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An Experimental Comparison betweenATNoSFERES and ACSSamuel Landau�, Olivier Sigaud�, Sébastien Piault��, and Pierre Gérard�� Laboratoire d'Informatique de Paris 68, rue du Capitaine Sott75 015 Paris Frane{Samuel.Landau,Olivier.Sigaud,Pierre.Gerard}�lip6.frhttp://miriad.lip6.fr/�landauhttp://animatlab.lip6.fr/{Sigaud,Gerard}�� Laboratoire d'Informatique Fondamentale de LilleCité Sienti�que59 655 Villeneuve d'Asq Cedex, FraneSebastien.Piault�lifl.frhttp://www.lifl.fr/�piaultAbstrat. After two papers omparing ATNoSFERES with XCSM, aLearning Classi�er System with internal states, this paper is devoted to aomparison between ATNoSFERES and ACS (an Antiipatory LearningClassi�er System). As previously, we fous on the way pereptual aliaz-ing problems enountered in non-Markov environments are solved withboth kinds of systems. We shortly present ATNoSFERES, a frameworkbased on an indiret enoding Geneti Algorithm whih builds �nite-state automata ontrollers, and we ompare it with ACS through twobenhmark experiments. The omparison shows that the di�erene inperformane between both system depends on the environment. Thisraises a disussion of the adequay of both adaptive mehanisms to par-tiular sublasses of non-Markov problems. Furthermore, sine ACS on-verges muh faster than ATNoSFERES, we disuss the need to introduelearning apabilities in our model. As a onlusion, we advoate for theneed of more experimental omparisons between di�erent systems in theLearning Classi�er System ommunity.Keywords Evolutionary Algorithms, Pereptual Aliazing, Augmented Transi-tion Networks.1 IntrodutionMost Learning Classi�er Systems (LCS) [Hol75℄ are used to ontrol agents in-volved in a sensori-motor loop with their environment. Suh agents pereivesituations through their sensors as vetors of several attributes, eah attributerepresenting a pereived feature of the environment. As pointed out by Lanzi



[Lan00℄, LCS are adaptive arhitetures based on Reinforement Learning (RL)tehniques [SB98℄, but endowed with generalization apabilities. Thanks to aLCS, an agent an learn the optimal poliy � i.e. whih ation to perform in ev-ery situation, in order to maximize a reward obtained in the environment. Thepoliy is de�ned by a set of rules � or lassi�ers � speifying an ation aordingto some onditions onerning the pereived situation.Standard RL algorithms are generally used in situations where the state of theagent-environment interation is always known without ambiguity. But in realworld environments, it often happens that agents pereive the same situation inseveral di�erent states, eventually requiring di�erent optimal ations, giving riseto the so alled �pereptual aliazing� problem. In suh a ase, the environmentis said non-Markov, and agents annot perform optimally if their deision at agiven time step only depends on their pereptions at the same time step.There are several attempts to apply LCSs to non-Markov problems, relyingon di�erent approahes to the problem. For instane, in XCSM [Lan98℄ added ex-pliit internal states to the lassial (ondition, ation) pair of the lassi�ers usedin XCS [Wil95℄. From XCS again, [TB00a℄ proposed in CXCS a rule-hainingmehanism able to build a bridge over ambiguous situations. ACS, an Antiipa-tory LCS (ALCS), uses a similar rule-haining mehanism to solve non-Markovproblems.In two reent papers [LPSG02a, LPSG02b℄, we have presented a new frame-work, �ATNoSFERES� [LP01℄, also used to automatially design the behavior ofagents and able to ope with non-Markov environments. ATNoSFERES relies onan evolutionary approah instead of lassial reinforement learning tehniques,but we have shown in [LPSG02a℄ that the resulting graph-based representationwas semantially very similar to the LCS representation, giving rise to a detailedomparison between both lasses of systems. In partiular, we have shown thattwo important advantages of the graph-based representation were its minimal-ity and its readability. As a result, the struture of the ontroller gives a lot ofinformation about the struture of the problem faed by the system. In thesepapers, ATNoSFERES was ompared with XCSM on the well-known Maze10environment and then on a new environment alled 12-Candlestiks.In the present paper, we provide a new omparison between ATNoSFERESand another LCS, ACS. We rely on a study from [ML02℄ to ompare the per-formane of both systems on two distint environments. Our omparison revealsnew features of the interation of LCSs with non-Markov problems.In the next setion, we summarize the features and properties of the ATNoS-FERES model, and we highlight the formal similarity between ATNoSFERESand LCS representations. In setion 3, we brie�y present the di�erent approahesused in LCSs to ope with non-Markov problems. Then we atually ompareATNoSFERES with ACS in setion 4. This new study reveals that some prob-lems found di�ult with ACS appear easier with ATNoSFERES and vie versa.We disuss this point in setion 5. Finally, we draw lessons from the fat thatATNoSFERES onverges slower than ACS to onlude that we should inludeon-line learning mehanisms in our model, and we highlight the need of more



experimental omparisons between lasses of Learning Classi�er Systems nowthat the �eld is getting more mature.2 The ATNoSFERES model and Learning Classi�erSystems2.1 Graph-based expression of behaviorsThe arhiteture provided by the ATNoSFERES model [LP01, PL01℄ involvesan ATN1 graph [Woo70℄ whih is basially an oriented, labeled graph with aStart (or initial) node and an End (or �nal) node (see �gure 7). Nodes representstates while edges represent transitions of an automaton.Like LCSs, ATNoSFERES binds onditions expressed as a set of attributesto ations, and is endowed with the ability to generalize onditions by ignoringsome attributes. But in ATNoSFERES, the onditions and ations are used ina graph struture that provides internal states.The graph desribing the behaviors is built from a genotype by adding nodesand edges to a basi struture ontaining only the Start and End nodes. Thegraph-building proess was desribed in [LPSG02a, LPSG02b℄ and will not bedetailed here again. For the self-onsisteny of the paper, we just have to mentionthat the proess is separated into two steps:1. The bitstring (genotype) is translated into a sequene of tokens.2. The tokens are interpreted as instrutions of a robust programming language,dediated to graph building.Sine any sequene of tokens is meaningful, the graph-building language ishighly robust to any variations a�eting the genotype, thus there is no spei�syntatial nor semantial onstraint on the geneti operators. In addition, thesequene of tokens is to some extent order-independent and a given graph an beprodued from very di�erent genotypes, whih guarantees a degeneray property.2.2 ATNoSFERES model and Learning Classi�er SystemsAs explained in more details in [LPSG02a℄ and illustrated in �gure 1, an ATNsuh as those evolved by ATNoSFERES an be translated into a list of lassi�ers.The nodes of the ATN play the role of internal states and endow ATNoSFERESwith the ability to deal with pereptual aliazing. The edges of the ATN areharaterized by several informations whih an also be represented in lassi�ers:the soure and destination nodes of the edge orrespond to internal states; theonditions assoiated to the edges orrespond to the onditions of the lassi�ersand the ations assoiated to the edges orrespond to the ations of the lassi�ers.1 ATN stands for �Augmented Transition Networks�
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3 Bakground: LCSs and non-Markov problemsDealing with simple Condition-Ation lassi�ers does not endow an agent withthe ability to behave optimally in pereptually aliazed problems. In suh prob-lems, it may happen that the urrent pereption does not provide enough in-formation to always hoose the optimal ation: as soon as the agent pereivesthe same situation in di�erent states, it will hoose the same ation even if thisation is inappropriate in some of these states.For suh problems, it is neessary to provide the system with more than justurrent pereptions. In the general reinforement learning framework, severalkinds of solutions have been tested.� The �rst one onsists in adding expliit internal states to the pereptionsinvolved in the deisions of the system. This approah was used by Hollandin his early LCSs thanks to an internal message list [HR78℄. But both [RR88℄and [Smi94℄ reported unsatisfatory performane of Holland's system on non-Markov problems. In the ontext of more reent LCS researh, the expliitinternal state solution was adopted by [CR94℄ in ZCSM and by [LW00℄ inXCSM and XCSMH.� The seond one, memory window management, is a speial ase of expliitinternal state management where the internal state onsists in an immediatememory of the past of length k. Some systems use a �xed size window (see[LM92℄ for a review) while others use a variable size window (e.g. [MC95℄).The next solution, rule-haining, an be seen as an alternative view of thevariable size window mehanism.� The third one onsists in haining the deisions, making one deision dependon the deisions previously taken, so as to use a memory of what was donepreviously to disambiguate the urrent situation. Among LCSs, this solutionwas used in ZCCS [TB00b℄, CXCS [TB00a℄ and ACS [Sto99℄.� The fourth one onsists in splitting a non-Markov problem into severalMarkov problems, making sure that aliased states are sattered among dif-ferent sub-problems. This solution has been investigated �rst by [WS97℄,and then improved by [SS00℄. To our knowledge, no LCS atually uses thissolution, despite its very interesting properties.� The last solution onsists in building a �nite state automaton orrespondingto the struture of the problem, as [MPKK99℄ or [Han98℄ do, in a ontextwhere the struture of the problem is known in advane. This is the solutionhosen in ATNoSFERES, using a Pittsburg style evolutionary algorithm,but in a ontext where the agents do not know anything about the strutureof the problem before starting.4 Experimental Comparison with ACS4.1 ACSIn previous papers, we have ompared ATNoSFERES with XCSM on two non-Markov problems. In order to go deeper into the omparison between the abilities



of ATNoSFERES and LCSs to ope with the pereptual aliazing problem, wepresent in this setion a omparison with another system, ACS.The Antiipatory Classi�er System has been developed by Stolzmann [Sto98℄.It di�ers from lassial Learning Classi�er Systems by adding to the pereption-ation rules an �e�et part� that represents a pereptual antiipation of theonsequenes of the ation upon the environment. ACS relies on an Antiipa-tory Learning Proess (ALP) [Sto98℄ and has been suessfully applied to bothMarkov and non-Markov environments.The main feature of ACS with respet to XCS-like LCSs relies in the fatthat their use of antiipation make it possible to design some e�ient heuris-tis that are believed to make the system onverge faster, though no expliitperformane omparison has been published yet. Gérard and Sigaud have pro-posed two ALCSs similar to ACS, namely YACS [GSS01℄ and MACS [GMS03℄,that have been shown to be faster than ACS, but are limited to Markov anddeterministi environments.In ACS, in order to deal with non-Markov environments, it was hosen to usea rule-haining mehanism like in CXCS [TB00a℄. In that ase, the e�et partof a lassi�er onsisting in a behavioral sequene is intended to represent thepereptual onsequene of the sequene of ations. As it is the ase with CXCS,this feature makes ACS able to deal e�iently with non-Markov environments[Sto99℄.In order to build suh a behavioral sequene, a new parameter was added toACS, namely �BSmax�. BSmax represents the maximal length of the behavioralsequenes that ACS may build. Its value must be deided before starting anyrun.4.2 Experimental setupWe tried to reprodue an experimental setup as lose as possible to that usedin [Lan98℄ with the Maze10 environment and ACS in E1 and E2 environments,taking into aount the spei�ities of our model. This setup has been appliedto all the experiments presented in this paper.Pereption/Ation abilities and Tokens. The agents used for the experimentsare able to pereive the presene/absene of walls or the presene of food in theeight adjaent ells of the grid, these three pereptions being mutually exlusive.They an move in adjaent ells (the move will be e�etive if the ell is emptyor ontains food). Thus, the geneti ode inludes 24 ondition tokens, 8 ationtokens, 7 stak manipulation tokens and 4 node reation/onnetion tokens. Weused 7 bits enoding to de�ne the tokens (27 = 128 tokens, whih means thatsome tokens are enoded twie or more).In [LPSG02b℄, we demonstrated that the performanes of ATNoSFERESould be inreased by using a new token, selfConnet, endowing our model withthe ability to build easily self-onneting edges from a node to itself. This newtoken has been used in all the experiments presented below.



Course of Experiments. Eah experiment involves the following steps:1. Initialize the population with N = 300 agents with random bitstrings.2. For eah generation, build the graph of eah agent and evaluate it in theenvironment.3. Selet the 20 % best individuals of the population and produe new onesby rossing over the parents. The system performs probabilisti mutations(with a 1% rate) and insertions or deletions of odons (with a 0.5% rate) onthe bitstring of the o�spring.4. Iterate the proess in 2 with the new generation.Fitness funtion. Eah individual is evaluated by putting it into the environ-ment, starting on a blank ell in the grid, and letting it try to �nd the food withina limited amount of time (the limit is 20 time steps in all experiments desribedbelow). The agent an pereive the food, and it an perform only one ation pertime step; when this ation is inompatible with the environment (e.g. go westwhen the west ell ontains an obstale), it is simply disarded (the agent losesone time step and stays on the same ell).The �tness of the agent for eah run is the remaining time if the food hasbeen found within the time limit. Thus, the seletion pressure enourages shortpaths to food. For one generation, eah agent is evaluated one time startingon eah empty ell, then its total �tness for this generation is the sum of the�tnesses omputed for eah run. Eah agent is reevaluated at eah generationin order to average its �tness over generations. This is neessary beause of thenon-deterministi aspets of the automata.Indeed, there are several potential soures of non-determinism in our au-tomata. The �rst one is due to the fat that several ars might be eligible fromthe urrent node in the urrent situation. In that ase, we an either hooseone ar randomly, giving rise to a non-deterministi behavior, or assign �xedpriorities (by order of reation, for instane) to ars, so as to keep the automatadeterministi. In all the experiments presented here, we have hosen the deter-ministi stane, after having heked that we obtain better performane withsuh a hoie.But there are still two soures of non-determinism in our automata. In asituation where no ar is eligible, or when an edge to ross does not arry anyation label, one ation is hosen randomly. Thus an automaton will be fullydeterministi only in the ase where one ar an be eleted in any enounteredsituation, and if all suh ars bear an ation to perform. This explains the needto average the performane over several runs.4.3 Experimental environmentsThe experiments desribed below take plae in two non-Markov environments(E1 and E2, see �gure 2) that have been used in [ML02℄ to study how ACSdeals with non-Markov problems. E1 presents 20 aliazed situations (among the
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4.4 Comparison with ACSBefore omparing, we have to emphasize a major di�erene between the wayACS and ATNoSFERES deal with these environments. This di�erene regardsthe impliit seletion of possible movements. In ACS experiments, as they aredesribed in [ML02, � 4.1 and 4.2℄, the only movements tested in eah free posi-tion are transitions towards surrounding free ells (for example, if the ell to thenorth ontains an obstale, the move to the north is not onsidered as a possiblemove, thus it is not tested). This onstitutes a kind of prior domain-dependentknowledge about onsistent pereptions-ations bindings, whih signi�antly bi-ases the learning proess by reduing the number of lassi�ers to test. In [SG99℄,we have shown that prohibiting the use of this bias an severely impair somelearning algorithms. For instane, MCallum's U-Tree algorithm [MC95℄ whihworks well in non-Markov mazes suh as those studied here if the agent is pre-vented from bumping into walls, might grow an in�nitely deep tree if it keepsbumping into the same wall in an aliased situation.In ATNoSFERES, on the ontrary, any move token an be used as an ationlabel. When the orresponding movement is impossible, the agent stays whereit is and loses a time step (it is penalized only in an indiret way, through the�tness funtion).The experiments reported here were arried out on various initial genotypesizes. In E1, the genotypes that have been tested are between 40 and 150 tokenslong (with step 10), as in E2. Using these di�erent sizes was neessary beausewe do not know in advane the minimum size required to produe an e�ientautomaton.The original population genotype sizes may drift during an evolution, sinesome geneti operators insert or delete parts of the genotype randomly. Eahexperiment is stopped after 10,000 generations, and 10 experiments have beenperformed in eah experimental situation.4.5 ResultsFigure 4 gives the respetive �tness values obtained by the best automata inE1 and E2 experiments, depending on initial lengths of the genotypes. Eahross in the �gures represent the performane of the best automaton obtainedafter 10,000 generations in one run. Thus there are ten rosses for eah initiallength. From �gure 4 (a), it an be seen that in E1, ATNoSFERES easily reahesthe performane of ACS in the ase where BSmax = 1, but hardly reahesthe performane of ACS with BSmax = 2, whih is very lose to the optimalperformane.In E2, the performane obtained with ATNoSFERES is signi�antly betterthan the one obtained with ACS with BSmax = 2 and BSmax = 3. Indeed,ATNoSFERES is about twie loser to the optimum performane.In order to hek whether ATNoSFERES ould reah an even higher per-formane in E1, we took the best run on �gure 4 (a) and ran it up to 100,000
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E1 environment We present on �gure 8 the best automaton obtained in E1experiments after 100,000 generations, on �gure 7 the best automaton obtainedafter 10,000 generations, and on �gure 6 a more representative automaton ob-tained after 10,000 generations. From these �gures it is lear that the mostommon solutions found are nearly reative. The graph of the more ommon au-tomata ontains a single node (in addition to the Start and End node that alwaysexist in ATNoSFERES graphs), whih means that a reative behavior alreadyperforms well in E1. The results show that this kind of behavior is produedin most ases and gets high �tness values, more easily than solutions involvinginternal states.However, the automaton depited on �gure 7 shows that adding one nodean already improve signi�antly the global performane.The main di�erene between the best automaton obtained after 10,000 gener-ations and the one obtained after 100,000 generations is that the latter ontainsseveral additional ars. In partiular, the agent will more often take into aountthe presene of food (label f on the edges) in its immediate surrounding to reahit immediately.
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(b) E2 environmentFig. 9. Best poliy found with ATNoSFERES in E1 (resp. E2) in 10,000 generations,represented by the number of steps needed to reah food from eah Start ell (see�gure 3 for optimal poliy).Indeed, we an see on �gure 9 (a) that in several situations where the foodis visible the agent needs more than one step to reah it, though a more e�ientbehavior is obvious. ATNoSFERES has a lot of di�ulties in �nding these re-



ative rules that a reinforement learning algorithm ombining exploration andexploitation would �nd immediately.However, even if these additional ars ould improve the performane a bitmore, this would not be enough to reah the true optimal performane. A are-fully hand-rafted optimal automaton needs muh more internal states than theones shown in this setion.
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Fig. 10. The best automaton found with ATNoSFERES in E2 experiment. Its averagenumber of steps to food is about 3.8E2 environment Figure 10 gives the best automaton found in E2 environment.From this �gure it is immediately lear that a good automaton in E2 needs morenodes than it is the ase in E1. This seems to imply that reative and nearlyreative behaviors perform muh worse in E2 than in E1. This fat, in additionto the fat that ATNoSFERES learly outperforms ACS on E2 while it is lessthe ase in E1, will be at the heart of the disussion that follows.5 DisussionThe experimental study presented in the previous setion reveals that di�erentsublasses of non-Markov problems should be distinguished more aurately.Indeed, some problems, like E1, are atually non-Markov, but in suh a waythat reative behaviors an still perform well on suh problems.In E1, our study has shown that through an evolutionary proess, it is easyto gradually grow a set of ad ho rules (whih are to some extent independentfrom eah other), even more if the agent is tested from eah ell: thus, an agent



an start with a few rules that are e�ient for a few ells, and evolve fromone generation to another rules that are useful for additional ells. From suha reative solution, built by the aumulation of small hanges, it is unlikelyto develop internal states to deal with a few partiular ases, sine it requiresat the same time additional nodes, linked with onsistent edges, onditions andations. We meet again the strutural ost mentioned in [LPSG02a℄: �simple�,inremental good solutions are preferred to struturally omplex optima.On the ontrary, other problems, like E2, should be said �highly non-Markov�,sine reative poliies perform very poorly on suh problems. In E2, there is nohope that a reative behavior ould lead to the food in a reasonable amount oftime, due to the loation and the nature of aliazed situations.Our omparative study has revealed that ACS performs very well on the�rst sublass of problems and more poorly on the seond, while ATNoSFERESperforms onsistently on both sublasses.Now we should ask ourselves why this is so. On �rst thoughts, one mightonsider that the maximal length of sequenes in ACS plays a major role in thephenomenon. One ould expet that setting BSmax to more than 3 in E2 should�x the problem. A loser examination, however, reveals that this is not so.In [ML02℄, the authors show that setting BSmax to 3 is enough to let ACSbuild a ompletely reliable model of E2, under the form of (situation, ation,next situation) lassi�ers. This explains why they did not try BSmax = 4 ormore.But the performane onern and the model reliability onern are not stritlyorrelated. Regarding the onvergene to stable reward performane, [ML02℄ em-phasize that inreasing the maximum length of the behavioral sequene �doesnot improve the `steps to food' performanes�, i.e. a �good� behavioral solu-tion an be exploited without having built an exhaustive representation of theenvironment.One reason explaining that building longer ation sequenes would not im-prove the performane omes from the fat that these sequenes speify a blindseries of ations to perform without interruption and without heking betweenits beginning and its end the situation pereived in the environment by the agent.These sequenes an improve the performane of the agent when they let it jumpover ambiguous situations, but they have two main drawbaks:� �rst, they do not help the agent when it is starting from an ambiguoussituation, sine at the �rst time step the agent bene�ts from no memory tohelp disambiguating its situation;� seond, one a sequene is eleted, the agent will at least perform the numberof ations spei�ed in the sequene.Sine the number of steps to the food given by the optimal poliy in E1 and E2 isgenerally less than 4, it is very unlikely that letting the agent perform sequenesof 4 ations or more will help reahing the optimal performane.Even worse, if an agent starts from an ambiguous situation and then followsa long sequene of ations, this sequene will delay the time at whih the agentan disover its atual loation and then follow an optimal path to the food.



Indeed, our experiene with ATNoSFERES in small environments like E1and E2 is that the main issue for the agent onsists in disovering as fast aspossible where it is from an initially ambiguous situation and then follow theshortest path to the goal. Maybe the situation about the use of sequenes wouldbe di�erent in muh bigger environments, but we will not treat this issue here.Finally, we must ompare the number of elementary runs neessary to reah agood performane with ACS and ATNoSFERES. In the experiments reported in[ML02℄, ACS needs about 60,000 steps (resp. 120,000 steps) to build an exhaus-tive internal model of E1 (resp. E2) given a onvenient length of the behavioralsequene used as ation part in ACS. With ATNoSFERES, about 1500 gener-ations of 300 individuals are neessary to obtain a performane similar to thatof ACS with BSmax = 1 in E1 and BSmax = 2 or 3 in E2, whih makes about450,000 runs of 6 to 15 steps on average. Thus it is lear that ATNoSFERESstill needs several orders of magnitude more steps than ACS to onverge.This an be easily explained by the fat that ATNoSFERES evolves automatathanks to a blind GA proess while ACS relies on a reinforement learning algo-rithm whih extrats information about the environment from its experienes.From this omparison, it is lear that an area for a major improvement of AT-NoSFERES onsists in endowing it with reinforement learning apabilities. Thisis our immediate agenda for future work.A soure of inspiration in that diretion omes from the Samuel system[Gre91℄. Like ATNoSFERES, Samuel is a Pittsburg style system based on asingle hromosome GA, but it also inludes lamarkian operators that endow itwith basi learning apabilities. As a result, as laimed by the author, �Samuelrepresents an integration of the major geneti approahes to mahine learning,the Mihigan approah and the Pittsburg approah�. Most of the operators usedin Samuel an be transposed in ATNoSFERES, the main di�erene being thatATNoSFERES does not provide a high level symboli representation and thatSamuel does not inlude any mehanism to solve pereptual aliasing problems.6 Conlusion and Future WorkIn this paper, we have applied ATNoSFERES to non-Markov environments thathave been investigated with ACS. Our experiments on�rm that ATNoSFERESenounters more di�ulties in produing an optimal behavior in some environ-ments where reative solutions are highly valuable than in environments thatare more di�ult for ACS.Suh a result suggests that the di�ulties of di�erent non-Markov problemswith di�erent hidden-state struture suh as E1 and E2 should be distinguishedin more details than is usually done. Along that line, we believe that, thanks tothe information ATNoSFERES provides on the struture of di�erent problems,it an be seen as a tool that may help understanding whih kind of system willperform best in whih kind of environment and why.Finally, we would like to highlight the fat that the omparative studieswe provided with ATNoSFERES both in this paper and in [LPSG02a℄ and
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