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ABSTRACT flexibility in the range of acceptable geometry tife
Automated detection of small, low level shapes sash detected lesions.
circular/spherical objects in images is a challeggi The majority of techniques are focused on vesgel/li

computer vision problem. For many applications.eesly  enhancement since sphere/blob detection is coesiderbe
microbleed detection in Alzheimer's disease, aromatic a sub-problem of line detection [4]. Template matgh
pre-screening scheme is required to identify paaeseeds techniques are flexible and relatively straightfarivto use
with high sensitivity and reasonable specificity. ew  for object localization. Yet it becomes less effextand
method is proposed to detect spherical object®im&dical slow for 3D images in the presence of shape arehsitly
images within the multi-scale Laplacian of Gaussiarvariations. A majority of techniques use multip®tropic
framework. The major contributions are (1) breakifmyyn  Gaussian kernels to create a multi-scale represemtahile
3D sphere detection into 1D line profile detectialong various response filters based ypnormalized Laplacian of
each coordinate dimension, (2) identifying centefr oGaussian (LoG) are developed for detection/enhaectof
structures by normalizing the line response pradiel (3) tubular-like and blob-like structures [4, 5, 6].rfagrmore,
employing eigenvalues of the Hessian matrix atnopth  the filters adapt the eigenvalues of the Hessiatetermine
scale for the center points to determine sphendgécts. locally the likelihood that a primitive shape ispent. The
The method is validated both on simulated data angroblem of false detection of outer corners has #éleen
susceptibility weighted MRI images with ground krut partially addressed [5, 7]. There has been, howdsar
provided by a medical expert. Validation resultsxdastrate  attempts to apply these methods to the detectiosnell
that the current approach has higher performanterins of lesions in 3D brain medical images. These lesiors a
sensitivity and specificity and is effective in eeting generally modeled as solid spheres, with low amdetimnes
adjacent microbleeds, with invariance to intensity,anisotropic spatial resolution, strong partial vokueffects
orientation, translation and object scale. (PVE) making them appear relatively semi-spherioal

ovoid in shape. Moreover, lesions adjacent to other

Index Terms— 3D sphere detection, Laplacian of structures with relatively higher contrast and éargize can

Gaussian, cerebral micro bleed, center detectiofti-stale  remain undetected.
In this work a new technique for the identificatioh

1. INTRODUCTION spherical structures of multiple sizes in 3D bradgtume is

proposed. The multiscale approach discussed here

The task of identifying 3D sphere-like or 2D blakel inspired by the work of Lorenet al. [8] who adapted multi-

structures with variable size and intensity is akay Scale LoG and Hessian transform for vessel enhagiiem
importance: microaneurysms in fundus images [liclmal ~ Here, a lower false detection rate compared te stithe art
microbleeds in magnetic resonance imaging (MRI)If&lg ~ methods is achieved by analyzing shape attribissscaated
nodules in X-ray images [3]. For some applicatiam ~ With structures center point. The paper is orgahizes
automatic pre-screening scheme is required to ifgent follows. Section 2 describes mathematical definitiof
potential candidates as input for more elaborateisien  Multiscale LoG 1D line detection, shape center llpaton
algorithm. An ideal method must be reliable, sciglagnd and sphericalness attribute. Experimental reswigduating
fast with a high level of sensitivity while allovgrfor some  the proposed method are explained in Section Zud&on

is



is presented in Section 4 and finally conclusiond future
works are discussed in Section 5.

2.METHOD

The major contributions proposed here are sumntiize
steps: (i) breaking down 3D sphere detection intdtim
scale 1D line detection along X, y and z dimensidiis
identifying center of objects by combining normatizline
response obtained in the previous step and fin@ily
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employing elgenvalqes 9f the Hessian ma}trlx _for th%ig.l(a)Boxcarand Gaussian line cross-section, (b) resphmetion
extracted center points in order to determine gpaler of Gaussian and boxcar line profile withl.75

objects.
2.1. Multi-scale 1D line detection

3D sphere detection can be considered a sub-praifiéine

detection in each dimension. Since shapes of stteran
appear in different sizes, multi-scale space cdedly

Gaussian smoothing at various extent is employkd.stale
response filter, defined as the normalized secaoddro
derivative of the smoothed image, has been widsédfor
describing curvatures [8, 9]:

Ry (6 0,) = Argitin(o - LB, - (1)
)
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whereRyp, I, G andx are the response function at scale
gray-value image profile (with bright objects omptof a
dark background), Gaussian kernel and pixel looatio
respectively. Fot with dark objects on bright background,
Argmin should be replaced bjrgMax in Eq. (1). The
parametery in the termo” was introduced to establish a
normalized response at multiple scales since thes&kan
amplitude decreases asincreases [9]. The scale, at
which extremum response over all scales is attaingd
assumed to give information about the size of thesent

order to fixy for any arbitrary input, average value of 1.75 is
chosen. The magnitude of the response pr&iteis usually
considered for localizatiorR;p<0 is associated with bright
lines whileR;p>0 is associated with dark lines and in both
cases, there is a local extrema at the centereo$tifucture
(Fig. 1.b).

2.2. Centredetection

In most approaches, the center of the structure lman
extracted as the maxima over the smoothed imagi@degsro
[7]. This is, however, not an effective method foultiple
scales and adjacent structures.

In this work, a novel approach is proposed wheee th
crossing of orthogonal line response profiles wih
extremum in each dimension is regarded as a (qusadita
description of the structure center point. The oese and
its associated extremum are dependent on the shdpet,
implying that intersect of each individual respomsay not
necessarily be associated with the true centercamdbe
biased. Here, this issue is addressed by normglihia line
response magnitude. The line center response wisich
expected to achieve the highest response magnitalde
considered as a reference point for normalizat®ynusing
equations (3) and (4) inside Eq. (1) fer0, the line center

structure. A line profild(x) in ideal case can be consideredresponse folg andlgz can be expressed as:

to be boxcar. However, due to PVE, lines usuallyndd
appear with sharp edges and are closer to Gaugsiéites
(Fig. 1.a) with maximum intensityand widthw given by:
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0 otherwise

where Ig and Iz are Gaussian and boxcar line profile,
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RlD*Boxcar (O; Uopt) =-048x Caom_1/4 ©

Likewise, this center response for any generic tirgaun be

estimated as summation of Eq. (5) and Eq. (6). Gibhat

ooptiS available from the previous step:
normR, (X aopt) =

R1D (X1 aopi ) /( (RlD—Gausa'an (01 Jopt) + RlD—boxcar (01 Jopt))

wherenormRyp is the normalized responskhe center map
is then obtained by averaging the normalized lesponse

()

respectively. The Parametgrshould be chosen so that anof each dimension and extracting local maximas.

extremum over all scales can be achieved. Analyicfor
the center of the line profiles &t0, the desired extremum
response is achieved when the size of the smookangel
matches the size of the profiles, meanigg=oc=w/2. This
yieldsy to be 1.5 forig and 2 forlg in contrast with [8]. In

2.3. Sphere detection

In this step, a sphericalness measure is definedthfe
centers that are extracted in section 2.2 througierE



system of the Hessian matrix.

local high-level shape information and the eigeneal

provide quantitative measure of the shape. The ialess

matrix is computed for each voxel in the image raftee

optimum scale is found through 3D LoG operator [10]

Several vesselness [4, 6, 11] and blobness fi[tdrhave
been proposed using eigenvalues analysis of theiddes

For bright sphere on top of a dark background with

corresponding eigenvalues &f[KA2|<As| ,a sphericalness
attributes for each voxalis defined as [12]:

0 if A,>00rA,>00rA,>0
S(x) = Ml‘
A

8

otherwise

The filter attains a maximum value of one at theteeof a
perfectly spherical object. In contrast with otts&tudies

The Hessian matrix
encompasses the second order derivative which escod
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where multiple criteria are combined to enhance and

segment specific structures, here a single criteésased for
identification through a hard-thresholding schempgliad on
the centers extracted in Section 232s invariant to grey-
level re-scaling since it only involves the ratid the
eigenvalues. However, contrast variation acrossstiegpe
due to noise or partial volume effects, can disttib
response value. To overcome this limitation, a dhoéd
value of lower than expected anisotropy ratio stioloé
considered.

3.RESULTS
The performance of the spherical

framework is assessed on different settings: thtectien
rate in clinical data and varying shape and intgngi

simulated images. For better evaluation, the pregos

method is compared to two other multi-scale tealesq
3.1. Simulated data

Existing blob/sphere filters show high responseoirter
corner of line-like structures such as vessels.febgfit
criteria and parameters such as edge-indicatoaf@] first
derivatives [9] were proposed to address the probdd

(© (d)

Fig. 2 (a) middle cross-section of the simulated imagé,sfnoothed
center detection response, (c) identified objeetrlaid on the original
image based on the proposed method, (d) identiigigcts based on
method A (blue) and B (red).

which incorporates three geometric measures based o

eigenvalues of Hessian. The associated parameters w
empirically determined and adapted for sphericakec#B)
multiscale blob detection technique proposed bywbgre
the filter response has an additional term basedoren
determined size of objects along with eigenvaluasor
Considering the objects size, multi-scale smootloiig.:13]

object detectionvith step size of one is applied for all three téghes. The

normalized center detection response is blurre@Gayssian

with 6=1.5 to smooth out local peaks due to large multi-

scale step size (Fig 2.b). Objects center were ithemtified
by extracting the local maxima in this image. Thdtiecale
sphere detection described in Section 2.3 was ewairfor
each center point where value of 1 is expectecafordeal
sphere. A low threshold value of 0.4 was used whitdws
detecting spherical/semi-spherical objects. Thebixss
filter in method B was adapted for 3D shapes byséme
criterion as Eq. 8. The detection results of theppsed
approach overlaid on the original image are shawfig.

false detection. Though, presence of shape defmmat 2.c and Fig. 2.d.

noise, contrast variation and presence of smalllesca

structures can attenuate the performance.

Qualitative evaluation of the results showed thiatha
three methods are able to identify spherical objebut

In the initial step, to assess the performancehef t methods A and B tend to generate multiple responegtsto

proposed method, simulated synthetic data whickh@wvn

the edges. This is due to tubular structures appedo be

in Fig. 2.a is employed. The synthetic image volumdocally semi-spherical at the corners. This issuaddressed

includes tubular (26x3x3 and 26x5x5 pixels) andesichl
(radius of 1.5, 2.5 and 4.5 pixels) shapes withyingr
intensity, orientation and located relatively close each
other. The proposed method is compared with twetiexj
technigues: (A) multiscale vessel enhancementr fif&}

in the current method by restraining sphere respooghe
center of the object (described in Section 2.2ethdd A, in
contrast with the other methods, is less effectfoe
identifying objects that are close to each other.



3.2. Clinical data

For further assessment of the current method, sesud§ 30
subjects with Alzheimer's disease and mild cogeitiv
impairmentdiagnosedwith Cerebral Microbleeds (CMBSs)
from the Australian Imaging Biomarkers and Lifestyl
(AIBL) study were included. CMBs are hypo-intensearly
spherical structure on MRI and may vary in sizel(2rm)
and contrast.For each subject, susceptibility weighted
images (SWI) are available. 3D SWI was acquire @T
Siemens TRIO scanner with 0.9x0.9 mm in-plane te&ol
and 1.75 mm slice thickness. SWI images were byashe
expert. Finding CMBs in brain SWI image is a paigcly
challenging problem because of their small sizel toeir
appearance on 2D slices which can be easily mistéke
vessel cross-sections or occlusions. SWI
normalized to [0,1] after trimming the top 1% otensity
values within the brain mask. The images were blaoed
by Gaussian witls=0.5 to reduce the noise. For the multi-
scale analysis, smoothing kernels of [1:5] withpsséze of
0.5 and sphericalness threshold of 0.4 were usgd3 Fi
shows the detected lesion overlaid on the pre-gsBE SWI

image. To evaluate the performance of CMB detection

sensitivity and specificity rates of three avaitalhethods
were computed and shown in Table 1. The proposehatie
shows 100% of sensitivity, where the other two rodthleft
few CMBs undetected. Specificity is relatively hifgin all 3
methods which is due to large number of true-negati
However, the proposed method yields on averagefdlsé
detections per subject, while method A and B predutO
and 421 false CMBs per subject, respectively.

4. DISCUSSION

imagese wer

e

(b) 5 slice of a 3D ROI of a CMI
(7x7x5) placed side by side (shown
in red)

nom =

(c) 5 slices of a 3D ROI of a vess
(5x5x5) orthogonal to the plane,
placed side by side (shown in red
dash line

()

Fig. 3 (a) SWI cross-section
detection results of the current method (f) metAdd) and method B

and (d) examples of true GMB)

adjacent to other structures. Since 1D line filser
considered to identifyqpx ,0opty aNdogy, independently, the
object’s local neighborhood would have differerfeefs on

In this paper an automated technique for low-levethe filter response of each dimension. Therefdres more

identification of small lesions for 3D medical inesgwas
presented. The experimental results demonstratei tiie
method yields high level of sensitivity with relaly low
false detection rate. This is achieved becausastdesigned
to identify rather than enhancing/segmenting okjeot
interest which allows defining effective criterm assess the
presence of the object rather than assessingtiéatex
Another advantage of the current method is thagaibj
center is accurately identified through combiningmalized
line filters. This also helps to detect the objexztsnterest

Table 1. Evaluation of the method on real data

Manual Proposed M ethod Method
reads method A B

True-positive 64 64 57 62
False-positive - 4768 21301 12633
False-negative 0 7 2
True-negative - 3599496 3582962 3591631
Sensitivity 100.0 % 100.0 % 89.0 % 96.9 %
Specificity 100.0 % 99.9 % 99.4 % 99.7 %

likely to find the correct center for adjacent stwues after
the three responses are normalized and combined.

The present approach suffers from one limitatidhe
center detection step is not completely contrastl an
orientation invariant. Therefore it is possible tthie
detected center deviates from the true center decte
multiple centers if the contrast along the struetailters
dramatically. However, Eigen system of the Hessratrix
which is employed in the final step can compensatéong
as the detected center is close to the true center.

5.CONCLUSION

A new multi-scale lesion detection method based on
Laplacian of Gaussian was presented. It allowsittection

of spherical/semi-spherical lesion in 3D brain i@sagvith
high sensitivity and low false detection rate. Fetuwork
will look into combining this pre-selection stepside a
complete classification system.
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