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ZETA FUNCTIONS, EXCISION IN CYCLIC COHOMOLOGY AND INDEX PROBLEMS

RUDY RODSPHON

ABSTRACT. The aim of this paper is to show how zeta functions and excision in cyclic cohomology may
be combined to obtain index theorems. In the first part, we obtain an index formula for "abstract elliptic
pseudodifferential operators" associated to spectral triples, in the spirit of the one of Connes and Moscovici.
This formula is notably well adapted when the zeta function has multiple poles. The second part is devoted
to give a concrete realization of this formula by deriving an index theorem on the simple, but significant
example of Heisenberg elliptic operators on a trivial foliation, which are in general not elliptic but hypoel-
liptic. The formula obtained is an extension of an index formula due to Fedosov.

KEYWORDS. Cyclic cohomology, K-theory, Index theory, Pseudodifferential operators

MSC. 19D55, 19K56, 58J42, 46L87

INTRODUCTION

Several years ago, Connes and Moscovici obtained in [4] a general index formula given in terms
of residues of zeta functions, working with the so-called spectral triples. A major advance was made
since this formalism enlarges index theory to the more general context of the transverse geometry of
foliations, where the interesting pseudodifferential operators are hypoelliptic without necessary being
elliptic. Let us be a little more precise on this general formula. Connes and Moscovici constructed a
Residue Cocycle on the algebra of the spectral triple, whose periodic cyclic cohomology class is the
Chern-Connes character (cf. [2] or [3]). An important feature of this cocycle is to remain unchanged
when the "Dirac operator" D is perturbed by a smoothing operator, because it involves residues of zeta
functions. This is not the case for the representative of the Chern-Connes character constructed using
Fredholm modules and the operator F = D|D|−1 (cf. [2]), since it involves the operator trace. In
this sense, the Residue Cocycle is a better representative of the Chern-Connes character and is more
convenient to derive local index formulas.

In the spirit of the techniques developed by Connes and Moscovici, we give an abstract index
formula of a different flavor, which turns out to be useful to calculate the index of abstract elliptic
pseudodifferential operators associated to regular spectral triples. The formula is also given by residues
of zeta functions and a certain cyclic cocycle. Nonetheless, there is one important difference since our
cocycle is defined not only on an "algebra of smooth functions" as in the Connes-Moscovici formula,
but directly on the algebra of formal symbols of the pseudodifferential operators considered. We then
illustrate on a simple but interesting example how such a formula may amount to topological index
formulas. Let us give an overview of the paper.

Section 1 serves to recall some material about Higson’s formalism (cf. [7]) about algebras of ab-
stract differential operators and its relation with (regular) spectral triples. Following [12], this allows
to develop an abstract pseudodifferential calculus and a notion of ellipticity which covers many inter-
esting examples. We shall focus on the example of Connes and Moscovici on foliations, involving the
Heisenberg pseudodifferential calculus.

The aim of Section 2 is to study the index theory in this context. More precisely, we construct
a cyclic 1-cocycle on algebras of abstract pseudodifferential operators which generalizes the Radul
cocycle defined for any closed manifold M . This cocycle was introduced by Radul in the context of Lie
algebra cohomology (cf. [11]). The two important ingredients to construct this cocycle are, on the
one hand, that the zeta function of a (classical) pseudodifferential operator on M has a meromorphic
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extension to the complex plane, whose set of poles is at most simple and discrete. This allows the use
of the Wodzicki-Guillemin residue. On the other hand, one uses the pseudodifferential extension and
excision in periodic cyclic cohomology to push the trace on regularizing operators on M , viewed as a
cyclic 0-cocycle, to a cyclic 1-cocycle on the algebra of formal symbols on M . Excision in periodic cyclic
cohomology then gives an index formula for elliptic pseudodifferential operators, by compatibility with
excision in K-theory.

This construction is then extended to the abstract setting recalled in Section 1, and we obtain
a cyclic 1-cocycle which generalizes the Radul cocycle in contexts where the zeta function exhibits
multiple poles.

THEOREM 0.1. Let Ψ = Ψ(∆) be an algebra of abstract pseudodifferential operators on a Hilbert space

H, and consider the pseudodifferential extension

0 −→ Ψ−∞ −→ Ψ −→ S = Ψ/Ψ−∞ −→ 0

Suppose that the pole at zero of the zeta function is of order p ≥ 1. Then, the image ∂ [Tr] ∈ HP1(S )
of the operator trace [Tr] ∈ HP0(Ψ−∞) by excision in periodic cyclic cohomology is represented by the

following cyclic 1-cocycle :

c(a0, a1) =

1∫
− a0δ(a1)−

1

2!

2∫
− a0δ

2(a1) + . . .+
(−1)p−1

p!

p∫
− a0δ

p(a1)

where δ(a) = [log∆1/r , a] and δk(a) = δk−1(δ(a)) is defined by induction. The r denotes the "order of

∆".

Here, Ψ−∞ is the algebra of regularizing operators associated to Ψ, i.e elements of all order. The∫
−k

are "higher Wodzicki residues" defined in Proposition 1.11.

In Section 3, we show on an example how the results of the previous section may lead to index
formulas, in the spirit of the Atiyah-Singer theorem. The example we work on is that of a trivial foliation
R

p × Rq, dealing with the Heisenberg pseudodifferential calculus. Even if this example is simple, it
is also relevant for at least three reasons : Firstly, it allows to deal with hypoelliptic (non-elliptic)
operators. Secondly, one can see how this leads to a purely algebraic approach of index theory, thanks
to Wodzicki residue trace. Thirdly, the philosophy of the construction given is useful to understand
how to adapt the techniques developed in [9] to treat for example the general case of foliations (whose
leaves are not necessarily compact). One interesting perspective is to obtain an index formula in the
context of the transverse geometry of foliations, which would to an approach different from the one of
Connes and Moscovici in [5].

When dealing with the Radul cocycle, the main obstacle is that the formulas arising are, except in
low dimensions, rather complicated. It is not obvious at all to obtain directly topological index formulas
which depend only on the principal symbol. To cope with this difficulty, the general idea is to construct
(B, b)-cocycles of higher degree which are cohomologous to the Radul cocycle in the (B, b)-bicomplex.
These (B, b)-cocycles are shown to be more easily computable in the highest degree, for a reason that
will be understood later. We give two ways of constructing these cocycles. In the first construction, we
introduce homogeneous (B, b)-cocycles on regularizing operators, in many points similar to the cyclic
cocycles associated to Fredholm modules given by Connes. The game still consists in pushing them to
(inhomogeneous) (B, b)-cocycles on the algebra of Heisenberg formal symbols, using a zeta function
regularisation of the trace and excision. The second construction involves Quillen’s cochain theory
from [10]. The interest in using this formalism stands in the way we obtain the desired cocycles, as
we do not have to go through the algebra of regularizing operators first. Therefore, this method is
completely algebraic.

Let S 0
H
(Rn) be the associated algebra of Heisenberg formal symbols of order 0, and denote by

σ : S 0
H
(Rn) −→ C∞(S∗

H
R

n)
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the Heisenberg principal symbol map. Here, S∗
H
R

n denotes the "Heisenberg cosphere bundle", which
is defined in Section 1.6. Then, the main result of the section can be stated as follows :

THEOREM 0.2. The Radul cocycle is (B, b)-cohomologous to the homogeneous (B, b)-cocycle onS 0
H
(Rn)

defined by

ψ2n−1(a0, . . . , a2n−1) = −
1

(2πi)n

∫

S∗HR
n

σ(a0)dσ(a1) . . . dσ(a2n−1)

As an immediate corollary, we obtain the following index theorem, which extends an index formula
for elliptic operators on Euclidean spaces due to Fedosov (cf. [6]).

THEOREM 0.3. Let P ∈ MN (Ψ
0
H
(Rn)) be a Heisenberg elliptic pseudodifferential operator of formal

symbol u ∈ GLN (S 0
H
(Rn)), and [u] ∈ K1(S 0

H
(Rn)) its (odd) K-theory class. Then, we have a formula for

the Fredholm index of P :

Ind(P) = Tr(Ind[u]) =
(−1)n(n− 1)!

(2πi)n(2n− 1)!

∫

S∗HR
n

tr(σ(u)−1dσ(u)(dσ(u)−1dσ(u))n−1))

In other words, the index of P is given by the evaluation of the fundamental class of S∗
H
(Rn) on the

(odd) Chern character of its Heisenberg principal symbol.

1. ABSTRACT DIFFERENTIAL OPERATORS AND TRACES

In this part, we recall the Abstract Differential Operators formalism developed by Higson in [7] to
simplify the proof of the Connes-Moscovici local index formula [4]. This is actually another way of
defining regular spectral triples. For details, the reader may refer to [7] or [12].

1.1. Abstract Differential Operators. Let H be a (complex) Hilbert space and ∆ be an unbounded,
positive and self-adjoint operator acting on it. To simplify matters, we suppose that ∆ has a compact
resolvent. We denote by H∞ the intersection

H∞ =
∞⋂

k=0

dom(∆k)

where dom stands for the domain of a unbounded operator.

DEFINITION 1.1. An algebra D(∆) of abstract differential operators associated to∆ is an algebra of
operators on H∞ fulfilling the following conditions

(i) The algebra D(∆) is filtered,

D(∆) =
∞⋃

q=0

Dq(∆)

that is Dp(∆) · Dq(∆) ⊂ Dp+q(∆). We shall say that an element X ∈ Dq(∆) is an abstract differential

operator of order at most q. The term differential order will be often used for the order of such operators.

(ii) There is a r > 0 ("the order of ∆") such that for every X ∈ Dq(∆), [∆, X ] ∈ Dr+q−1(∆).

To state the last point, we define, for s ∈ R, the s-Sobolev space H s as the subspace dom(∆s/r) of H,
which is a Hilbert space when endowed with the norm

‖v‖s = (‖v‖2 + ‖∆s/r v‖2)1/2

(iii) Elliptic estimate. If X ∈ Dq(∆), then, there is a constant ǫ > 0 such that

‖v‖q + ‖v‖ ≥ ǫ‖X v‖ , ∀v ∈ H∞
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Having Gärding’s inequality in mind, the elliptic estimate exactly says that ∆1/r should be thought
as an "abstract elliptic operator" of order 1. It also says that any differential operator X of order q

can be extended to a bounded operator form H s+q to H s. This last property will be useful to define
pseudodifferential calculus in this setting.

One example to keep in mind is the case in which∆ is a Laplace type operator on a closed Riemannian
manifold M . Here, H∞ consists of the smooth functions on M , r = 2 and D(∆) is simply the algebra
of differential operators. The H s are the usual Sobolev space and we have an elliptic estimate. In fact,
the definition above is an abstraction of this example, but it can be adapted to many more situations,
for instance the case of foliations, on which we shall focus more in detail.

1.2. Correspondence with spectral triple. Let (A, H, D) a spectral triple (cf. [4] or [7]). One may
construct a algebra of abstract differential operators D = D(A, D) inductively as follows :

D0 = algebra generated by A and [D,A]

D1 = [∆,D0] +D0[∆,D0]

...

Dk =

k−1∑

j=1

D j · Dk− j + [∆,Dk−1] +D0[∆,Dk−1]

Let δ be the unbounded derivation ad|D| = [|D|, . ] on the algebra B(H) of bounded operators on H.
The spectral triple is (A, H, D) is said regular if A, [D,A] are included in

⋂∞
n=1 domδn. The following

theorem of Higson makes the bridge between algebras of abstract differential operators and spectral
triples.

THEOREM 1.2. (Higson, [7]). Suppose that A maps H∞ into itself. Then, the spectral triple (A, H, D)

is regular if and only if the elliptic estimate of Definition 1.1 holds.

Regularity in spectral triples may be viewed an assumption allowing to control some asymptotic ex-
pansions of "pseudodifferential operators", as we shall see in the next paragraph from the perspective
of the elliptic estimate.

1.3. Zeta Functions. Let D(∆) be an algebra of abstract differential operators. For z ∈ C, one defines
the complex powers ∆−z of ∆ using functional calculus :

∆
−z =

1

2πi

∫
λ−z(λ−∆)−1dλ

where the contour of integration is a vertical line pointing downwards separating 0 and the (discrete)
spectrum of ∆. This converges in the operator norm when Re(z) > 0, and using the semi-group
property, all the complex powers can be defined after multiplying by ∆k, for k ∈ N large enough.
Moreover, since∆ has compact resolvent, the complex powers of∆ are well defined operators on H∞.

We will suppose that there exists a d ≥ 0 such that for every X ∈ Dq(∆), the operator X∆−z extends

to a trace-class operator on H for z on the half-plane Re(z) > q+d

r
. The zeta function of X is

ζX (z) = Tr(X∆−z/r)

The smallest d verifying the above property is called the analytic dimension of D(∆). In this case, the
zeta function is holomorphic on the half-plane Re(z) > q+ d. We shall say that D(∆) has the analytic

continuation property if for every X ∈ D(∆), the associated zeta function extends to a meromorphic
function of the whole complex plane.

There properties are set for all the section, unless if it is explicitly mentioned.
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These notions come from properties of the zeta function on a closed Riemannian manifold M : it
is well-known that the algebra of differential operators on M has analytic dimension dim M and the
analytic continuation property. Its extension to a meromorphic function has at most simple poles at
the integers smaller that dim M . In the case where M is foliated, the dimension of the leaves appears
in the analytic dimension when working in the suitable context. Hence, the zeta function provide
informations not only on the topology of M , but also on its the geometric structure, illustrating the
relevance of this abstraction.

1.4. Abstract Pseudodifferential Operators. Let D(∆) an algebra of abstract differential operators
of analytic dimension d. To define the notion of pseudodifferential operators, we need a more general
notion of order, not necessary integral, which covers the one induced by the filtration of D(∆).

DEFINITION 1.3. An operator T : H∞ → H∞ is said to have pseudodifferential order m ∈ R if for
every s ≥ 0, it extends to a bounded operator from Hm+s to H s. In addition, we require that operators
of analytic order stricly less than −d are trace-class operators.

That this notion of order covers the differential order is due to the elliptic estimate, as already remarked
in Section 1.1. The space of such operators, denoted Op(∆), forms a R-filtered algebra. There is also
a notion of regularizing operators which are, as expected, the elements of the (two-sided) ideal of
operators of all order.

REMARK 1.4. Higson uses in [7] the term "analytic order", but as the examples we deal with in the
paper are about pseudodifferential operators, we prefer the term pseudodifferential order.

EXAMPLE 1.5. For every λ ∈ C not contained in the spectrum of ∆, the resolvent (λ −∆)−1 has
analytic order r. Moreover, by spectral theory, its norm as an operator between Sobolev spaces is a
O(|λ|−1).

The following notion is due to Uuye, cf. [12]. We just added an assumption on the zeta function which
is necessary for what we do.

DEFINITION 1.6. An algebra of abstract pseudodifferential operators is a R-filtered subalgebra
Ψ(∆) of Op(∆), also denoted Ψ when the context is clear, satisfying

∆
z/r
Ψ

m ⊂ ΨRe(z)+m, Ψ
m
∆

z/r ⊂ ΨRe(z)+m

and which commutes, up to operators of lower order, with the complex powers of ∆1/r , that is , for all
m ∈ R, z ∈ C

[∆z/r ,Ψm] ⊂ ΨRe(z)+m−1

Moreover, we suppose that for every P ∈ Ψm(∆), the zeta function

ζP(z) = Tr(P∆−z/r)

is holomorphic on the half-plane Re(z) > m+ d, and extends to a meromorphic function of the whole
complex plane. We shall denote by

Ψ
−∞ =

⋂

m∈R
Ψ

m

Of course, this is true for the algebra of (classical) pseudodifferential operators on a closed manifold.
We shall recall later what happens in the example of Heisenberg pseudodifferential calculus on a foli-
ation, as described by Connes and Moscovici in [4].
We end this part with a notion of asymptotic expansion for abstract pseudodifferential operators. This
can be seen as "convergence under the residue".
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DEFINITION 1.7. Let T and Tα (α in a set A) be operators on Ψ. We shall write

T s
∑

α∈A

Tα

if there exists c > 0 and a finite subset F ⊂ A such that for all finite set F ′ ⊂ A containing F , the map

z 7−→ Tr

�
(T −

∑

α∈F ′
Tα)∆

z/r

�

is holomorphic in a half-plane Re(z) > −c (which contains z = 0).

EXAMPLE 1.8. Suppose that that for every M > 0, there exists a finite subset F ⊂ A such that

T −
∑

α∈F

Tα ∈ Ψ−M

Then, T s
∑
α∈A Tα

In this context, asymptotic means that when taking values under the residue, such infinite sums, which
have no reason to converge in the operator norm, are in fact finite sums. Thus, this will allow us to
disregard analytic subtleties and to consider these sums only as formal expansions without wondering
if they converge or not. In other words, this notion allows to adopt an algebraic viewpoint. To this
effect, the following lemma is crucial.

LEMMA 1.9. (Connes-Moscovici’s trick, [4, 7]) Let Q ∈ Ψ(∆) be an abstract pseudodifferential oper-

ator. Then, for any z ∈ C, we have

(1.1) [∆−z ,Q] s
∑

k≥1

�−z

k

�
Q(k)∆−z−k

where we denote Q(k) = ad(∆)k(Q), ad(∆) = [∆, . ].

REMARK 1.10. The pseudodifferential order of terms in the sum decreases to −∞, so that the
difference between [∆−z ,Q] and the sum becomes more and more regularizing as the number of terms
grows.

PROOF. For z ∈ C of positive real part large enough, one proves, using Cauchy formulas and rea-
soning by induction, that the following identity holds (cf [7], Lemma 4.20) :

(1.2) ∆
−zQ−Q∆−z =

N∑

k=1

�−z

k

�
Q(k)∆−z−k +

1

2πi

∫
λ−z(λ−∆)−1Q(N+1)(λ−∆)−N−1 dλ

By the elliptic estimate, the integral term in the right hand-side has pseudodifferential order ordQ +

(N + 1)r − N − 1− (N + 2)r = ord(Q)− r − N − 1, which can therefore be made as small as we want
by taking N large. This proves the lemma in the case where Re(z) > 0. The general case follows from
the analytic continuation property. �

1.5. Higher traces on the algebra of abstract pseudodifferential operators. We give in this para-
graph a simple generalization of the Wodzicki residue trace, when the zeta function of the algebra
D(∆) has poles of arbitrary order. Actually, this was already noticed by Connes and Moscovici (see
[4]).

PROPOSITION 1.11. Let Ψ(∆) an algebra of abstract pseudodifferential operators, following the con-

text of the previous paragraphs. Suppose that the associated zeta function has a pole of order p ≥ 1 in 0.
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Then, the functional

p∫
− P = Resz=0zp−1Tr(P∆−z/r)

defines a trace on Ψ(∆).

PROOF. Let P,Q ∈ Ψ(∆). Then, for Re(z) ≫ 0, we can use the trace property on commutators to
write :

Tr([P,Q]∆−z/r ) = Tr(P(Q−∆−z/rQ∆z/r)∆−z/r)

Hence, using the analytic continuation property, we have
p∫
− [P,Q] = Resz=0zp−1Tr(P(Q−∆−z/rQ∆z/r)∆−z/r)

By Lemma 1.9,

∆
−z/rQ−Q∆−z/r

s

∑

k≥1

�−z/r

k

�
Q(k)∆−k ·∆−z/r

so that,
p∫
− [P,Q] = Resz=0

∑

k≥1

zp−1Tr
��−z/r

k

�
Q(k)∆−k ·∆−z/r

�

The sum is finite : Indeed, the order of Q(k)∆−k is ord(Q)− k, so the terms in the sum above become
holomorphic at z = 0 when k is large enough, and vanish when taking values under the residue. Finally,
the finite sum remaining vanishes since the zeta function has at most a pole of order p at 0. �

If 0 ≤ k < p, then
∫
−k

is no more a trace in general, but one has an explicit relation expressing the
commutators, cf. [4].

1.6. The example of Connes and Moscovici.

1.6.1. Heisenberg pseudodifferential calculus on foliations. Let M be a foliated manifold of dimension
n, and let F be the integrable sub-bundle of the tangent bundle T M of M which defines the foliation.
We denote the dimension of the leaves by p, and by q = n− p their codimension.

For the moment, we work in distinguished local charts. Let (x1, . . . , xn) a distinguished local coordinate
system of M , i.e, the vector fields ∂

∂ x1
, . . . , ∂

∂ xp
(locally) span F , so that ∂

∂ xp+1
, . . . , ∂

∂ xn
are transverse

to the leaves of the foliation. Connes and Moscovici constructed in [4] an algebra of generalized
differential operators using Heisenberg calculus, whose main idea is that :

• The vector fields ∂
∂ x1

, . . . , ∂
∂ xp

are of order 1.

• The vector fields ∂
∂ xp+1

, . . . , ∂
∂ xn

are of order 2.

The Heisenberg pseudodifferential calculus consists in defining a class of smooth symbols σ(x ,ξ) on
R

n
x
×Rn

ξ
which takes this notion of order into account. To this end, they set

|ξ|′ = (ξ4
1 + . . .+ ξ4

p
+ ξ2

p+1 + . . .+ ξ2
n
)1/4

〈α〉 = α1 + . . .+αp + 2αp+1 + . . . 2αn

for every ξ ∈ Rn, α ∈ Nn.

DEFINITION 1.12. A smooth function σ(x ,ξ) ∈ C∞(Rn
x
× Rn

ξ
) is a Heisenberg symbol of order

m ∈ R if σ is x-compactly supported, and if for every multi-index α,β , one has the following estimate

|∂ β
x
∂ αξ σ(x ,ξ)| ≤ (1+ |ξ|′)m−〈α〉

7



To such a symbol σ of order m, one associates its left-quantization, which is the following operator

P : C∞(Rn) −→ C∞(Rn), P f (x) =
1

(2π)n

∫

Rn

eix ·ξσ(x ,ξ) f̂ (ξ)dξ

where f̂ denotes the Fourier transform of f . We shall say that P is a Heisenberg pseudodifferential

operator of order m, and denote the class of such operators by Ψm
H
(Rn). The Heisenberg regularizing

operators, whose class is denoted by Ψ−∞(Rn), are those of arbitrary order, namely

Ψ
−∞(Rn) =

⋂

m∈R
Ψ

m
H
(Rn)

The reason why there is no H-subscript is that the Heisenberg regularizing operators are exactly the
regularizing operators of the usual pseudodifferential calculus, i.e the operators with smooth Schwartz
kernel.

Actually we shall restrict to the smaller class of classical Heisenberg pseudodifferential operators. For
this, we first define the Heisenberg dilations

λ · (ξ1, . . . ,ξp,ξp+1, . . . ,ξn) = (λξ1, . . . ,λξp,λ2ξp+1, . . . ,λ2ξn)

for any non-zero λ ∈ R and non-zero ξ ∈ Rn.
Then, a Heisenberg pseudodifferential operator P ∈ Ψm

H
(Rn) of order m is said classical if its symbol σ

has an asymptotic expansion

(1.3) σ(x ,ξ) s
∑

j≥0

σm− j(x ,ξ)

where σm− j(x ,ξ) ∈ S m− j

H (Rn) are Heisenberg homogeneous, that is, for any non-zero λ ∈ R,

σm− j(x ,λ · ξ) = λm− jσm− j(x ,ξ)

The s means that for every M > 0, there exists an integer N such that σ−
∑N

j=0σm− j ∈ S −M
H
(Rn). To

avoid an overweight of notations, we shall keep the notation ΨH to refer to classical elements.

Another important point is the behaviour of symbols towards composition of classical pseudodifferen-
tial operators. Of course, if P,Q ∈ ΨH(R

n) are Heisenberg pseudodifferential operators of symbols σP

and σQ, PQ is also a Heisenberg pseudodifferential operator of order at most ord(P) + ord(Q), and
its the symbol σPQ is given by the following asymptotic expansion called the star-product of symbols,
given by the formula

(1.4) σPQ(x ,ξ) = σP ⋆σQ(x ,ξ) s
∑

|α|≥0

(−i)|α|

α!
∂ αξ σP(x ,ξ)∂ α

x
σQ(x ,ξ)

Note that the order of each symbol in the sum is decreasing while |α| is increasing.

We define the algebra of Heisenberg formal classical symbols SH(R
n) as the quotient

SH(R
n) = ΨH(R

n)/Ψ−∞(Rn)

Its elements are formal sums given in (1.3), and the product is the star product (1.4). Note that the s
can be replaced by equalities when working at a formal level.

We now deal with ellipticity in this context. A Heisenberg pseudodifferential operator is said Heisenberg

elliptic if it is invertible in the unitalization SH(R
n)+ of SH(R

n) . One can show that this is actually
equivalent to say that its Heisenberg principal symbol, i.e the symbol of higher degree in the expansion
(1.3) is invertible on Rn

x
×Rn

ξ
r{0}. An adaptation of arguments from classical elliptic regularity shows

that the elliptic estimate holds in this case. A remarkable specificity of these operators is that they
are hypoelliptic, but not elliptic in general. Nevertheless, they remain Fredholm operators between
Sobolev spaces relative to this context. The interested reader should consult [1] for details.
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EXAMPLE 1.13. The following operator, also called sub-elliptic sub-laplacian,

∆H = ∂
4
x1
+ . . .+ ∂ 4

xp
− (∂ 2

xp+1
+ . . .+ ∂ 2

xn
)

has Heisenberg principal symbol σ(x ,ξ) = |ξ|′4, and is therefore Heisenberg elliptic. However, its
usual principal symbol, as an ordinary differential operator, is (x ,ξ) 7→

∑p

i=1 ξ
4
i
, so ∆H is clearly not

elliptic.

Finally, Heisenberg pseudodifferential operators behave well towards distinguished charts change.
Therefore, Heisenberg pseudodifferential calculus can be defined globally on foliations by using a
partition of unity. Then, for a foliated manifold M , we denote by Ψm

H
(M) the algebra of Heisenberg

pseudodifferential operators on M .

It is not very difficult to verify the required assumptions of Definition 1.6. However, what concerns the
zeta function is not obvious.

1.6.2. Residue Trace on Foliations. We now recall these results, proved by Connes and Moscovici in [4].

THEOREM 1.14. (Connes-Moscovici, [4]) Let M be a foliated manifold of dimension n, p be the

dimensions of the leaves, and P ∈ Ψm(M) be a Heisenberg pseudodifferential operator of order m ∈ R. Let

∆ the sub-elliptic sub-laplacian defined in Example 1.13, that we extend globally to M by using a partition

of unity. Then, the zeta function

ζP(z) = Tr(P∆−z/4)

is holomorphic on the half-plane Re(z) > m+ p+2q, and extends to a meromorphic function of the whole

complex plane, with at most simple poles in the set

{m+ p+ 2q, m+ p+ 2q− 1, . . .}

REMARK 1.15. The analytic dimension of the algebra of Heisenberg differential operators is then
p + 2q. Note that we thus recover the dimension of the leaves of the foliation, ant that the ”2” is the
degree of the transverse vector fields.

The meromorphic extension of the zeta function given by this theorem allows the construction of a
Wodzicki-Guillemin trace on SH(M) = ΨH(M)/Ψ

−∞(M).

THEOREM 1.16. (Connes-Moscovici, [4]) The Wodzicki residue functional
∫
− : SH(M) −→ C, P 7−→ Resz=0Tr(P∆−z/4)

is a trace. It is the unique trace on SH(M), up to a multiplicative constant. Moreover, for P ∈ ΨH(M), we

have the following formula, only depending on the symbol σ of P.

(1.5)

∫
− P =

1

(2π)n

∫

S∗H M

ιL

�
σ−(p+2q)(x ,ξ)

ωn

n!

�

Here, S∗
H

M is the Heisenberg cosphere bundle, that is, the sub-bundle

S∗
H

M = {(x ,ξ) ∈ T ∗M ; |ξ|′ = 1}

L is the generator of the Heisenberg dilations, ι stands for the interior product and ω denotes the
standard symplectic form on T ∗M .

REMARK 1.17. All these results still holds for Heisenberg pseudodifferential operators acting on
sections of a vector bundle E over M : In this case, the symbol σ−(p+2q)(x ,ξ) above is at each point
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(x ,ξ) an endomorphism acting on the fibre Ex , and (1.5) becomes :
∫
− P =

1

(2π)n

∫

S∗H M

ιL

�
tr(σ−(p+2q)(x ,ξ))

ωn

n!

�

where tr denotes the trace of endomorphisms.

2. THE RADUL COCYCLE FOR ABSTRACT PSEUDODIFFERENTIAL OPERATORS

2.1. Extensions and index theorems. We begin with another abstract setting. Let A be an associative
algebra over C, possibly without unit, and I an ideal in A. The extension

0 −→ I −→ A−→ A/I −→ 0

gives rise to the following diagram, relating the index map in algebraic K-theory and excision in periodic
cyclic homology

(2.1) K
alg
1 (A/I)

Ind //

ch1

��

K
alg
0 (I)

ch0

��
HP1(A/I)

∂ // HP0(I)

The vertical arrows are respectively the odd and even Chern character. Nistor shows in [8] that this
diagram is commutative. Then, if we denote again ∂ : HP0(I)→ HP1(A/I) the excision map in coho-
mology, the following equality holds,

(2.2) 〈[τ], ch0 Ind[u]〉 = 〈∂ [τ], ch1[u]〉
for every [τ] ∈ HP0(I) and every [u] ∈ K1(A/I). One should have in mind that the left hand-side is an
"analytic index", and think about the right hand-side as a "topological index".

Let us recall the construction of a boundary map ∂ in cohomology in a useful particular case, drawn
from [8]. Let [τ] ∈ HP0(I) be given by a hypertrace τ : I → C, i.e a linear map satisfying the condition
τ([A, I]) = 0, then let us recall how to compute ∂ [τ] ∈ HP1(A/I). To begin, choose a lift eτ : A→ C
of τ, such that eτ is linear (in general, this is not a trace), and a linear section σ : A/I → A such that
σ(1) = 1, after adjoining a unit where we have to. Then, ∂ [τ] is represented by the following cyclic
cocycle :

c(a0, a1) = beτ(σ(a0),σ(a1)) = eτ([σ(a0),σ(a1)])

where b is the Hochschild coboundary recalled in Section 3.1.

2.2. The generalized Radul cocycle. We can finally come to the main theorem of this section. Let
D(∆) be an algebra of abstract differential operators and Ψ = Ψ(∆) be an algebra of abstract pseudo-
differential operators. We consider the extension

0 −→ Ψ−∞ −→ Ψ −→ S −→ 0

where S is the quotient Ψ/Ψ−∞. The operator trace on Ψ−∞ is well defined, hence it defines a
periodic cyclic cohomology class [Tr] ∈ HP0(Ψ−∞). It also satisfies Tr([Ψ−∞,Ψ]) = 0. In addition,
let ∂ : HP0(Ψ−∞)→ HP1(S ) denote the excision map in periodic cyclic cohomology associated to the
above extension.

THEOREM 2.1. Suppose that the pole at zero of the zeta function is of order p ≥ 1. Then, the class

∂ [Tr] ∈ HP1(S) is represented by the following cyclic 1-cocycle :

c(a0, a1) =

1∫
− a0δ(a1)−

1

2!

2∫
− a0δ

2(a1) + . . .+
(−1)p−1

p!

p∫
− a0δ

p(a1)

10



where δ(a) = [log∆1/r , a] and δk(a) = δk−1(δ(a)) is defined by induction. We shall call this cocycle the

(generalized) Radul cocycle.

Here, the commutator [log∆1/r , a] is defined as the non-convergent asymptotic expansion

(2.3) [log∆1/r , a]s
1

r

∑

k≥1

(−1)k−1

k
a(k)∆−k

where a(k) has the same meaning as in Lemma 1.9. This expansion arises by first using functional
calculus :

log∆1/r =
1

2πi

∫
logλ1/r(λ−∆)−1 dλ

and then, reproducing the same calculations made in the proof of Lemma 1.9 to obtain the formula
(cf. [7] for details). In particular, note that log∆1/r = 1

r log∆.

Another equivalent expansion possible, that we will also use, is the following

(2.4) [log∆1/r , a]s
∑

k≥1

(−1)k−1

k
a[k]∆−k/r

where a[1] = [∆1/r , a], and a[k+1] = [∆1/r , a[k]].

Before proving the result, let us give a heuristic explanation of how to get this formula. We first lift the
trace on Ψ−∞ to a linear map eτ on Ψ using a zeta function regularization by "Partie Finie",

eτ(P) = Pfz=0Tr(P∆−z/r)

for any P ∈ Ψ. The "Partie Finie" Pf is defined as the constant term in the Laurent expansion of a
meromorphic function. Let Q ∈ Ψ be another pseudodifferential operator. Then, we have

Pfz=0Tr([P,Q]∆−z/r ) = Resz=0Tr

�
P · Q−∆

−z/rQ∆z/r

z
∆
−z/r

�

by reasoning first for z ∈ C of sufficiently large real part to use the trace property, and then applying
the analytic continuation property. Then, informally we can think of the complex powers of ∆ as

∆
z/r = elog∆·z/r = 1+

z

r
log∆+ . . .+

1

p!

�
z

r

�p

(log∆)p +O(zp+1)

which after some calculations, gives the expansion

(Q−∆−z/rQ∆z/r)∆−z/r = zδ(Q)− z2

2
δ2(Q) + . . .+ (−1)p−1 zp

p!
δp(Q) +O(zp+1)

PROOF. Let P,Q ∈ Ψ be two abstract pseudodifferential operators. The beginning of the proof is
the same as the heuristic argument given above, so we start from the equality

Pfz=0Tr([P,Q]∆−z/r ) = Resz=0Tr

�
P · Q−∆

−z/rQ∆z/r

z
∆
−z/r

�

= Resz=0Tr

�
P · 1

z

∑

k≥1

�−z/r

k

�
Q(k)∆−k ·∆−z/r

�

The second equality comes from Lemma 1.9.

Then, let X be an indeterminate. As power series over the complex numbers with indeterminate X , we
remark that for any z ∈ C, one has

1

z

∑

k≥1

�−z/r

k

�
X k =

1

z
((1+ X )−z/r − 1)
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On the other hand, we have, for q ∈ N,

ad(log∆1/r)q(Q) =
1

rq

�
log∆, [..., [log∆,Q]]

�
s

1

rq

∑

k≥q

∑

k1+...+kq=k

(−1)k−q

k1 . . . kq

Q(k)∆−k

Using once more the indeterminate X , one has

∑

k≥q

∑

k1+...+kq=k

(−1)k−q

k1 . . . kq

X k =

�∑

l≥1

(−1)l−1X l

l

�q

= log(1+ X )q

thus obtaining
∑

q≥1

(−1)q−1

q!

zq−1

rq
log(1+ X )q =

1

z
((1+ X )−z/r − 1)

This proves that the coefficients of Q(k)∆−k in the sums

1

z

∑

k≥1

�−z

k

�
Q(k)∆−k,

∑

q≥1

(−1)q−1

q!

zq−1

rq

 
∑

k≥q

∑

k1+...+kq=k

(−1)k−q

k1 . . . kq

Q(k)∆−k

!

are the same, hence the result follows. �

Applying the pairing (2.2), we have an index formula.

EXAMPLE 2.2. Let M be a closed foliated manifold with integrable sub-bundle F ∈ T M ,∆ the sub-
elliptic sub-laplacian of Example 1.13 sand take Ψ(∆) = ΨH(M) the algebra of (classical) Heisenberg
pseudodifferential operators on M , Ψ−∞(∆) = Ψ−∞(M) the ideal of regularizing operators. The
quotient Ψ/Ψ−∞ is the algebra SH(M) of classical Heisenberg formal symbols. A trace on Ψ−∞(M) is
given by

(2.5) τ(K) = Tr(K) =

∫

M

k(x , x)dvol(x)

where k is the Schwartz kernel of K . Then, using the residue defined in Theorem 1.16 and applying
Theorem 2.1, ∂ [τ] is represented by the following cyclic 1-cocycle on SH(M) :

(2.6) c(a0, a1) =

∫
− a0[log |ξ|′, a1]

With a slight abuse of notation, we put the symbol log |ξ|′ instead of the operator log∆1/4. We em-
phasize that the product of symbols is the star-product defined in (1.4), but we omit the notation ⋆.

Remark that log |ξ|′ is a log-polyhomogeneous (Heisenberg) symbol and is not classical, but from (2.4),
it is clear that its commutator with any element of SH(M) is. Note also that the cocycle is defined on
the symbols rather that on the operators, but this does not matter since the Connes-Moscovici residue
kills the smoothing contributions. In particular, only a finite number of terms of the star-product are
involved.

From this cocycle, we then get an index formula for Heisenberg elliptic pseudodifferential operators.
Indeed, if P is such an operator of formal symbol u ∈ SH(M), and Q a parametrix of P in the Heisenberg
calculus of formal symbol u−1 ∈ SH(M), then, the Fredholm index of P is given by

Ind(P) = c(u−1,u)

As the Radul cocycle is given by a Wodzicki residue, it is local in the sense of Connes-Moscovici. How-
ever, it seems to be an unattainable task to get a topological index formula in terms of the principal
symbol since by (1.5), we have to compute the symbol of order −(p + 2q) of u−1[log |ξ|′,u]. At first
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sight, many terms of the formal expansions of u and u−1, as well as many of their higher derivatives,
seem to be involved. We shall see in next section a way to overcome this difficulty.

3. A COMPUTATION OF THE RADUL COCYCLE

This section is devoted to show how one may recover interesting index formulas from the Radul cocycle,
working on the simplest foliation possible. For all this section, even if it is not explicitly mentioned, we
consider Rn as a trivial foliation Rp ×Rq, where 0≤ p ≤ n and q = n− p, and consider the associated
classical Heisenberg pseudodifferential operators Ψ0

H
(Rn) of order 0.

Our goal is to show that the Radul cocycle (2.6) on S 0
H
(Rn) is cohomologous in HP1(SH(R

n)) to simple
inhomogeneous (B, b)-cocycles of higher degree, making the computation of the index problem easier.
We shall always use coordinates adapted to the foliation Rp ×Rq.

We shall give two constructions but before, we briefly recall how to define the (B, b)-bicomplex.

3.1. The (B, b)-bicomplex. Let A be an associative algebra over C. For k ≥ 0, denote by CCk(A) the
space of (k + 1)-linear forms on the unitalization A+ of A such that φ(a0, . . . , ak) = 0 when ai = 1 for
some i ≥ 1. Then, define the differentials

B : CCk+1(A) −→ CCk(A), b : CCk(A) −→ CCk+1(A)

by the formulas

Bφ(a0, . . . , ak) =

k∑

i=0

(−1)ikφ(1, ai , . . . , ak, a0, . . . , ai−1)

bφ(a0, . . . , ak+1) =

k∑

i=0

(−1)iφ(a0, . . . , ai−1, ai ai+1, ai+2, . . . , ak+1)

+ (−1)k+1φ(ak+1a0, . . . , ak)

that is, B2 = b2 = 0. Moreover, B and b anticommute, which allows to define the (B, b)-bicomplex

...
...

...

. . .
B // CC2(A)

B //

b

OO

CC1(A)
B //

b

OO

CC0(A)

b

OO

. . .
B // CC1(A)

B //

b

OO

CC0(A)

b

OO

. . .
B // CC0(A)

b

OO

Then, the periodic cyclic cohomology HP•(A) is the cohomology of the total complex. More precisely,
it is the cohomology of the 2-periodic complex

. . .
B+b // CCeven(A)

B+b // CCodd(A)
B+b // CCeven(A)

B+b // . . .

where

CCeven(A) = CC0(A)⊕CC2(A)⊕ . . .

CCodd(A) = CC1(A)⊕CC3(A)⊕ . . .

Hence, there are only an even and an odd periodic cyclic cohomology groups, respectively denoted
HP0(A) and HP1(A).

13



REMARK 3.1. Sometimes, authors consider the total differential B − b instead of B + b.

3.2. General context. Recall from Section 1.5 that the residue trace of a Heisenberg pseudodifferen-
tial operator P ∈ ΨH(R

n) of symbol σ is given by

(3.1)

∫
− P =

1

(2π)n

∫

S∗HR
n

ιL

�
σ−(p+2q)(x ,ξ)

ωn

n!

�

where σ−(p+2q) is the Heisenberg homogeneous term of order −(p + 2q) in the asymptotic expansion
of σ, ω =

∑
i d x idξi is the standard symplectic form on T ∗Rn = Rn

x
× Rn

ξ
, and L is the generator of

the Heisenberg dilations, given by the formula

L =

p∑

i=1

ξi∂ξi
+ 2

n∑

i=p+1

ξi∂ξi

Note that in this example, the sub-elliptic sub-laplacian does not have a compact resolvent since we
work on Rn. However, the results in Section 1.6.2 on the Wodzicki residue still holds because we
consider pseudodifferential operators which have compact support.

We first extend the trace onΨ−∞(Rn) given in (2.5) to a graded trace on the graded algebra Ψ−∞(Rn)⊗
Λ
•T ∗Rn, using a Berezin integral :

Tr(K ⊗α) = α[2n]Tr(K)

where K ∈ Ψ−∞(Rn), and α[2n] is the coefficient of the form d x1 . . . d xndξ1 . . . dξn in α (the wedges
are dropped to simplify notations). Here, we emphasize once more that T ∗Rn is seen as the vector
space Rn

x
×Rn

ξ. Therefore Λ•T ∗Rn stands for the exterior algebra of the vector space T ∗Rn = Rn
x
×Rn

ξ,
and not for the vector bundle of exterior powers of the cotangent bundle, as usual.

Moreover, the Wodzicki residue trace on ΨH(R
n) is given by a zeta function regularization of this trace.

Therefore, the latter procedure also extends the Wodzicki residue trace to a graded trace on the graded
algebra ΨH(R

n)⊗Λ•T ∗Rn. The latter descends to a graded trace onSH(R
n)⊗Λ•T ∗Rn. The composition

law of pseudodifferential operators, or the star-product of symbols for the latter, are extended to these
algebras just by imposing that they commute to elements of the exterior algebra.

Remark also that the following commutation relations hold

[x i ,ξ j] = iδi, j , [x i , x j] = [ξi ,ξ j] = 0

where we denote i =
p
−1. In short, ad(x i) and ad(ξi) are respectively the differentiation of symbols

with respect to the variables ξi and x i .
Finally, let F be the multiplier on SH(R

n)⊗Λ•T ∗Rn defined by

F =
∑

i

(x idξi + ξid x i)

As the two following lemmas might indicate, this operator will play a role rather similar to operators
usually denoted by F when dealing with finitely summable Fredholm modules. The difference is that
this F here is not the main object of study, and acts more as an intermediate towards the main result.

LEMMA 3.2. F2 is equal to iω, where ω is the standard symplectic form on T ∗Rn. In particular, F2

commutes to every element in SH(R
n)⊗Λ•T ∗Rn.

LEMMA 3.3. For every symbol a ∈ SH(R
n), one has

[F, a] = ida = i
∑

i

�
∂ a

∂ x i

d x i +
∂ a

∂ ξi

dξi

�

The proof of both lemmas follows from a simple computation, just using the commutation relations
mentioned above. Another important property of the multiplier F , easy to verify, is the following
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LEMMA 3.4. For every a ∈ SH(R
n)⊗Λ•T ∗Rn, we have

∫
− [F, a] = 0

3.3. Construction by excision. The previous lemma shows that it may be relevant to consider the fol-
lowing cyclic cocycles on Ψ−∞(Rn), inspired of Connes’ cyclic cocycles associated to Fredholm modules
(see [2] or [3]).

(3.2) φ2k(a0, ..., a2k) =
k!

ik(2k)!
Tr

�
a0[F, a1] . . . [F, a2k]⊗

ωn−k

n!

�

for 0≤ k ≤ n. Therefore, we obtain the following result, very similar to that of Connes.

PROPOSITION 3.5. The periodic cyclic cohomology classes of the cyclic cocycles φ2k are independant of

k.

PROOF. Set

(3.3) γ2k+1(a0, . . . , a2k+1) =
(k+ 1)!

ik+1(2k + 2)!
Tr

�
a0F[F, a1] . . . [F, a2k+1]⊗

ωn−k

n!

�

It is then a straightforward calculation to verify that (B + b)γ2k+1 = φ2k − φ2k+2, which shows the
result. �

At this stage, we are not very far from being done. To obtain the desired cyclic cocycles on the algebra
S 0

H
R

n ⊗ Λ•T ∗Rn from those previously constructed, it suffices to push the latter using excision in
periodic cyclic cohomology. Indeed, as we have the pseudodifferential extension

0 −→ Ψ−∞(Rn) −→ Ψ0
H
(Rn) −→ S 0

H
R

n −→ 0

we look at the image of the (B, b)-cocycles φ2k under the boundary map

∂ : HP0(Ψ−∞(Rn)) −→ HP1(S 0
H
R

n)

Thanks to this, the cocycles (3.2) involving the operator trace, which are highly non local, will be
avoided and transferred to cocycles involving the Wodzicki residue.

To compute the image of the cocycles (3.2) under the excision map ∂ , a slight refinement of the
techniques sketched in Sections 2.1 and 2.2 is required. We first lift the cocycles φ2k on Ψ−∞(Rn) to
cyclic cochains eφ2k ∈ CC•(Ψ0

H
(Rn)) using a zeta function regularization,

eφ2k(a0, ..., a2k)

=
k!

ik(2k)!

1

2k+ 1

2k∑

i=0

Pfz=0Tr

�
a0[F, a1] . . . [F, ai]∆

−z/4[F, ai+1] . . . [F, a2k]⊗
ωn−k

n!

�

For k = 0, we already know that ∂ [φ0] is represented by the Radul cocycle

c(a0, a1) =

∫
− a0δa1

where δa1 = [log |ξ|′, a1].

Now, let k ∈ N. Then, the usual construction of the boundary map in cohomology associated to an
extension gives that ∂ [φ2k] is represented by the inhomogeneous (B, b)-cocycle

(B + b) eφ2k =ψ2k−1 +φ2k+1 ∈ CC2k−1(Ψ0
H
(Rn))⊕CC2k+1(Ψ0

H
(Rn))
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where ψ2k−1 = B eφ2k and φ2k+1 = b eφ2k are given by

(3.4) ψ2k−1(a0, . . . , a2k−1)

=
k!

ik(2k)!

2k−1∑

i=0

(−1)i+1

∫
−
�

a0[F, a1] . . . [F, ai]δF[F, ai+1] . . . [F, a2k−1]⊗
ωn−k

n!

�

(3.5) φ2k+1(a0, . . . , a2k+1)

=
k!

ik(2k+ 1)!

2k+1∑

i=1

(−1)i−1

∫
−
�

a0[F, a1] . . . [F, ai−1]δai[F, ai+1] . . . [F, a2k+1]⊗
ωn−k

n!

�

where we define ψ−1 as zero. φ1 is precisely the Radul cocycle. For the clarity of the exposition, the
calculations will be detailed later in Appendix A. Then, we have :

PROPOSITION 3.6. The Radul cocycle c is cohomologous in the (B, b)-complex, to the (B, b)-cocycles

(ψ2k−1,φ2k+1), for all 1≤ k ≤ n.

Indeed, usual properties of boundary maps in cohomology automatically ensures this result. As a
matter of fact, one can be more precise and give explicitly the transgression cochains allowing to pass
from one cocycle to another. For this, we lift the transgression cochain γ given in (3.3) to the (B, b)-
cochain eγ ∈ CC•(ΨH(R

n)), using the same trick as before :

eγ2k+1 =
(k+ 1)!

ik+1(2k+ 2)!

1

2k+ 3

�
Pfz=0Tr

�
a0∆

−z/4F[F, a1] . . . [F, a2k+1]⊗
ωn−k−1

n!

�

+

2k+1∑

i=0

Pfz=0Tr(a0F[F, a1] . . . [F, ai]∆
−z/4[F, ai+1] . . . [F, a2k+1]⊗

ωn−k−1

n!

��

and the term i = 0 of the sum means Pfz=0Tr(a0F∆−z[F, a1] . . . , [F, a2k+1]⊗ ωn−k−1

n! ) in the right hand-
side.

PROPOSITION 3.7. The inhomogeneous (B, b)-cochains

eφ2k − eφ2k+2 − (B + b)eγ2k+1 = γ2k − γ′2k+2 ∈ CC2k(Ψ0
H
(Rn))⊕CC2k+2(Ψ0

H
(Rn))

for 0 ≤ k ≤ n, viewed as cochains on SH(R
n), are transgression cochains between (ψ2k−1,φ2k+1) and

(ψ2k+1,φ2k+3), that is,

(ψ2k−1 +φ2k+1)− (ψ2k+1 +φ2k+3) = (B + b)(γ2k − γ′2k+2)

Moreover, one has

(3.6) γ2k(a0, . . . , a2k)

=
k!

2ik+1(2k + 1)!

2k∑

i=0

(−1)i
∫
−
�

a0F[F, a1] . . . [F, ai]δF[F, ai+1] . . . [F, a2k+1]⊗
ωn−k−1

n!

�

(3.7) γ′2k
(a0, . . . , a2k) =

∫
−
�

a0δa1[F, a2] . . . [F, a2k]⊗
ωn−k

n!

�

+
k!

ik(2k + 1)!

2k∑

i=1

(−1)i−1

∫
−
�

a0F[F, a1] . . . [F, ai−1]δai[F, ai+1] . . . [F, a2k]⊗
ωn−k

n!

�

That eφ2k − eφ2k+2− (B+ b)eγ2k+1 gives a transgression cochain comes once again from the construction
of a boundary map in cohomology associated to a short exact sequence. Once more, the calculations
leading to these formulas are given in Appendix A.
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3.4. Construction with Quillen’s Algebra Cochains. The interest about Quillen’s theory of cochains
here is that the (B, b)-cocycles we want to get are obtained purely algebraically, since we do not need to
pass first through (B, b)-cocycles on the algebra of regularizing operators. For the convenience of the
reader, we briefly recall this formalism, and let him report to the original paper [10] or the Appendix
B for more details.

3.4.1. Preliminaries. Let A an associative algebra over C with unit. The bar construction B of A is the
differential graded coalgebra B =

⊕
n≥0 Bn, with Bn = A⊗n for n≥ 0 with coproduct ∆ : B→ B ⊗ B

∆(a1, . . . , an) =

n∑

i=0

(a1, . . . , ai)⊗ (ai+1, . . . , an)

The counit map η is the projection onto A⊗0 = C, and the differential is b′ :

b′(a1, . . . , an+1) =

n∑

i=1

(−1)i−1(a1, . . . , aiai+1, . . . , an+1)

which is defined as the zero-map on B0 and B1. These operations confer a structure of differential
graded coalgebra to B.

A bar cochain of degree n on A is a n-linear map over A with values in an algebra L. These cochains
form a complex denoted Hom(B, L), whose differential is given by

δbar f = (−1)n+1 f b′

for f ∈ Homn(B, L). Moreover, one has a product on Hom(B, L) : If f and g are respectively cochains
of degrees p and q, it is given by

f g(a1, . . . , ap+q) = (−1)pq f (a1, . . . , ap)g(ap+1, . . . , ap+q)

Therefore, Hom(B, L) has a structure of differential graded algebra.

We next define ΩB and ΩB,♮ to be the following bicomodules over B :

Ω
B = B ⊗ A⊗ B, Ω

B,♮ = A⊗ B

Here, the ♮ in exponent means that ΩB,♮ is the cocommutator subspace of ΩB . Thanks to this, one can
show that the differential δbar induced on ΩB,♮ is in fact the Hochschild boundary, and deduce that
the complex (Hom(ΩB,♮,C), b) is isomorphic to the Hochschild complex (CC•(A), b) of A, with degrees
shifted by one.

We recall Quillen’s terminology. Let L be a differential graded algebra. Elements of Hom(ΩB , L) will be
called Ω-cochains, and those in Hom(ΩB,♮, L) as Hochschild cochains. Recall also that the bar cochains

are the elements of Hom(B, L).

REMARK 3.8. A cochain f of this kind has three degrees : a A-degree as a multilinear map over A,
a L degree and a total degree f , which is sum. This is the one which will be considered.

The map ♮ : ΩB,♮→ ΩB , defined by the formula

♮(a1 ⊗ (a2, . . . , an)) =

n∑

i=1

(−1)i(n−1)(ai+1, . . . , an)⊗ a1 ⊗ (a2, . . . , ai)

induces a map from Hochschild cochains to bar cochains. If we have a (graded) trace τ : L −→ C, we
then obtain a morphism of complexes

τ♮ : Hom(ΩB , L) −→ Hom(ΩB,♮,C)
f 7−→ τ♮( f ) = τ f ♮

17



3.4.2. Return to the initial problem. We can now return to our context. Let A be the algebra S 0
H
(Rn) of

Heisenberg formal symbols on Rn = Rp×Rq, and B the bar construction of A. Also, let L be the graded
algebra S 0

H
(Rn)⊗Λ•T ∗Rn. The product on these algebras is the star-product of symbols, twisted with

the product on the exterior algebra. The injection

ρ : A−→ L

is a homomorphism of algebras. As a consequence, ρ should be viewed as a 1-cochain of "curvature"
zero, i.e δbarρ+ρ

2 = 0. We introduce a formal parameter ǫ of odd degree such that ǫ2 = 0, and shall
actually work in the extended algebra

Hom(B, L)[ǫ] = Hom(B, L) + ǫHom(B, L)

The role of that ǫ is to kill the powers of log |ξ|′ which are not classical symbols, and to keep only its
commutator with other symbols.

Now, denote∇= F+ǫ log |ξ|′, and∇2 = F2+ǫ[log |ξ|′, F] the square of∇, and introduce the "connec-
tion" ∇+ δbar +ρ. The fact that this operator does not belong to the algebra above is not a problem,
since we shall only have interest in its "curvature", which is well defined,

K =∇2 + [∇,ρ] = F2 + ǫ[log |ξ|′, F] + [F + ǫ log |ξ|′,ρ]
and its action on Hom(B, L)[ǫ] with commutators. Here, we emphasize that the commutators involved
are in fact graded commutators. Let τ be the graded trace on Hom(B, L)[ǫ]⊗Λ•T ∗Rn given by

τ(x + ǫ y) =

∫
− y

It turns out that the cocycles (3.4) and (3.5) constructed using excision in the previous section are
obtained by considering the even cochain

θ = τ(∂ ρ · eK) ∈ Hom(ΩB,♮,C)

where ∂ f · g is defined, for f , g ∈ Hom(ΩB , L) of respective degrees 1 and n − 1, by the following
formula :

(∂ f · g)♮(a1 ⊗ (a2, . . . , an)) = (−1)|g| f (a1)g(a2, . . . , an)

The calculation of θ becomes easier if one remarks that

eK = eF2 · e[F,ρ]+ǫ[log |ξ|′,F+ρ]

as F2 = iω is central in L. Then, this easily provides that θ =
∑

k(θ
′
2k
+ θ ′′2k

), where

(3.8) θ ′2k
=

in−k+1

(2k − 1)!

2k−1∑

i=1

∫
−
�
∂ ρ · [F,ρ]i−1δρ[F,ρ]2k−1−i ⊗ ωn−k+1

(n− k+ 1)!

�

(3.9) θ ′′2k
=

in−k

(2k)!

2k−1∑

i=0

∫
−
�
∂ ρ · [F,ρ]iδF[F,ρ]2k−1−i ⊗ ωn−k

(n− k)!

�

Evaluating on elements of A, this gives :

(3.10) θ ′2k
(a0, . . . , a2k−1)

=
in−k+1

(2k− 1)!

2k−1∑

i=1

(−1)i
∫
−
�

a0[F, a1] . . . [F, ai−1]δai[F, ai+1] . . . [F, a2k−1]⊗
ωn−k+1

(n− k+ 1)!

�

(3.11) θ ′′2k
(a0, . . . , a2k−1)

=
in−k

(2k)!

2k−1∑

i=0

(−1)i+1

∫
−
�

a0[F, a1] . . . [F, ai]δF[F, ai+1] . . . [F, a2k−1]⊗
ωn−k

(n− k)!

�

The signs above not appearing in the cochains (3.8) and (3.9) occur since the ai , δρ and δF are odd.
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As announced earlier, we observe that θ ′2k
and θ ′′2k

are up to a certain constant term the cochains φ2k−1

and ψ2k−1 obtained in (3.4) and (3.5). The difference in signs is due to Quillen’s formalism, which
considers the total differential B−b, see Remark B.4. Unfortunately, each component of θ2k = θ

′
2k
+θ ′′2k

of θ is not a (B, b)-cocycle, but taking the entire cochain θ into account, this is.

To prove this, it only suffices to check that all the things we defined have the good algebraic properties
to fit into Quillen’ proof. This is the content of the following lemma, which is actually a "Bianchi
identity" with respect to the "connection" ∇+δbar +ρ.

LEMMA 3.9. (Bianchi identity.) We have (δbar + adρ + ad∇)K = (δbar + adρ + ad∇)eK = 0, where

ad denotes the (graded) adjoint action.

REMARK 3.10. The thing which guarantees this identity is that [∇,∇] = 0. Then, the proof is the
same as that given in the paper of Quillen, [10], Section 7. Thanks to this lemma, we directly know
that (B − b)θ = 0, by adapting the arguments of [10], Sections 7 and 8. For the convenience of the
reader, we recalled these arguments in Appendix B. This result can be refined, and we get the same
results as those obtained using excision.

THEOREM 3.11. The inhomogeneous Hochschild cochains

θ ′′2k
− θ ′2k+2 ∈ Hom2k(ΩB,♮,C)⊕Hom2k+2(ΩB,♮,C)

for 0≤ k ≤ n, define a (B, b)-cocycle.

PROOF. Introduce a parameter t ∈ R, and consider the following family of curvatures (Kt) :

Kt =∇2,t + [t F + ǫ log |ξ|′,ρ]
where ∇2,t = F2 + ǫ[log |ξ|′, t F]. Because the identity [∇,∇2,t] still holds, we have a Bianchi identity

(δbar + adρ + ad∇)Kt = 0

Thus, the Hochschild cochain

θ t = τ♮(∂ ρ · eKt ) ∈ Hom(ΩB,♮,C)[t]

satisfies the relation (B − b)θ t = 0 for every t ∈ R, where we denote by R[t] the polynomials with
coefficients in an algebra R. Therefore, this relation also holds for every k, for the coefficient of tk.
This coefficient is the cochain θ ′′2k

+ θ ′2k+2, thus, θ ′′2k
− θ ′2k+2 defines a (B, b)-cocycle. �

Denote by Ω = [F,ρ] + ǫ[log |ξ|′,ρ + F]. The cochains which cobounds these cocycles (up to modify
each of them by a constant term depending on their degrees) may be obtained rather easily by using
suitable linear combinations of pairs of bar cochains (µ2 j ,µ2 j+1), where µ is given by :

µk = τ

�
∂ ρ · e

F2

k!

k∑

i=0

Ω
i FΩk−i

�

Doing this gives transgression formulas in the spirit of those obtained in Proposition 3.7.

3.5. Index theorem. From Proposition 3.6, we know that the Radul cocycle on S 0
H
(Rn)

c(a0, a1) =

∫
− a0δa1

where δa1 = [log |ξ|′, a1], is cohomologous to the inhomogeneous (B, b)-cocycle

ψ2n−1 +φ2n+1 ∈ CC2n−1(S 0
H
(Rn))⊕CC2n+1(S 0

H
(Rn))

with,

ψ2n−1(a0, . . . , a2n−1) =
1

in(2n)!

2n−1∑

i=0

(−1)i+1

∫
− a0[F, a1] . . . [F, ai]δF[F, ai+1] . . . [F, a2n−1]
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φ2n+1(a0, . . . , a2n+1) =

1

in(2n+ 1)!

2n+1∑

i=1

(−1)i−1

∫
− a0[F, a1] . . . [F, ai−1]δai[F, ai+1] . . . [F, a2n+1]

We shall now compute ψ2n−1 + φ2n+1 to obtain an index theorem. To begin, we first notice that by
Lemma 3.3, we may rewrite the cocycles above as

(3.12) ψ2n−1(a0, . . . , a2n−1) =
i2n−1

in(2n)!

2n−1∑

i=0

(−1)i+1

∫
− a0da1 . . . daiδFdai+1 . . . da2n−1

(3.13) φ2n+1(a0, . . . , a2n+1) =
i2n−1

in(2n+ 1)!

2n+1∑

i=1

(−1)i−1

∫
− a0da1 . . . dai−1δai dai+1 . . . da2n+1

The construction of the Wodzicki residue to Λ•T ∗Rn-valued symbols in the Paragraph 3.2 imposes that
the

∫
− selects only the coefficient associated to the volume form d x1 . . . d xndξ1 . . . dξn. In (3.13), this

coefficient must be a sum of terms of the form ∂ b1
∂ x1

. . . ∂ bn

∂ xn

∂ bn+1
∂ ξ1

. . . ∂ b2n

∂ ξn
for some Heisenberg symbols

b1, . . . , b2n of order 0. Such terms have Heisenberg pseudodifferential order −(p + 2q).

However, in (3.13), there is in each sum an additional factor of the form δai , which is a symbol of
degree −1. Hence, the symbols appearing in the formula are at most of Heisenberg order −(p+2q+1),
and vanishes because of (3.1).

The formula for the cocycle (3.12) also reduces to a more simple one, but which is in general non-zero.
A simple computation gives that

δF = i

 
p∑

i=1

ξ3
i
dξi

|ξ|′4 +
1

2

n∑

i=p+1

ξidξi

|ξ|′4

!

Then, we proceed as we did to obtain the formula (3.13). The coefficient on d x1 . . . d xndξ1 . . . dξn of
the symbols in (3.12) must be of the form

(i) ∂ b1
∂ x1

. . . ∂ bn

∂ xn

∂ bn+1

∂ ξ1
. . .

ξ3
i

|ξ|′4 . . . ∂ b2n

∂ ξn
if 1≤ i ≤ p,

(ii) ∂ b1
∂ x1

. . . ∂ bn

∂ xn

∂ bn+1
∂ ξ1

. . . ξi

|ξ|′4 . . . ∂ b2n

∂ ξn
if p+ 1≤ i ≤ n

where in each point, the term depending on |ξ|′4 replaces the term ∂ bn+i

∂ ξi
. In all case, these terms are

of order −(p + 2q). Thus, if we denote the Heisenberg principal symbol by

σ : S 0
H
(Rn) −→ C∞(S∗

H
R

n)

the symbol of order −(p + 2q) of a0da1 . . . daiδFdai+1 . . . da2n−1 is

σ(a0)dσ(a1) . . . dσ(ai)δFdσ(ai+1) . . . dσ(a2n−1) = (−1)iδFσ(a0)dσ(a1) . . . dσ(a2n−1)

We emphasize that the latter product is no more the star-product but the usual product of functions.

The vector field L =
∑p

j=1 ξ j∂ξ j
+2

∑n

j=p+1 ξ j∂ξ j
on T ∗Rn is the generator of the Heisenberg dilations.

This implies that ιLdσ(ai) = dσ(ai) · L = 0 since the ai are symbols of order 0. Using (3.1), and
observing that ιLδF = i, we obtain

ψ2n−1(a0, . . . , a2n−1) = −
1

(2πi)n(2n− 1)!

∫

S∗HR
n

σ(a0)dσ(a1) . . . dσ(a2n−1)

So, we have proved the following theorem

THEOREM 3.12. The Radul cocycle is (B, b)-cohomologous to the homogeneous (B, b)-cocycle onSH(R
n)

defined by

ψ2n−1(a0, . . . , a2n−1) = −
1

(2πi)n(2n− 1)!

∫

S∗HR
n

σ(a0)dσ(a1) . . . dσ(a2n−1)
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From this theorem, Formula (2.2), and the odd pairing of cyclic cohomology with K-theory, given for
any [φ] ∈ HP1(SH(R

n)) and [u] ∈ K1(SH(R
n)) by the formula

〈[φ], [u]〉 =
∑

k≥0

(−1)kk!(φ2k+1 ⊗ tr)(u−1,u, . . . ,u−1,u)

one has the following topological index formula for Heisenberg elliptic pseudodifferential operators of
order 0, which only depends on their principal symbol. Here, tr denotes the trace of matrices.

THEOREM 3.13. Let P ∈ MN (Ψ
0
H
(Rn)) be a Heisenberg elliptic pseudodifferential operator of symbol

u ∈ GLN (S 0
H
(Rn)), and [u] ∈ K1(S 0

H
(Rn)) its (odd) K-theory class. Then, we have a formula for the

Fredholm index of P :

Ind(P) = Tr(Ind[u]) =
(−1)n(n− 1)!

(2πi)n(2n− 1)!

∫

S∗HR
n

tr(σ(u)−1dσ(u)(dσ(u)−1dσ(u))n−1))

APPENDIX A. COMPUTATIONS OF SECTION 3.1

We give here the details of the different computations allowing to derive the different formulas of
Section 3.

A.1. Cocycles formulas. Recall that

eφ2k(a0, . . . , a2k)

=
k!

ik(2k)!

1

2k+ 1

2k∑

i=0

Pfz=0Tr

�
a0[F, a1] . . . [F, ai]∆

−z/4[F, ai+1] . . . [F, a2k]⊗
ωn−k

n!

�

FORMULA (3.4). We compute ψ2k−1 = B eφ2k

B eφ2k(a0, ..., a2k−1)

=
k!

ik(2k)!

1

2k+ 1

2k∑

i=0

Pfz=0Tr
��
[F, a0] . . . [F, ai]∆

−z/4[F, ai+1] . . . [F, a2k−1]

− [F, a2k−1][F, a0] . . . [F, ai−1]∆
−z/4[F, ai] . . . [F, a2k−2] + . . .

+(−1)2k−1[F, a1] . . . [F, ai+1]∆
−z/4[F, ai+2] . . . [F, a2k−1][F, a0]

�
⊗ ω

n−k

n!

�

Then, by the graded trace property, one can remark that all the terms of the sum
∑2k

i=0 . . . are similar,
so, this sum equals (2k+ 1) times the term i = 0.

B eφ2k(a0, ..., a2k−1)

=
k!

ik(2k)!
Pfz=0Tr

��
[F, a0] . . . [F, a2k−1]∆

−z/4 − [F, a2k−1][F, a0] . . . [F, a2k−2]∆
−z/4

+ . . .+ (−1)2k−1[F, a1] . . . [F, a2k−1][F, a0]∆
−z/4

�
⊗ ω

n−k

n!

�

=
k!

ik(2k)!

2k−1∑

i=0

Pfz=0Tr

�
[F, a0] . . . [F, ai]∆

−z/4[F, ai+1] . . . [F, a2k−1]⊗
ωn−k

n!

�
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where we used the graded trace property in the second equality. Then, writing [F, a0] = Fa0 − a0F ,
using the fact that F anticommutes with the [F, ai] and the graded trace property again, we obtain

B eφ2k(a0, ..., a2k−1)

=
k!

ik(2k)!

2k−1∑

i=0

Pfz=0Tr
�
a0[F, a1] . . . [F, ai]((−1)2k−i

∆
−z/4F − (−1)i F∆−z/4)[F, ai+1]

. . . [F, a2k−1]⊗
ωn−k

n!

�

=
k!

ik(2k)!

2k−1∑

i=0

(−1)i+1Resz=0Tr

�
a0[F, a1] . . . [F, ai]

[F,∆−z/4]

z
[F, ai+1]

. . . [F, a2k−1]⊗
ωn−k

n!

�

From Theorem 2.1, or, to be more precise, the part of the proof allowing to pass from the Partie Finie
to the residue, we finally obtain

B eφ2k(a0, ..., a2k−1)

=
k!

ik(2k)!

2k−1∑

i=0

(−1)i+1

∫
−
�

a0[F, a1] . . . [F, ai]δF[F, ai+1] . . . [F, a2k−1]⊗
ωn−k

n!

�

=ψ2k−1(a0, . . . , a2k−1)

�

FORMULA (3.5). We now compute φ2k+1 = b eφ2k. As [F, . ] is an derivation on SH(R
n), the

following equality may be observed easily

b eφ2k(a0, ..., a2k+1) =
k!

ik(2k+ 1)!

2k∑

i=0

(−1)iPfz=0Tr
�
a0[F, a1] . . . [F, ai][ai+1,∆−z/4]

[F, ai+2] . . . [F, a2k+1])⊗
ωn−k

n!

�

Again, from the proof of Theorem 2.1, we finally have

b eφ2k(a0, ..., a2k+1)

=
k!

ik(2k+ 1)!

2k+1∑

i=1

(−1)i−1

∫
−
�

a0[F, a1] . . . [F, ai−1]δai[F, ai+1] . . . [F, a2k+1]⊗
ωn−k

n!

�

= φ2k+1(a0, ..., a2k+1)

�

A.2. Transgression formulas. We now give the details of the computations needed to obtain the
formulas of Proposition 3.7. Recall that

eγ2k+1(a0, . . . , a2k+1)

=
(k+ 1)!

ik+1(2k+ 2)!

1

2k+ 3

�
Pfz=0Tr

�
a0∆

−z/4F[F, a1] . . . [F, a2k+1]⊗
ωn−k−1

n!

�

+

2k+1∑

i=0

Pfz=0Tr

�
a0F[F, a1] . . . [F, ai]∆

−z[F, ai+1] . . . [F, a2k+1]⊗
ωn−k−1

n!

��

where the term i = 0 of the sum means Pfz=0Tr
�
a0F∆−z[F, a1] . . . , [F, a2k+1]⊗ ω

n−k−1

n!

�
.
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FORMULA (3.6). We compute Beγ2k+1(a0, . . . , a2k). By the graded trace property, applying the
operator B to each term of eγ2k+1 yields the same contribution. As there are (2k+ 3) terms, we have

Beγ2k+1(a0, . . . , a2k) =
(k+ 1)!

ik+1(2k + 2)!
Pfz=0Tr

�
F[F, a0] . . . [F, a2k]

+ F[F, a2k][F, a0] . . . [F, a2k−1] + . . .+ F[F, a1] . . . F[F, a2k][F, a0])∆
−z/4 ⊗ ω

n−k−1

n!

�

Writing (k+1)!
(2k+2)! =

1
2

k!
(2k+1)! , knowing that F anticommutes to the [F, ai] and that F2 = iω is central,

developing F[F, a0] and finally using the graded trace property, we obtain

Beγ2k+1(a0, . . . , a2k)

=
k!

ik+1(2k+ 1)!
· 1

2

2k∑

i=0

Pfz=0

�
(a0F2 − Fa0F)[F, a1] . . .∆

−z/4 . . . [F, a2k])⊗
ωn−k−1

n!

�

Once again using that F2 = iω, we can write

eφ2k(a0, . . . , a2k)

=
k!

ik+1(2k+ 1)!

2k∑

i=0

Pfz=0Tr

�
a0F2[F, a1] . . . [F, ai]∆

−z/4[F, ai+1] . . . [F, a2k]⊗
ωn−k−1

n!

�

hence,

( eφ2k − Beγ2k+1)(a0, . . . , a2k)

=
k!

ik+1(2k+ 1)!
· 1

2

2k∑

i=0

Pfz=0

�
(a0F2 + Fa0F)[F, a1] . . .∆

−z/4 . . . [F, a2k]⊗
ωn−k−1

n!

�

=
k!

ik+1(2k+ 1)!
· 1

2

2k∑

i=0

Pfz=0

�
a0F[F, a1] . . . ((−1)i F∆−z/4 − (−1)2k−i

∆
−z/4F)

. . . [F, a2k]⊗
ωn−k−1

n!

�

Finally, we obtain

( eφ2k − Beγ2k+1)(a0, . . . , a2k)

=
k!

2ik+1(2k + 1)!

2k∑

i=0

(−1)i
∫
−
�

a0F[F, a1] . . .δF . . . [F, a2k]⊗
ωn−k−1

n!

�

= γ2k(a0, . . . , a2k)

�

FORMULA (3.7). We now calculate beγ2k+1. Writing a1F = −[F, a1]+ Fa1 and using the derivation
property of [F, . ],

beγ2k+1(a0, . . . , a2k+2)

= − eφ2k+2(a0, . . . , a2k+2)

+
(k+ 1)!

ik+1(2k+ 3)!

�
Pfz=0

�
a0[a1,∆−z/4][F, a2] . . . [F, a2k+2]⊗

ωn−k−1

n!

�

+

2k+1∑

i=0

(−1)iPfz=0

�
a0F[F, a1] . . . [ai+1,∆−z/4][F, a2] . . . [F, a2k+2]⊗

ωn−k−1

n!

��
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Finally,

( eφ2k+2 + beγ2k+1)(a0, . . . , a2k+2)

=
(k+ 1)!

ik+1(2k+ 3)!

�∫
−
�

a0δa1[F, a2] . . . [F, a2k+2]⊗
ωn−k−1

n!

�

+

2k+2∑

i=1

(−1)i−1

∫
−
�

a0F[F, a1] . . .δai . . . [F, a2k+2]⊗
ωn−k−1

n!

��

= γ2k+2(a0, . . . , a2k+2)

�

APPENDIX B. COMPLEMENTS ON SECTION 3.2

For the convenience of the reader, we recall here Quillen’s picture of (B, b)-cocycles and how it is used
to obtain Theorem 3.11 from the Bianchi identity of Lemma 3.9.

B.1. More on Quillen’s formalism. Let A be an associative algebra over C, and B be the bar construc-
tion of A. Recall that ΩB and ΩB,♮ are the following bicomodules over B :

Ω
B = B ⊗ A⊗ B, Ω

B,♮ = A⊗ B

THEOREM B.1. One has a complex of period 2

. . .
∂ // B

β // ΩB,♮ ∂ // B
β // . . .

with ∂ = ∂ ♮ : ΩB,♮ → B, where ♮ : ΩB,♮ → ΩB , ∂ : ΩB → B, β : B → ΩB,♮ are defined by the following

formulas :

♮(a1 ⊗ (a2, . . . , an)) =

n∑

i=1

(−1)i(n−1)(ai+1, . . . , an)⊗ a1 ⊗ (a2, . . . , ai)

∂ (a1, . . . , ap−1)⊗ ap ⊗ (ap+1, . . . , an) = (a1, . . . , an)

∂ (a1 ⊗ (a2, . . . , an)) =

n∑

i=1

(−1)i(n−1)(ai+1, . . . , an, a1, a2, . . . , ai)

β(a1, . . . , an) = (−1)n−1an ⊗ (a1, . . . , an−1)− a1 ⊗ (a2, . . . , an)

As Quillen shows in [10], it turns out that the 2-periodic complex constructed above is exactly the
Loday-Quillen cyclic bicomplex with degrees shifted by one, and is therefore equivalent to Connes
(B, b)-bicomplex. The shift of the degrees makes that elements of the algebra A become odd in the bar
construction, while they are even in the cyclic bicomplex.

Now, let L be a differential graded algebra. The maps ∂ and β of the periodic complex induces maps
from bar cochains to Hochschild cochains (with values in L) and conversely by pull-back. The following
formula is a key step.

LEMMA B.2. Let f , g ∈ Hom(B, L) be bar cochains. Then, we have

β(τ♮(∂ f · g)) = −τ([ f , g])

We carry a purely computational proof, because of the way we introduced Quillen’s formalism. A more
elegant and conceptual proof is given in Quillen’s article [10], paragraph 5.2. The proof of this lemma
is based on the following formula,

(B.1) (∂ f · g)♮(a1 ⊗ (a2, . . . , an)) =
∑

n−p<i≤n

(−1)i(n−1)( f · g)(ai+1, . . . an, a1, . . . , ai)

24



where f and g be bar cochains of respective degrees p and n− p. The case p = 1 will be often used,
so we give it :

(B.2) (∂ f · g)♮(a1 ⊗ (a2, . . . , an)) = (−1)|g| f (a1)g(a2, . . . , an)

PROOF. Let f and g be bar cochains of respective degrees p and n−p. By definition, β(τ♮(∂ f ·g)) =
τ(∂ f · g)♮β , and using (B.1), so,

β(τ♮(∂ f · g))(a1, . . . , an)

= τ(∂ f · g)♮(((−1)n−1an ⊗ (a1, . . . , an−1)− a1 ⊗ (a2, . . . , an))

= τ

 
∑

n−p<i≤n

(−1)n−1(−1)i(n−1)( f · g)(ai , . . . an, a1, . . . , ai−1)

−
∑

n−p<i≤n

(−1)i(n−1)( f · g)(ai+1, . . . an, a1, . . . , ai)

!

The first sum of the last equality can be rewritten
∑

n−p<i≤n

(−1)n−1(−1)i(n−1)( f · g)(ai , . . . an, a1, . . . , ai−1)

=
∑

n−p−1<i≤n−1

(−1)i(n−1)( f · g)(ai+1, . . . an, a1, . . . , ai)

and noting that (−1)n(n−1) = 1, we obtain

β(τ♮(∂ f · g))(a1, . . . , an)

= τ((−1)(n−p)(n−1)( f · g)(an−p+1, . . . , an, a1, . . . , an−p)− ( f · g)(a1, . . . , an))

= τ((−1)(n−p)(n−1)(−1)p|g| f (an−p+1, . . . , an)g(a1, . . . , an−p)− ( f · g)(a1, . . . , an))

= τ((−1)(n−p)(n−1)(−1)p|g|(−1)(| f |+p)(|g|+n−p)g(a1, . . . , an−p) f (an−p+1, . . . , an)

− ( f · g)(a1, . . . , an))

= τ((−1)(n−p)(n−p−1)(−1)| f |·|g|(g · f )(a1, . . . , an−p, an−p+1, . . . , an)

− ( f · g)(a1, . . . , an))

where we used the (graded) trace property of τ in the third equality.

As we have (−1)(n−p)(n−p−1) = 1, this yields the result. �

We can now give Quillen’s picture of (B, b)-cocycles.

THEOREM B.3. Let θ ∈ Hom(ΩB,♮,C) be a Hochschild cochain, and η ∈ Hom(B,C) be the bar cochain

defined by

ηk(a1, . . . , ak) = θ(1, a1, . . . , ak)

Suppose that for each k, we have

δbarηk = (−1)kβθk+1, δbarθk+1 = (−1)k∂ ηk+2

and that in addition, θn+1(a0, a1, . . . , an) = 0 if ai = 1, for i ≥ 1.

Then, for all k, Bθk+1 = bθk−1.

REMARK B.4. This means that if we redefine signs correctly in θ , we obtain a (B, b)-cocycle in our
sign conventions.
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B.2. Complements on Remark 3.10. We give here the details of Quillen’s arguments. The only thing
we have done towards the original paper [10] is to mix the arguments of Sections 7 and 8.

LEMMA B.5. (Bianchi identity.) We have (δbar + adρ + ad∇)K = (δbar + adρ + ad∇)eK = 0, where

ad denotes the (graded) adjoint action.

PROOF. Let D be the derivation δbar + adρ + ad∇. It suffices to check that D(K) = 0, the other
equality will follow in virtue of the differentiation formula

D(eK ) =

∫ 1

0

e(1−s)K D(K)esK ds

We first remark that [∇,∇2] = 0, using that ǫ commutes (in the graded sense) with elements of
Hom(B, L) and that ǫ2 = 0. Furthermore δbar∇2 = 0 since δbar vanishes on 0-cochains. Therefore,

D(K) = (δbar + adρ + ad∇)(∇2 + [∇,ρ])

= δbar[∇,ρ] + [ρ, [∇,ρ]] + [ρ,∇2] + [∇, [∇,ρ]]

= [∇,ρ2] +ρ[∇,ρ]− [∇,ρ]ρ + [ρ,∇2] + [∇2,ρ]

= 0

The result is proved. �

According to Theorem B.3, let us define the bar cochain η ∈ Hom(B,C) :

η2k−1(a1, . . . , a2k−1) = θ2k(1, a1, . . . , a2k+1)

Also remark that η= τ(eK).

PROPOSITION B.6. The bar and Hochschild cochains η and θ satisfies the relations

δbarη= ±βθ , δbarθ = ±∂ η

The ± means that the sign is positive in the even case and negative in the odd case.

PROOF. For the first formula of the proposition, we have

δbarη= δbar(τ(e
K )) = τ(δbare

K) = τ(δbare
K + [∇, eK]) = −τ([ρ, eK ]) = ±β(τ♮(∂ ρ · eK))

The second equality uses the trace property of τ, the third is the Bianchi identity of the lemma above,
and the last one is Lemma B.2.

For the second formula, first recall that δbarρ +ρ
2 = 0. Then, one has :

δbar(τ
♮(∂ ρ · eK)) = τ♮(∂ (−ρ2)eK − ∂ ρ ·δbare

K)

0= τ♮([ρ,∂ ρ · eK]) = τ♮((ρ · ∂ ρ + ∂ ρ ·ρ)eK − ∂ ρ · [ρ, eK ])

0= τ♮([∇,∂ ρ · eK]) = τ♮(∂ [∇,ρ]eK − ∂ ρ · [∇, eK ])

Adding these three equations, using Bianchi identity and δbarρ +ρ
2 = 0 yields

δbar(τ
♮(∂ ρ · eK)) = τ♮(∂ [∇,ρ]eK ) = τ♮(∂ K · eK)

The last equality follows from the definition of K . Moreover,

∂ (eK ) = τ♮(∂ eK) =

∫ 1

0

τ♮(e(1−t)K · ∂ K · etK)d t = τ♮(∂ K · eK)

where last equality stands because of the trace property. This concludes the proof. �
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Hence, Theorem B.3 shows that θ gives rise to a (B, b)-cocycle (up to changing signs). The same
arguments may be used to complete the proof of Theorem 3.11.

Acknowledgements. The author wishes to warmly thank Denis Perrot for sharing his insights, for
his advices and constant support. He also thanks Thierry Fack for interesting discussions and relevant
remarks which helped to improve preliminary versions of this paper.

REFERENCES

[1] R. Beals and P.C. Greiner. Calculus on Heisenberg manifolds, volume 119 of Annals of Mathematics Studies. Princeton Uni-
versity Press, Princeton, New Jersey, 1988.

[2] A. Connes. Noncommutative differential geometry. Publ. Math. IHES, 62:257–360, 1985.
[3] A. Connes. Noncommutative Geometry. Academic Press Inc., San Diego, CA, 1994.
[4] A. Connes and H. Moscovici. The local index formula in noncommutative geometry. GAFA, 5(2):174–243, 1995.
[5] A. Connes and H. Moscovici. Hopf algebras, cyclic cohomology and the transverse index theorem. Comm. Math. Phys.,

198(1):199–246, 1998.
[6] B. V. Fedosov. A direct proof of the formula for the index of an elliptic operator in euclidean space. Funkcional. Anal. i

Prilozhen. (Russian), 4:83–84, 1970.
[7] N. Higson. The residue index theorem of Connes and Moscovici. In Surveys in Noncommutative Geometry, volume 6 of Clay

Math. Proc., pages 71–126. Amer. Math. Soc., Providence, RI, 2006.
[8] V. Nistor. Higher index theorems and the boundary map in cyclic cohomology. Doc. Math., 2:263–295 (electronic), 1997.
[9] D. Perrot. Pseudodifferential extension and Todd class. Adv. in Math., 246:265–302, 2013.
[10] D. Quillen. Algebra cochains and cyclic cohomology. Publ. Math. IHES, 68:139–174, 1988.
[11] O.A. Radul. Lie algebras of differential operators, their central extensions and W-algebras. Funct. Anal. Appl., 25:25–39,

1991.
[12] O. Uuye. Pseudodifferential operators and regularity of spectral triples. In Perspectives on Noncommutative Geometry, vol-

ume 61 of Fields Institute Communications, pages 153–163. Amer. Math. Soc., Providence, RI, 2011.

UNIVERSITÉ DE LYON, CNRS UMR 5208, UNIVERSITÉ LYON 1, INSTITUT CAMILLE JORDAN, 43, BD DU 11 NOVEMBRE 1918, 69622
VILLEURBANNE CEDEX, FRANCE

Email address: rodsphon@math.univ-lyon1.fr

27


	Introduction
	1. Abstract Differential Operators and Traces
	1.1. Abstract Differential Operators
	1.2. Correspondence with spectral triple
	1.3. Zeta Functions
	1.4. Abstract Pseudodifferential Operators
	1.5. Higher traces on the algebra of abstract pseudodifferential operators
	1.6. The example of Connes and Moscovici

	2. The Radul cocycle for abstract pseudodifferential operators
	2.1. Extensions and index theorems
	2.2. The generalized Radul cocycle

	3. A computation of the Radul cocycle
	3.1. The (B,b)-bicomplex
	3.2. General context
	3.3. Construction by excision
	3.4. Construction with Quillen's Algebra Cochains
	3.5. Index theorem

	Appendix A. Computations of Section 3.1
	A.1. Cocycles formulas
	A.2. Transgression formulas

	Appendix B. Complements on Section 3.2
	B.1. More on Quillen's formalism
	B.2. Complements on Remark 3.10

	References

