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ABSTRACT 
Automated detection of small, low level shapes such as 
circular/spherical objects in images is a challenging 
computer vision problem. For many applications, especially 
microbleed detection in Alzheimer’s disease, an automatic 
pre-screening scheme is required to identify potential seeds 
with high sensitivity and reasonable specificity. A new 
method is proposed to detect spherical objects in 3D medical 
images within the multi-scale Laplacian of Gaussian 
framework. The major contributions are (1) breaking down 
3D sphere detection into 1D line profile detection along 
each coordinate dimension, (2) identifying center of 
structures by normalizing the line response profile and (3) 
employing eigenvalues of the Hessian matrix at optimum 
scale for the center points to determine spherical objects. 
The method is validated both on simulated data and 
susceptibility weighted MRI images with ground truth 
provided by a medical expert. Validation results demonstrate 
that the current approach has higher performance in terms of 
sensitivity and specificity and is effective in detecting 
adjacent microbleeds, with invariance to intensity, 
orientation, translation and object scale. 
 

Index Terms— 3D sphere detection, Laplacian of 
Gaussian, cerebral micro bleed, center detection, multi-scale 
 

1. INTRODUCTION 
 
The task of identifying 3D sphere-like or 2D blob-like 
structures with variable size and intensity is of great 
importance: microaneurysms in fundus images [1], cerebral 
microbleeds in magnetic resonance imaging (MRI) [2] lung 
nodules in X-ray images [3]. For some application, an 
automatic pre-screening scheme is required to identify 
potential candidates as input for more elaborate decision 
algorithm. An ideal method must be reliable, scalable, and 
fast with a high level of sensitivity while allowing for some 

flexibility in the range of acceptable geometry of the 
detected lesions. 

The majority of techniques are focused on vessel/line 
enhancement since sphere/blob detection is considered to be 
a sub-problem of line detection [4]. Template matching 
techniques are flexible and relatively straightforward to use 
for object localization. Yet it becomes less effective and 
slow for 3D images in the presence of shape and intensity 
variations. A majority of techniques use multiple isotropic 
Gaussian kernels to create a multi-scale representation while 
various response filters based on γ-normalized Laplacian of 
Gaussian (LoG) are developed for detection/enhancement of 
tubular-like and blob-like structures [4, 5, 6]. Furthermore, 
the filters adapt the eigenvalues of the Hessian to determine 
locally the likelihood that a primitive shape is present. The 
problem of false detection of outer corners has also been 
partially addressed [5, 7]. There has been, however few 
attempts to apply these methods to the detection of small 
lesions in 3D brain medical images. These lesions are 
generally modeled as solid spheres, with low and sometimes 
anisotropic spatial resolution, strong partial volume effects 
(PVE) making them appear relatively semi-spherical or 
ovoid in shape. Moreover, lesions adjacent to other 
structures with relatively higher contrast and larger size can 
remain undetected. 

In this work a new technique for the identification of 
spherical structures of multiple sizes in 3D brain volume is 
proposed. The multiscale approach discussed here is 
inspired by the work of Lorenz et al. [8] who adapted multi-
scale LoG and Hessian transform for vessel enhancement. 
Here, a lower false detection rate compared to state of the art 
methods is achieved by analyzing shape attributes associated 
with structures center point. The paper is organized as 
follows. Section 2 describes mathematical definition of 
multiscale LoG 1D line detection, shape center localization 
and sphericalness attribute. Experimental results evaluating 
the proposed method are explained in Section 3. Discussion 



is presented in Section 4 and finally conclusions and future 
works are discussed in Section 5. 

 
2. METHOD 

 
The major contributions proposed here are summarized in 3 
steps: (i) breaking down 3D sphere detection into multi-
scale 1D line detection along x, y and z dimensions, (ii) 
identifying center of objects by combining normalized line 
response obtained in the previous step and finally (iii) 
employing eigenvalues of the Hessian matrix for the 
extracted center points in order to determine spherical 
objects. 
 
2.1. Multi-scale 1D line detection 
 
3D sphere detection can be considered a sub-problem of line 
detection in each dimension. Since shapes of interest can 
appear in different sizes, multi-scale space created by 
Gaussian smoothing at various extent is employed. The scale 
response filter, defined as the normalized second-order 
derivative of the smoothed image, has been widely used for 
describing curvatures [8, 9]: 
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where R1D, I, G and x are the response function at scale �, 
gray-value image profile (with bright objects on top of a 
dark background), Gaussian kernel and pixel location, 
respectively. For I with dark objects on bright background, 
Argmin should be replaced by ArgMax in Eq. (1). The 
parameter � in the term �� was introduced to establish a 
normalized response at multiple scales since the Gaussian 
amplitude decreases as � increases [9]. The scale �opt at 
which extremum response over all scales is attained, is 
assumed to give information about the size of the present 
structure. A line profile I(x) in ideal case can be considered 
to be boxcar. However, due to PVE, lines usually do not 
appear with sharp edges and are closer to Gaussian profiles 
(Fig. 1.a) with maximum intensity c and width w given by: 
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where IG and IB are Gaussian and boxcar line profile, 
respectively. The Parameter � should be chosen so that an 
extremum over all scales can be achieved.  Analytically, for 
the center of the line profiles at x=0, the desired extremum 
response is achieved when the size of the smoothing kernel 
matches the size of the profiles, meaning �opt=�=w/2. This 
yields � to be 1.5 for IG and 2 for IB in contrast with [8]. In 

order to fix � for any arbitrary input, average value of 1.75 is 
chosen. The magnitude of the response profile R1D is usually 
considered for localization: R1D<0 is associated with bright 
lines while R1D>0 is associated with dark lines and in both 
cases, there is a local extrema at the center of the structure 
(Fig. 1.b). 

2.2. Centre detection 
 
In most approaches, the center of the structure can be 
extracted as the maxima over the smoothed image profiles 
[7]. This is, however, not an effective method for multiple 
scales and adjacent structures.   

In this work, a novel approach is proposed where the 
crossing of orthogonal line response profiles with an 
extremum in each dimension is regarded as a qualitative 
description of the structure center point. The response and 
its associated extremum are dependent on the shape extent, 
implying that intersect of each individual response may not 
necessarily be associated with the true center and can be 
biased. Here, this issue is addressed by normalizing the line 
response magnitude. The line center response which is 
expected to achieve the highest response magnitude can be 
considered as a reference point for normalization. By using 
equations (3) and (4) inside Eq. (1) for x=0, the line center 
response for IG and IB can be expressed as: 
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Likewise, this center response for any generic input can be 
estimated as summation of Eq. (5) and Eq. (6). Given that 
�opt is available from the previous step: 
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where normR1D is the normalized response. The center map 
is then obtained by averaging the normalized line response 
of each dimension and extracting local maximas.  
 
2.3. Sphere detection 
 
In this step, a sphericalness measure is defined for the 
centers that are extracted in section 2.2 through Eigen 

 
(a) (b) 

Fig. 1 (a) Boxcar and Gaussian line cross-section, (b) response function 
of Gaussian and boxcar line profile with �=1.75 



system of the Hessian matrix. The Hessian matrix 
encompasses the second order derivative which encodes 
local high-level shape information and the eigenvalues 
provide quantitative measure of the shape. The Hessian 
matrix is computed for each voxel in the image after the 
optimum scale is found through 3D LoG operator [10]. 
Several vesselness [4, 6, 11] and blobness filters [5] have 
been proposed using eigenvalues analysis of the Hessian. 

For bright sphere on top of a dark background with 
corresponding eigenvalues of |λ1|�|λ2|�|λ3| , a sphericalness 
attributes for each voxel x is defined as [12]: 
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The filter attains a maximum value of one at the center of a 
perfectly spherical object. In contrast with other studies 
where multiple criteria are combined to enhance and 
segment specific structures, here a single criterion is used for 
identification through a hard-thresholding scheme applied on 
the centers extracted in Section 2.2. S is invariant to grey-
level re-scaling since it only involves the ratio of the 
eigenvalues. However, contrast variation across the shape 
due to noise or partial volume effects, can disturb the 
response value. To overcome this limitation, a threshold 
value of lower than expected anisotropy ratio should be 
considered. 
 

3. RESULTS 
 
The performance of the spherical object detection 
framework is assessed on different settings: the detection 
rate in clinical data and varying shape and intensity in 
simulated images. For better evaluation, the proposed 
method is compared to two other multi-scale techniques. 
 
3.1. Simulated data 

Existing blob/sphere filters show high response in outer 
corner of line-like structures such as vessels. Different 
criteria and parameters such as edge-indicator [8] and first 
derivatives [9] were proposed to address the problem of 
false detection. Though, presence of shape deformation, 
noise, contrast variation and presence of small scale 
structures can attenuate the performance.  

In the initial step, to assess the performance of the 
proposed method, simulated synthetic data which is shown 
in Fig. 2.a is employed. The synthetic image volume 
includes tubular (26×3×3 and 26×5×5 pixels) and spherical 
(radius of 1.5, 2.5 and 4.5 pixels) shapes with varying 
intensity, orientation and located relatively close to each 
other. The proposed method is compared with two existing 
techniques: (A) multiscale vessel enhancement filter [6] 

which incorporates three geometric measures based on 
eigenvalues of Hessian. The associated parameters were 
empirically determined and adapted for spherical case, (B) 
multiscale blob detection technique proposed by [5] where 
the filter response has an additional term based on pre-
determined size of objects along with eigenvalues ratio. 
Considering the objects size, multi-scale smoothing of [1:13] 
with step size of one is applied for all three techniques. The 
normalized center detection response is blurred by Gaussian 
with �=1.5 to smooth out local peaks due to large multi-
scale step size (Fig 2.b). Objects center were then identified 
by extracting the local maxima in this image. The multiscale 
sphere detection described in Section 2.3 was examined for 
each center point where value of 1 is expected for an ideal 
sphere. A low threshold value of 0.4 was used which allows 
detecting spherical/semi-spherical objects. The blobness 
filter in method B was adapted for 3D shapes by the same 
criterion as Eq. 8. The detection results of the proposed 
approach overlaid on the original image are shown in Fig. 
2.c and Fig. 2.d. 

Qualitative evaluation of the results showed that all the 
three methods are able to identify spherical objects, but 
methods A and B tend to generate multiple responses next to 
the edges. This is due to tubular structures appearing to be 
locally semi-spherical at the corners. This issue is addressed 
in the current method by restraining sphere response to the 
center of the object (described in Section 2.2).  Method A, in 
contrast with the other methods, is less effective for 
identifying objects that are close to each other. 

(a) 
 

(b) 

 
(c) 

 
(d) 

Fig. 2 (a) middle cross-section of the simulated image, (b) smoothed 
center detection response, (c) identified objects overlaid on the original 
image based on the proposed method, (d) identified objects based on 
method A (blue) and B (red). 



3.2. Clinical data 
 
For further assessment of the current method, a subset of 30 
subjects with Alzheimer’s disease and mild cognitive 
impairment diagnosed with Cerebral Microbleeds (CMBs) 
from the Australian Imaging Biomarkers and Lifestyle 
(AIBL) study were included. CMBs are hypo-intense, nearly 
spherical structure on MRI and may vary in size (2-10mm) 
and contrast. For each subject, susceptibility weighted 
images (SWI) are available. 3D SWI was acquired on a 3-T 
Siemens TRIO scanner with 0.9×0.9 mm in-plane resolution 
and 1.75 mm slice thickness.  SWI images were read by one 
expert. Finding CMBs in brain SWI image is a particularly 
challenging problem because of their small size, and their 
appearance on 2D slices which can be easily mistaken for 
vessel cross-sections or occlusions. SWI images were 
normalized to [0,1] after trimming the top 1% of intensity 
values within the brain mask. The images were also blurred 
by Gaussian with �=0.5 to reduce the noise. For the multi-
scale analysis, smoothing kernels of [1:5] with step size of 
0.5 and sphericalness threshold of 0.4 were used Fig.3 
shows the detected lesion overlaid on the pre-processed SWI 
image. To evaluate the performance of CMB detection, 
sensitivity and specificity rates of three available methods 
were computed and shown in Table 1. The proposed method 
shows 100% of sensitivity, where the other two methods left 
few CMBs undetected. Specificity is relatively high for all 3 
methods which is due to large number of true-negatives. 
However, the proposed method yields on average 159 false 
detections per subject, while method A and B produce 710 
and 421 false CMBs per subject, respectively. 

4. DISCUSSION 

In this paper an automated technique for low-level 
identification of small lesions for 3D medical images was 
presented. The experimental results demonstrated that the 
method yields high level of sensitivity with relatively low 
false detection rate. This is achieved because it was designed 
to identify rather than enhancing/segmenting objects of 
interest which allows defining effective criteria to assess the 
presence of the object rather than assessing its extent.  

Another advantage of the current method is that object 
center is accurately identified through combining normalized 
line filters. This also helps to detect the objects of interest 

adjacent to other structures. Since 1D line filter is  
considered to identify �opt,x ,�opt,y and �opt,z independently, the 
object’s local neighborhood would have different effects on 
the filter response of each dimension. Therefore, it is more 
likely to find the correct center for adjacent structures after 
the three responses are normalized and combined.  

The present approach suffers from one limitation.  The 
center detection step is not completely contrast and 
orientation invariant. Therefore it is possible that the 
detected center deviates from the true center or detect 
multiple centers if the contrast along the structure alters 
dramatically. However, Eigen system of the Hessian matrix 
which is employed in the final step can compensate as long 
as the detected center is close to the true center. 

 
5. CONCLUSION 

 
A new multi-scale lesion detection method based on 
Laplacian of Gaussian was presented. It allows the detection 
of spherical/semi-spherical lesion in 3D brain images with 
high sensitivity and low false detection rate. Future work 
will look into combining this pre-selection step inside a 
complete classification system. 
 

Table 1. Evaluation of the method on real data 

 Manual  
reads 

Proposed 
method 

Method 
A 

Method 
B 

True-positive 64 64 57 62 
False-positive - 4768 21301 12633 
False-negative - 0 7 2 

True-negative - 3599496 3582962 3591631 
Sensitivity 100.0 % 100.0 % 89.0 % 96.9 % 
Specificity 100.0 % 99.9 % 99.4 % 99.7 % 

 
(a) 

 

 

(b) 5 slice of a 3D ROI of a  CMB 
(7x7x5) placed side by side (shown 
in red) 

 

 

(c) 5 slices of a 3D ROI of a vessel  
(5x5x5)  orthogonal to the plane, 
placed side by side (shown in red 
dash line) 
 

 
(d) 

 
(e) 

 
(f) 

 
(g) 

Fig. 3 (a) SWI cross-section  and (d) examples of true CMBs (e)  
detection results of the current method (f) method A (g) and method B  
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