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ZETA FUNCTIONS, EXCISION IN CYCLIC COHOMOLOGY AND INDEX

PROBLEMS

RUDY RODSPHON

Abstract. The aim of this paper is to show how zeta functions and excision in cyclic cohomol-
ogy may be combined to obtain index theorems. In the �rst part, we obtain an index formula
for "abstract elliptic pseudodi�erential operators" associated to spectral triples, in the spirit of
the one of Connes and Moscovici. This formula is notably well adapted when the zeta function
has multiple poles. The second part is devoted to give a concrete realization of this formula
by deriving an index theorem on the simple, but signi�cant example of Heisenberg elliptic op-
erators on a trivial foliation, which are in general not elliptic but hypoelliptic. The formula
obtained is an extension of an index formula due to Fedosov.
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Introduction

Several years ago, Connes and Moscovici obtained in [4] a general index formula given in terms

of residues of zeta functions, working with the so-called spectral triples. A major advance was

made since this formalism enlarges index theory to the more general context of the transverse

geometry of foliations, where the interesting pseudodi�erential operators are hypoelliptic without

necessary being elliptic. Let us be a little more precise on this general formula. Connes and

Moscovici constructed a Residue Cocycle on the algebra of the spectral triple, whose periodic

cyclic cohomology class is the Chern-Connes character (cf. [2] or [3]). An important feature of

this cocycle is to remain unchanged when the "Dirac operator" D is perturbed by a smoothing

operator, because it involves residues of zeta functions. This is not the case for the representative

of the Chern-Connes character constructed using Fredholm modules and the operator F = D|D|−1

(cf. [2]), since it involves the operator trace. In this sense, the Residue Cocycle is a better

representative of the Chern-Connes character and is more convenient to derive local index formulas.

In the spirit of the techniques developed by Connes and Moscovici, we give an abstract index

formula of a di�erent �avor, which turns out to be useful to calculate the index of abstract

elliptic pseudodi�erential operators associated to regular spectral triples. The formula is also given

by residues of zeta functions and a certain cyclic cocycle. Nonetheless, there is one important

di�erence since our cocycle is de�ned not only on an "algebra of smooth functions" as in the

Connes-Moscovici formula, but directly on the algebra of formal symbols of the pseudodi�erential

operators considered. We then illustrate on a simple but interesting example how such a formula

may amount to topological index formulas. Let us give an overview of the paper.

Section 1 serves to recall some material about Higson's formalism (cf. [7]) about algebras of

abstract di�erential operators and its relation with (regular) spectral triples. Following [12], this

allows to develop an abstract pseudodi�erential calculus and a notion of ellipticity which covers

many interesting examples. We shall focus on the example of Connes and Moscovici on foliations,

involving the Heisenberg pseudodi�erential calculus.
1



The aim of Section 2 is to study the index theory in this context. More precisely, we construct

a cyclic 1-cocycle on algebras of abstract pseudodi�erential operators which generalizes the Radul

cocycle de�ned for any closed manifold M. This cocycle was introduced by Radul in the context

of Lie algebra cohomology (cf. [11]). The two important ingredients to construct this cocycle

are, on the one hand, that the zeta function of a (classical) pseudodi�erential operator on M

has a meromorphic extension to the complex plane, whose set of poles is at most simple and

discrete. This allows the use of the Wodzicki-Guillemin residue. On the other hand, one uses

the pseudodi�erential extension and excision in periodic cyclic cohomology to push the trace on

regularizing operators on M, viewed as a cyclic 0-cocycle, to a cyclic 1-cocycle on the algebra of

formal symbols on M. Excision in periodic cyclic cohomology then gives an index formula for

elliptic pseudodi�erential operators, by compatibility with excision in K-theory.

This construction is then extended to the abstract setting recalled in Section 1, and we obtain

a cyclic 1-cocycle which generalizes the Radul cocycle in contexts where the zeta function exhibits

multiple poles.

Theorem 0.1. Let Ψ = Ψ(∆) be an algebra of abstract pseudodi�erential operators on a

Hilbert space H, and consider the pseudodi�erential extension

0 −→ Ψ−∞ −→ Ψ −→ S = Ψ/Ψ−∞ −→ 0

Suppose that the pole at zero of the zeta function is of order p > 1. Then, the image ∂[Tr] ∈
HP1(S) of the operator trace [Tr] ∈ HP0(Ψ−∞) by excision in periodic cyclic cohomology is

represented by the following cyclic 1-cocycle :

c(a0,a1) =

1∫
−a0δ(a1) −

1

2!

2∫
−a0δ

2(a1) + . . .+
(−1)p−1

p!

p∫
−a0δ

p(a1)

where δ(a) = [log∆1/r,a] and δk(a) = δk−1(δ(a)) is de�ned by induction. The r denotes the

"order of ∆".

Here, Ψ−∞ is the algebra of regularizing operators associated to Ψ, i.e elements of all order.

The
∫
−
k
are "higher Wodzicki residues" de�ned in Proposition 1.11.

In Section 3, we show on an example how the results of the previous section may lead to index

formulas, in the spirit of the Atiyah-Singer theorem. The example we work on is that of a trivial

foliation Rp × Rq, dealing with the Heisenberg pseudodi�erential calculus. Even if this example

is simple, it is also relevant for at least three reasons : Firstly, it allows to deal with hypoelliptic

(non-elliptic) operators. Secondly, one can see how this leads to a purely algebraic approach of

index theory, thanks to Wodzicki residue trace. Thirdly, the philosophy of the construction given

is useful to understand how to adapt the techniques developed in [9] to treat for example the

general case of foliations (whose leaves are not necessarily compact). One interesting perspective

is to obtain an index formula in the context of the transverse geometry of foliations, which would

to an approach di�erent from the one of Connes and Moscovici in [5].

When dealing with the Radul cocycle, the main obstacle is that the formulas arising are, except

in low dimensions, rather complicated. It is not obvious at all to obtain directly topological index

formulas which depend only on the principal symbol. To cope with this di�culty, the general

idea is to construct (B,b)-cocycles of higher degree which are cohomologous to the Radul cocycle

in the (B,b)-bicomplex. These (B,b)-cocycles are shown to be more easily computable in the

highest degree, for a reason that will be understood later. We give two ways of constructing these

cocycles. In the �rst construction, we introduce homogeneous (B,b)-cocycles on regularizing

operators, in many points similar to the cyclic cocycles associated to Fredholm modules given

by Connes. The game still consists in pushing them to (inhomogeneous) (B,b)-cocycles on the

algebra of Heisenberg formal symbols, using a zeta function regularisation of the trace and excision.
2



The second construction involves Quillen's cochain theory from [10]. The interest in using this

formalism stands in the way we obtain the desired cocycles, as we do not have to go through the

algebra of regularizing operators �rst. Therefore, this method is completely algebraic.

Let S0H(Rn) be the associated algebra of Heisenberg formal symbols of order 0, and denote by

σ : S0H(Rn) −→ C∞(S∗HRn)

the Heisenberg principal symbol map. Here, S∗HRn denotes the "Heisenberg cosphere bundle",

which is de�ned in Section 1.6. Then, the main result of the section can be stated as follows :

Theorem 0.2. The Radul cocycle is (B,b)-cohomologous to the homogeneous (B,b)-

cocycle on S0H(Rn) de�ned by

ψ2n−1(a0, . . . ,a2n−1) = −
1

(2πi)n

∫
S∗HRn

σ(a0)dσ(a1) . . .dσ(a2n−1)

As an immediate corollary, we obtain the following index theorem, which extends an index

formula for elliptic operators on Euclidean spaces due to Fedosov (cf. [6]).

Theorem 0.3. Let P ∈MN(Ψ
0
H(Rn)) be a Heisenberg elliptic pseudodi�erential operator

of formal symbol u ∈ GLN(S0H(Rn)), and [u] ∈ K1(S0H(Rn)) its (odd) K-theory class. Then,

we have a formula for the Fredholm index of P :

Ind(P) = Tr(Ind[u]) =
(−1)n(n− 1)!

(2πi)n(2n− 1)!

∫
S∗HRn

tr(σ(u)−1dσ(u)(dσ(u)−1dσ(u))n−1))

In other words, the index of P is given by the evaluation of the fundamental class of S∗H(Rn)
on the (odd) Chern character of its Heisenberg principal symbol.

1. Abstract Differential Operators and Traces

In this part, we recall the Abstract Di�erential Operators formalism developed by Higson in [7] to

simplify the proof of the Connes-Moscovici local index formula [4]. This is actually another way

of de�ning regular spectral triples. For details, the reader may refer to [7] or [12].

1.1. Abstract Di�erential Operators. Let H be a (complex) Hilbert space and ∆ be an un-

bounded, positive and self-adjoint operator acting on it. To simplify matters, we suppose that ∆

has a compact resolvent. We denote by H∞ the intersection

H∞ =

∞⋂
k=0

dom(∆k)

where dom stands for the domain of a unbounded operator.

Definition 1.1. An algebra D(∆) of abstract di�erential operators associated to ∆ is an

algebra of operators on H∞ ful�lling the following conditions

(i) The algebra D(∆) is �ltered,

D(∆) =

∞⋃
q=0

Dq(∆)

that is Dp(∆) · Dq(∆) ⊂ Dp+q(∆). We shall say that an element X ∈ Dq(∆) is an abstract

di�erential operator of order at most q. The term di�erential order will be often used for the

order of such operators.

(ii) There is a r > 0 ("the order of ∆") such that for every X ∈ Dq(∆), [∆,X] ∈ Dr+q−1(∆).
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To state the last point, we de�ne, for s ∈ R, the s-Sobolev space Hs as the subspace dom(∆s/r)

of H, which is a Hilbert space when endowed with the norm

‖v‖s = (‖v‖2 + ‖∆s/rv‖2)1/2

(iii) Elliptic estimate. If X ∈ Dq(∆), then, there is a constant ε > 0 such that

‖v‖q + ‖v‖ > ε‖Xv‖ , ∀v ∈ H∞
Having Gärding's inequality in mind, the elliptic estimate exactly says that ∆1/r should be thought

as an "abstract elliptic operator" of order 1. It also says that any di�erential operator X of order

q can be extended to a bounded operator form Hs+q to Hs. This last property will be useful to

de�ne pseudodi�erential calculus in this setting.

One example to keep in mind is the case in which ∆ is a Laplace type operator on a closed

Riemannian manifold M. Here, H∞ consists of the smooth functions on M, r = 2 and D(∆) is

simply the algebra of di�erential operators. The Hs are the usual Sobolev space and we have an

elliptic estimate. In fact, the de�nition above is an abstraction of this example, but it can be

adapted to many more situations, for instance the case of foliations, on which we shall focus more

in detail.

1.2. Correspondence with spectral triple. Let (A,H,D) a spectral triple (cf. [4] or [7]). One

may construct a algebra of abstract di�erential operators D = D(A,D) inductively as follows :

D0 = algebra generated by A and [D,A]

D1 = [∆,D0] +D0[∆,D0]

...

Dk =

k−1∑
j=1

Dj ·Dk−j + [∆,Dk−1] +D0[∆,Dk−1]

Let δ be the unbounded derivation ad|D| = [|D|, . ] on the algebra B(H) of bounded operators on

H. The spectral triple is (A,H,D) is said regular if A, [D,A] are included in
⋂∞
n=1 dom δ

n. The

following theorem of Higson makes the bridge between algebras of abstract di�erential operators

and spectral triples.

Theorem 1.2. (Higson, [7]). Suppose that A maps H∞ into itself. Then, the spectral

triple (A,H,D) is regular if and only if the elliptic estimate of De�nition 1.1 holds.

Regularity in spectral triples may be viewed an assumption allowing to control some asymptotic

expansions of "pseudodi�erential operators", as we shall see in the next paragraph from the

perspective of the elliptic estimate.

1.3. Zeta Functions. Let D(∆) be an algebra of abstract di�erential operators. For z ∈ C, one
de�nes the complex powers ∆−z of ∆ using functional calculus :

∆−z =
1

2πi

∫
λ−z(λ− ∆)−1dλ

where the contour of integration is a vertical line pointing downwards separating 0 and the (dis-

crete) spectrum of ∆. This converges in the operator norm when Re(z) > 0, and using the

semi-group property, all the complex powers can be de�ned after multiplying by ∆k, for k ∈ N
large enough. Moreover, since ∆ has compact resolvent, the complex powers of ∆ are well de�ned

operators on H∞.
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We will suppose that there exists a d > 0 such that for every X ∈ Dq(∆), the operator X∆−z

extends to a trace-class operator on H for z on the half-plane Re(z) > q+d
r

. The zeta function

of X is

ζX(z) = Tr(X∆−z/r)

The smallest d verifying the above property is called the analytic dimension of D(∆). In this

case, the zeta function is holomorphic on the half-plane Re(z) > q+d. We shall say that D(∆) has

the analytic continuation property if for every X ∈ D(∆), the associated zeta function extends

to a meromorphic function of the whole complex plane.

There properties are set for all the section, unless if it is explicitly mentioned.

These notions come from properties of the zeta function on a closed Riemannian manifold M :

it is well-known that the algebra of di�erential operators on M has analytic dimension dimM

and the analytic continuation property. Its extension to a meromorphic function has at most

simple poles at the integers smaller that dimM. In the case where M is foliated, the dimension

of the leaves appears in the analytic dimension when working in the suitable context. Hence, the

zeta function provide informations not only on the topology of M, but also on its the geometric

structure, illustrating the relevance of this abstraction.

1.4. Abstract Pseudodi�erential Operators. Let D(∆) an algebra of abstract di�erential

operators of analytic dimension d. To de�ne the notion of pseudodi�erential operators, we need a

more general notion of order, not necessary integral, which covers the one induced by the �ltration

of D(∆).

Definition 1.3. An operator T : H∞ → H∞ is said to have pseudodi�erential order m ∈ R
if for every s > 0, it extends to a bounded operator from Hm+s to Hs. In addition, we require

that operators of analytic order stricly less than −d are trace-class operators.

That this notion of order covers the di�erential order is due to the elliptic estimate, as already

remarked in Section 1.1. The space of such operators, denoted Op(∆), forms a R-�ltered algebra.

There is also a notion of regularizing operators which are, as expected, the elements of the (two-

sided) ideal of operators of all order.

Remark 1.4. Higson uses in [7] the term "analytic order", but as the examples we deal with

in the paper are about pseudodi�erential operators, we prefer the term pseudodi�erential order.

Example 1.5. For every λ ∈ C not contained in the spectrum of ∆, the resolvent (λ − ∆)−1

has analytic order r. Moreover, by spectral theory, its norm as an operator between Sobolev spaces

is a O(|λ|−1).

The following notion is due to Uuye, cf. [12]. We just added an assumption on the zeta function

which is necessary for what we do.

Definition 1.6. An algebra of abstract pseudodi�erential operators is a R-�ltered subalgebra

Ψ(∆) of Op(∆), also denoted Ψ when the context is clear, satisfying

∆z/rΨm ⊂ ΨRe(z)+m, Ψm∆z/r ⊂ ΨRe(z)+m

and which commutes, up to operators of lower order, with the complex powers of ∆1/r, that is ,

for all m ∈ R, z ∈ C

[∆z/r,Ψm] ⊂ ΨRe(z)+m−1
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Moreover, we suppose that for every P ∈ Ψm(∆), the zeta function

ζP(z) = Tr(P∆−z/r)

is holomorphic on the half-plane Re(z) > m + d, and extends to a meromorphic function of the

whole complex plane. We shall denote by

Ψ−∞ =
⋂
m∈R

Ψm

Of course, this is true for the algebra of (classical) pseudodi�erential operators on a closed mani-

fold. We shall recall later what happens in the example of Heisenberg pseudodi�erential calculus

on a foliation, as described by Connes and Moscovici in [4].

We end this part with a notion of asymptotic expansion for abstract pseudodi�erential operators.

This can be seen as "convergence under the residue".

Definition 1.7. Let T and Tα (α in a set A) be operators on Ψ. We shall write

T ∼
∑
α∈A

Tα

if there exists c > 0 and a �nite subset F ⊂ A such that for all �nite set F ′ ⊂ A containing F, the

map

z 7−→ Tr

(
(T −

∑
α∈F′

Tα)∆
z/r

)

is holomorphic in a half-plane Re(z) > −c (which contains z = 0).

Example 1.8. Suppose that that for every M > 0, there exists a �nite subset F ⊂ A such

that

T −
∑
α∈F

Tα ∈ Ψ−M

Then, T ∼
∑
α∈A Tα

In this context, asymptotic means that when taking values under the residue, such in�nite sums,

which have no reason to converge in the operator norm, are in fact �nite sums. Thus, this

will allow us to disregard analytic subtleties and to consider these sums only as formal expansions

without wondering if they converge or not. In other words, this notion allows to adopt an algebraic

viewpoint. To this e�ect, the following lemma is crucial.

Lemma 1.9. (Connes-Moscovici's trick, [4, 7]) Let Q ∈ Ψ(∆) be an abstract pseudodi�eren-

tial operator. Then, for any z ∈ C, we have

(1.1) [∆−z,Q] ∼
∑
k>1

(
−z

k

)
Q(k)∆−z−k

where we denote Q(k) = ad(∆)k(Q), ad(∆) = [∆, . ].

Remark 1.10. The pseudodi�erential order of terms in the sum decreases to −∞, so that the

di�erence between [∆−z,Q] and the sum becomes more and more regularizing as the number of

terms grows.
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Proof. For z ∈ C of positive real part large enough, one proves, using Cauchy formulas and

reasoning by induction, that the following identity holds (cf [7], Lemma 4.20) :

(1.2) ∆−zQ−Q∆−z =

N∑
k=1

(
−z

k

)
Q(k)∆−z−k +

1

2πi

∫
λ−z(λ− ∆)−1Q(N+1)(λ− ∆)−N−1 dλ

By the elliptic estimate, the integral term in the right hand-side has pseudodi�erential order

ordQ+ (N+ 1)r−N− 1− (N+ 2)r = ord(Q) − r−N− 1, which can therefore be made as small

as we want by taking N large. This proves the lemma in the case where Re(z) > 0. The general

case follows from the analytic continuation property. �

1.5. Higher traces on the algebra of abstract pseudodi�erential operators. We give in

this paragraph a simple generalization of the Wodzicki residue trace, when the zeta function of

the algebra D(∆) has poles of arbitrary order. Actually, this was already noticed by Connes and

Moscovici (see [4]).

Proposition 1.11. Let Ψ(∆) an algebra of abstract pseudodi�erential operators, following

the context of the previous paragraphs. Suppose that the associated zeta function has a pole

of order p > 1 in 0. Then, the functional

p∫
−P = Resz=0z

p−1Tr(P∆−z/r)

de�nes a trace on Ψ(∆).

Proof. Let P,Q ∈ Ψ(∆). Then, for Re(z)� 0, we can use the trace property on commutators

to write :

Tr([P,Q]∆−z/r) = Tr(P(Q− ∆−z/rQ∆z/r)∆−z/r)

Hence, using the analytic continuation property, we have

p∫
−[P,Q] = Resz=0z

p−1Tr(P(Q− ∆−z/rQ∆z/r)∆−z/r)

By Lemma 1.9,

∆−z/rQ−Q∆−z/r ∼
∑
k>1

(
−z/r

k

)
Q(k)∆−k · ∆−z/r

so that,

p∫
−[P,Q] = Resz=0

∑
k>1

zp−1Tr

((
−z/r

k

)
Q(k)∆−k · ∆−z/r

)

The sum is �nite : Indeed, the order of Q(k)∆−k is ord(Q) − k, so the terms in the sum above

become holomorphic at z = 0 when k is large enough, and vanish when taking values under the

residue. Finally, the �nite sum remaining vanishes since the zeta function has at most a pole of

order p at 0. �

If 0 6 k < p, then
∫
−
k
is no more a trace in general, but one has an explicit relation expressing

the commutators, cf. [4].

1.6. The example of Connes and Moscovici.
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1.6.1. Heisenberg pseudodi�erential calculus on foliations. Let M be a foliated manifold of

dimension n, and let F be the integrable sub-bundle of the tangent bundle TM ofM which de�nes

the foliation. We denote the dimension of the leaves by p, and by q = n− p their codimension.

For the moment, we work in distinguished local charts. Let (x1, . . . , xn) a distinguished local

coordinate system ofM, i.e, the vector �elds ∂
∂x1

, . . . , ∂
∂xp

(locally) span F, so that ∂
∂xp+1

, . . . , ∂
∂xn

are transverse to the leaves of the foliation. Connes and Moscovici constructed in [4] an algebra

of generalized di�erential operators using Heisenberg calculus, whose main idea is that :

• The vector �elds ∂
∂x1

, . . . , ∂
∂xp

are of order 1.

• The vector �elds ∂
∂xp+1

, . . . , ∂
∂xn

are of order 2.

The Heisenberg pseudodi�erential calculus consists in de�ning a class of smooth symbols σ(x, ξ)

on Rnx × Rnξ which takes this notion of order into account. To this end, they set

|ξ| ′ = (ξ41 + . . .+ ξ4p + ξ
2
p+1 + . . .+ ξ2n)

1/4

〈α〉 = α1 + . . .+ αp + 2αp+1 + . . . 2αn

for every ξ ∈ Rn, α ∈ Nn.

Definition 1.12. A smooth function σ(x, ξ) ∈ C∞(Rnx ×Rnξ ) is a Heisenberg symbol of order
m ∈ R if σ is x-compactly supported, and if for every multi-index α,β, one has the following

estimate

|∂βx∂
α
ξσ(x, ξ)| 6 (1+ |ξ| ′)m−〈α〉

To such a symbol σ of orderm, one associates its left-quantization, which is the following operator

P : C∞(Rn) −→ C∞(Rn), Pf(x) =
1

(2π)n

∫
Rn

eix·ξσ(x, ξ)�f(ξ)dξ

where �f denotes the Fourier transform of f. We shall say that P is a Heisenberg pseudodi�er-

ential operator of order m, and denote the class of such operators by ΨmH (Rn). The Heisenberg
regularizing operators, whose class is denoted by Ψ−∞(Rn), are those of arbitrary order, namely

Ψ−∞(Rn) =
⋂
m∈R

ΨmH (Rn)

The reason why there is no H-subscript is that the Heisenberg regularizing operators are exactly

the regularizing operators of the usual pseudodi�erential calculus, i.e the operators with smooth

Schwartz kernel.

Actually we shall restrict to the smaller class of classical Heisenberg pseudodi�erential opera-

tors. For this, we �rst de�ne the Heisenberg dilations

λ · (ξ1, . . . , ξp, ξp+1, . . . , ξn) = (λξ1, . . . , λξp, λ
2ξp+1, . . . , λ

2ξn)

for any non-zero λ ∈ R and non-zero ξ ∈ Rn.
Then, a Heisenberg pseudodi�erential operator P ∈ ΨmH (Rn) of order m is said classical if its

symbol σ has an asymptotic expansion

(1.3) σ(x, ξ) ∼
∑
j>0

σm−j(x, ξ)

where σm−j(x, ξ) ∈ S
m−j
H (Rn) are Heisenberg homogeneous, that is, for any non-zero λ ∈ R,

σm−j(x, λ · ξ) = λm−jσm−j(x, ξ)
8



The ∼means that for everyM > 0, there exists an integerN such that σ−
∑N
j=0 σm−j ∈ S−MH (Rn).

To avoid an overweight of notations, we shall keep the notation ΨH to refer to classical elements.

Another important point is the behaviour of symbols towards composition of classical pseudo-

di�erential operators. Of course, if P,Q ∈ ΨH(Rn) are Heisenberg pseudodi�erential operators

of symbols σP and σQ, PQ is also a Heisenberg pseudodi�erential operator of order at most

ord(P) + ord(Q), and its the symbol σPQ is given by the following asymptotic expansion called

the star-product of symbols, given by the formula

(1.4) σPQ(x, ξ) = σP ? σQ(x, ξ) ∼
∑
|α|>0

(−i)|α|

α!
∂αξσP(x, ξ)∂

α
xσQ(x, ξ)

Note that the order of each symbol in the sum is decreasing while |α| is increasing.

We de�ne the algebra of Heisenberg formal classical symbols SH(Rn) as the quotient

SH(Rn) = ΨH(Rn)/Ψ−∞(Rn)

Its elements are formal sums given in (1.3), and the product is the star product (1.4). Note that

the ∼ can be replaced by equalities when working at a formal level.

We now deal with ellipticity in this context. A Heisenberg pseudodi�erential operator is said

Heisenberg elliptic if it is invertible in the unitalization SH(Rn)+ of SH(Rn) . One can show

that this is actually equivalent to say that its Heisenberg principal symbol, i.e the symbol of

higher degree in the expansion (1.3) is invertible on Rnx × Rnξ r {0}. An adaptation of arguments

from classical elliptic regularity shows that the elliptic estimate holds in this case. A remarkable

speci�city of these operators is that they are hypoelliptic, but not elliptic in general. Nevertheless,

they remain Fredholm operators between Sobolev spaces relative to this context. The interested

reader should consult [1] for details.

Example 1.13. The following operator, also called sub-elliptic sub-laplacian,

∆H = ∂4x1 + . . .+ ∂4xp − (∂2xp+1
+ . . .+ ∂2xn)

has Heisenberg principal symbol σ(x, ξ) = |ξ| ′4, and is therefore Heisenberg elliptic. However, its

usual principal symbol, as an ordinary di�erential operator, is (x, ξ) 7→ ∑p
i=1 ξ

4
i , so ∆H is clearly

not elliptic.

Finally, Heisenberg pseudodi�erential operators behave well towards distinguished charts change.

Therefore, Heisenberg pseudodi�erential calculus can be de�ned globally on foliations by using a

partition of unity. Then, for a foliated manifoldM, we denote by ΨmH (M) the algebra of Heisenberg

pseudodi�erential operators on M.

It is not very di�cult to verify the required assumptions of De�nition 1.6. However, what concerns

the zeta function is not obvious.

1.6.2. Residue Trace on Foliations. We now recall these results, proved by Connes and Moscovici

in [4].

Theorem 1.14. (Connes-Moscovici, [4]) Let M be a foliated manifold of dimension n, p

be the dimensions of the leaves, and P ∈ Ψm(M) be a Heisenberg pseudodi�erential operator

of order m ∈ R. Let ∆ the sub-elliptic sub-laplacian de�ned in Example 1.13, that we extend

globally to M by using a partition of unity. Then, the zeta function

ζP(z) = Tr(P∆−z/4)
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is holomorphic on the half-plane Re(z) > m+p+2q, and extends to a meromorphic function

of the whole complex plane, with at most simple poles in the set

{m+ p+ 2q,m+ p+ 2q− 1, . . .}

Remark 1.15. The analytic dimension of the algebra of Heisenberg di�erential operators is

then p + 2q. Note that we thus recover the dimension of the leaves of the foliation, ant that the

"2" is the degree of the transverse vector �elds.

The meromorphic extension of the zeta function given by this theorem allows the construction of

a Wodzicki-Guillemin trace on SH(M) = ΨH(M)/Ψ−∞(M).

Theorem 1.16. (Connes-Moscovici, [4]) The Wodzicki residue functional∫
− : SH(M) −→ C, P 7−→ Resz=0Tr(P∆

−z/4)

is a trace. It is the unique trace on SH(M), up to a multiplicative constant. Moreover, for

P ∈ ΨH(M), we have the following formula, only depending on the symbol σ of P.

(1.5)

∫
−P =

1

(2π)n

∫
S∗HM

ιL

(
σ−(p+2q)(x, ξ)

ωn

n!

)
Here, S∗HM is the Heisenberg cosphere bundle, that is, the sub-bundle

S∗HM = {(x, ξ) ∈ T∗M ; |ξ| ′ = 1}

L is the generator of the Heisenberg dilations, ι stands for the interior product and ω denotes the

standard symplectic form on T∗M.

Remark 1.17. All these results still holds for Heisenberg pseudodi�erential operators acting

on sections of a vector bundle E overM : In this case, the symbol σ−(p+2q)(x, ξ) above is at each

point (x, ξ) an endomorphism acting on the �bre Ex, and (1.5) becomes :∫
−P =

1

(2π)n

∫
S∗HM

ιL

(
tr(σ−(p+2q)(x, ξ))

ωn

n!

)
where tr denotes the trace of endomorphisms.

2. The Radul cocycle for abstract pseudodifferential operators

2.1. Extensions and index theorems. We begin with another abstract setting. Let A be an

associative algebra over C, possibly without unit, and I an ideal in A. The extension

0 −→ I −→ A −→ A/I −→ 0

gives rise to the following diagram, relating the index map in algebraic K-theory and excision in

periodic cyclic homology

(2.1) Kalg
1 (A/I)

Ind //

ch1

��

Kalg
0 (I)

ch0

��
HP1(A/I)

∂ // HP0(I)

The vertical arrows are respectively the odd and even Chern character. Nistor shows in [8] that

this diagram is commutative. Then, if we denote again ∂ : HP0(I) → HP1(A/I) the excision map

in cohomology, the following equality holds,

(2.2) 〈[τ], ch0 Ind[u]〉 = 〈∂[τ], ch1[u]〉
10



for every [τ] ∈ HP0(I) and every [u] ∈ K1(A/I). One should have in mind that the left hand-side

is an "analytic index", and think about the right hand-side as a "topological index".

Let us recall the construction of a boundary map ∂ in cohomology in a useful particular case,

drawn from [8]. Let [τ] ∈ HP0(I) be given by a hypertrace τ : I → C, i.e a linear map satisfying

the condition τ([A, I]) = 0, then let us recall how to compute ∂[τ] ∈ HP1(A/I). To begin, choose

a lift τ̃ : A → C of τ, such that τ̃ is linear (in general, this is not a trace), and a linear section

σ : A/I→ A such that σ(1) = 1, after adjoining a unit where we have to. Then, ∂[τ] is represented

by the following cyclic cocycle :

c(a0,a1) = bτ̃(σ(a0),σ(a1)) = τ̃([σ(a0),σ(a1)])

where b is the Hochschild coboundary recalled in Section 3.1.

2.2. The generalized Radul cocycle. We can �nally come to the main theorem of this section.

Let D(∆) be an algebra of abstract di�erential operators and Ψ = Ψ(∆) be an algebra of abstract

pseudodi�erential operators. We consider the extension

0 −→ Ψ−∞ −→ Ψ −→ S −→ 0

where S is the quotient Ψ/Ψ−∞. The operator trace on Ψ−∞ is well de�ned, hence it de�nes a

periodic cyclic cohomology class [Tr] ∈ HP0(Ψ−∞). It also satis�es Tr([Ψ−∞,Ψ]) = 0. In addition,

let ∂ : HP0(Ψ−∞) → HP1(S) denote the excision map in periodic cyclic cohomology associated to

the above extension.

Theorem 2.1. Suppose that the pole at zero of the zeta function is of order p > 1. Then,
the class ∂[Tr] ∈ HP1(S) is represented by the following cyclic 1-cocycle :

c(a0,a1) =

1∫
−a0δ(a1) −

1

2!

2∫
−a0δ

2(a1) + . . .+
(−1)p−1

p!

p∫
−a0δ

p(a1)

where δ(a) = [log∆1/r,a] and δk(a) = δk−1(δ(a)) is de�ned by induction. We shall call this

cocycle the (generalized) Radul cocycle.

Here, the commutator [log∆1/r,a] is de�ned as the non-convergent asymptotic expansion

(2.3) [log∆1/r,a] ∼
1

r

∑
k>1

(−1)k−1

k
a(k)∆−k

where a(k) has the same meaning as in Lemma 1.9. This expansion arises by �rst using functional

calculus :

log∆1/r =
1

2πi

∫
log λ1/r(λ− ∆)−1 dλ

and then, reproducing the same calculations made in the proof of Lemma 1.9 to obtain the formula

(cf. [7] for details). In particular, note that log∆1/r = 1
r
log∆.

Another equivalent expansion possible, that we will also use, is the following

(2.4) [log∆1/r,a] ∼
∑
k>1

(−1)k−1

k
a[k]∆−k/r

where a[1] = [∆1/r,a], and a[k+1] = [∆1/r,a[k]].

Before proving the result, let us give a heuristic explanation of how to get this formula. We �rst

lift the trace on Ψ−∞ to a linear map τ̃ on Ψ using a zeta function regularization by "Partie Finie",

τ̃(P) = Pfz=0Tr(P∆
−z/r)
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for any P ∈ Ψ. The "Partie Finie" Pf is de�ned as the constant term in the Laurent expansion of

a meromorphic function. Let Q ∈ Ψ be another pseudodi�erential operator. Then, we have

Pfz=0Tr([P,Q]∆−z/r) = Resz=0Tr

(
P · Q− ∆−z/rQ∆z/r

z
∆−z/r

)
by reasoning �rst for z ∈ C of su�ciently large real part to use the trace property, and then

applying the analytic continuation property. Then, informally we can think of the complex

powers of ∆ as

∆z/r = elog∆·z/r = 1+
z

r
log∆+ . . .+

1

p!

(z
r

)p
(log∆)p +O(zp+1)

which after some calculations, gives the expansion

(Q− ∆−z/rQ∆z/r)∆−z/r = zδ(Q) −
z2

2
δ2(Q) + . . .+ (−1)p−1

zp

p!
δp(Q) +O(zp+1)

Proof. Let P,Q ∈ Ψ be two abstract pseudodi�erential operators. The beginning of the

proof is the same as the heuristic argument given above, so we start from the equality

Pfz=0Tr([P,Q]∆−z/r) = Resz=0Tr

(
P · Q− ∆−z/rQ∆z/r

z
∆−z/r

)

= Resz=0Tr

P · 1
z

∑
k>1

(
−z/r

k

)
Q(k)∆−k · ∆−z/r


The second equality comes from Lemma 1.9.

Then, let X be an indeterminate. As power series over the complex numbers with indeterminate

X, we remark that for any z ∈ C, one has
1

z

∑
k>1

(
−z/r

k

)
Xk =

1

z
((1+ X)−z/r − 1)

On the other hand, we have, for q ∈ N,

ad(log∆1/r)q(Q) =
1

rq

[
log∆, [..., [log∆,Q]]

]
∼
1

rq

∑
k>q

∑
k1+...+kq=k

(−1)k−q

k1 . . . kq
Q(k)∆−k

Using once more the indeterminate X, one has

∑
k>q

∑
k1+...+kq=k

(−1)k−q

k1 . . . kq
Xk =

∑
l>1

(−1)l−1Xl

l

q
= log(1+ X)q

thus obtaining∑
q>1

(−1)q−1

q!

zq−1

rq
log(1+ X)q =

1

z
((1+ X)−z/r − 1)

This proves that the coe�cients of Q(k)∆−k in the sums

1

z

∑
k>1

(
−z

k

)
Q(k)∆−k,

∑
q>1

(−1)q−1

q!

zq−1

rq

∑
k>q

∑
k1+...+kq=k

(−1)k−q

k1 . . . kq
Q(k)∆−k


are the same, hence the result follows. �

Applying the pairing (2.2), we have an index formula.
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Example 2.2. Let M be a closed foliated manifold with integrable sub-bundle F ∈ TM, ∆

the sub-elliptic sub-laplacian of Example 1.13 sand take Ψ(∆) = ΨH(M) the algebra of (classical)

Heisenberg pseudodi�erential operators onM, Ψ−∞(∆) = Ψ−∞(M) the ideal of regularizing oper-

ators. The quotient Ψ/Ψ−∞ is the algebra SH(M) of classical Heisenberg formal symbols. A trace

on Ψ−∞(M) is given by

(2.5) τ(K) = Tr(K) =

∫
M

k(x, x)dvol(x)

where k is the Schwartz kernel of K. Then, using the residue de�ned in Theorem 1.16 and applying

Theorem 2.1, ∂[τ] is represented by the following cyclic 1-cocycle on SH(M) :

(2.6) c(a0,a1) =

∫
−a0[log |ξ|

′,a1]

With a slight abuse of notation, we put the symbol log |ξ| ′ instead of the operator log∆1/4. We

emphasize that the product of symbols is the star-product de�ned in (1.4), but we omit the

notation ?.

Remark that log |ξ| ′ is a log-polyhomogeneous (Heisenberg) symbol and is not classical, but from

(2.4), it is clear that its commutator with any element of SH(M) is. Note also that the cocycle is

de�ned on the symbols rather that on the operators, but this does not matter since the Connes-

Moscovici residue kills the smoothing contributions. In particular, only a �nite number of terms

of the star-product are involved.

From this cocycle, we then get an index formula for Heisenberg elliptic pseudodi�erential opera-

tors. Indeed, if P is such an operator of formal symbol u ∈ SH(M), and Q a parametrix of P in

the Heisenberg calculus of formal symbol u−1 ∈ SH(M), then, the Fredholm index of P is given

by

Ind(P) = c(u−1,u)

As the Radul cocycle is given by a Wodzicki residue, it is local in the sense of Connes-Moscovici.

However, it seems to be an unattainable task to get a topological index formula in terms of the

principal symbol since by (1.5), we have to compute the symbol of order−(p+2q) of u−1[log |ξ| ′,u].

At �rst sight, many terms of the formal expansions of u and u−1, as well as many of their higher

derivatives, seem to be involved. We shall see in next section a way to overcome this di�culty.

3. A computation of the Radul cocycle

This section is devoted to show how one may recover interesting index formulas from the Radul

cocycle, working on the simplest foliation possible. For all this section, even if it is not explicitly

mentioned, we consider Rn as a trivial foliation Rp × Rq, where 0 6 p 6 n and q = n − p, and

consider the associated classical Heisenberg pseudodi�erential operators Ψ0H(Rn) of order 0.

Our goal is to show that the Radul cocycle (2.6) on S0H(Rn) is cohomologous in HP1(SH(Rn))
to simple inhomogeneous (B,b)-cocycles of higher degree, making the computation of the index

problem easier. We shall always use coordinates adapted to the foliation Rp × Rq.

We shall give two constructions but before, we brie�y recall how to de�ne the (B,b)-bicomplex.

3.1. The (B,b)-bicomplex. LetA be an associative algebra over C. For k > 0, denote by CCk(A)
the space of (k + 1)-linear forms on the unitalization A+ of A such that φ(a0, . . . ,ak) = 0 when

ai = 1 for some i > 1. Then, de�ne the di�erentials

B : CCk+1(A) −→ CCk(A), b : CCk(A) −→ CCk+1(A)
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by the formulas

Bφ(a0, . . . ,ak) =

k∑
i=0

(−1)ikφ(1,ai, . . . ,ak,a0, . . . ,ai−1)

bφ(a0, . . . ,ak+1) =

k∑
i=0

(−1)iφ(a0, . . . ,ai−1,aiai+1,ai+2, . . . ,ak+1)

+ (−1)k+1φ(ak+1a0, . . . ,ak)

that is, B2 = b2 = 0. Moreover, B and b anticommute, which allows to de�ne the (B,b)-bicomplex

...
...

...

. . .
B // CC2(A)

B //

b

OO

CC1(A)
B //

b

OO

CC0(A)

b

OO

. . .
B // CC1(A)

B //

b

OO

CC0(A)

b

OO

. . .
B // CC0(A)

b

OO

Then, the periodic cyclic cohomology HP•(A) is the cohomology of the total complex. More

precisely, it is the cohomology of the 2-periodic complex

. . .
B+b // CCeven(A)

B+b // CCodd(A)
B+b // CCeven(A)

B+b // . . .

where

CCeven(A) = CC0(A)⊕ CC2(A)⊕ . . .

CCodd(A) = CC1(A)⊕ CC3(A)⊕ . . .

Hence, there are only an even and an odd periodic cyclic cohomology groups, respectively denoted

HP0(A) and HP1(A).

Remark 3.1. Sometimes, authors consider the total di�erential B− b instead of B+ b.

3.2. General context. Recall from Section 1.5 that the residue trace of a Heisenberg pseudodif-

ferential operator P ∈ ΨH(Rn) of symbol σ is given by

(3.1)

∫
−P =

1

(2π)n

∫
S∗HRn

ιL

(
σ−(p+2q)(x, ξ)

ωn

n!

)
where σ−(p+2q) is the Heisenberg homogeneous term of order −(p + 2q) in the asymptotic ex-

pansion of σ, ω =
∑
i dxidξi is the standard symplectic form on T∗Rn = Rnx × Rnξ , and L is the

generator of the Heisenberg dilations, given by the formula

L =

p∑
i=1

ξi∂ξi
+ 2

n∑
i=p+1

ξi∂ξi

Note that in this example, the sub-elliptic sub-laplacian does not have a compact resolvent since

we work on Rn. However, the results in Section 1.6.2 on the Wodzicki residue still holds because

we consider pseudodi�erential operators which have compact support.
14



We �rst extend the trace on Ψ−∞(Rn) given in (2.5) to a graded trace on the graded algebra

Ψ−∞(Rn)⊗Λ•T∗Rn, using a Berezin integral :

Tr(K⊗ α) = α[2n]Tr(K)

where K ∈ Ψ−∞(Rn), and α[2n] is the coe�cient of the form dx1 . . .dxndξ1 . . .dξn in α (the

wedges are dropped to simplify notations). Here, we emphasize once more that T∗Rn is seen as

the vector space Rnx × Rnξ . Therefore Λ•T∗Rn stands for the exterior algebra of the vector space

T∗Rn = Rnx × Rnξ , and not for the vector bundle of exterior powers of the cotangent bundle, as

usual.

Moreover, the Wodzicki residue trace on ΨH(Rn) is given by a zeta function regularization of this

trace. Therefore, the latter procedure also extends the Wodzicki residue trace to a graded trace on

the graded algebra ΨH(Rn)⊗Λ•T∗Rn. The latter descends to a graded trace on SH(Rn)⊗Λ•T∗Rn.
The composition law of pseudodi�erential operators, or the star-product of symbols for the latter,

are extended to these algebras just by imposing that they commute to elements of the exterior

algebra.

Remark also that the following commutation relations hold

[xi, ξj] = iδi,j, [xi, xj] = [ξi, ξj] = 0

where we denote i =
√
−1. In short, ad(xi) and ad(ξi) are respectively the di�erentiation of

symbols with respect to the variables ξi and xi.

Finally, let F be the multiplier on SH(Rn)⊗Λ•T∗Rn de�ned by

F =
∑
i

(xidξi + ξidxi)

As the two following lemmas might indicate, this operator will play a role rather similar to

operators usually denoted by F when dealing with �nitely summable Fredholm modules. The

di�erence is that this F here is not the main object of study, and acts more as an intermediate

towards the main result.

Lemma 3.2. F2 is equal to iω, where ω is the standard symplectic form on T∗Rn. In

particular, F2 commutes to every element in SH(Rn)⊗Λ•T∗Rn.

Lemma 3.3. For every symbol a ∈ SH(Rn), one has

[F,a] = ida = i
∑
i

(
∂a

∂xi
dxi +

∂a

∂ξi
dξi

)
The proof of both lemmas follows from a simple computation, just using the commutation relations

mentioned above. Another important property of the multiplier F, easy to verify, is the following

Lemma 3.4. For every a ∈ SH(Rn)⊗Λ•T∗Rn, we have∫
−[F,a] = 0

3.3. Construction by excision. The previous lemma shows that it may be relevant to con-

sider the following cyclic cocycles on Ψ−∞(Rn), inspired of Connes' cyclic cocycles associated to

Fredholm modules (see [2] or [3]).

(3.2) φ2k(a0, ...,a2k) =
k!

ik(2k)!
Tr

(
a0[F,a1] . . . [F,a2k]⊗

ωn−k

n!

)
for 0 6 k 6 n. Therefore, we obtain the following result, very similar to that of Connes.
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Proposition 3.5. The periodic cyclic cohomology classes of the cyclic cocycles φ2k are

independant of k.

Proof. Set

(3.3) γ2k+1(a0, . . . ,a2k+1) =
(k+ 1)!

ik+1(2k+ 2)!
Tr

(
a0F[F,a1] . . . [F,a2k+1]⊗

ωn−k

n!

)
It is then a straightforward calculation to verify that (B+ b)γ2k+1 = φ2k − φ2k+2, which shows

the result. �

At this stage, we are not very far from being done. To obtain the desired cyclic cocycles on the

algebra S0HRn ⊗ Λ•T∗Rn from those previously constructed, it su�ces to push the latter using

excision in periodic cyclic cohomology. Indeed, as we have the pseudodi�erential extension

0 −→ Ψ−∞(Rn) −→ Ψ0H(Rn) −→ S0HRn −→ 0

we look at the image of the (B,b)-cocycles φ2k under the boundary map

∂ : HP0(Ψ−∞(Rn)) −→ HP1(S0HRn)

Thanks to this, the cocycles (3.2) involving the operator trace, which are highly non local, will be

avoided and transferred to cocycles involving the Wodzicki residue.

To compute the image of the cocycles (3.2) under the excision map ∂, a slight re�nement of the

techniques sketched in Sections 2.1 and 2.2 is required. We �rst lift the cocycles φ2k on Ψ
−∞(Rn)

to cyclic cochains φ̃2k ∈ CC•(Ψ0H(Rn)) using a zeta function regularization,

φ̃2k(a0, ...,a2k)

=
k!

ik(2k)!

1

2k+ 1

2k∑
i=0

Pfz=0Tr

(
a0[F,a1] . . . [F,ai]∆

−z/4[F,ai+1] . . . [F,a2k]⊗
ωn−k

n!

)
For k = 0, we already know that ∂[φ0] is represented by the Radul cocycle

c(a0,a1) =

∫
−a0δa1

where δa1 = [log |ξ| ′,a1].

Now, let k ∈ N. Then, the usual construction of the boundary map in cohomology associated to

an extension gives that ∂[φ2k] is represented by the inhomogeneous (B,b)-cocycle

(B+ b)φ̃2k = ψ2k−1 + φ2k+1 ∈ CC2k−1(Ψ0H(Rn))⊕ CC2k+1(Ψ0H(Rn))

where ψ2k−1 = Bφ̃2k and φ2k+1 = bφ̃2k are given by

(3.4) ψ2k−1(a0, . . . ,a2k−1)

=
k!

ik(2k)!

2k−1∑
i=0

(−1)i+1
∫
−

(
a0[F,a1] . . . [F,ai]δF[F,ai+1] . . . [F,a2k−1]⊗

ωn−k

n!

)

(3.5) φ2k+1(a0, . . . ,a2k+1)

=
k!

ik(2k+ 1)!

2k+1∑
i=1

(−1)i−1
∫
−

(
a0[F,a1] . . . [F,ai−1]δai[F,ai+1] . . . [F,a2k+1]⊗

ωn−k

n!

)
where we de�ne ψ−1 as zero. φ1 is precisely the Radul cocycle. For the clarity of the exposition,

the calculations will be detailed later in Appendix A. Then, we have :
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Proposition 3.6. The Radul cocycle c is cohomologous in the (B,b)-complex, to the

(B,b)-cocycles (ψ2k−1,φ2k+1), for all 1 6 k 6 n.

Indeed, usual properties of boundary maps in cohomology automatically ensures this result. As

a matter of fact, one can be more precise and give explicitly the transgression cochains allowing

to pass from one cocycle to another. For this, we lift the transgression cochain γ given in (3.3) to

the (B,b)-cochain γ̃ ∈ CC•(ΨH(Rn)), using the same trick as before :

γ̃2k+1 =
(k+ 1)!

ik+1(2k+ 2)!

1

2k+ 3

[
Pfz=0Tr

(
a0∆

−z/4F[F,a1] . . . [F,a2k+1]⊗
ωn−k−1

n!

)

+

2k+1∑
i=0

Pfz=0Tr(a0F[F,a1] . . . [F,ai]∆
−z/4[F,ai+1] . . . [F,a2k+1]⊗

ωn−k−1

n!

)]
and the term i = 0 of the sum means Pfz=0Tr(a0F∆

−z[F,a1] . . . , [F,a2k+1]⊗ ω
n−k−1

n! ) in the right

hand-side.

Proposition 3.7. The inhomogeneous (B,b)-cochains

φ̃2k − φ̃2k+2 − (B+ b)γ̃2k+1 = γ2k − γ
′
2k+2 ∈ CC2k(Ψ0H(Rn))⊕ CC2k+2(Ψ0H(Rn))

for 0 6 k 6 n, viewed as cochains on SH(Rn), are transgression cochains between (ψ2k−1,φ2k+1)

and (ψ2k+1,φ2k+3), that is,

(ψ2k−1 + φ2k+1) − (ψ2k+1 + φ2k+3) = (B+ b)(γ2k − γ
′
2k+2)

Moreover, one has

(3.6) γ2k(a0, . . . ,a2k)

=
k!

2ik+1(2k+ 1)!

2k∑
i=0

(−1)i
∫
−

(
a0F[F,a1] . . . [F,ai]δF[F,ai+1] . . . [F,a2k+1]⊗

ωn−k−1

n!

)

(3.7) γ ′2k(a0, . . . ,a2k) =

∫
−

(
a0δa1[F,a2] . . . [F,a2k]⊗

ωn−k

n!

)
+

k!

ik(2k+ 1)!

2k∑
i=1

(−1)i−1
∫
−

(
a0F[F,a1] . . . [F,ai−1]δai[F,ai+1] . . . [F,a2k]⊗

ωn−k

n!

)

That φ̃2k − φ̃2k+2 − (B + b)γ̃2k+1 gives a transgression cochain comes once again from the con-

struction of a boundary map in cohomology associated to a short exact sequence. Once more, the

calculations leading to these formulas are given in Appendix A.

3.4. Construction with Quillen's Algebra Cochains. The interest about Quillen's theory of

cochains here is that the (B,b)-cocycles we want to get are obtained purely algebraically, since

we do not need to pass �rst through (B,b)-cocycles on the algebra of regularizing operators. For

the convenience of the reader, we brie�y recall this formalism, and let him report to the original

paper [10] or the Appendix B for more details.

3.4.1. Preliminaries. Let A an associative algebra over C with unit. The bar construction B of

A is the di�erential graded coalgebra B =
⊕
n>0 Bn, with Bn = A⊗n for n > 0 with coproduct

∆ : B→ B⊗ B

∆(a1, . . . ,an) =

n∑
i=0

(a1, . . . ,ai)⊗ (ai+1, . . . ,an)
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The counit map η is the projection onto A⊗0 = C, and the di�erential is b ′ :

b ′(a1, . . . ,an+1) =

n∑
i=1

(−1)i−1(a1, . . . ,aiai+1, . . . ,an+1)

which is de�ned as the zero-map on B0 and B1. These operations confer a structure of di�erential

graded coalgebra to B.

A bar cochain of degree n on A is a n-linear map over A with values in an algebra L. These

cochains form a complex denoted Hom(B,L), whose di�erential is given by

δbarf = (−1)n+1fb ′

for f ∈ Homn(B,L). Moreover, one has a product on Hom(B,L) : If f and g are respectively

cochains of degrees p and q, it is given by

fg(a1, . . . ,ap+q) = (−1)pqf(a1, . . . ,ap)g(ap+1, . . . ,ap+q)

Therefore, Hom(B,L) has a structure of di�erential graded algebra.

We next de�ne ΩB and ΩB,\ to be the following bicomodules over B :

ΩB = B⊗A⊗ B, ΩB,\ = A⊗ B

Here, the \ in exponent means that ΩB,\ is the cocommutator subspace of ΩB. Thanks to this,

one can show that the di�erential δbar induced on ΩB,\ is in fact the Hochschild boundary, and

deduce that the complex (Hom(ΩB,\,C),b) is isomorphic to the Hochschild complex (CC•(A),b)

of A, with degrees shifted by one.

We recall Quillen's terminology. Let L be a di�erential graded algebra. Elements of Hom(ΩB,L)

will be called Ω-cochains, and those in Hom(ΩB,\,L) as Hochschild cochains. Recall also that

the bar cochains are the elements of Hom(B,L).

Remark 3.8. A cochain f of this kind has three degrees : a A-degree as a multilinear map

over A, a L degree and a total degree f, which is sum. This is the one which will be considered.

The map \ : ΩB,\ → ΩB, de�ned by the formula

\(a1 ⊗ (a2, . . . ,an)) =

n∑
i=1

(−1)i(n−1)(ai+1, . . . ,an)⊗ a1 ⊗ (a2, . . . ,ai)

induces a map from Hochschild cochains to bar cochains. If we have a (graded) trace τ : L −→ C,
we then obtain a morphism of complexes

τ\ : Hom(ΩB,L) −→ Hom(ΩB,\,C)
f 7−→ τ\(f) = τf\

3.4.2. Return to the initial problem. We can now return to our context. Let A be the algebra

S0H(Rn) of Heisenberg formal symbols on Rn = Rp × Rq, and B the bar construction of A. Also,

let L be the graded algebra S0H(Rn)⊗Λ•T∗Rn. The product on these algebras is the star-product

of symbols, twisted with the product on the exterior algebra. The injection

ρ : A −→ L

is a homomorphism of algebras. As a consequence, ρ should be viewed as a 1-cochain of "curvature"

zero, i.e δbarρ + ρ
2 = 0. We introduce a formal parameter ε of odd degree such that ε2 = 0, and

shall actually work in the extended algebra

Hom(B,L)[ε] = Hom(B,L) + εHom(B,L)
18



The role of that ε is to kill the powers of log |ξ| ′ which are not classical symbols, and to keep only

its commutator with other symbols.

Now, denote ∇ = F + ε log |ξ| ′, and ∇2 = F2 + ε[log |ξ| ′, F] the square of ∇, and introduce the

"connection" ∇ + δbar + ρ. The fact that this operator does not belong to the algebra above is

not a problem, since we shall only have interest in its "curvature", which is well de�ned,

K = ∇2 + [∇, ρ] = F2 + ε[log |ξ| ′, F] + [F+ ε log |ξ| ′, ρ]

and its action on Hom(B,L)[ε] with commutators. Here, we emphasize that the commutators

involved are in fact graded commutators. Let τ be the graded trace on Hom(B,L)[ε] ⊗ Λ•T∗Rn
given by

τ(x+ εy) =

∫
−y

It turns out that the cocycles (3.4) and (3.5) constructed using excision in the previous section

are obtained by considering the even cochain

θ = τ(∂ρ · eK) ∈ Hom(ΩB,\,C)

where ∂f · g is de�ned, for f,g ∈ Hom(ΩB,L) of respective degrees 1 and n − 1, by the following

formula :

(∂f · g)\(a1 ⊗ (a2, . . . ,an)) = (−1)|g|f(a1)g(a2, . . . ,an)

The calculation of θ becomes easier if one remarks that

eK = eF
2 · e[F,ρ]+ε[log |ξ|′,F+ρ]

as F2 = iω is central in L. Then, this easily provides that θ =
∑
k(θ
′
2k + θ

′′
2k), where

(3.8) θ ′2k =
in−k+1

(2k− 1)!

2k−1∑
i=1

∫
−

(
∂ρ · [F, ρ]i−1δρ[F, ρ]2k−1−i ⊗ ωn−k+1

(n− k+ 1)!

)

(3.9) θ ′′2k =
in−k

(2k)!

2k−1∑
i=0

∫
−

(
∂ρ · [F, ρ]iδF[F, ρ]2k−1−i ⊗ ωn−k

(n− k)!

)
Evaluating on elements of A, this gives :

(3.10) θ ′2k(a0, . . . ,a2k−1)

=
in−k+1

(2k− 1)!

2k−1∑
i=1

(−1)i
∫
−

(
a0[F,a1] . . . [F,ai−1]δai[F,ai+1] . . . [F,a2k−1]⊗

ωn−k+1

(n− k+ 1)!

)

(3.11) θ ′′2k(a0, . . . ,a2k−1)

=
in−k

(2k)!

2k−1∑
i=0

(−1)i+1
∫
−

(
a0[F,a1] . . . [F,ai]δF[F,ai+1] . . . [F,a2k−1]⊗

ωn−k

(n− k)!

)
The signs above not appearing in the cochains (3.8) and (3.9) occur since the ai, δρ and δF are

odd.

As announced earlier, we observe that θ ′2k and θ
′′
2k are up to a certain constant term the cochains

φ2k−1 and ψ2k−1 obtained in (3.4) and (3.5). The di�erence in signs is due to Quillen's formalism,

which considers the total di�erential B − b, see Remark B.4. Unfortunately, each component of

θ2k = θ ′2k+ θ
′′
2k of θ is not a (B,b)-cocycle, but taking the entire cochain θ into account, this is.

To prove this, it only su�ces to check that all the things we de�ned have the good algebraic

properties to �t into Quillen' proof. This is the content of the following lemma, which is actually

a "Bianchi identity" with respect to the "connection" ∇+ δbar + ρ.
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Lemma 3.9. (Bianchi identity.) We have (δbar + adρ + ad∇)K = (δbar + adρ + ad∇)eK = 0,

where ad denotes the (graded) adjoint action.

Remark 3.10. The thing which guarantees this identity is that [∇,∇] = 0. Then, the proof is
the same as that given in the paper of Quillen, [10], Section 7. Thanks to this lemma, we directly

know that (B−b)θ = 0, by adapting the arguments of [10], Sections 7 and 8. For the convenience

of the reader, we recalled these arguments in Appendix B. This result can be re�ned, and we get

the same results as those obtained using excision.

Theorem 3.11. The inhomogeneous Hochschild cochains

θ ′′2k − θ
′
2k+2 ∈ Hom2k(ΩB,\,C)⊕ Hom2k+2(ΩB,\,C)

for 0 6 k 6 n, de�ne a (B,b)-cocycle.

Proof. Introduce a parameter t ∈ R, and consider the following family of curvatures (Kt) :

Kt = ∇2,t + [tF+ ε log |ξ| ′, ρ]

where ∇2,t = F2 + ε[log |ξ| ′, tF]. Because the identity [∇,∇2,t] still holds, we have a Bianchi

identity

(δbar + adρ+ ad∇)Kt = 0

Thus, the Hochschild cochain

θt = τ\(∂ρ · eKt) ∈ Hom(ΩB,\,C)[t]

satis�es the relation (B− b)θt = 0 for every t ∈ R, where we denote by R[t] the polynomials with

coe�cients in an algebra R. Therefore, this relation also holds for every k, for the coe�cient of

tk. This coe�cient is the cochain θ ′′2k + θ
′
2k+2, thus, θ

′′
2k − θ

′
2k+2 de�nes a (B,b)-cocycle. �

Denote by Ω = [F, ρ]+ε[log |ξ| ′, ρ+F]. The cochains which cobounds these cocycles (up to modify

each of them by a constant term depending on their degrees) may be obtained rather easily by

using suitable linear combinations of pairs of bar cochains (µ2j,µ2j+1), where µ is given by :

µk = τ

(
∂ρ · e

F2

k!

k∑
i=0

ΩiFΩk−i

)
Doing this gives transgression formulas in the spirit of those obtained in Proposition 3.7.

3.5. Index theorem. From Proposition 3.6, we know that the Radul cocycle on S0H(Rn)

c(a0,a1) =

∫
−a0δa1

where δa1 = [log |ξ| ′,a1], is cohomologous to the inhomogeneous (B,b)-cocycle

ψ2n−1 + φ2n+1 ∈ CC2n−1(S0H(Rn))⊕ CC2n+1(S0H(Rn))

with,

ψ2n−1(a0, . . . ,a2n−1) =
1

in(2n)!

2n−1∑
i=0

(−1)i+1
∫
−a0[F,a1] . . . [F,ai]δF[F,ai+1] . . . [F,a2n−1]

φ2n+1(a0, . . . ,a2n+1) =

1

in(2n+ 1)!

2n+1∑
i=1

(−1)i−1
∫
−a0[F,a1] . . . [F,ai−1]δai[F,ai+1] . . . [F,a2n+1]
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We shall now compute ψ2n−1+φ2n+1 to obtain an index theorem. To begin, we �rst notice that

by Lemma 3.3, we may rewrite the cocycles above as

(3.12) ψ2n−1(a0, . . . ,a2n−1) =
i2n−1

in(2n)!

2n−1∑
i=0

(−1)i+1
∫
−a0da1 . . .daiδFdai+1 . . .da2n−1

(3.13) φ2n+1(a0, . . . ,a2n+1) =
i2n−1

in(2n+ 1)!

2n+1∑
i=1

(−1)i−1
∫
−a0da1 . . .dai−1δaidai+1 . . .da2n+1

The construction of the Wodzicki residue to Λ•T∗Rn-valued symbols in the Paragraph 3.2 imposes

that the
∫
− selects only the coe�cient associated to the volume form dx1 . . .dxndξ1 . . .dξn. In

(3.13), this coe�cient must be a sum of terms of the form ∂b1

∂x1
. . . ∂bn

∂xn

∂bn+1

∂ξ1
. . . ∂b2n

∂ξn
for some

Heisenberg symbols b1, . . . ,b2n of order 0. Such terms have Heisenberg pseudodi�erential order

−(p+ 2q).

However, in (3.13), there is in each sum an additional factor of the form δai, which is a symbol

of degree −1. Hence, the symbols appearing in the formula are at most of Heisenberg order

−(p+ 2q+ 1), and vanishes because of (3.1).

The formula for the cocycle (3.12) also reduces to a more simple one, but which is in general

non-zero. A simple computation gives that

δF = i

 p∑
i=1

ξ3idξi

|ξ| ′4
+
1

2

n∑
i=p+1

ξidξi

|ξ| ′4


Then, we proceed as we did to obtain the formula (3.13). The coe�cient on dx1 . . .dxndξ1 . . .dξn
of the symbols in (3.12) must be of the form

(i) ∂b1

∂x1
. . . ∂bn

∂xn

∂bn+1

∂ξ1
. . .

ξ3
i

|ξ|′4
. . . ∂b2n

∂ξn
if 1 6 i 6 p,

(ii) ∂b1

∂x1
. . . ∂bn

∂xn

∂bn+1

∂ξ1
. . . ξi

|ξ|′4
. . . ∂b2n

∂ξn
if p+ 1 6 i 6 n

where in each point, the term depending on |ξ| ′4 replaces the term ∂bn+i

∂ξi
. In all case, these terms

are of order −(p+ 2q). Thus, if we denote the Heisenberg principal symbol by

σ : S0H(Rn) −→ C∞(S∗HRn)

the symbol of order −(p+ 2q) of a0da1 . . .daiδFdai+1 . . .da2n−1 is

σ(a0)dσ(a1) . . .dσ(ai)δFdσ(ai+1) . . .dσ(a2n−1) = (−1)iδFσ(a0)dσ(a1) . . .dσ(a2n−1)

We emphasize that the latter product is no more the star-product but the usual product of

functions.

The vector �eld L =
∑p
j=1 ξj∂ξj

+ 2
∑n
j=p+1 ξj∂ξj

on T∗Rn is the generator of the Heisenberg

dilations. This implies that ιLdσ(ai) = dσ(ai) · L = 0 since the ai are symbols of order 0. Using

(3.1), and observing that ιLδF = i, we obtain

ψ2n−1(a0, . . . ,a2n−1) = −
1

(2πi)n(2n− 1)!

∫
S∗HRn

σ(a0)dσ(a1) . . .dσ(a2n−1)

So, we have proved the following theorem

Theorem 3.12. The Radul cocycle is (B,b)-cohomologous to the homogeneous (B,b)-

cocycle on SH(Rn) de�ned by

ψ2n−1(a0, . . . ,a2n−1) = −
1

(2πi)n(2n− 1)!

∫
S∗HRn

σ(a0)dσ(a1) . . .dσ(a2n−1)
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From this theorem, Formula (2.2), and the odd pairing of cyclic cohomology with K-theory, given

for any [φ] ∈ HP1(SH(Rn)) and [u] ∈ K1(SH(Rn)) by the formula

〈[φ], [u]〉 =
∑
k>0

(−1)kk!(φ2k+1 ⊗ tr)(u−1,u, . . . ,u−1,u)

one has the following topological index formula for Heisenberg elliptic pseudodi�erential operators

of order 0, which only depends on their principal symbol. Here, tr denotes the trace of matrices.

Theorem 3.13. Let P ∈MN(Ψ
0
H(Rn)) be a Heisenberg elliptic pseudodi�erential operator

of symbol u ∈ GLN(S0H(Rn)), and [u] ∈ K1(S0H(Rn)) its (odd) K-theory class. Then, we have

a formula for the Fredholm index of P :

Ind(P) = Tr(Ind[u]) =
(−1)n(n− 1)!

(2πi)n(2n− 1)!

∫
S∗HRn

tr(σ(u)−1dσ(u)(dσ(u)−1dσ(u))n−1))

Appendix A. Computations of Section 3.1

We give here the details of the di�erent computations allowing to derive the di�erent formulas of

Section 3.

A.1. Cocycles formulas. Recall that

φ̃2k(a0, . . . ,a2k)

=
k!

ik(2k)!

1

2k+ 1

2k∑
i=0

Pfz=0Tr

(
a0[F,a1] . . . [F,ai]∆

−z/4[F,ai+1] . . . [F,a2k]⊗
ωn−k

n!

)

Formula (3.4). We compute ψ2k−1 = Bφ̃2k

Bφ̃2k(a0, ...,a2k−1)

=
k!

ik(2k)!

1

2k+ 1

2k∑
i=0

Pfz=0Tr
[(

[F,a0] . . . [F,ai]∆
−z/4[F,ai+1] . . . [F,a2k−1]

− [F,a2k−1][F,a0] . . . [F,ai−1]∆
−z/4[F,ai] . . . [F,a2k−2] + . . .

+(−1)2k−1[F,a1] . . . [F,ai+1]∆
−z/4[F,ai+2] . . . [F,a2k−1][F,a0]

)
⊗ ω

n−k

n!

]

Then, by the graded trace property, one can remark that all the terms of the sum
∑2k
i=0 . . . are

similar, so, this sum equals (2k+ 1) times the term i = 0.

Bφ̃2k(a0, ...,a2k−1)

=
k!

ik(2k)!
Pfz=0Tr

[(
[F,a0] . . . [F,a2k−1]∆

−z/4 − [F,a2k−1][F,a0] . . . [F,a2k−2]∆
−z/4

+ . . .+ (−1)2k−1[F,a1] . . . [F,a2k−1][F,a0]∆
−z/4

)
⊗ ω

n−k

n!

]
=

k!

ik(2k)!

2k−1∑
i=0

Pfz=0Tr

(
[F,a0] . . . [F,ai]∆

−z/4[F,ai+1] . . . [F,a2k−1]⊗
ωn−k

n!

)
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where we used the graded trace property in the second equality. Then, writing [F,a0] = Fa0−a0F,

using the fact that F anticommutes with the [F,ai] and the graded trace property again, we obtain

Bφ̃2k(a0, ...,a2k−1)

=
k!

ik(2k)!

2k−1∑
i=0

Pfz=0Tr
(
a0[F,a1] . . . [F,ai]((−1)

2k−i∆−z/4F− (−1)iF∆−z/4)[F,ai+1]

. . . [F,a2k−1]⊗
ωn−k

n!

)
=

k!

ik(2k)!

2k−1∑
i=0

(−1)i+1Resz=0Tr

(
a0[F,a1] . . . [F,ai]

[F,∆−z/4]

z
[F,ai+1]

. . . [F,a2k−1]⊗
ωn−k

n!

)
From Theorem 2.1, or, to be more precise, the part of the proof allowing to pass from the Partie

Finie to the residue, we �nally obtain

Bφ̃2k(a0, ...,a2k−1)

=
k!

ik(2k)!

2k−1∑
i=0

(−1)i+1
∫
−

(
a0[F,a1] . . . [F,ai]δF[F,ai+1] . . . [F,a2k−1]⊗

ωn−k

n!

)
= ψ2k−1(a0, . . . ,a2k−1)

�
Formula (3.5). We now compute φ2k+1 = bφ̃2k. As [F, . ] is an derivation on SH(Rn), the

following equality may be observed easily

bφ̃2k(a0, ...,a2k+1) =
k!

ik(2k+ 1)!

2k∑
i=0

(−1)iPfz=0Tr
(
a0[F,a1] . . . [F,ai][ai+1,∆

−z/4]

[F,ai+2] . . . [F,a2k+1])⊗
ωn−k

n!

)
Again, from the proof of Theorem 2.1, we �nally have

bφ̃2k(a0, ...,a2k+1)

=
k!

ik(2k+ 1)!

2k+1∑
i=1

(−1)i−1
∫
−

(
a0[F,a1] . . . [F,ai−1]δai[F,ai+1] . . . [F,a2k+1]⊗

ωn−k

n!

)
= φ2k+1(a0, ...,a2k+1)

�

A.2. Transgression formulas. We now give the details of the computations needed to obtain

the formulas of Proposition 3.7. Recall that

γ̃2k+1(a0, . . . ,a2k+1)

=
(k+ 1)!

ik+1(2k+ 2)!

1

2k+ 3

[
Pfz=0Tr

(
a0∆

−z/4F[F,a1] . . . [F,a2k+1]⊗
ωn−k−1

n!

)

+

2k+1∑
i=0

Pfz=0Tr

(
a0F[F,a1] . . . [F,ai]∆

−z[F,ai+1] . . . [F,a2k+1]⊗
ωn−k−1

n!

)]

where the term i = 0 of the sum means Pfz=0Tr
(
a0F∆

−z[F,a1] . . . , [F,a2k+1]⊗ ωn−k−1

n!

)
.
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Formula (3.6). We compute Bγ̃2k+1(a0, . . . ,a2k). By the graded trace property, applying

the operator B to each term of γ̃2k+1 yields the same contribution. As there are (2k + 3) terms,

we have

Bγ̃2k+1(a0, . . . ,a2k) =
(k+ 1)!

ik+1(2k+ 2)!
Pfz=0Tr

(
F[F,a0] . . . [F,a2k]

+ F[F,a2k][F,a0] . . . [F,a2k−1] + . . .+ F[F,a1] . . . F[F,a2k][F,a0])∆
−z/4 ⊗ ω

n−k−1

n!

)
Writing (k+1)!

(2k+2)! = 1
2

k!
(2k+1)! , knowing that F anticommutes to the [F,ai] and that F2 = iω is

central, developing F[F,a0] and �nally using the graded trace property, we obtain

Bγ̃2k+1(a0, . . . ,a2k)

=
k!

ik+1(2k+ 1)!
· 1
2

2k∑
i=0

Pfz=0

(
(a0F

2 − Fa0F)[F,a1] . . .∆
−z/4 . . . [F,a2k])⊗

ωn−k−1

n!

)
Once again using that F2 = iω, we can write

φ̃2k(a0, . . . ,a2k)

=
k!

ik+1(2k+ 1)!

2k∑
i=0

Pfz=0Tr

(
a0F

2[F,a1] . . . [F,ai]∆
−z/4[F,ai+1] . . . [F,a2k]⊗

ωn−k−1

n!

)
hence,

(φ̃2k − Bγ̃2k+1)(a0, . . . ,a2k)

=
k!

ik+1(2k+ 1)!
· 1
2

2k∑
i=0

Pfz=0

(
(a0F

2 + Fa0F)[F,a1] . . .∆
−z/4 . . . [F,a2k]⊗

ωn−k−1

n!

)

=
k!

ik+1(2k+ 1)!
· 1
2

2k∑
i=0

Pfz=0

(
a0F[F,a1] . . . ((−1)

iF∆−z/4 − (−1)2k−i∆−z/4F)

. . . [F,a2k]⊗
ωn−k−1

n!

)
Finally, we obtain

(φ̃2k − Bγ̃2k+1)(a0, . . . ,a2k)

=
k!

2ik+1(2k+ 1)!

2k∑
i=0

(−1)i
∫
−

(
a0F[F,a1] . . . δF . . . [F,a2k]⊗

ωn−k−1

n!

)
= γ2k(a0, . . . ,a2k)

�

Formula (3.7). We now calculate bγ̃2k+1. Writing a1F = −[F,a1] + Fa1 and using the

derivation property of [F, . ],

bγ̃2k+1(a0, . . . ,a2k+2)

= −φ̃2k+2(a0, . . . ,a2k+2)

+
(k+ 1)!

ik+1(2k+ 3)!

[
Pfz=0

(
a0[a1,∆

−z/4][F,a2] . . . [F,a2k+2]⊗
ωn−k−1

n!

)

+

2k+1∑
i=0

(−1)iPfz=0

(
a0F[F,a1] . . . [ai+1,∆

−z/4][F,a2] . . . [F,a2k+2]⊗
ωn−k−1

n!

)]
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Finally,

(φ̃2k+2 + bγ̃2k+1)(a0, . . . ,a2k+2)

=
(k+ 1)!

ik+1(2k+ 3)!

[ ∫
−

(
a0δa1[F,a2] . . . [F,a2k+2]⊗

ωn−k−1

n!

)

+

2k+2∑
i=1

(−1)i−1
∫
−

(
a0F[F,a1] . . . δai . . . [F,a2k+2]⊗

ωn−k−1

n!

)]
= γ2k+2(a0, . . . ,a2k+2)

�

Appendix B. Complements on Section 3.2

For the convenience of the reader, we recall here Quillen's picture of (B,b)-cocycles and how it is

used to obtain Theorem 3.11 from the Bianchi identity of Lemma 3.9.

B.1. More on Quillen's formalism. Let A be an associative algebra over C, and B be the bar

construction of A. Recall that ΩB and ΩB,\ are the following bicomodules over B :

ΩB = B⊗A⊗ B, ΩB,\ = A⊗ B

Theorem B.1. One has a complex of period 2

. . .
∂ // B

β // ΩB,\
∂ // B

β // . . .

with ∂ = ∂\ : ΩB,\ → B, where \ : ΩB,\ → ΩB, ∂ : ΩB → B, β : B → ΩB,\ are de�ned by the

following formulas :

\(a1 ⊗ (a2, . . . ,an)) =

n∑
i=1

(−1)i(n−1)(ai+1, . . . ,an)⊗ a1 ⊗ (a2, . . . ,ai)

∂(a1, . . . ,ap−1)⊗ ap ⊗ (ap+1, . . . ,an) = (a1, . . . ,an)

∂(a1 ⊗ (a2, . . . ,an)) =

n∑
i=1

(−1)i(n−1)(ai+1, . . . ,an,a1,a2, . . . ,ai)

β(a1, . . . ,an) = (−1)n−1an ⊗ (a1, . . . ,an−1) − a1 ⊗ (a2, . . . ,an)

As Quillen shows in [10], it turns out that the 2-periodic complex constructed above is exactly the

Loday-Quillen cyclic bicomplex with degrees shifted by one, and is therefore equivalent to Connes

(B,b)-bicomplex. The shift of the degrees makes that elements of the algebra A become odd in

the bar construction, while they are even in the cyclic bicomplex.

Now, let L be a di�erential graded algebra. The maps ∂ and β of the periodic complex induces

maps from bar cochains to Hochschild cochains (with values in L) and conversely by pull-back.

The following formula is a key step.

Lemma B.2. Let f,g ∈ Hom(B,L) be bar cochains. Then, we have

β(τ\(∂f · g)) = −τ([f,g])

We carry a purely computational proof, because of the way we introduced Quillen's formalism. A

more elegant and conceptual proof is given in Quillen's article [10], paragraph 5.2. The proof of

this lemma is based on the following formula,

(B.1) (∂f · g)\(a1 ⊗ (a2, . . . ,an)) =
∑

n−p<i6n

(−1)i(n−1)(f · g)(ai+1, . . .an,a1, . . . ,ai)
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where f and g be bar cochains of respective degrees p and n − p. The case p = 1 will be often

used, so we give it :

(B.2) (∂f · g)\(a1 ⊗ (a2, . . . ,an)) = (−1)|g|f(a1)g(a2, . . . ,an)

Proof. Let f and g be bar cochains of respective degrees p and n − p. By de�nition,

β(τ\(∂f · g)) = τ(∂f · g)\β, and using (B.1), so,

β(τ\(∂f · g))(a1, . . . ,an)

= τ(∂f · g)\(((−1)n−1an ⊗ (a1, . . . ,an−1) − a1 ⊗ (a2, . . . ,an))

= τ

 ∑
n−p<i6n

(−1)n−1(−1)i(n−1)(f · g)(ai, . . .an,a1, . . . ,ai−1)

−
∑

n−p<i6n

(−1)i(n−1)(f · g)(ai+1, . . .an,a1, . . . ,ai)


The �rst sum of the last equality can be rewritten∑

n−p<i6n

(−1)n−1(−1)i(n−1)(f · g)(ai, . . .an,a1, . . . ,ai−1)

=
∑

n−p−1<i6n−1

(−1)i(n−1)(f · g)(ai+1, . . .an,a1, . . . ,ai)

and noting that (−1)n(n−1) = 1, we obtain

β(τ\(∂f · g))(a1, . . . ,an)

= τ((−1)(n−p)(n−1)(f · g)(an−p+1, . . . ,an,a1, . . . ,an−p) − (f · g)(a1, . . . ,an))

= τ((−1)(n−p)(n−1)(−1)p|g|f(an−p+1, . . . ,an)g(a1, . . . ,an−p) − (f · g)(a1, . . . ,an))

= τ((−1)(n−p)(n−1)(−1)p|g|(−1)(|f|+p)(|g|+n−p)g(a1, . . . ,an−p)f(an−p+1, . . . ,an)

− (f · g)(a1, . . . ,an))

= τ((−1)(n−p)(n−p−1)(−1)|f|·|g|(g · f)(a1, . . . ,an−p,an−p+1, . . . ,an)
− (f · g)(a1, . . . ,an))

where we used the (graded) trace property of τ in the third equality.

As we have (−1)(n−p)(n−p−1) = 1, this yields the result. �

We can now give Quillen's picture of (B,b)-cocycles.

Theorem B.3. Let θ ∈ Hom(ΩB,\,C) be a Hochschild cochain, and η ∈ Hom(B,C) be the

bar cochain de�ned by

ηk(a1, . . . ,ak) = θ(1,a1, . . . ,ak)

Suppose that for each k, we have

δbarηk = (−1)kβθk+1, δbarθk+1 = (−1)k∂ηk+2

and that in addition, θn+1(a0,a1, . . . ,an) = 0 if ai = 1, for i > 1.
Then, for all k, Bθk+1 = bθk−1.

Remark B.4. This means that if we rede�ne signs correctly in θ, we obtain a (B,b)-cocycle

in our sign conventions.
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B.2. Complements on Remark 3.10. We give here the details of Quillen's arguments. The

only thing we have done towards the original paper [10] is to mix the arguments of Sections 7 and

8.

Lemma B.5. (Bianchi identity.) We have (δbar + adρ+ ad∇)K = (δbar + adρ+ ad∇)eK = 0,

where ad denotes the (graded) adjoint action.

Proof. Let D be the derivation δbar + adρ + ad∇. It su�ces to check that D(K) = 0, the

other equality will follow in virtue of the di�erentiation formula

D(eK) =

∫1
0

e(1−s)KD(K)esKds

We �rst remark that [∇,∇2] = 0, using that ε commutes (in the graded sense) with elements of

Hom(B,L) and that ε2 = 0. Furthermore δbar∇2 = 0 since δbar vanishes on 0-cochains. Therefore,

D(K) = (δbar + adρ+ ad∇)(∇2 + [∇, ρ])

= δbar[∇, ρ] + [ρ, [∇, ρ]] + [ρ,∇2] + [∇, [∇, ρ]]

= [∇, ρ2] + ρ[∇, ρ] − [∇, ρ]ρ+ [ρ,∇2] + [∇2, ρ]
= 0

The result is proved. �

According to Theorem B.3, let us de�ne the bar cochain η ∈ Hom(B,C) :

η2k−1(a1, . . . ,a2k−1) = θ2k(1,a1, . . . ,a2k+1)

Also remark that η = τ(eK).

Proposition B.6. The bar and Hochschild cochains η and θ satis�es the relations

δbarη = ±βθ, δbarθ = ±∂η

The ± means that the sign is positive in the even case and negative in the odd case.

Proof. For the �rst formula of the proposition, we have

δbarη = δbar(τ(e
K)) = τ(δbare

K) = τ(δbare
K + [∇, eK]) = −τ([ρ, eK]) = ±β(τ\(∂ρ · eK))

The second equality uses the trace property of τ, the third is the Bianchi identity of the lemma

above, and the last one is Lemma B.2.

For the second formula, �rst recall that δbarρ+ ρ
2 = 0. Then, one has :

δbar(τ
\(∂ρ · eK)) = τ\(∂(−ρ2)eK − ∂ρ · δbareK)

0 = τ\([ρ,∂ρ · eK]) = τ\((ρ · ∂ρ+ ∂ρ · ρ)eK − ∂ρ · [ρ, eK])
0 = τ\([∇,∂ρ · eK]) = τ\(∂[∇, ρ]eK − ∂ρ · [∇, eK])

Adding these three equations, using Bianchi identity and δbarρ+ ρ
2 = 0 yields

δbar(τ
\(∂ρ · eK)) = τ\(∂[∇, ρ]eK) = τ\(∂K · eK)

The last equality follows from the de�nition of K. Moreover,

∂(eK) = τ\(∂eK) =

∫1
0

τ\(e(1−t)K · ∂K · etK)dt = τ\(∂K · eK)

where last equality stands because of the trace property. This concludes the proof. �
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Hence, Theorem B.3 shows that θ gives rise to a (B,b)-cocycle (up to changing signs). The same

arguments may be used to complete the proof of Theorem 3.11.
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