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Abstract. This paper proposes the use of developmental and evolution-
ary metaphors to automatically design organization in adaptive multi-
agent systems. We propose therefore a novel evolutionary approach to
design agent behaviors in situated MAS, called “Ethogenetics”. We also
describe ATNoSFERES, a framework implementing the concepts of Etho-
genetics and discuss its specific properties.
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1 Introduction

The design of a Multi-Agent System (MAS) is often driven by specifications
regarding both the collective task the agents have to achieve (i.e. the function
of the system) and their social organization (i.e. constraints and dependencies
among the behaviors and abilities of the agents).

In some applications of MAS (such as social simulation [18, 17, 5, 8]), the
simulation or reproduction of a given organization pattern is a finality of the
system. But, in other cases, the relevance of explicitly designing organization in
MAS might be more controversial. To be fully adaptive, a MAS has indeed to
deal with physical or social environmental changes that can force it to modify
its own organization. The corresponding process in human cognition is known
as “epigenesis” (Piaget, Vygotsky).

Thus a prior design of the organization of a system should take into account
all possible reorganizations due to adaptations to the environment — which be-
comes quite impossible in massive MAS [3] or “real-world” applications (e.g.
collective robotics in open environments [19]).

The use of multi-agent machine learning (ML) techniques [24] is not always
of a sufficient help in that way, since most of them are concerned in setting
parameters in fized agent behaviors. The complexity of these behaviors is a
constitutive part of the model: the behaviors can be fine-tuned through more or
less sophisticated techniques, but they cannot change during the system lifecycle.
Furthermore, multi-agent ML techniques raise difficult issues related to the very



distribution of the collective tasks in MAS (e.g. problems linked with credit
assignment).

In addition to this, there is no indication that prior organizational features
would produce adequate behaviors (in terms of functionalities) in a given situ-
ation. There is no necessary relationship between specified collective functions
and a prior designed organization assumed to produce them.

Therefore, we propose in section 2 to address the issue of organization in
MAS through developmental and evolutionary metaphors. We then propose (§ 3)
a set, of principles that are required to make agents behavior really evolve in a
situated system (called “Ethogenetics”). As an illustration of that, we describe
in section 4 a model that implements those principles. We finally discuss the
properties of such a model and its possible applications, and sum up its results.

2 Development as a support for MAS adaptivity

To our point of view, the explicit design of an organization introduces a strong
bias between the collective behavior of the system and its adequation to a given
environment. It is all the more the case since the system might have to re-
organize itself in order to maintain its adaptation towards the collective task
or an environment. In such a situation the organization cannot be addressed
as a preexistent feature of the system, but rather as a permanent process [2].
Thus, we prefer to consider organization as an emergent property, that reflects
the equilibrium in an ecosystem (coordination, cooperation between behaviors,
competition for resources... ).
Thus we emphasize the double metaphor underlying an adapative MAS:

— As a whole, the system can be described as a single organism (an entity
with an internal organization) that exhibits a behavior. The progressive and
permanent adaptation of such an organism to its environment is the result
of and ontogenetic (developmental) process.

— As an ecosystem, the MAS relies on the behaviors of its agents. These agents
have to adapt to their environment but also one to each other. This can be
seen as the result of a phylogenetic (evolutionary) process.

The issue of obtaining a given collective behavior in a MAS mainly relies
upon the first metaphor. But, due to the difficulties raised by the distribution
among agents, it seems easier to work on the second metaphor.

According to that perspective, the natural selection paradigm might provide
a convenient approach, provided that agent behaviors are able to evolve. The
general principle of Evolutionary Algorithms involves the following steps:

1. individuals representing potential solutions for the problem are built from a
hereditary substratum (the genotype)

2. these individuals belong to a population

3. their adequation to the problem is evaluated (either explicitly through a
fitness function, or implicitly through survival criteria for instance)



4. some of them (mainly the most adapted) are selected to produce offspring
(by mixing their genotypes) ; others are removed from the population
5. the process cycles with the new population.

The approach we propose consists in adapting this general paradigm to the
evolution of multi-agent systems in place of individuals. A MAS exhibits indeed a
collective behavior that is usually considered as the solution to a given problem.

Unfortunately, the existing evolutionary computing paradigms are inade-
quate for the evolution of true agents behaviors (a more detailed discussion
will be found in [14]):

— On the one hand, Genetic Algorithms [9, 4, 6] and Evolutionary Strategies
[21, 23] have a very poor expressive power, since their purpose is the op-
timization of a set of parameters [1] in behaviors which have to be given a
priori. However, they allow fine-grain encoding, so that small variation in
the genotype (the genetic substratum) generally induce small variations in
the phenotype (the resulting behavior).

— On the other hand, the Genetic Programming paradigm [10], which is based
on the evolution of programs (i.e. instruction trees), has a much higher ex-
pressive power. But in such a tree structure, genetic variations most of the
time have a strong impact on behaviors (not only parameters, but also in-
structions are subject to modification), all of the more since the impact of
variations tightly depends on the location in the tree hierarchy.

The “Ethogenetics” approach we propose tries to conciliate advantages of
both paradigms.

3 The Ethogenetics approach

In previous papers [20, 13], we have introduced the Ethogenetics approach. Etho-
genetics is an attempt to combine the advantages of Genetic Algorithms and Ge-
netic Programming (continuity and expressive behavioral power [20]). The Etho-
genetics principles have been implemented in the ATNoSFERES model [15] (cf.
§ 4), and are under experimentation.

The purpose of “Ethogenetics” is to provide general principles for the de-
sign of evolutive agent behaviors — the ability to build agent behaviors (with a
large expressive power) from a meaningless genetic substratum. Since Darwinian
evolution is a blind process, its use to produce collective behaviors in MAS im-
plies several properties, mainly consequences of two principles: continuity and
expressive behavioral power.

3.1 Continuity

The environmental selection pressure acts on the whole system, on its ability to
react, to perform a task, to reach collective goals and so on. Adapted individuals
are selected to produce “offspring”: other individuals, the genotype of which



is a mixture of those of their “parents”. The adaptation degree of the offspring
systems should be close to their parents ones (if not, the adaptive effect of natural
selection gets lost). Thus, the behavior building process has to be:

— robust towards mutations: small variations in the genotype should induce in
most cases only small variations in the phenotype;

— independent from the structure of the genetic substratum: unlike Genetic Pro-
gramming (where the hierarchical tree structure has heavy consequences),
distant parts of the genotype should have few effects on each other. Thus it
is useful to dissociate the semantic structure (that produces the behavior)
from the “syntactic” one (the genetic substratum). When this requirement is
not fulfilled, semantics tightly constrains syntax, so that syntactic manipula-
tions (resulting from “blind” genetic operations) often destroys the semantic
structure.

3.2 Expressive behavioral power

The second major requirement in order to produce agent behaviors is the ability
to design complex behaviors. Thus the semantic structure used for that goal
should have at least the expressive power of a program tree (a tree provides more
interesting features as a semantic structure rather than as a syntactic structure).
But these behaviors, even if complex, should meet some requirements:

— Behaviors should be understandable. It may be useful to provide the agents
with understandable behaviors: some control architectures such as artificial
neural networks might be very efficient, but the resulting behavior cannot be
clearly described. The ability to easily interpret the behaviors would allow
on the one hand to understand what has been selected, and on the other
hand, to explicitly specify some of the behaviors using this same structure,
allowing to set a priori the behaviors of some agents.

— Behaviors should be able to adapt. Since the system will have to operate in
a given environment, it should be able to adapt itself, to reconfigure accord-
ing to environmental constraints. Thus the semantic structure representing
behaviors should avoid using explicit parameters: parameters are a kind of
shortcut, they reflect prior knowledge about the environment. The building
of situated behaviors has to be independent from any parameters, in order
to keep more flexibility.

In the next section, we present ATNoSFERES, a framework aimed at imple-
menting a concrete agent model featuring the properties required by Ethogenet-
ics.

4 The ATNoSFERES model

4.1 General principles

The principles of Ethogenetics are currently implemented in a multi-agent frame-
work, ATNoSFERES [15, 20, 13]. It is part of the SFERES framework [11] which



provides tools for modelling the agents classes, integrating them to the system,
designing an environmental simulator and providing classical evolutionary tech-
niques.

The main feature of the ATNoSFERES model consists in using an ATN?! [25].
ATN have already been used for designing agent behaviors [7]. In an ATN, edges
linking the states or nodes can be labelled with a set of conditions and a sequence
of actions. Thus it is particularly adequate to describe the behavior of an agent.

ATNOSFERES provides a general class, the ATNAgent, which is intended to
behave according to an ATN graph. Each subclass of ATNAgent is associated
with two collections of tokens: condition ones and action ones. The actions are
behavioral “primitives” that can be performed by the agent, the conditions are
perceptions or stimuli that induce action selection. Those action and condition
tokens are used to label the edges of the graph (see figure 1).

A structure such as an ATN graph would not fulfil the continuity requirement
if it had to evolve through a blind, darwinian, process. Thus, it has to be built
from a finer-grain substratum, e.g. a bitstring. Therefore, we use the following
steps:

1. The population (initial population or offspring of adapted individuals), is
composed of agents having their own bitstring (the genotype or hereditary
substratum).

2. For each agent:

(a) a translator produces tokens from the bitstring,

(b) an interpreter uses these tokens as instructions and data to build a graph
(the ATN),

(c) finally, the graph is used as a state machine to produce the behavior of
the agent.

. The agents behave in their environment, according to their own ATN.

4. The agents are selected and reproduced according to their capabilities in
surviving in their environment or performing a specified task. They produce
offspring and the process cycles with the new population.

w

The translator and the interpreter themselves are agents; in the following
lines, we will consider that their behavior is given and will not change in time,
but it could evolve as well to provide the system with higher autonomy.

We will now detail the above steps, starting with the behavior of the agent
and going back to the translation process.

4.2 The ATN Graph and the ATNAgent

The ATN is built by an interpreter (see § 4.3) by adding nodes and edges to
a basic structure containing two nodes: a “Start” node and an “End” node.
Once the ATN has been built, it can be used as an automaton to produce the
behavior of the agent during its life cycle. At each time step, the agent (initially
in the “Start” state) randomly chooses an edge among those having either no

1 ATN stands for “Augmented Transition Network”.
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Fig. 1. An example of ATN.

condition in their label, or all conditions simultaneously true. It performs the
actions associated with this edge and jumps to the destination node. At the
following time step, the process iterates from the new state. The agent stops
working when its state is “End”.

We emphasize that this approach is different from classical evolutionary
methods for producing adaptive behavior (Genetic Programming for instance)
since in the latter, the structure used to determine the behavior is used as a
whole at each timestep (for instance, the tree is executed again at each time
step to select actions).

4.3 The Interpreter

The purpose of the interpreter is to build an ATN from tokens. Some of these
tokens will be action or condition ones that are used to label edges between nodes
in the ATN. The other ones are interpreted as instructions, either to create nodes
or connect them, or to manipulate the structure under construction.

As we mentioned in section 3, the structure built by the tokens sequence has
to be robust towards mutations. For instance, the replacement of one token by
another, or its deletion, should have only a local impact, rather than transforming
the whole graph. Therefore, we use a “stack-based” programming language, the
specific properties of which are discussed in detail in [14] (see table 1).

If an instruction cannot execute successfully, it is simply ignored, except
instructions operating on nodes (i.e. connect and dupObject) which are “pushed”
in the list until new nodes are produced; then they try to execute again with
the new data. Finally, when the interpreter does not receive tokens any more, it
terminates the ATN: actions and conditions tokens still present between nodes
are treated as implicit connections (so that new edges are created) and the
consistency of the ATN is checked (“Start” is linked to nodes having no incoming
edges, except from themselves; in the same way, nodes having no outgoing edges
are linked to “End”).



token (initial list state) — (resulting list)
dup (xy..) — (zzy..)
del (xy..) — (y...)
dupNode (xy N; z ...) — (N zy N;z...)
delNode (x N;y N; z ...) — (x y N; z...)
popRoll (zy..2) — (y ...z x)
pushRoll (z ...y 2) — (zx...y)
swap (xy..) — (yz..)
node (z ...) — (N z ..)°
startNode (z ...) — (Niz..)b
endNode (z ...) — (N; z ..)°
connect (c1? c2? ¢ N; ycl? z a2l al! t Nj u...) — (z N; yth w..)?
condition? (z ...) — (condition? z ...)
action! (z ...) — (action! z ...)

Table 1. The ATN-building language.

“ creates a node N;

b creates a node N; and connects “Start” to it

¢ creates a node N; and connects it to “End”

4 creates an edge between N; and N;, with (c1?& c2?) as condition label and the list
{a1!,a2!} as action label

4.4 The Translator

The translator has a very simple behavior. It reads the genotype (a string of bits)
and decodes it into a sequence of tokens. It uses a genetic code, i.e. a function

G:{O,1)" — T (TI<2")

where T is a set of tokens, which includes both action and condition ones (specific
to the agent to build) and those understood by the interpreter (see table 1).

Depending on the number of tokens available, the genetic code might be more
or less redundant. If necessary, it can be designed in order to resist mutations,
but we will not discuss this issue in this paper.

4.5 Features of the ATNoSFERES model

Evolutionary computation considerations. As an evolutive approach, the
ATNoSFERES model provides three main features.

First, it separates the genetic information structure (plain bit string, the
lexical structure) from its interpretation (ATN, the semantic structure). Thus,
thanks to the interpreter language, the semantic structure that is built is always
correct. The behavior described by the ATN always has a meaning — even if it
is not adequate.

The second main evolutive feature is related to the genetic operators. The
level of influence of the classical genetic operators — mutation and crossover —



does not depend on the parts of the bitstring they involve (neither on their
location in the bitstring nor on their size). This is also a main advantage over
many evolutive approaches. As a matter of fact, mutations only have a local
impact in the expression of the genetic information, and crossovers involve bit
substrings which carry locally functional genetic code. We might also consider
more exotic genetic operators, such as deletions/insertions in the bitstring. These
operators in particular permit to smoothly manage string resizing, since they
only have a local impact in the ATNoSFERES model.

The third feature is that the model does not use any parameter to build
behaviors. The behaviors execution only depends on environmental conditions,
thus hard-coded genetic parameters are not even needed. Apart from behaviors
design, parameters encoding is a problem in many evolutive approaches, (see
for example discussion on epistasis in [22]), but as long as building behaviors is
concerned, we think it should be considered not to rely on fixed parameters in
order to produce situated, adaptive behaviors.

MAS design considerations. As a model for designing multi-agent systems,
the ATNoSFERES model does not set any restriction neither on the agent level
specification nor on the choice of the agents. The granularity of the system
modelisation is free ; furthermore, agents can be introduced later on at a lower
organization level (for instance inside an agent), keeping the latter structure, if
a finer-grain agent specification is needed.

In order to cope with these different levels of specification, we are now intro-
ducing a CompositeAgent in the framework, in order to allow encapsulation of
agents at one level by other agents at a higher level.

If the designer has prior knowledge about the system structure, he can spec-
ify and fix some agents behaviors, and use them as a constraint to drive the
evolution of the system organization. On the other hand, the only specification
that must be given for the evolving agents of the system is their sets of actions
and perceptions, and consequently the micro-environment in which they oper-
ate. Not only can this micro-environment be a part of the system environment,
but it can also for instance be the inside of an upper-level agent.

Agents behaviors design considerations. As a model for automatic behav-
ior design, the ATN structure used in ATNoSFERES provides a simplified tool,
since only the conditions and actions of each agent class have to be specified.

The ATN structure for behavior production allows to directly describe the
behavior of any agent: this is an interesting perspective for explaining how the
behavior operates or why it has been selected, for bootstraping the system, for
re-using parts of existing behaviors, for applying “high-level” operations such as
learning techniques, etc.

The ATNoSFERES model with regard to Ethogenetics. The ATNoSFERES
model fulfills the Ethogenetics requirements expressed in section 3. Preliminary



experiments [15, 20] have validated the use of ATNoSFERES regarding the fol-
lowing aspects:

— the ability to evolve adequate agents behaviors in a simple situation, from
random graphs;
— the consistency of the ATN-building evolutionary language.

The experimental results have also confirmed that the generation of behaviors do
not rely on a precise structure in the genotype: various adequate solutions have
been found, based either on different graph-building strategies, or on the use of
properties of the graphs (more details can be found in [15], and genetic-related
issues are discussed in [20]).

5 Conclusion

We have presented Ethogenetics, an approach for the design of evolutive agents
behaviors, and discussed its specific features. To summarize, interesting agents
behaviors can be built through an evolutionary approach that is able to ensure
continuity between the genetic substratum and the phenotypic behavior, and a
high expressive power in the behavior produced. We propose therefore a two-step
building that leads to graph-based behaviors (the ATNoSFERES model).

This model has been tested on simple agents behaviors [15, 20], and recently
on the more complex maze problem [12]; we are currently experimenting collec-
tive strategies on the one hand, especially predator-prey simulations in order to
study multi-agent ecological equilibrium and developmental dynamics; and on
the other hand, real-robots applications?).

We assume that a multi-agent system, in which agents behaviors have been
evolved that way, exhibit organizational features as a consequence of the selection
pressure that shaped individual behaviors. This hypothesis will be investigated
in the next months.
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