N

N
N

HAL

open science

Further Comparison between ATNoSFERES and XCSM

Samuel Landau, Sébastien Picault, Olivier Sigaud, Pierre Gérard

» To cite this version:

Samuel Landau, Sébastien Picault, Olivier Sigaud, Pierre Gérard. Further Comparison between AT-
NoSFERES and XCSM. IWLCS 2002 - 5th International Workshop on Learning Classifier Systems,

Sep 2002, Granada, Spain. pp.99-117, 10.1007/978-3-540-40029-5_7 . hal-00860450

HAL Id: hal-00860450
https://hal.science/hal-00860450

Submitted on 2 Apr 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00860450
https://hal.archives-ouvertes.fr

Further Comparison between ATNoSFERES and
XCSM

Samuel Landau®, Sébastien Picault?, Olivier Sigaud!, and Pierre Gérard!

! Laboratoire d’Informatique de Paris 6
8, rue du Capitaine Scott
75 015 Paris France
{Samuel.Landau,0livier.Sigaud,Pierre.Gerard}Q@lip6.fr
http://miriad.lip6.fr/~landau
http://animatlab.lip6.fr/"{sigaud,pgerard}
? Laboratoire d’Informatique Fondamentale de Lille
Cité Scientifique
59 655 Villeneuve d’Ascq Cedex, France
Sebastien.Picault@lifl.fr
http://www.lifl.fr/"picault

Abstract. In this paper we present ATNoSFERES, a new framework
based on an indirect encoding Genetic Algorithm which builds finite-
state automata controllers able to deal with perceptual aliazing. In the
context of our ongoing line of research, we compare it with XCSM, a
memory-based extension of the most studied Learning Classifier System,
XCS, through two benchmark experiments. We focus in particular on
internal state generalization, and add special purpose features to AT-
NoSFERES to fulfill that comparison. We then discuss the role played
by internal state generalization in the experiments studied.

Keywords Evolutionary Algorithms, Learning Classifier Systems, perceptual
aliazing, internal state generalization, ATN!

1 Introduction

Most Learning Classifier Systems (LCS) [5] are used to tackle problems where
situated and adaptive agents are involved in a sensori-motor loop with their
environment. Such agents perceive situations through their sensors as vectors of
several attributes, each representing a perceived feature of the environment. The
task of the agents is to learn the optimal policy — i.e. which action to perform
in every situation, in order to fulfill their goals the best way they can. As in the
general Reinforcement Learning (RL) framework [20], the goal of a LCS-based
agent is to maximize the scalar rewards it receives from its environment. The
policy is defined by a set of rules — or classifiers — specifying the action to choose
according to some conditions concerning the perceived situations.

! ATN stands for “Augmented Transition Networks”

2 S. Landau, S. Picault, O.Sigaud and P. Gérard

In real world environments, it may happen that agents perceive the same
situation in several different locations, some requiring different optimal actions,
giving rise to a perceptual aliazing problem. In such a case, the environment
is said nmon-Markov, and agents cannot perform optimally if their decision at a
given time step only depends on their perceptions at the same time step. Though
they are more often used to solve Markov problems, there are several attempts
to apply LCS to non-Markov problems ([21, 14] for instance).

Within this framework, explicit internal states were added to the classical
(condition, action) pair of the classifiers, e.g. in XCSM [14, 23]. These internal
states provide the additional information required to choose an action when
the problem is non-Markov. The problem of properly setting the classifiers is
generally devoted to Genetic Algorithms (GA).

In this paper, we extend our first comparison presented in [12] between XCSM
and “ATNoSFERES”. The latter is a new system that also uses GA to auto-
matically design the behavior of agents facing problems in which they perceive
situations as vectors of attributes, and have to select actions in order to fulfill
their goals. We show in [12] that such an evolutionary approach is able to cope
with non-Markov environments; in ATNoSFERES, the goals are represented by
a fitness measure (instead of classical LCS learning techniques).

In the first section, we present the features and properties of the ATNoS-
FERES model. It relies upon oriented, labeled graphs (§ 2.1) for describing the
behavior and the action selection procedure. The specificity of the model consists
in building this graph from a bitstring (§ 2.2) that can be handled exactly like
any other bitstring of a GA, with additional operators. Then we show that the
graph-based representation is formally very close to LCS representations, and,
in particular, to XCSM (§ 3.1). We remind the results of our previous experi-
ments presented in [12] (§4), and the comparison we made (§5), that led us to
assume that the lack of internal state generalization in ATNoSFERES explained
the sub-optimality of the solutions that were found. A comparison of the per-
formance of ATNoSFERES with and without a way to represent internal state
generalization (§ 6) allows us to discuss in detail the validity of this assumption
(§7). In the conclusion, we present further additions that could be made to our
model so as to reach an even higher performance (§8).

2 Description of the ATNoSFERES model

2.1 Graph-based expression of behaviors

The architecture provided by the ATNoSFERES model [11, 18] involves an ATN
graph [24] which is basically an oriented, labeled graph with a Start (or initial)
node and an End (or final) node (see figure 5). Nodes represent states and edges
represent transitions of an automaton.

Like LCSs, ATNoSFERES binds conditions expressed as a set of attributes
to actions, and is endowed with the ability to generalize conditions by ignoring
some attributes. But in ATNoSFERES , the conditions and actions are used in

Comparison between ATNoSFERES and XCSM 3

a graph structure that provides internal states. Such graphs have already been
used by [11] for describing the behavior of agents. The labels on edges consist
in a set of conditions (e.g. c1 ¢3 7) that have to be fulfilled to enable the edge,
and in a sequence of actions (e.g. a5 a2 a4!) that are performed when the edge
is chosen. We use those graphs as follows:

— At the beginning (when the agent is initialized), the agent is at the Start
node (S).

— At each time step, the agent crosses an edge:

1. It computes the set of eligible edges among those starting from the cur-
rent node. An edge is eligible when either it has no condition label or all
the conditions on its label are simultaneously true.

2. An edge is randomly chosen in this set. If the set is empty, then an action
is chosen randomly over all possible actions, the current node remains
unchanged, and we do not perform the next two steps.

3. The actions on the label of the current edge are sequentially performed
by the system. Assuming that only one action can be performed by time
step, only the last action is actually performed. When the action part of
the label is empty, an action is chosen randomly.

4. The new current node becomes the destination of the edge.

— The agent stops when it is at the End node (E). This node is a general
feature of our model and may never be reached. This appears to be the case
in all the following experiments (since agents reaching the End node stop
moving and thus have a very low fitness, see § 4).

Having described how the graphs are used, we now present how they are
built.

2.2 The graph-building process

The graph describing the behaviors is built from a genotype by adding nodes
and edges to a basic structure containing only the Start and End nodes.

There are many different evolutionary techniques to automatically design
structures such as circuits [8], finite-state machines [2], neural networks [25] or
program trees [7]. Very roughly, we can sketch an opposition between, on the one
hand, approaches that use the genotype as an encoding of a set of parameters
(like Genetic Algorithms [5, 1, 3] or Evolutionary Strategies [19]) and, on the
other hand, approaches that use a single structure both as the genotype and the
phenotype (such as Genetic Programming [7, 17], Evolutionary Programming
[2], L-systems [15], developmental program trees, e.g. [6, 4, 16]).

In the ATNoSFERES model [10], we try to conciliate advantages from both
kind of approaches: on the one hand, since the behavioral phenotype is produced
by the interpretation of a graph, we want it to be of any complexity; on the other
hand, we use a fine-grain genotype (a bitstring) to produce it, in order to allow
a gradual exploration of the solution space through “blind” genetic operators.

4 S. Landau, S. Picault, O.Sigaud and P. Gérard

Therefore, we follow a two-step process (see figure 1):

1. The bitstring (genotype) is translated into a sequence of tokens.
2. The tokens are interpreted as instructions of a robust programming language,
dedicated to graph building.

a Cc
tokens stack
_—
_— B
— ~NO
S| —
— [/
— [— P
I e —— = | —
_—]
translator —
—

bitstring / interpreter

Fig. 1. Principles of the genetic expression we use to produce the behavioral graph
from the bitstring genotype. The string is first decoded into tokens (a), which are
interpreted in a second step as instructions (b) to create nodes, edges, and labels (c).

Translation Translation is a simple process that reads the bitstring genotype
and decodes it into a sequence of tokens (symbols). It uses therefore a genetic
code, i.e. a function G : {0,1}* — T (|7| £ 2") where T is the set of possible
tokens (the different roles of which will be described in the next paragraph).
Depending on the number of available tokens, the genetic code might be more
or less redundant. Binary substrings of size n (decoded into a token each) are
called “codons”.

Interpretation Tokens are instructions of the ATNoSFERES graph-building
language (see table 1). They are interpreted one by one, while the interpreter is
fed with the token stream produced by the translator. The interpretation of each
successive token operates on a stack in which parts of the future graph are stored.
The construction of the graph takes place during this interpretation process, by
creating nodes and connections, and connecting them to the initial Start and
End nodes. As in other stack-based languages (e.g. Forth, PostScript), the data
in the stack can also be directly accessed by some instructions (e.g. connect,
dup: see table 1), by other means that only push/pop operations.

In order to cope with a “blind” evolutionary process (i.e. based on random
mutations on a fine-grain genotype), the graph built by the tokens sequence

Comparison between ATNoSFERES and XCSM 5

has to be robust to mutations [18]. For instance, the replacement of a token by
another, or its deletion, should only have a local impact, rather than transforming
the whole graph.

Therefore, if an instruction cannot be executed successfully, it is simply ig-
nored, and when all tokens have been interpreted, the graph is made consistent,
e.g. by linking Start to nodes without input edges (other than self-connected),
or nodes without output edges to End.

Since any sequence of tokens is meaningful, the graph-building language is
highly robust to any variations affecting the genotype, thus there is no specific
syntactical or semantical constraint on the genetic operators. In addition, the
sequence of tokens is to some extent order-independent and a given graph can
be produced from very different genotypes.

token resulting actions
stack tokens manipulate the stack
nop no action, the token is just discarded
swap swap the two first tokens

dup push a copy of the first action or condition token
del delete the first action or condition token

dupNode push a copy of the first node token

delNode delete the first node token®

popRoll pop the token, and puts it on the bottom of the stack
pushRoll take the token from the bottom of the stack, and push it
structure tokens create nodes and connect them with edges

node create a new node and push it
connect create an edge from the first to the second node token®,
label the edge with the set of conditions token and the list
of actions token until the second node,
delete the action and condition tokens that were used
startConnect create an edge from the Start node to the first node token,
label the edge with the set of conditions token and the list
of actions token until the node,
delete the action and condition tokens that were used
endConnect create an edge from the first node token to the End node,
label the edge with the set of conditions token and the list
of actions token until the node,
delete the action and condition tokens that were used
agent tokens actions and conditions tokens, specific to the agent
condition? push the condition on the stack
action! push the action on the stack

Table 1. The graph building language. Here “first” (node, action or condition)
refers to the first (node, action or condition) token encountered while going
down the stack.

% it may be a copy: possible other copies of the node still remain in the stack
® they could both be copies of the same node, so it would be a self-connected
edge

6 S. Landau, S. Picault, O.Sigaud and P. Gérard

The graph-building language Table 1 details the tokens that are used to
build the graphs. There are three categories of token:

— stack tokens (swap, dup, ...), that manipulate the stack. They are indepen-
dent from the agent abilities or the structure that is built.

— structure tokens (node, connect, ...), that perform atomic structure building
steps. Here they are designed to build graphs. They are also independent
from the agent abilities. Some of these tokens use tokens already in the
stack.

— agent tokens (actions, conditions), that are specific to an agent, and describe
its abilities. These token are just pushed onto the stack.

2.3 Integration into an evolutionary framework

Local Perception 4—‘ *7 Selected Action
[E] : Move East

NE?

o

S! s!

Current Situation
[E ~NE N ~NW ~W ~SW S ~SE]
Matching

NE‘? NE?
NE! % - NE! % =
? ?
= E! ‘ Selection \\E'_’
:T E ~N ? ‘ s?

4

E ~N ?
s! S! s!

O

ATN Grap

Fig. 2. In this example, the agent, located in a cell of the maze, perceives the pres-
ence/absence of blocks in each of the eight surrounding cells. It has to decide towards
which of the eight adjacent cells it should move. From its current location, the agent
perceives [E —NE N —NW —W —SW S —SE] (token E is true when the east cell is empty).
From the current state (node) of its graph, two edges (in bold) are eligible, since the
condition part of their label match the perceptions. One is randomly selected, then its
action part (move east) is performed and the current state is updated.

In this paper, the ATNoSFERES model has been applied inside an evolu-
tionary algorithm to produce controllers for agents.

Therefore, each agent has a bitstring genotype from which it can produce a
graph (the genetic code depends on the perception abilities of the agent and on
the actions it can perform). The fitness of each agent is computed by evaluating

Comparison between ATNoSFERES and XCSM 7

its behavior in an environment. Then individuals are selected depending on their
fitness and bred to produce offspring.

The genotype of the offspring is produced by a classical crossover operation
between the genotypes of the parents. Additionally, we use two different mutation
strategies to introduce variations into the genotype of new individuals: classical
bit-flipping mutations, and random insertions or deletions of one codon. This
modifies the sequence of tokens produced by translation, so that the complexity
of the graph itself may change. Nodes or edges can in fact be added or removed
by the evolutionary process, as can condition/action labels.

3 Learning Classifier Systems

Local Perception 4—‘ +7 Selected Action

[E] : Move East
-

Current Situation

[01010111]
LMatching
Condition Action
[#00#0#1#] [N]
1010441 s Selecti
##11 [S] | election } [#10##1#1] [E]
[#104#141] [E] |

Classifiers List

[10###101] [NE]
[0#10#0#0] [W]

Fig. 3. The agent perceives the presence/absence (resp. 1/0) of blocks in each of the
eight surrounding cells (considered clockwise, starting with the north cell). Thus from
its current location, the agent perceives [01010111]. Within the list of classifiers char-
acterizing it, the LCS first selects those matching the current situation. Then, it selects
one of the matching classifiers and the corresponding action is performed.

As explained in the introduction, the problems tackled by LCS are charac-
terized by the fact that situations are defined by several attributes representing
perceivable properties of the environment. A LCS has to build classifiers, which
define the behavior of the system as shown in figure 3. Within the LCS frame-
work, the use of “#” symbols in the condition parts of the classifiers results in
generalization, since don’t care symbols make it possible to use a single descrip-
tion to describe several situations. Indeed, a don’t care symbol matches any
particular value of the considered attribute.

8 S. Landau, S. Picault, O.Sigaud and P. Gérard

The main issue with generalization is to figure out on which conditions can
the don’t care symbols be used so that the actions keep accurate. To do so, LCS
usually call upon a GA.

In the Pittsburg style, the GA evolves a population of LCS with their whole
lists of classifiers. The lists of classifiers are combined thanks to crossover opera-
tors and modified with mutations. The LCS are evaluated according to a fitness
measure and the more efficient ones — with respect to the fitness — are kept. Thus,
as in the ATNoSFERES model, a Pittsburg style LCS evolves a population of
controllers.

On the contrary, in the Michigan style, the GA evolves a population of clas-
sifiers within the list of classifiers of a single agent. Here, this is the classifiers
which are combined and modified. A fitness is associated to each classifier and
the best ones are kept. Thus Michigan style LCS use GA to perform online
learning: the classifiers are improved during the life time of the agent. Usually,
such LCS rely on utility functions that depend on scalar rewards given by the
environment, as defined in the RL framework [20].

In most of the early LCS [5], the fitness was defined directly according to the
utility associated to the classifier. After having defined a very simple L.CS called
ZCS in [22], Wilson found much more efficient to define the fitness according to
the accuracy of the utility prediction. The resulting system, XCS [23], is now
the most widely used LCS to solve Markov problems.

3.1 XCSM

Dealing with simple Condition-Action classifiers does not endow an agent with
the ability to behave optimally in perceptually aliazed problems. In this kind of
problems, it may happen that the current perception does not provide enough
information to always choose the optimal action: as soon as the agent perceives
the same situation in different states, it will choose the same action though this
action may be inappropriate in some of these states (see figure 4).

For such problems, it is necessary to introduce internal states in the LCS.
[21] proposed a way to probalistically link classifiers in order to bridge aliazed
situations. In contrast, Lanzi [14] proposed XCSM, where M stands for Memory,
as an extension of XCS with explicit internal states. XCSM manages an internal
memory register composed of several bits that explicitly represent the internal
state of the LCS. The memory register provides XCSM with more than just
the environmental perceptions. Thus, dealing with perceptual aliazing is made
possible by adding information from the past experience of the agent. As a result
of this addition, a classifier contains four parts (see table 6): an external condition
about the situation, an internal condition about the internal state, an external
action to perform in the environment and an internal action that may modify
the internal state.

The internal condition and the internal action contain as many attributes
as there are bits in the memory register. In order to be selected by the LCS,
a classifier has to match with both the external and internal conditions. When
it is selected, the LCS performs the corresponding action in the environment

Comparison between ATNoSFERES and XCSM 9

and modifies the internal state if the internal action is not composed only of “#”
symbols. When a classifier is fired, a don’t change symbol in the internal action
results in not changing the corresponding bit in the memory register. Like XCS,
XCSM draws benefits from generalization in the external condition, but also in
the internal condition and the internal action.

As explained in more details in [12], an ATN such as those evolved by AT-
NoSFERES can be translated into a list of classifiers. The nodes of the ATN play
the role of internal states in XCSM and make ATNoSFERES able to deal with
perceptual aliazing. Thus it is natural to compare ATNoSFERES with XCSM.
The edges of the ATN are characterized by several informations which can also
be represented in classifiers: the source and destination nodes of the edge are
respectively equivalent to the internal condition and the internal action; the
conditions associated to the edges correspond to the external conditions of the
classifiers; the actions associated to the edges correspond to the external actions
of the classifiers.

4 First experiments

4.1 The perceptual aliazing problem

In [12], our purpose was to compare the evolutionary use of ATNoSFERES
with XCSM with respect to their ability to deal with non-Markov problems. In
order to provide that comparison, we experimented our model in the Mazel0
environment, for which [14] provides empirical results obtained with XCSM.

S4_.1:85.1:84.2:85.2:54.3

Fig.4. The Mazel0 environment. F represents the goal to reach (food). The agent
starts from any cell of the maze; a few cells are unambiguous (S;) but in the other ones
the same perceptual situations may require either similar actions or different ones (e.g.
go north in Sy 7 5.4} but go south in Sa 3)

4.2 Experimental setup

We tried to reproduce an experimental setup close to that used in [14] with the
Mazel0 environment, with regards to the specificities of our model.

10 S. Landau, S. Picault, O.Sigaud and P. Gérard

The agents used for the experiments are able to perceive the presence/absence
of blocks in the eight adjacent cells of the grid. They can move in those adja-
cent cells (the move will be effective when the cell is empty or contains food).
Thus the genetic code includes 16 condition and 8 action tokens. In order to en-
code 24 condition-action tokens together with 7 stack manipulation and 4 node
creation /connection tokens, we need at least 6 bits to define a token (2% = 64
tokens, which means that some tokens are encoded twice).

Each experiment involves the following steps:

1. Initialize the population with N = 300 agents with random bitstrings.

2. For each generation, build the graph of each agent and evaluate it in the
environment.

3. Select the individuals with higher fitness (namely, 20 % of the population)
and produce new ones by crossing over the parents. The system performs
probabilistic mutations (with a 1% rate) and insertions or deletions of codons
(with a 0.5% rate) on the bitstring of the offspring.

4. Tterate the process with the new generation.

In order to evaluate the individuals, they are put into the environment, start-
ing on a blank cell in the grid, and they have to find the food within a limited
amount of time. The agent cannot perceive the food, and it can perform only
one action per time step; when this action is incompatible with the environment
(e.g. go west when the west cell contains an obstacle), it is simply discarded (the
agent loses one time step and stays on the same cell). Its fitness for each run is:
F=D-K+ B+2xR (F: fitness for the run; D: number of blank cells that
have been discovered during the run; K: time steps spent on already known cells;
B: bonus when the food is found; R: remaining time if the food has been found
within the time limit). Thus, the selection pressure encourages short paths to
food and exploration. At each time step, the current cell is added to the set of
already-known cells (in order do compute D and K'). The term 2 R ensures that
a short path including an already-known cell is still preferred to a a longer path
with only distinct cells. Each agent is evaluated 4 times starting on each empty
cell, then its total fitness is the sum of the fitnesses computed for each run. In
the optimal case, with B = 30 and a 20 time steps limit, the fitness is 4500.

The experiments reported here were carried out on various initial genotype
sizes, from 300 to 540 bits. The original population genotype sizes change during
evolution. Each experiment has been bounded by 10,000 generations, which is
sufficient in most cases to reach high enough fitness values.

4.3 Results

Figure 5 presents a behavioral graph obtained by the best individual in a rep-
resentative experiment. It has also been represented in a LCS-like formalism
(fig. 6).

The agent whose graph is described in figure 5 has the following behavior:
from any vertical corridor, it first reaches the horizontal corridor, then the NE

Comparison between ATNoSFERES and XCSM 11

EC IC||EA|IA
E NE N NW W SW S SE
1 # # # # # # # |00|| N [O1
O # # 1 # # # # |00l E |01
0 # # # # # # |[O0|NE|O1
1 0 # # # # # |OL|| N |##
0 # # # # # # |O1| NE|##
O # # # # # # # |OL|| E |##
1 # 1 # # # # # |01|| W |10
0 # # # # # # [10(| S |##
1 1 # # # # |10 SW |

Fig. 6. A LCS-like representation of the
graph on figure 5. EC: external condi-

B) tions, IC: internal conditions, EA: exter-
nal actions, TA: internal actions .

Fig. 5. Graph of the best individual in a
representative experiment

corner, and finally goes straight to the food. This is a nearly optimal solution.
Especially, there are clear distinctions between the bottom of vertical corridors
(N —-NE identifies cells S; 53 ,), the top of vertical corridors (NE — S, S7,S3_»),
the horizontal corridor (E — Sg,S{45} ») and the crucial NE corner (Sy is
identified by =E —N —NW).

5 Discussion of the first experiments

In [12], we presented a discussion resulting from the comparison between our
model and XCSM. The main points we made were the following.

Minimality of Representation: While XCSM produces a constant size list of
classifiers into which the size of the external conditions part and of the memory
register must be chosen in advance, ATNoSFERES builds a graph whose number
of nodes, edges, and labels on the edges can be minimal to solve the given
problem (agreed that we focus on the best agent only). Hence the graph built
by ATNoSFERES can be minimal while XCSM model cannot.

Reinforcement Learning and Classifier Selection: One important advantage of
LCS with respect to ATNoSFERES is that the forces of classifiers are learnt
through a RL algorithm. In order to remedy the fact that ATNoSFERES does
not use RL, it is necessary to include into the fitness function elements that
carry some information about the actual behavior of the agent (see §4.2).

12 S. Landau, S. Picault, O.Sigaud and P. Gérard

Readability: As we showed in [12], one important advantage of ATNoSFERES
with respect to XCSM is that the ATN resulting from the evolution is very
easy to understand. Another key difference is that, in XCSM, the sequence of
internal states of the agent during one run is not explicitly stated and must be
derived by hand through careful examination. On the contrary, this sequence
is perfectly clear when one reads an ATN. Furthermore, the internal state is
very stable in ATNoSFERES. But this advantage of ATNoSFERES has its
counterpart that will be discussed next: ATNoSFERES cannot easily represent
Condition-Action rules that can be fired whatever the internal state is, as it is
the case in XCSM with an internal condition composed of “#” only.

Generalization: In XCSM, a # in the internal condition allows the classifier to be
applied whatever the internal state represented by the memory register is. This
mechanism permits action regardless of the internal state. On the contrary, the
tokens that have been chosen in those first experiments (see tab. 1) prevent AT-
NoSFERES from dealing with a default behavior, since connection tokens create
edges (i.e. rules) between two nodes (i.e. two internal states). We investigate this
point further in §6.

Optimality: Results given in [12] showed that the behavior obtained on Mazel0
with ATNoSFERES was not completely optimal, and that obtaining the optimal
graph would require a major structural change in the graph with respect to the
low selective advantage.

6 New experiments

6.1 Evaluating the need for state generalization

In [12], we concluded from the previous discussion by assuming that the ability of
XCSM classifiers to deal with a default behavior, regardless of the internal state
was a key advantage of XCSM over our model. Therefore we will now present
our attempt to add an internal state generalization property to our model by
extending the graph building language, with a new defaultSelfConnect token (see
table 2).

token resulting actions

structure tokens create nodes and connect them with edges

defaultSelfConnect creates an edge from all the already present nodes to themselves,
labels the edges with the set of conditions token and the list
of actions token until the first node,
deletes the action and condition tokens that were used

Table 2. Extension to the graph building language (see table 1). Here “first” node
refers to the first node token encountered while going down the stack

Comparison between ATNoSFERES and XCSM 13

self transitions

IC‘IA

C . o S present on states:
S al a 00| 00 |##
. . . 00, 01|| 04 |#+#

00, 01, 10{|#7 |##

Fig. 7. Different self-connection combinations and their translation in the XCSM for-
malism. IC: internal condition, IA: internal action

We emphasize that, since only the already created nodes will be self-connected,
the level of state generalization depends on the time when this token gets in-
terpreted. For example, if a defaultSelfConnect comes before all the internal
nodes of the graph are created, then the next nodes will not be affected by this
self-connecting instruction.

As shown in figure 7, self-connecting transitions on nodes is equivalent to
the presence of # in internal condition and/or internal action parts in XCSM.
More precisely, as the figure shows, if only the transition in node 00 is present,
it is equivalent to a completely specified internal condition, while if the same
transition is present in all nodes, it is equivalent to a completely unspecified
internal condition and internal action.

6.2 12-Candlestick experimental setup

In our previous experiments on MazelO, the best fitness was about 98% of
the maximum theoretic fitness. Since these results are very close to optimality,
Mazel0 experiments do not provide a large enough opportunity for improvement
to clearly probe the efficiency of the new encoding. Therefore, we propose a new
candlestick-like maze (see figure 8) where the advantage of the defaultSelfCon-
nect enabled language should be more significant with respect to the one without
that token.

The agent starts from the top cells of any of the vertical corridors. We con-
sider those starting locations only, because we are focusing on the generalization
abilities, rather than searching for a general behavior to solve that maze from
any starting cell. While going south along the “candles” from the 12 top cells,
thanks to an empty cell on the side, the agent can determine which direction
to take afterwards once it reaches the bottom of the candles. Indeed there is no
ambiguity for far-right and far-left candles.

The internal state management strategy we have envisioned in designing this
experiment is the following. The agent just needs one bit of memory. This bit
is set when the agent sees an empty space on its left hand side or on its right
hand side, and represents whether it is in the left part or the right part of
the candlestick. This informations suffices to choose the right direction when
it reaches the bottom of the candles. Given this internal state management
strategy, the necessity to generalize on the internal state values becomes clear
when one considers all the {S, ;} cells. In all those cells, which are represented
by the same perceptual conditions, the agent must go south, i.e. choose the same
action, whether it is in the left part or the right part of the candlestick. In the

14 S. Landau, S. Picault, O.Sigaud and P. Gérard

IS¢ Se_1'Sf_15g 15 25f 2 3'Sf.3'Sg 3Se_4'Sf 4'Sg 4Se_5SF.5Sg 5! Sh i Sj | S

Fig. 8. The 12-Candlestick environment. F represents the goal to reach (food) from
the 12 higher squares; 5 cells are unambiguous (S;). In the other ones the same per-
ceptual situations may require either similar actions or different ones (e.g. go west in
Sy {1,2,3,4,5) but go east in Sy (6,7,8,0,a})

formalism of ATNoSFERES, this means that it must follow the same transition
whatever the internal state is.

As a result of this property of the 12-Candlestick maze, only the agents
following the internal state management strategy presented above can obtain an
optimal performance. Any other strategy implies that the agents make additional
steps in order to choose the correct directions. Indeed, disambiguating by visiting
the far-left or far-right corners like the strategy obtained in Mazel0 would imply
a too costly detour with respect to the optimal path. But, as it will become clear
in the remainder of that paper, even if this optimal behavior can be eventually
obtained without using the defaultSelfConnect token, it is nevertheless achieved
more often with it.

The experimental setup is similar to the one in our previous MazelO exper-
iments, except for the genetic encoding and the fact that the agent does not
start from all the empty cells. Like before, we need at least 6 bits to define a
token, but this time in order to observe the influence of our special token, we
use two genetic encodings. In the first encoding, we use the nop token, while in
the second, it is replaced by the defaultSelfConnect token.

The agent is evaluated 6 times starting in each of the 12 top blank cells.
The fitness function is the one of MazelO experiments. In the optimal case,
with B = 50 and a 30 time steps limit, the fitness is 6732. As for the MazelO
experiments, we made the experiments for 5 different initial genotypes length
(300, 360, 420, 480 and 540 bits). During the experiments, the genetic operators
might change the lengths of the genotypes.

6.3 12-Candlestick experiment results

Figures 9 and 11 respectively show the best solutions found with and without
the defaultSelfConnect token. The fitness of both these individuals is 6726 for a
maximum of 6732. The missing points are lost when the agent passes through
the corner at the foot of the far-right candle (see figure 8, cell Sy), instead of

Comparison between ATNoSFERES and XCSM 15

going directly from S3 7 to Sy 4. Since there are 6 evaluation per “candle”, it
loses 6 times 1 point.

EC IC|[EA|IA
ENENDNW W SW S SE
O # # # # # # # 00|/ s |01
0 0 O |O1||E |##
O # # 1 # # 1 # |01/ S |10
bWt # # # # # # 1 # |10/ S |##
Bl # # £ # # 0 0 # (10| W |##
O # # # 0 1 # # |10/ Sw|##
1 0 # # 1 0 |##|| S |##
1 O # |##[/SW|##
~E SW ~W?
swi # # # # # # # 1 |##|[/SE|##

Fig.10. A LCS-like representation of the
graph on figure 9. The three last classifiers
correspond to self-connecting edges in the
graph. EC, IC, EA, TA: see figure 6.

Fig. 9. 12-Candlestick. Graph of the best
individual using the defaultSelfConnect to-
ken. The token appears 3 times, after the 2
nodes were created, so there are 3 identical
self-connecting edges for both nodes.

53}
Q

IC||EA|IA

=
23]
=
=
[92]
=

O H#H & &% H ~ O ® W
[92]
23]

00| S |01
OL|| W |##
01| S |##
01 || SW | ##
01 || SW | ##
01 S |10
10 || SE | ##
10 || SE | ##
10| S | ##
10| S | ##

N SW SE ~NW?

H OH H O H H OH R R KM
H O H O H B H H H
H P H H HP O R HS
H OH H O H O H H R R
H OHE H O H H OH H H =
H H O H O~ # O R
OO, P, P, P H#H O H #®

Fig. 12. A LCS-like representation of the
graph on figure 11. EC, IC, EA, TA: see
figure 6.

Fig. 11. 12-Candlestick. Graph of the best
individual not using the defaultSelfConnect
token.

6.4 Discussion of 12-Candlestick results

As figure 13 shows, the average fitness obtained with the defaultSelfConnect
token in the 12-Candlestick experiment is significantly better than the one ob-
tained without that token. The difference between the performances in both

16 S. Landau, S. Picault, O.Sigaud and P. Gérard

5800 T T T T T 2800 [T T T T T T
X, nop —4— M - X nop —+—
AN default self -~ PN A ——

@
g
8

»

g

8

5400

r each length)
r each length)
w0
]
8

average fitness (10 experim
average fitness (10 experim

I I I 1 1 1 I I 1 I 1 I I . I . I .
300 360 420 480 540 60 120 180 240 300 360 420 480 540 600 660 720 780
initial length initial length

Fig.13. 12-Candlestick. Average fitness Fig.14. Mazel0. Average fitness with and
with and without self token without self token

cases according to the different initial lengths of the bitstrings is given on fig-
ure 15 and 16. We can clearly see from these figures that the defaultSelfConnect
token conveys a selective advantage to our agents.

7000 — T T T T 7000 — T
max ——--= max ——--=
F + + X %
6500 - 1 6500 - %
+ X X X
6000 - 1 6000 -
5500 - + 5500 - x
b + 3
$ 5000 [+ + $ 5000 [
4500 |- + Bl 4500 |-
+ + X
X X §
4000 | $ f + i * B 4000 | § 5 ;S %
X X
3500 - + 1 3500 | X
3000 3000
300 360 420 480 540 300 360 420 480 540

initial length initial length

Fig. 15. 12-Candlestick. Fitness without Fig.16. 12-Candlestick. Fitness with de-
defaultSelfConnect token faultSelfConnect token

The purpose of making these experiments on the 12-Candlestick maze is to
check that the defaultSelfConnect token is working well and provides the prop-
erty for which it was designed. But, since the 12-Candlestick maze is specially
designed to favor the use of the defaultSelfConnect token, it is also necessary
to check whether or not this property can be generalized to Mazel0, even if we
expect less significant results.

6.5 Second MazelO experimental setup

The experimental setup is that of our previous MazelQ experiments (see sec-
tion 4.2), except for the genetic encoding. Like in the previous experiments, in

Comparison between ATNoSFERES and XCSM 17

order to observe the influence of our defaultSelfConnect token, both genetic en-
coding tested differed only by one codon: nop for the first, and defaultSelfConnect
for the second, as we did in section 6.2

6.6 Second MazelO experiment results

The best solutions, respectively with and without the defaultSelfConnect token,
are shown in figures 17 and 19. The best fitness for both genetic encodings (with
and without the defaultSelfConnect token) are close to each other, respectively
4448 and 4436 for a maximum of 4500. This best fitness was found in 3 exper-
iments for the first, and only one time for the second, over the 50 experiments
run for each genetic encoding. As in our previous MazelQ experiments, most of
the points are lost when reaching the NE corner when coming from the west of
the maze, and other points are also lost when the agent goes in or out of some
columns by passing through the cell on top of it, instead of using a diagonal
move.

EC IC||EA|IA
E NE N NW W SW S SE
1 # 0 # # # # # |00||E [O1
O # # # # O # # |00l N |O1
1 # # # # # # |O1| NE|##
0O O # # O O # # |O1l|| N |##
1 # # # # # # # 01| E |##
O # O # # # # # |01 W |10
O # # # # # # # [10(| S |##
0 # # O # # [10|| # |##
1 # # # 1 # # # |10||SW|##

Fig. 18. A LCS-like representation of the
graph on figure 17. EC, IC, EA, TA: see
figure 6.

Fig. 17. Mazel0. Graph of the best individ-
ual using the defaultSelfConnect token for
Maze 10. The token appears 1 time, and is
applied on one node only.

7 Further discussion

From figures 13 and 14, it is clear that ATNoSFERES obtains better performance
both on 12-Candlestick and on MazelO with the defaultSelfConnect token than
without it.

The optimal behavior is never reached, however (the best solution is 0.1%
below this optimum). The best individual on the 12-Candlestick, presented on
figure 9, uses the defaultSelfConnect token as expected, so as to represent a
completely unspecified internal state. This result seems to support our initial
assumption according to which being able to generalize on the internal state is
important to solve such behavioral problems, and results on Mazel(seem to
confirm the generality of the assumption.

18 S. Landau, S. Picault, O.Sigaud and P. Gérard

EC IC ||EA| IA
E NE N NWw W SW S SE
O # # # # # |000(E |001
1 # # # # # |000| N |OO1
1 # 0 # # # # # |001|| E |###
1 # # # 1 # |001|| N |###
0 # 1 # # # O |001|/Nw|O11
O # O # # # # 0 |001(W |O11
1 # 0 # # # # # |011|/SW|010
|010|| S |###
1 # # 1 # 1 |010(/NW|100

Fig. 20. A LCS-like representation of the
Fig. 19. Mazel0. Graph of the best individ- graph on figure 19.EC, IC, EA, TA: see
ual not using the defaultSelfConnect token. figure 6.

The edge between 010 and 100 is actually
never crossed.

But a closer examination of the best individuals obtained through other ex-
periments reveals that our assumption must be refined. In particular, the best
individual on Mazel0, presented in figure 17, uses the defaultSelfConnect to-
ken when there is only one node in the stack. More generally, it appears that
the defaultSelfConnect token has been used many times to add only one self-
connecting transition in the graph, or none at all (if no node is present when
defaultSelfConnect is interpreted).

As explained in figure 7, since the interpretation of that token results in the
addition of self-connecting transitions only to the nodes already present in the
stack, it does not always result in the equivalent of full generalization on the
internal state. In particular, when there is only one self-connecting transition
in the graph, the interpretation of the defaultSelfConnect token results in the
equivalent of a fully specified internal condition part followed by an unspecified
internal action part.

Interestingly, however ATNoSFERES can obtain one self-connected node
without using the defaultSelfConnect token. But doing so requires that much
more constraints on the bitstring are fulfilled. Thus a self-connected node is
much less likely to happen without the defaultSelfConnect token.

So it may be that ATNoSFERES gets a better performance with the default-
SelfConnect token than without it just because having self-connecting transi-
tions is a beneficial property and having that token significantly increases the
probability to have that property.

Hence, what this more detailled study seems to reveal is that, when several
internal states are necessary to solve a non-Markov problem, it is important that
the system keep the possibility to specify (condition, action) transitions without
being compelled to change its internal state.

Comparison between ATNoSFERES and XCSM 19

As a result of these new findings, we still cannot definitively conclude yet on
whether it is having the ability to generalize on the internal state or having the
ability to represent stable internal state that is the most beneficial property in
the problems studied in this paper.

8 Conclusion and Future Work

In the context of a comparison between XCSM and ATNoSFERES, we have
studied in this paper the importance of the ability to represent generalized in-
ternal states. In order to do so, we have introduced a new defaultSelfConnect
token which adds a self-connecting transition to all the nodes already present in
the stack. We have also presented a new maze experiment specially designed to
advantage systems able to generalize on the internal state.

Our experiments have shown that the performance of our system is signif-
icantly better with this addition. But, while this result seems to support the
conclusion that being able to generalize on the internal state is a significant
property of adaptive algorithms, a closer examination of what really happened
during the experiments reveals that our defaultSelfConnect token has also been
used for a different purpose than just generalizing on the internal state. That
token seems to have another interesting property than the one for which it was
designed.

In order to be able to conclude more accurately on the relative role played by
the internal state generalization property and the stable internal state property,
more experiments will be necessary. We believe that going into an even more
detailled comparison between XCSM and ATNoSFERES on the two experiments
presented above will help identifying further what is really necessary to reach
an optimal behavior. In particular, we should try to assess the distinctive roles
of generalization on the internal condition and on the internal action parts, by
adding one or two specialized tokens representing each property independently
of the other.

References

[1] K. A. DE JoNG, An Analysis of the Behavior of a Class of Genetic Adaptive
Systems, PhD thesis, Dept. of Computer and Communication Sciences, University
of Michigan, 1975.

[2] L. J. FoGgEL, A. J. OWENS, AND M. J. WaLsH, Artificial Intelligence through
Simulated Evolution, John Wiley & Sons, 1966.

[3] D. E. GOLDBERG, Genetic Algorithms in Search, Optimization, and Machine
Learning, Addison-Wesley, 1989.

[4] F. Gruau, Neural Network Synthesis Using Cellular Encoding and the Genetic
Algorithm, Ph.D. thesis, ENS Lyon — Université Lyon I, 1994.

[5] J. H. HoLLAND, Adaptation in Natural and Artificial Systems: An Introductory
Analysis with Applications to Biology, Control, and Artificial Intelligence, Univer-
sity of Michigan Press, Ann Arbor, MI, 1975.

20

[6]

(7]
18]

(9]

[10]

[11]

[12]

[13]

[14]
[15]
[16]
17]

[18]

[19]
[20]

[21]

22]
23]

[24]

[25]

S. Landau, S. Picault, O.Sigaud and P. Gérard

J. KODJABACHIAN AND J.-A. MEYER, Evolution and Development of Neural Con-
trollers for Locomotion, Gradient-Following, and Obstacle-Avoidance in Artificial
Insects, IEEE Transactions on Neural Networks, 9 (1998), pp. 796-812.

J. R. KozA, Genetic Programming: On the Programming of Computers by Means
of Natural Selection, MIT Press, Cambridge, MA, 1992.

J. R. Koza, F. H. BENNETT III, D. ANDRE, AND M. A. KEANE, Automated
Design of Both the Topology and Sizing of Analog Electrical Circuits Using Genetic
Programming, in Artificial Intelligence in Design’96, J. S. Gero and F. Sudweeks,
eds., 1996, pp. 151-170.

J. R. Koza, D. E. GOoLDBERG, D. B. FogEeL, AND R. L. RIOLO, eds., Ge-
netic Programming 1996: Proceedings of the First Annual Conference, Stanford
University, CA, 1996, MIT Press.

S. LANDAU AND S. Picaurr, Stack-Based Gene Ezxpression, Technical Report
LIP6 2002/011, LIP6, Paris, 2002.

S. Lanpau, S. Picaurt, aAND A. DrocouL, ATNoSFERES: a Model for Evo-
lutive Agent Behaviors, in Proceedings of the AISB’01 Symposium on Adaptive
Agents and Multi-Agent Systems, 2001.

S. Lanpau, S. Picaurr, O. SicauDp, AND P. GERARD, A Comparison between
ATNoSFERES and XCSM, in Langdon et al. [13], pp. 926-933.

W. LancgpoN, E. Cantu-Paz, K. MatHiAs, R. Roy, D. Davis, R. Poui,
K. BALAKRISHNAN, V. HoNAvAR, G. RupoLpH, J. WEGENER, L. BuLL, M. A.
PorTER, A. Scuurrz, J. F. MILLER, E. BURKE, AND N. JONOSkA, eds.,
Proceedings of the Genetic and Evolutionary Computation Conference (GECCO
2002), New York, july 9-13 2002, Morgan Kaufmann.

P. L. Lanzi, An Analysis of the Memory Mechanism of XCSM, in Proceedings
of the Third Genetic Programming Conference, 1998.

A. LINDENMAYER, Mathematical Models for Cellular Interaction in Development,
parts I and II, Journal of theoretical biology, 18 (1968).

S. Luke AND L. SPECTOR, Evolving Graphs and Networks with Edge Encoding:
Preliminary Report, in Koza [9], pp. 117-124.

D. J. MoNTANA, Strongly Typed Genetic Programming, in Evolutionary Compu-
tation, vol. 3, 1995.

S. Prcaurt AND S. LANDAU, Ethogenetics and the Evolutionary Design of Agent
Behaviors, in Proceedings of the 5th World Multi-Conference on Systemics, Cy-
bernetics and Informatics (SCI'01), N. Callaos, S. Esquivel, and J. Burge, eds.,
vol. 111, 2001, pp. 528-533.

H.-P. SCHWEFEL, Evolution and Optimum Seeking, John Wiley and Sons, Inc.,
1995.

R. S. SurToN AND A. G. BARTO, Reinforcement Learning, an introduction, MIT
Press, Cambridge, MA, 1998.

A. ToMmLINSON AND L. BuLL, CXCS, in Learning Classifier Systems: from Foun-
dations to Applications, P. Lanzi, W. Stolzmann, and S. Wilson, eds., Springer
Verlag, Heidelberg, 2000, pp. 194-208.

S. W. WiLsoN, ZCS, a Zeroth level Classifier System, Evolutionary Computation,
2 (1994), pp. 1-18.

S. W. WiLson, Classifier Fitness Based on Accuracy, Evolutionary Computation,
3 (1995), pp. 149-175.

W. A. Woobs, Transition Networks Grammars for Natural Language Analysis,
Communications of the Association for the Computational Machinery, 13 (1970),
pp. 591-606.

X. Yao, Evolving Artificial Neural Networks, Proceedings of the IEEE, 87 (1999).

