative when u = 0, as expected from the Maximum Principle. Also, both φ and φ̇
are equal to zero over the two singular arcs where the control u ∈ (0, 1). Finally, we can see the discontinuous
jump on φ̇ at T̄ , and the small bang arc that allows to cross this discontinuity while connecting the two
singular arcs where φ̇ = 0. A thorough discussion of this case is presented in Appendix 5.3.
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Figure 3: Switching function and its first derivative (zoom on the discontinuity).

4.2.2 Regularized C0 and C1 light models

We now try two regularized versions of (1.2), continuous and C1, shown on Fig. 4. The continuous model has
a linear junction between day and night, and the C1 model has two quadratic junctions. The smoothness of
µ impacts the smoothness of the switching function φ, and therefore the smoothness of the singular control.
We saw in 3.2 that the optimal control over a singular arc is the value that equates φ̈ to 0. As φ̇ has here the
same smoothness as µ, the three light models give the situations:
a) Discontinuous light. If µ is discontinuous, there is a jump in φ̇. As we must have φ = φ̇ = 0 over a
singular arc, we see that a singular arc cannot cross the discontinuity in the general case, see Appendix 5.3
for more details. Numerically, we indeed observed a very small bang arc at the discontinuity of µ.
b) Continuous light. If µ is continuous but not C1, a singular arc can cross the points where µ is not C1,
as φ̇ stays equal to 0. However, φ̈ will be discontinuous, therefore we expect the singular control to be also
discontinuous.
c) C1 light model. If µ is C1, φ̈ is continuous, and we expect the singular control to be continuous as well.
It will not be C1, however, at the points where µ is not C2.

The three case are illustrated on Fig. 4. Note that apart from this qualitative differences due to the
smoothness of the light model, the three solutions are almost identical with respect to the state and control
variables obtained after optimization.

4.3 Optimization with an oscillating light model (smooth)

In all the following of this section, the simulations use a more realistic, smooth (C2), periodic light model:

µ(t) = µ̄ max

(
0, sin

(
2πt

T

))2

, ∀t ∈ [0, T ]. (4.1)

4.3.1 Optimal 1-day periodic strategy

We start the simulations with the oscillating light model (4.1), by optimizing the methane production over
1 day (ie tf = T = 10), with periodicity conditions on the state variables (y, s, x). We set the bounds
y(·) ∈ [0.1, 100], s(·) ∈ [0, 100], x(·) ∈ [0, 100], and use the constant starting point y(·) = s(·) = x(·) = 50, with
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Figure 4: Three light models and corresponding singular control.

u(·) = 0.1.

We obtain the solution shown on Fig. 5, with the initial (and here final) conditions ζ∗0 = (5.66, 1.7E −
6, 6.46). The control structure is B−SB− with the singular arc over the time interval [1.69, 9.45]. During
the first bang arc, the flow is null and both reactors are in batch mode. We observe that microalgae begin
to grow (recall that we are during the day) while biomass in the second reactor stays constant, as there is
no substrate available. This corresponds to a null production, indicating that the second reactor is probably
oversized. Then the singular arc begins and microalgae pour into the second reactor. Microalgae still grow in
the first reactor for a while, then begin to decrease a bit before T̄ (the nightfall). Meanwhile in the second
reactor, the biomass decreases and the concentration of substrate rises, until substrate is high enough so that
biomass begins to grow. Substrate then decreases in turn until it reaches 0 again, while the biomass stabilizes
around its intial value. The cycle ends on a small bang arc where the reactors are back in batch mode. Note
that the relative variations of (y, s, x) are rather small, which may be due to the rather slow dynamics of the
bioprocesses.

We obtain that the control satisfies u = 0 near t = 0 and t = T̄ which is confirmed by the Pontryagin
Maximum Principle. In fact, as the switching function is periodic, the control should be the same near t = 0
and t = T̄ .
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Figure 5: Optimization of a 1-day periodic cycle.

Let us now illustrate the attraction result from Theorem 2.3. We take the control u obtained from the
optimization of one periodic day-night cycle, as shown on Fig. 5. We now apply this same control repeatedly
for 30 days on the system, starting with the same initial conditions found during the previous initialization,
namely ζ∗0 . The periodic trajectory we obtain is drawn in solid line on Fig. 6 (microalgae and biomass
concentrations over time). Now we apply the same control, but starting from different initial conditions,
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(20, 10, 2) and (1, 5, 1). We observe that the corresponding trajectories, while not periodic, indeed converge to
the periodic one as time grows.
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Figure 6: Attraction of the periodic trajectories - Microalgae and biomass over time.

4.3.2 Optimization over N days

Here we study the optimal trajectories for longer timeframes, typically several months. An open question for
this problem is whether the optimum is actually a periodic solution. In order to gain insight on this particular
point, we do not enforce here periodicity conditions. A second difference from the previous optimization is
that we restrict the initial conditions to more realistic values, with y(0) ∈ [0.05, 0.25], s(0) ∈ [0.5, 5] and
x(0) ∈ [0.5, 3]. We draw on Fig.7 the solutions for a time interval of 300 days (other timeframes give similar
structures). The number of time steps has been increased in accordance with the larger timeframe (namely
15000).

0 1000 2000 3000
0

2

4

6

8

MICROALGAE(Y)

0 1000 2000 3000
0

1

2

3

4

5

SUBSTRATE(S)

0 1000 2000 3000
2

4

6

8

BIOMASS(X)

0 1000 2000 3000
0

0.05

0.1

0.15

0.2

INPUT FLOW(U)

Figure 7: Optimization (non-periodic) over 300 days.

We observe that the initial conditions are always at their upper bound, i.e. ζ0 = (0.25, 5, 3), which means
that the reactors are initially filled with as much algae, substrate and biomass as possible. Then, the overall
structure of the solution is always divided into three distinct phases. During the first few days, a growth
phase where both reactors are in batch mode (u = 0) and the concentration of microalgae and biomass in-
crease, until they reach the values corresponding to the previously studied optimal 1-day cycle. Then, the bulk
of the timeframe is filled with a sequence of periodic cycles, identical to the one optimized in 4.3.1.
We recall that in this section, we did not enforce any periodicity conditions on the optimal control problem. Fi-
nally, the last few days show an increased input flow that gives a slight increase in production, at the expense of
washing out the reactors (meaning the concentrations of algae and biomass decrease strongly). This last part is
due to the absence of final conditions, and should probably be neglected for the actual operation of the reactor.
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We can also compare the full optimization over 300 days to the strategy that simply applies each day the
control we found when optimizing a periodic 1-day cycle. Taking the same initial conditions ζ0 = (0.25, 5, 3),
we observe that the attraction property holds and the trajectories for (y, s, x) tend to the periodic ones,
see Fig.8. The value of the cost function is also extremely close, at 274.8476 versus 277.3360 for the full
optimization (see Table 2).

We see that the repetition of the 1-day periodic optimal process produces a cost which is close to the
optimal one over a period of 300 days. Hence, we believe that repeating this cycle produces an accurate
approximation of the optimal cost over a large timeframe. This is confirmed by choosing other timeframes.
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Figure 8: 1-day periodic control versus full optimization over 300 days (zoom on the right).

Table 2: Comparison of the cost function for several optimizations (volume ratio β = 1).

Optimization type tf (n days) Production Jn Jn/tf
1-day periodic, free initial conditions ζ0 1 0.921 0.921
Full optimization, ζ0 = (0.25, 5, 3) 300 277.336 0.925
Fixed 1-day periodic control, ζ0 = (0.25, 5, 3) 300 274.848 0.916

4.4 Optimal volume ratio

Until now, we assumed that the volume ratio of the two reactors was fixed to β = 1. In this last series of
simulations, we optimize this parameter in addition to the whole trajectory (state and control). We chose to
impose β ∈ [0.1, 10] for the optimization.

4.4.1 Optimal 1-day periodic strategy with free volume ratio

We begin with optimizing a 1-day periodic cycle, as in 4.3.1, the only difference is that β is now free. The
obtained solution is shown on Fig.9, and the optimal volume ratio is β∗1day = 5.427. Compared to the solution
for β = 1 (Fig.5), the concentration of algae, substrate and biomass are higher, as well as the input flow. A
qualitative difference is that the two bang arcs with u = 0 seem to have disappeared, the control being now
fully singular. During these arcs, the production in the second reactor was stopped because the substrate was
completely consumed by the biomass (i.e. s = 0), indicating that the whole process was mainly limited by the
microalgae culture. The higher volume ratio lifts this limitation and allows a better balance between the two
processes, so the objective value is much better, at 1.430 versus 0.921. In view of these simulations, we can
conjecture that there exists a value of β for which the optimal solution is fully singular. This point seems not
obvious in view of the periodic constraint on the system.

4.4.2 Optimization over N days with free volume ratio

Next we move on to the optimization over a larger timeframe, while removing the periodicity conditions, and
setting tighter bounds on the initial conditions. The simulations indicate that the solutions always saturate
the upper bounds for the initial conditions, i.e. ζ0 = (0.25, 5, 3). Moreover, we observe the same three distinct
phases as in the cases where β = 1. We have a short initial growth phase, followed by a sequence of 1-day
periodic cycles identical to the one found on Fig.9. This periodic phase represents most of the time interval,
and on the last few days there is a phase with increased input flow that gives a bit more production at the
expense of decreasing the concentrations of algae and biomass. We show on Fig.10 the solution for tf = 300
days, with β∗300days = 5.194.
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Figure 9: Solution with optimal volume ratio - 1-day periodic cycle.
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Figure 10: Solution with optimal volume ratio - 300 days.

4.4.3 Link between N-days optimization and 1-day periodic cycle

When comparing the solutions for the optimal 1-day periodic cycle, and for the 300 days timeframe, we notice
that the optimal volume ratio β∗ is not the same (5.427 vs 5.194). This seems annoying at first, however
numerical simulations indicate that while the optimal ratio indeed varies depending on the final time, it seems
to tend to a limit value that corresponds to the 1-day periodic case (see Fig.11 and Table 3). We observe
a similar behavior for the production per day, the reason being the strong link between the 1-day periodic
solution and the optimal strategies for longer timeframes. According to the simulations, the optimal strategy
for optimizing over N days mainly consists in repeating the optimal periodic cycle for 1 day. The initial
growth phase to reach the corresponding concentrations of algae and biomass only take a few days, as well as
the final washing out phase. For larger N , the long-term solution becomes closer to simply repeating N times
the 1-day optimal cycle, both in terms of average production per day, and of optimal design parameter. This
property would be interesting for practical purposes, indicating that optimizing the 1-day periodic cycle may
provide most of the significant data for the design and operation of the reactors.

5 Conclusion

This paper studies the optimization of the production of biogas by anaerobic digestion of microalgae, over long
timeframes. Modeling the two coupled bioreactors for this system gives a three-dimensional optimal control
problem in Lagrange form. Thanks to the theory of Kolmogorov periodic equations, we obtain the existence
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Figure 11: Optimal volume ratio and production per day.

Table 3: Comparison of the cost function for several optimizations (free volume ratio β).

Optimization type tf (n days) Production Jn Jn/tf volume ratio β
Full optimization, ζ0 = (0.25, 5, 3) 10 10.444 1.044 1.467
Full optimization, ζ0 = (0.25, 5, 3) 20 22.850 1.143 2.792
Full optimization, ζ0 = (0.25, 5, 3) 30 36.463 1.215 3.480
Full optimization, ζ0 = (0.25, 5, 3) 90 121.322 1.348 4.682
Full optimization, ζ0 = (0.25, 5, 3) 360 597.108 1.409 5.232
1-day periodic, free initial conditions ζ0 1 1.430 1.430 5.427

and attraction of periodic solutions over one day. By Pontryagin Maximum Principle, we can characterize
extremal controls and compute singular arcs. A first series of numerical simulations using both direct and
indirect methods illustrates the impact of the light model over the singular control. Then we compare the
optimal strategy for a 1-day periodic cycle with the solutions for longer timeframes. Simulations suggest that
the long-term optimal strategy consists in a initial growth phase in both reactors, followed by a sequence of
periodic 1-day cycles. Finally we investigate the optimal volume ratio of the two reactors, with once again
a strong link between 1-day periodic and long term solutions. In particular, it seems that there exists an
optimal volume ratio that while depending on the timeframe for the optimization, tends to the optimal ratio
for a 1-day periodic cycle. This property, if confirmed on more complex models, would be quite useful in
the practical design of such coupled bioreactors. Similarly, the attraction of periodic solutions also deserves
further investigation, as it may remove the practical need of a feedback controller.

Appendix

5.1 Proof of Lemma 2.3

Recall that x(·) and x̄(·) satisfy the ODE:

ẋ = x[µ2(ψ(t)− x)− βu(t)], x = x[µ2(ψ̃u(t)− x)− βu(t)], x(0) = x(0) = x0.

Moreover ψ and ψ̃u are uniformly bounded. In fact, one has that ψu is bounded over [0, T ] and ψ(t)−ψ̃u(t)→ 0
when t goes to infinity. Hence, x and x̃u are also uniformly bounded over R+. Now, set z := x − x which
satisfies z(0) = 0 and notice that s(t) ≥ 0. So, as µ′2 is bounded by a positive constant over R+, the function

t 7−→ η1(t) := x(t)µ2(ψ(t)− x(t))− x(t)µ2(ψ̃u(t)− x(t))

goes to zero when t goes to infinity. Using the fact that ζ 7−→ ζµ2(ψ̃u(t) − ζ) is concave over [0, ψ̃u(t)], we
obtain the inequality:

ż(t) ≤ η1(t)− βu(t)z(t) + z(t)[µ2(ψ̃u(t)− x(t))− x(t)µ′2(ψ̃u(t)− x(t))], t ≥ 0.

Now using the boundedness of x and x together with the fact that x(t) − x̃u(t) goes to zero when t goes to
infinity, we can show that there exists a function η : R+ → R which goes to zero at infinity and such that the
following inequality holds:

ż(t) ≤ η(t) + z(t)[−βu(t) + µ2(ψ̃u(t)− x̃u(t))− x̃u(t)µ′2(ψ̃u(t)− x̃u(t))], t ≥ 0.
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Let us now define ϕ := −βu+ µ2(s̃u)− x̃uµ′2(s̃u) which is T−periodic. The previous inequality becomes:

ż(t) ≤ η(t) + ϕ(t)z(t), t ≥ 0. (5.1)

Now, by integrating the ODE satisfied by x̃u over the period [0, T ], we obtain using the T -periodicity of x̃u:∫ T

0

[µ2(s̃u(t))− βu(t)]dt = 0.

Therefore, if we set δ :=
∫ T
0
ϕ(t)dt < 0, we can show easily that when t goes to infinity, we have:

1

t

∫ t

0

ϕ(s)ds→ δ < 0. (5.2)

Combining (5.1),(5.2) and the fact that η goes to zero, we can show that z goes to zero at infinity (see e.g.
[17]). This concludes the proof. �

5.2 Computation of the singular arc

We provide in this section the expression of singular controls. The expression below are obtained by differen-
tiating φ̇ w.r.t. t and have been verified using a symbolic Software. If µ is given by (1.2), the differentiation is
made on both intervals [0, T ) and (T , T ]). We start by the case where t 7−→ µ(t) is constant. For convenience,
we define m1,m2,m3 as: 

m1 := β(γy − s)(λ2 − λ3)xµ′2(s),

m2 := µ2(s)x,

m3 := y
[
−λ1y µ(t)

(1+y)2 + λ2βγ
(
µ(t)
1+y − r

)]
.

By differentiating w.r.t. t, we obtain:

ṁ1 = xβ(λ2 − λ3)[(γy − s){x[µ′2(s)2 − µ2(s)µ′′2 (s)] + µ′′2 (s)β(γy − s)u− βµ′2(s)u}

+ µ′2(s){γy[
µ(t)

1 + y
− (r + u)] + µ2(s)x}] + xβµ′2(s)(γy − s)u,

ṁ2 = (µ2(s)− uβ)xµ2(s) + xµ′2(s)[−µ2(s)x+ uβ(γy − s)],

ṁ3 =y

{
βγ

(
µ(t)

1 + y
− r

)
[x(λ2 − λ3)µ′2(s) + uλ2β]

}
+ y

[
µ(t)

1 + y
− (r + u)

]
×[

−λ1y
µ(t)

(1 + y)2
+ λ2βγ

(
µ(t)

1 + y
− r

)]
− y

(
βγµ(t)

(1 + y)2
λ2 +

µ(t)(1− y)

(1 + y)3
λ1

)
[
µ(t)y

1 + y
− (r + u)y]

− y
{

yµ(t)

(1 + y)2

(
[− µ(t)

(1 + y)2
+ r + u]λ1 − λ2βγu

)}
.

Therefore: φ̈(t) = ṁ1 + ṁ2 + ṁ3, and we get:

Aµ(z, λ) =xµ2(s)(µ2(s)− xµ′2(s)) + xβ(λ2 − λ3)
[
x(γy − s)(µ′2(s)2 − µ2(s)µ′′2 (s))

]
− y2µ(t)

(1 + y)2
[− µ(t)

(1 + y)2
+ r]λ1 + xβ(λ2 − λ3)µ′2(s)

(
γy

(
µ(t)

1 + y
− r

)
+ µ2(s)x

)
+ y

[
µ(t)

1 + y
− r

] [
−λ1y

µ(t)

(1 + y)2
+ λ2βγ

(
µ(t)

1 + y
− r

)]
+ yβγ

(
µ(t)

1 + y
− r

)
x(λ2 − λ3)µ′2(s)− y

(
βγµ(t)

(1 + y)2
λ2 +

µ(t)(1− y)

(1 + y)3
λ1

)
[
µ(t)y

1 + y
− ry],

18



Bµ(z, λ) = xβ[−µ2(s) + µ′2(s)(γy − s)] + xβµ′2(s)(γy − s) + xβ2(λ2 − λ3)(γy − s)×

[µ′′2 (s)(γy − s)− µ′2(s)]− xβ(λ2 − λ3)µ′2(s)γy − y[−λ1y
µ(t)

(1 + y)2
+ λ2βγ(

µ(t)

1 + y
− r)]

+ yβ2λ2γ

[
µ(t)

1 + y
− r

]
+ y2

(
βγµ(t)

(1 + y)2
λ2 +

µ(t)(1− y)

(1 + y)3
λ1

)
− µ(t)y2

(1 + y)2
(λ1 − λ2βγ).

In the case where µ is differentiable a.e., we must take into account the derivative of µ in m3. The term Aµ
is replaced by Ãµ where:

Ãµ(z, λ) := Aµ(z, λ) + y

[
−λ1y

(1 + y)2
+
λ2βγ

1 + y

]
µ′(t).

Thus, the general expression of φ̈ is: φ̈(t) = Ãµ(z(t), λ(t)) + u(t)Bµ(z(t), λ(t)).

5.3 Discussion of the optimal solution for the discontinuous light model

One interesting point raised by the numerical simulations with the discontinuous light model (that is with
µ = µ0) is the following. Does an optimal trajectory cross the singularity t = T with a singular arc? More
precisely, we would like to know if an optimal trajectory contains a singular arc on some time interval [t1, t2],
where 0 < t1 < T < t2 < T . In view of the necessary conditions provided by the Pontryagin Maximum
Principle, we believe that this situation cannot occur. As a consequence, the trajectory either jumps to an
arc B+ or B− in a neighborhood of the discontinuity time t = T in order to connect the two singular arcs on
each phase. This leads to the structure B−SB+SB− as in section 4.2.1.

In order to make this issue more precise, let us fix some notations. System (1.3) can be written:

ż = fi(z) + ug(z), i = 1, 2,

where z = (y, s, x) and fi, g are the vector fields defining the dynamics on [0, T ] and [T , T ]. Also, we set
`(z) := µ(s)x as the integrand of J1(u). Recall that for an optimal trajectory, the Hamiltonian is constant on
each phase (as the system is autonomous on [0, T ] and [T , T ]). The Lie bracket between fi and g is denoted
by [fi, g], see [9].

Proposition 5.1. If a singular arc crosses t = T̄ , then the adjoint vector λ(T̄ ) at time t = T̄ must satisfy the
five conditions: 

λ(T ) · g(z(T )) = 0,

λ(T ) · f1(z(T )) = H1,

λ(T ) · f2(z(T )) = H2,

λ(T ) · [f1, g](z(T )) = −∇`(z(T )) · g(z(T )),

λ(T ) · [f2, g](z(T )) = −∇`(z(T )) · g(z(T )).

(5.3)

where Hi, i = 1, 2 is the Hamiltonian value on each phase.

Proof. The first condition of (5.3) means that the switching function φ satisfies φ(T ) = 0 (consequence of the
singular arc). The second and third conditions of (5.3) follow directly from the conservation of the Hamiltonian
on each phase. Now, following [7], we have by a direct computation: φ̇(t) = [fi, g](z(t)) +∇`(z(t)) · g(z(t)).
We obtain the two last conditions by using the fact that φ̇(t) = 0 on each phase.

If these five linear conditions on λ(T̄ ) are not satisfied, the system (5.3) has no solution, and a singular arc
cannot cross the discontinuity time. We have checked that condition (5.3) is not satisfied by the adjoint vector
which was approximated by Lagrange multiplier (see section 4.1). This explains the existence of an additional
Bang arc at the discontinuity point in order to connect the singular arcs on each phase. We believe that
condition (5.3) is generically not satisfied and that consequently singular arc cannot occur in a neighborhood
of the discontinuity T̄ .
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