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ZETA FUNCTIONS, EXCISION IN CYCLIC COHOMOLOGY AND INDEX

PROBLEMS

RUDY RODSPHON

Abstract. The aim of this paper is to show how zeta functions and excision in cyclic coho-
mology may be combined to obtain index theorems. In the first part, we obtain a local index
formula for "abstract elliptic pseudodifferential operators" associated to spectral triples. This
formula is notably well adapted when the zeta function has multiple poles. The second part
is devoted to give a concrete realization of this formula by deriving an index theorem on the
simple, but significant example of Heisenberg elliptic operators on a trivial foliation, which are
in general non-elliptic but hypoelliptic. The last part contains a discussion on manifolds with
conic singularity, more precisely about the regularity of spectral triples in this context.
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Introduction

Several years ago, Connes and Moscovici obtained in [4] a general index formula given in terms

of residues of zeta functions, working with the so-called spectral triples. A major advance was

made since this formalism enlarges index theory to the more general context of the transverse

geometry of foliations, where the interesting pseudodifferential operators are hypoelliptic without

necessary being elliptic, while remaining Fredholm. Let us be a little more precise on this general

formula. Connes and Moscovici constructed a Residue Cocycle on the algebra of the spectral triple,

cohomologous to the Chern-Connes character in the (B,b)-complex of Connes. This cocycle has

the feature of being "local", contrary to the representative of the Chern-Connes character obtained

by changing the "Dirac operator" D to the pseudodifferential operator F = D|D|−1, which involves

the operator trace, see [2] or [3]. Here, "local" means that the cohomology class of the Residue

Cocycle remains unchanged if the "Dirac operator" is perturbed by a smoothing operator. The

interesting fact is that this happens because the Residue Cocycle is given by residues of zeta

functions. Local index formulas are then deduced from a pairing between this cocycle and the

K-theory of the algebra.

In the spirit of the techniques developed by Connes and Moscovici, we give an abstract local

index formula of a different flavour, which turns out to be useful to calculate the index of abstract

elliptic pseudodifferential operators, in a sense to be defined. The formula is also given by a residue

of a zeta function, but there is one important difference in that the cyclic cocycles concerned are

defined not only on an "algebra of smooth functions", as in the Connes-Moscovici formula, but

directly on the algebra of formal symbols of the pseudodifferential operators considered. We then

illustrate on a simple but interesting example how such a formula may amount to topological

index formulas, and in the end, discuss on the case of manifolds with conic singularity. Let us

give an overview of the paper.

Section 1 serves to recall some material about Higson’s formalism developed in [7], concerning

algebras of abstract differential operators and their relation with spectral triples, in particular

regular ones. Following [14], this allows to develop an abstract pseudodifferential calculus and a

notion of ellipticity which covers many interesting examples. We shall focus on the example of

Connes and Moscovici on foliations, involving the Heisenberg pseudodifferential calculus.
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The aim of Section 2 is to study the index theory in this context. More precisely, we construct

a cyclic 1-cocycle on algebras of abstract pseudodifferential operators which generalizes the Radul

cocycle defined for any closed manifold M, introduced by Radul in [13]. The two important

ingredients to construct this cocycle are, on the one hand, that the zeta function of a (classical)

pseudodifferential operator on M has a meromorphic extension to the complex plane, whose set of

poles is at most simple and discrete. This allows the use of the Wodzicki-Guillemin residue. On the

other hand, one uses the pseudodifferential extension and excision in periodic cyclic cohomology

to push the trace on regularizing operators onM, viewed as a cyclic 0-cocycle, to a cyclic 1-cocycle

on the algebra of formal symbols on M. The remarkable fact on using the Wodzicki-Guillemin

residue is that it handles all the analytic issues, which will allow us to adopt an algebraic viewpoint

in most of the paper. Excision in periodic cyclic cohomology then gives a local index formula for

elliptic pseudodifferential operators, by compatibility with excision in K-theory.

This construction is then extended to the abstract setting recalled in Section 1, and we obtain

a cyclic 1-cocycle which generalizes the Radul cocycle in contexts where the zeta function exhibits

multiple poles.

Theorem 0.1. Let Ψ(∆) be an algebra of abstract pseudodifferential operators on a Hilbert

space H, and consider the pseudodifferential extension

0→ Ψ−∞(∆) → Ψ(∆) → S = Ψ/Ψ−∞ → 0

Suppose that the pole at zero of the zeta function is of order p > 1. Then, the cyclic 1-cocycle

∂[Tr] ∈ HP1(S), where Tr denotes the operator trace on H, is represented by the following

functional, that we also call the Radul cocycle :

c(a0,a1) =

1∫

−a0δ(a1) −
1

2!

2∫

−a0δ
2(a1) + . . . +

(−1)p−1

p!

p∫

−a0δ
p(a1)

where δ(a) = [log∆1/r,a] and δk(a) = δk−1(δ(a)) is defined by induction. The r denotes the

"order of ∆"

The
∫
−

k
are "higher Wodzicki-Guillemin residues" defined in Proposition 1.10.

In Section 3, we show on an example how the results of the previous section may lead to

index theorems, in the spirit of the Atiyah-Singer theorem. The example we work on is that of

a trivial foliation Rp × Rq, dealing with the Heisenberg pseudodifferential calculus. Even if this

example is simple, it is also relevant for three reasons : Firstly, it allows to deal with hypoelliptic

(non-elliptic) operators. Secondly, one can see how this leads to a purely algebraic approach of

index theory ; analytic details are handled by the Wodzicki residue trace. Thirdly, the philosophy

of the construction given is useful to understand how to adapt the techniques developed in [11]

to treat for example the general case of foliations on closed manifolds (whose leaves are not

necessarily compact). One interesting perspective is to obtain an index formula in the context

of the transverse geometry of foliations, leading to a different approach as those of Connes and

Moscovici in [5].

When dealing with the Radul cocycle, the main obstacle is that the formulas arising are,

except in low dimensions, rather complicated. It is not obvious at all to obtain directly an index

formula which depends only on the principal symbol. To cope with this difficulty, the general idea

is to construct (B,b)-cocycles of higher degree which are cohomologous to the Radul cocycle in

the (B,b)-bicomplex. These (B,b)-cocycles are shown to be more easily computable in the highest

degree, for a reason that will be understood later. We give two ways of constructing these cocycles.

In the first construction, we introduce homogeneous (B,b)-cocycles on regularizing operators, in

many points similar to the cyclic cocycles associated to Fredholm modules given by Connes.

The game still consists in pushing them to (inhomogeneous) (B,b)-cocycles on the algebra of
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Heisenberg (formal) symbols, using a zeta function regularisation of the trace and excision. The

second construction involves Quillen’s cochain theory in [12]. The interest of using this formalism

stands in the way we obtain the desired cocycles. Indeed, we do not have to go through the

algebra of regularizing operators, so this method is completely algebraic.

The context is a trivial foliation Rp × Rq of Rn. Let S0H(R
n) be the associated algebra of

Heisenberg formal symbols of order 0, and denote by

σ : S0H(R
n) → C∞(S∗HR

n)

the principal symbol map. Here, S∗HRn denotes the "Heisenberg cosphere bundle", which is defined

in Section 1.6. Then, the main result of the section can be stated as follows :

Theorem 0.2. The Radul cocycle is (B,b)-cohomologous to the homogeneous (B,b)-

cocycle on S0H(R
n) defined by

ψ2n−1(a0, . . . ,a2n−1) =
(−1)n

(2πi)n

∫

S∗

HRn

σ(a0)dσ(a1) . . .dσ(a2n−1)

As an immediate corollary, we obtain the following index theorem.

Theorem 0.3. Let P ∈MN(Ψ0
H(R

n)) a Heisenberg elliptic pseudodifferential operator of

formal symbol u ∈ GLN(S0H(Rn)), and [u] ∈ K1(S
0
H(Rn)) its (odd) K-theory class. Then, we

have a formula for the Fredholm index of P :

Ind(P) = Tr(Ind[u]) = −
(n − 1)!

(2πi)n(2n − 1)!

∫

S∗

HRn

tr(σ(u)−1dσ(u)(dσ(u)−1dσ(u))n−1))

Section 4 is a discussion on manifolds with conic singularity, and spectral triples associated. In

this direction, note the work of Lescure in [8], where spectral triples associated to conic manifolds

are constructed. This construction has the notable feature that the zeta function associated has

double order poles. The algebra considered in the spectral triple is the algebra of smooth functions

vanishing to infinite order in a neighbourhood of the conic point, with a unit adjoined. Thus, many

informations are lost in the differential calculus, e.g the abstract algebra of differential operators

associated to the spectral triple cannot contain all the conic differential operators. Therefore, it

is natural to ask if one can refine the choice of the algebra. Actually, we shall see that obtaining

a regular spectral triple on such spaces inevitably leads us, in a certain manner, to erase the

singularity. However, looking at this example gives a good picture of what happens when the

regularity of the spectral triple is lost. The abstract Radul cocycle of Theorem 0.1, and thus the

index formulas are no more local, because the terms killed by the residue in presence of regularity

cannot be neglected in that case. We refer the reader to the concerned section for the different

definitions and notations.

Theorem 0.4. Let M be a conic manifold, i.e a manifold with boundary endowed with

a conic metric, and let r be a boundary defining function. Let ∆ be the "conic laplacian" of

Example 4.11. Then, the Radul cocycle associated to the pseudodifferential extension

0→ r∞Ψ−∞
b (M) → r−ZΨZ

b(M) → r−ZΨZ

b(M)/r∞Ψ−∞
b (M) → 0

is given by the following non local formula :

c(a0,a1) = (Tr∂,σ + Trσ)(a0[log∆,a1]) −
1

2
Tr∂,σ(a0[log∆, [log∆,a1]])+

+ Tr∂

(
a0

N∑

k=1

a
(k)
1 ∆−k

)
+

1

2πi
Tr

(∫
λ−za0(λ − ∆)

−1a
(N+1)
1 (λ − ∆)−N−1

)
dλ
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for a0,a1 ∈ ΨZ

b(M)/r∞Ψ−∞
b (M)

This approach yields another point of view on the eta invariant, the notable fact is that it is

suitable also for pseudodifferential operators, and not only for Dirac operators. It might be an

interesting problem to compare the formulas obtained with the usual eta invariant.

Acknowledgements. The author wishes to warmly thank Denis Perrot for sharing his in-

sights, for his advices and constant support. He also thanks Thierry Fack for interesting dis-

cussions, and relevant remarks which helped to improve preliminary versions of this paper. The

author is also grateful to Mathias Pétréolle for sharing some technical tips.

1. Abstract Differential Operators and Traces

In this part, we recall the Abstract Differential Operators formalism developed by Higson in [7] to

simplify the proof of the Connes-Moscovici local index formula [4]. This is actually another way

of defining regular spectral triples. For details, the reader may refer to [7] or [14].

1.1. Abstract Differential Operators. Let H be a (complex) Hilbert space and ∆ a unbounded,

positive and self-adjoint operator acting on it. To simplify matters, we suppose that ∆ has a

compact resolvent.

We denote by H∞ the intersection of all these Sobolev spaces.

H∞ =

∞⋂

k=0

dom(∆k)

Definition 1.1. An algebra D(∆) of abstract differential operators associated to ∆ is an

algebra of operators on H∞ fulfilling the following conditions

(i) The algebra D(∆) is filtered,

D(∆) =

∞⋃

q=0

Dq(∆)

that is Dp(∆) · Dq(∆) ⊂ Dp+q(∆). We shall say that an element X ∈ Dq(∆) is an abstract

differential operator of order at most q. The term differential order will be often used for the

order of such operators.

(ii) There is a r > 0 ("the order of ∆") such that for every X ∈ Dq(∆), [∆,X] ∈ Dr+q−1(∆).

To state the last point, we define, for s ∈ R, the s-Sobolev space Hs as the subspace dom(∆s/r)

of H, which is a Hilbert space when endowed with the norm

‖v‖s = (‖v‖2 + ‖∆s/rv‖2)1/2

(iii) Elliptic estimate. If X ∈ Dq(∆), then, there is a constant ε > 0 such that

‖v‖q + ‖v‖ > ε‖Xv‖ , ∀v ∈ H∞

Having Gärding’s inequality in mind, the elliptic estimate exactly says that ∆1/r should be thought

as an "abstract elliptic operator" of order 1. It also says that any differential operator X of order

q can be extended to a bounded operator form Hs+q to Hs. This last property will be useful to

define pseudodifferential calculus in this setting.

One example to keep in mind is the case in which ∆ is a Laplace type operator on a closed

Riemannian manifold M. Here, r = 2 and D(∆) is simply the algebra of differential operators,

the Hs are the usual Sobolev space and we have an elliptic estimate. In fact, the definition above
4



is an abstraction of this example, but it can be adapted to many more situations, for instance the

case of foliations, on which we shall focus more in detail.

1.2. Correspondence with spectral triple. Let (A,H,D) a spectral triple (cf. [4] or [7]). One

may construct a algebra of abstract differential operators D = D(A,D) inductively as follows :

D0 = algebra generated by A and [D,A]

D1 = [∆,D0] +D0[∆,D0]

...

Dk =

k−1∑

j=1

Dj ·Dk−j + [∆,Dk−1] +D0[∆,Dk−1]

Let δ be the unbounded derivation ad|D| = [|D|, . ] on B(H). The spectral triple is (A,H,D) is

said regular if A, [D,A] are included in
⋂∞

n=1 domδn. The following theorem of Higson makes

the bridge between algebras of abstract differential operators and spectral triples.

Theorem 1.2. (Higson, [7]). Suppose that A maps H∞ into itself. Then, the spectral

triple (A,H,D) is regular if and only if the elliptic estimate of Definition 1.1 holds.

Regularity in spectral triples may be viewed an assumption allowing to control some asymptotic

expansions of "pseudodifferential operators", as we shall see in the next paragraph from the

perspective of the elliptic estimate.

1.3. Zeta Functions. Let D(∆) be an algebra of abstract differential operators. For z ∈ C, one

defines the complex powers ∆−z of ∆ using functional calculus :

∆−z =
1

2πi

∫

λ−z(λ− ∆)−1dλ

where the contour of integration is a vertical line pointing downwards separating 0 and the (dis-

crete) spectrum of ∆. This converges in the operator norm when Re(z) > 0, and using the

semi-group property, all the complex powers can be defined after multiplying by ∆k, for k ∈ N

large enough. Moreover, since ∆ has compact resolvent, the complex powers of ∆ are well defined

operators on H∞.

We will suppose that there exists a d > 0 such that for every X ∈ Dq(∆), the operator X∆−z

extends to a trace-class operator on H for z on the half-plane Re(z) > q+d
r

. The zeta function

of X is

ζX(z) = Tr(X∆−z/r)

The smallest d verifying the above property is called the analytic dimension of D(∆). In this

case, the zeta function is holomorphic on the half-plane Re(z) > q+d. We shall say that D(∆) has

the analytic continuation property if for every X ∈ D(∆), the associated zeta function extends

to a meromorphic function of the whole complex plane.

There properties are set for all the section, unless if it is explicitly mentioned.

These notions come from properties of the zeta function on a closed Riemannian manifold M :

it is well-known that the algebra of differential operators on M has analytic dimension dimM

and the analytic continuation property. Its extension to a meromorphic function has at most

simple poles at the integers smaller that dimM. In the case where M is foliated, the dimension

of the leaves appears in the analytic dimension when working in the suitable context. Hence, the

zeta function provide informations not only on the topology of M, but also on its the geometric

structure, illustrating the relevance of this abstraction.
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1.4. Abstract Pseudodifferential Operators. Let D(∆) an algebra of abstract differential

operators of analytic dimension d. To define the notion of pseudodifferential operators, we need a

more general notion of order, not necessary integral, which covers the one induced by the filtration

of D(∆).

Definition 1.3. An operator T : H∞ → H∞ is said to have pseudodifferential order m ∈ R

if for every s > 0, it extends to a bounded operator from Hm+s to Hs. In addition, we require

that operators of analytic order stricly less than −d are trace-class operators.

That this notion of order covers the differential order is due to the elliptic estimate, as already

remarked in Section 1.1. The space of such operators, denoted Op(∆), forms a R-filtered algebra.

There is also a notion of regularizing operators which are, as expected, the elements of the (two-

sided) ideal of operators of all order.

Remark 1.4. Higson uses in [7] the term "analytic order", but as the examples we deal with

in the paper are about pseudodifferential operators, we prefer the term pseudodifferential order.

Example 1.5. For every λ ∈ C not contained in the spectrum of ∆, the resolvent (λ − ∆)−1

has analytic order r. Moreover, by spectral theory, its norm as an operator between Sobolev spaces

is a O(|λ|−1).

The following notion is due to Uuye, cf. [14]. We just added an assumption on the zeta function

which is necessary for what we do.

Definition 1.6. An algebra of abstract pseudodifferential operators is a R-filtered subalgebra

Ψ(∆) of Op(∆), also denoted Ψ when the context is clear, satisfying

∆z/rΨm ⊂ ΨRe(z)+m, Ψm∆z/r ⊂ ΨRe(z)+m

and which commutes, up to operators of lower order, with the complex powers of ∆1/r, that is ,

for all m ∈ R, z ∈ C

[∆z/r,Ψm] ⊂ ΨRe(z)+m−1

Moreover, we suppose that for every P ∈ Ψm(∆), the zeta function

ζP(z) = Tr(P∆−z/r)

is holomorphic on the half-plane Re(z) > m + d, and extends to a meromorphic function of the

whole complex plane. We shall denote by

Ψ−∞ =
⋂

m∈R

Ψm

Of course, this is true for the algebra of (classical) pseudodifferential operators on a closed mani-

fold. We shall recall later what happens in the example of Heisenberg pseudodifferential calculus

on a foliation, as described by Connes and Moscovici in [4].

We end this part with a notion of asymptotic expansion for abstract pseudodifferential operators.

This can be seen as "convergence under the residue".

Definition 1.7. Let T and Tα (α in a set A) be operators on Ψ. We shall write

T ∼
∑

α∈A

Tα

6



if there exists c > 0 and a finite subset F ⊂ A such that for all finite set F′ ⊂ A containing F, the

map

z 7−→ Tr

(
(T −

∑

α∈F′

Tα)∆
z/r

)

is holomorphic in a half-plane Re(z) > −c (which contains z = 0).

Example 1.8. Suppose that that for every M > 0, there exists a finite subset F ⊂ A such

that

T −
∑

α∈F

Tα ∈ Ψ−M

Then, T ∼
∑

α∈A Tα

In this context, asymptotic means that when taking values under the residue, such infinite sums,

which have no reason to converge in the operator norm, are in fact finite sums. Thus, this will allow

us to disregard analytic subtleties and to consider these sums only as formal expansions without

wondering if they converge or not. In other words, this notion allows to adopt a completely

algebraic viewpoint. To this effect, the following lemma is crucial.

Lemma 1.9. (Connes-Moscovici’s trick, [4, 7]) Let Q ∈ Ψ(∆) be an abstract pseudodifferen-

tial operator. Then, for any z ∈ C, we have

(1.1) [∆−z,Q] ∼
∑

k>1

(
−z

k

)
Q(k)∆−z−k

where we denote Q(k) = ad(∆)k(Q), ad(∆) = [∆, . ].

Two important facts. Firstly, remark that the pseudodifferential order of terms in the

sum are decreasing to −∞, so that the difference between [∆−z,Q] and the sum becomes more

and more regularizing as the number of terms grows.

Secondly, and more importantly, this is essentially the elliptic estimate, or the regularity of the

spectral triple, which implies this property. Then, if the sum in the lemma above is not asymptotic

in the sense defined, the elliptic estimate cannot hold. In terms of spectral triple, this means it is

not regular.

Proof. For z ∈ C of positive real part large enough, one proves, using Cauchy formulas and

reasoning by induction, that the following identity holds (cf [7], Lemma 4.20) :

(1.2) ∆−zQ −Q∆−z =

N∑

k=1

(
−z

k

)
Q(k)∆−z−k +

1

2πi

∫

λ−z(λ − ∆)−1Q(N+1)(λ − ∆)−N−1 dλ

By the elliptic estimate, the integral term in the right hand-side has pseudodifferential order

ordQ+ (N+ 1)r−N− 1− (N+ 2)r = ord(Q) − r−N− 1, which can therefore be made as small

as we want by taking N large. This proves the lemma in the case where Re(z) > 0. The general

case follows from the analytic continuation property. �

1.5. Higher traces on the algebra of abstract pseudodifferential operators. We give in

this paragraph a simple generalization of the Wodzicki residue trace, when the zeta function of

the algebra D(∆) has poles of arbitrary order. Actually, this was already noticed by Connes and

Moscovici (see [4]).
7



Proposition 1.10. Let Ψ(∆) an algebra of abstract pseudodifferential operators, following

the context of the previous paragraphs. Suppose that the associated zeta function has a pole

of order p > 1 in 0. Then, the functional
p∫

−P = Resz=0z
p−1Tr(P∆−z/r)

defines a trace on Ψ(∆).

Proof. Let P,Q ∈ Ψ(∆). Then, for Re(z) ≫ 0, we can use the trace property on commutators

to write :

Tr([P,Q]∆−z/r) = Tr(P(Q − ∆−z/rQ∆z/r)∆−z/r)

Hence, using the analytic continuation property, we have

p∫

−[P,Q] = Resz=0z
p−1Tr(P(Q − ∆−z/rQ∆z/r)∆−z/r)

By Lemma 1.9,

∆−z/rQ−Q∆−z/r ∼
∑

k>1

(
−z/r

k

)
Q(k)∆−k · ∆−z/r

so that,

p∫

−[P,Q] = Resz=0

∑

k>1

zp−1Tr

((
−z/r

k

)
Q(k)∆−k · ∆−z/r

)

The sum is finite : Indeed, the order of Q(k)∆−k is ord(Q) − k, so the terms in the sum above

become holomorphic at z = 0 when k is large enough, and vanish when taking values under the

residue. Finally, the finite sum remaining vanishes since the zeta function has at most a pole of

order p at 0. �

If 0 6 k < p, then
∫
−

k
is no more a trace in general, but one has an explicit relation expressing

the commutators, cf. [4].

1.6. The example of Connes and Moscovici.

1.6.1. Heisenberg pseudodifferential calculus on foliations. Let M be a foliated manifold of

dimension n, and let F be the integrable sub-bundle of the tangent bundle TM ofM which defines

the foliation. We denote the dimension of the leaves by p, and by q = n− p their codimension.

For the moment, we work in distinguished local charts. Let (x1, . . . , xn) a distinguished local

coordinate system ofM, i.e, the vector fields ∂
∂x1

, . . . , ∂
∂xp

(locally) span F, so that ∂
∂xp+1

, . . . , ∂
∂xn

are transverse to the leaves of the foliation. Connes and Moscovici constructed in [4] an algebra

of generalized differential operators using Heisenberg calculus, whose main idea is that :

• The vector fields ∂
∂x1

, . . . , ∂
∂xp

are of order 1.

• The vector fields ∂
∂xp+1

, . . . , ∂
∂xn

are of order 2.

The Heisenberg pseudodifferential calculus consists in defining a class of smooth symbols σ(x, ξ)

on Rn
x × Rn

ξ which takes this notion of order into account. To this end, they set

|ξ| ′ = (ξ41 + . . . + ξ4p + ξ2p+1 + . . . + ξ2n)
1/4

〈α〉 = α1 + . . . + αp + 2αp+1 + . . . 2αn

for every ξ ∈ Rn, α ∈ Nn.
8



Definition 1.11. A smooth function σ(x, ξ) ∈ C∞(Rn
x ×Rn

ξ ) is a Heisenberg symbol of order

m ∈ R if σ is x-compactly supported, and if for every multi-index α,β, one has the following

estimate

|∂βx∂
α
ξσ(x, ξ)| 6 (1+ |ξ| ′)m−〈α〉

To such a symbol σ of orderm, one associates its left-quantization, which is the following operator

P : C∞(Rn) → C∞(Rn), Pf(x) =
1

(2π)n

∫

Rn

eix·ξσ(x, ξ)f̂(ξ)dξ

We shall say that P is a Heisenberg pseudodifferential operator of order m, and denote the class

of such operators by Ψm
H (Rn). The Heisenberg regularizing operators, whose class is denoted by

Ψ−∞(Rn), are those of arbitrary order, namely

Ψ−∞(Rn) =
⋂

m∈R

Ψm
H (Rn)

The reason why there is no H-subscript is that the Heisenberg regularizing operators are exactly

the regularizing operators of the usual pseudodifferential calculus, i.e the operators with smooth

Schwartz kernel.

Actually we shall restrict to the smaller class of classical Heisenberg pseudodifferential opera-

tors. For this, we first define the Heisenberg dilations

λ · (ξ1, . . . ,ξp, ξp+1, . . . ,ξn) = (λξ1, . . . , λξp, λ2ξp+1, . . . , λ
2ξn)

for any non-zero λ ∈ R and non-zero ξ ∈ Rn.

Then, a Heisenberg pseudodifferential operator P ∈ Ψm
H (Rn) of order m is said classical if its

symbol σ has an asymptotic expansion

(1.3) σ(x, ξ) ∼
∑

j>0

σm−j(x, ξ)

where σm−j(x, ξ) ∈ S
m−j
H (Rn) are Heisenberg homogeneous, that is, for any non zero λ ∈ R,

σm−j(x, λ · ξ) = λm−jσm−j(x, ξ)

The ∼ means that for everyM> 0, there exists an integerN such that σ−
∑N

j=0 σm−j ∈ S−M
H (Rn).

To avoid an overweight of notations, we shall keep the notation ΨH to refer to classical elements.

Another important point is the behaviour of symbols towards composition of classical pseudo-

differential operators. Of course, if P,Q ∈ ΨH(Rn) are Heisenberg pseudodifferential operators

of symbols σP and σQ, PQ is also a Heisenberg pseudodifferential operator of order at most

ord(P) + ord(Q), and its the symbol σPQ is given by the following asymptotic expansion called

the star-product of symbols, given by the formula

(1.4) σPQ(x, ξ) = σP ⋆ σQ(x, ξ) ∼
∑

|α|>0

(−i)|α|

α!
∂αξσP(x, ξ)∂

α
xσQ(x, ξ)

Note that the order of each symbol in the sum is decreasing while |α| is increasing.

We define the algebra of Heisenberg formal classical symbols SH(R
n) as the quotient

SH(R
n) = ΨH(R

n)/Ψ−∞(Rn)

Its elements are formal sums given in (1.3), and the product is the star product (1.4). Note that

the ∼ can be replaced by equalities when working at a formal level.

We now deal with ellipticity in this context. A Heisenberg pseudodifferential operator is said

Heisenberg elliptic if it is invertible in the unitalization SH(R
n)+ of SH(R

n) . One can show

that this is actually equivalent to say that its Heisenberg principal symbol, e.g the symbol of
9



higher degree in the expansion (1.3) is invertible on Rn
x × Rn

ξ r {0}. An adaptation of arguments

from classical elliptic regularity shows that the elliptic estimate holds in this case. A remarkable

specificity of these operators is that they are hypoelliptic, but not elliptic in general. Nevertheless,

they remain Fredholm operators between Sobolev spaces relative to this context. The interested

reader should consult [1] for details.

Example 1.12. The following operator, also called sub-elliptic sub-laplacian,

∆H = ∂4x1
+ . . . + ∂4xp

+ ∂2xp+1
+ . . . + ∂2xn

has Heisenberg principal symbol σ(x, ξ) = |ξ| ′4, and is therefore Heisenberg elliptic. However, its

usual principal symbol, as an ordinary differential operator, is (x, ξ) 7→
∑p

i=1 ξ
4
i , so ∆H is clearly

not elliptic.

Finally, Heisenberg pseudodifferential operators behaves well towards distinguished charts change.

Therefore, Heisenberg pseudodifferential calculus can be defined globally on foliations by using a

partition of unity. Then, for a foliated manifoldM, we denote by Ψm
H (M) the algebra of Heisenberg

pseudodifferential operators on M.

It is not very difficult to verify the required assumptions of Definition 1.6. However, what concerns

the zeta function is not obvious.

1.6.2. Residue Trace on Foliations. We now recall these results, proved by Connes and Moscovici

in [4].

Theorem 1.13. (Connes - Moscovici, [4]) Let M be a foliated manifold of dimension n, p

be the dimensions of the leaves, and P ∈ Ψm(M) be a Heisenberg pseudodifferential operator

of order m ∈ R. Let ∆ the sub-elliptic sub-laplacian defined in Example 1.12, that we extend

globally to M by using a partition of unity. Then, the zeta function

ζP(z) = Tr(P∆−z/4)

is holomorphic on the half-plane Re(z) > m+p+2q, and extends to a meromorphic function

of the whole complex plane, with at most simple poles in the set

{m+ p+ 2q,m + p + 2q− 1, . . .}

Remark 1.14. The analytic dimension of the algebra of Heisenberg differential operators is

then p+2q. The p is the dimension of the leaves, the "2" is the degree of the vector fields transverse

to them.

The meromorphic extension of the zeta function given by this theorem allows the construction of

a Wodzicki-Guillemin trace on SH(M) = ΨH(M)/Ψ−∞(M).

Theorem 1.15. (Connes - Moscovici, [4]) The Wodzicki residue functional
∫

− : SH(M) −→ C, P 7−→ Resz=0Tr(P∆−z/4)

is a trace. It is the unique trace on SH(M), up to a multiplicative constant. Moreover, for

P ∈ ΨH(M), we have the following formula, only depending on the symbol σ of P.

(1.5)

∫

−P =
1

(2π)n

∫

S∗

HM

ιL

(
σ−(p+2q)(x, ξ)

ωn

n!

)

Here, S∗HM is the Heisenberg cosphere bundle, that is, the sub-bundle

S∗HM = {(x, ξ) ∈ T∗M ; |ξ| ′ = 1}
10



L is the generator of the Heisenberg dilations, ι stands for the interior product and ω denotes the

standard symplectic form on T∗M.

Remark 1.16. All these results still holds for Heisenberg pseudodifferential operators acting

on sections of a vector bundle E over M : In this case, the symbol σ−(p+2q)(x, ξ) above is at each

point (x, ξ) an endomorphism acting on the fibre Ex, and (1.5) becomes :
∫

−P =
1

(2π)n

∫

S∗

HM

ιL

(
tr(σ−(p+2q)(x, ξ))

ωn

n!

)

where tr denotes the trace of endomorphisms.

2. The Radul cocycle for abstract pseudodifferential operators

2.1. Abstract index theorems. We begin with another abstract setting. Let A be an associative

algebra over C, possibly without unit, and I an ideal in A. The extension

0→ I→ A→ A/I→ 0

gives rise to the following excision diagram, relating algebraic K-theory and periodic cyclic ho-

mology

(2.1) K
alg
1 (A/I)

Ind //

ch1

��

K
alg
0 (I)

ch0

��
HP1(A/I)

∂ // HP0(I)

The vertical arrows are respectively the odd and even Chern character.

We still denote ∂ : HP0(I) → HP1(A/I) the excision map in cohomology. As mentioned in [10],

for [τ] ∈ HP0(I), [u] ∈ K1(A/I), one has the equality :

(2.2) 〈[τ], ch0Ind[u]〉 = 〈∂[τ], ch1[u]〉

One should have in mind that the left hand-side is an "analytic index", and think about the right

hand-side as a "topological index".

The construction of a boundary map ∂ in cohomology associated to an extension is standard.

If [τ] ∈ HP0(I) is given by a hypertrace τ : I → C, i.e a linear map satisfying the condition

τ([A, I]) = 0, then let us recall how to compute ∂[τ] ∈ HP1(A/I). To begin, choose a lift τ̃ : A→ C

of τ, such that τ̃ is linear (in general, this is not a trace), and a linear section σ : A/I → A such

that σ(1) = 1, after adjoining a unit where we have to. Then, ∂[τ] is represented by the following

cyclic cocycle :

c(a0,a1) = bτ̃(σ(a0),σ(a1)) = τ̃([σ(a0),σ(a1)])

where b is the Hochschild coboundary recalled in Section 3.1.

2.2. The generalized Radul cocycle. We can finally come to the main theorem of this sec-

tion. Let D(∆) be an algebra of abstract differential operators and Ψ be an algebra of abstract

pseudodifferential operators. We consider the extension

0→ Ψ−∞ → Ψ→ S → 0

where S is the quotient Ψ/Ψ−∞. The operator trace on Ψ−∞ is well defined, and Tr([Ψ−∞,Ψ]) = 0.

11



Theorem 2.1. Suppose that the pole in zero of the zeta function is of order p > 1. Then,

the cyclic 1-cocycle ∂[Tr] ∈ HP1(S) is represented by the following functional :

c(a0,a1) =

1∫

−a0δ(a1) −
1

2!

2∫

−a0δ
2(a1) + . . . +

(−1)p−1

p!

p∫

−a0δ
p(a1)

where δ(a) = [log∆1/r,a] and δk(a) = δk−1(δ(a)) is defined by induction. We shall call this

cocycle as the generalized Radul cocycle.

Here, the commutator [log∆1/r,a] is defined as the non-convergent asymptotic expansion

(2.3) [log∆1/r,a] ∼
∑

k>1

(−1)k

k
a(k)∆−k

where a(k) has the same meaning as in Lemma 1.9. This expansion arises by first using functional

calculus :

log∆1/r =
1

2πi

∫

log λ1/r(λ − ∆)−1 dλ

and then, reproducing the same calculations made in the proof of Lemma 1.9 to obtain the formula

(cf. [7] for details). In particular, note that log∆1/r = 1
r

log∆.

Another equivalent expansion possible, that we will also use, is the following

(2.4) [log∆1/r,a] ∼
∑

k>1

(−1)k

k
a[k]∆−k/r

where a[1] = [∆1/r,a], and a[k+1] = [∆1/r,a[k]]. Before giving the proof of the result, let us give

a heuristic explanation of how to get this formula. We first lift the trace on Ψ−∞ to a linear map

τ̃ on Ψ using a zeta function regularization by "Partie Finie" :

τ̃(P) = Pfz=0Tr(P∆−z/r)

for any P ∈ Ψ. The "Partie Finie" Pf is defined as the constant term in the Laurent expansion of

a meromorphic function. Let Q ∈ Ψ be another pseudodifferential operator. Then, we have

Pfz=0Tr([P,Q]∆−z/r) = Resz=0Tr

(
P · Q − ∆−z/rQ∆z/r

z
∆−z/r

)

by reasoning first for z ∈ C of sufficiently large real part to use the trace property, and then

applying the analytic continuation property. Then, informally we can think of the complex

powers of ∆ as

∆z/r = elog∆·z/r = 1+
z

r
log∆ + . . . +

1

p!

(z
r

)p
(log∆)p +O(zp+1)

which after some calculations, gives the expansion

(Q− ∆−z/rQ∆z/r)∆−z/r = zδ(Q) −
z2

2
δ2(Q) + . . . + (−1)p−1 z

p

p!
δp(Q) +O(zp+1)

Proof. Let P,Q ∈ Ψ be two abstract pseudodifferential operators. The beginning of the

proof is the same as the heuristic argument given above, so we start from the equality

Pfz=0Tr([P,Q]∆−z/r) = Resz=0Tr

(
P · Q − ∆−z/rQ∆z/r

z
∆−z/r

)

= Resz=0Tr


P · 1

z

∑

k>1

(
−z/r

k

)
Q(k)∆−k · ∆−z/r




The second equality comes from Lemma 1.9.
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Then, let X be an indeterminate. As power series over the complex numbers with indeterminate

X, we remark that for any z ∈ C, one has

1

z

∑

k>1

(
−z/r

k

)
Xk =

1

z
((1+ X)−z/r − 1)

On the other hand, we have, for q ∈ N,

ad(log∆1/r)q(Q) =
1

rq
[log∆, [..., [log∆,Q]]] ∼

1

rq

∑

k>q

∑

k1+...+kq=k

(−1)k

k1 . . .kq
Q(k)∆−k

Using once more the indeterminate X, one has

∑

k>q

∑

k1+...+kq=k

(−1)k

k1 . . .kq
Xk =



∑

l>1

(−1)lXl

l




= log(1+ X)q

thus obtaining

∑

q>1

(−1)q−1

q!

zq−1

rq
log(1+ X)q =

1

z
((1+ X)−z/r − 1)

This proves that the coefficients of Q(k)∆−k in the sums

1

z

∑

k>1

(
−z

k

)
Q(k)∆−k,

∑

q>1

(−1)q−1

q!

zq−1

rq




∑

k>q

∑

k1+...+kq=k

(−1)k

k1 . . . kq
Q(k)∆−k





are the same, hence the result follows. �

Applying the pairing (2.2), we have a local index theorem.

Example 2.2. Let M be a closed foliated manifold with integrable sub-bundle F ∈ TM, ∆

the sub-elliptic sub-laplacian of Example 1.12 sand take Ψ(∆) = ΨH(M) the algebra of (classical)

Heisenberg pseudodifferential operators on M, Ψ−∞(∆) = Ψ−∞(M) the ideal of regularizing op-

erators. The quotient Ψ/Ψ−∞ is the algebra SH(M) of full classical Heisenberg symbols. A trace

on Ψ−∞(M) is given by

(2.5) τ(K) = Tr(K) =

∫

M

k(x, x)dvol(x)

where k is the Schwartz kernel of K. Then, using the residue defined in Theorem 1.15 and applying

Theorem 2.1, ∂[τ] is represented by the following cyclic 1-cocycle on SH(M) :

(2.6) c(a0,a1) =

∫

−a0[log |ξ| ′,a1]

With a slight abuse of notation, we denoted by log |ξ| ′ the symbol of ∆1/4. We emphasize that

the product of symbols is the star-product defined in (1.4), but we omit the notation ⋆.

Remark that log |ξ| ′ is a log-polyhomogeneous (Heisenberg) symbol and is not classical. But using

(2.4), it is clear that its commutator with any element of SH(M) is. Note also that the cocycle is

defined on the symbols rather that on the operators, but this does not matter since the residue

kills the smoothing contributions. In particular, only a finite number of terms of the star-product

are involved. This is exactly what we meant when we said that the Wodzicki residue handles

analytic issues in the introduction.

This cocycle was first introduced by Radul in [13] in the context of closed manifold, without

considering foliations, as a 2-cocycle over the Lie algebra of formal symbols on the manifold. The
13



Radul cocycle also may appear from a Partie Finie regularization of the zeta function, so we keep

the same name for the cocycle 2.6 obtained in this more general setting.

From this cocycle, we then get an index formula for Heisenberg elliptic pseudodifferential opera-

tors. Indeed, if P is such an operator of formal symbol u ∈ SH(M), and Q a parametrix of P in

the Heisenberg calculus, of formal symbol u′ ∈ SH(M), then, the Fredholm index of P is given by

Ind(P) = c(u,u′)

As we can see, the Radul cocycle is given by a Wodzicki residue, and is hence local. However, it

seems to be an unattainable task to get an index formula in terms of the principal symbol only

since by (1.5), we have to find the symbol of order −(p+ 2q) of u[log |ξ| ′,u′]. At first sight, many

terms of the formal expansions of u and u′, as well as many of their higher derivatives, seem to

be involved. We shall see in next section a way to overcome this difficulty.

3. A computation of the Radul cocycle

At first sight, the latter index formula obtained is local in the sense that it is given as a residue

formula, a little in the spirit of that of Connes and Moscovici. However, as already noted in

Example 2.2, the formula obtained is rather involved.

This section is devoted to show how one may recover an interesting index formula from the Radul

cocycle, working on the simplest foliation possible. For all this section, even if it is not explicitly

mentioned, we consider Rn as a trivial foliation Rp × Rq, where 0 6 p < n and q = n − p, and

consider the associated classical Heisenberg pseudodifferential operators Ψ0
H(R

n) of order 0.

Our goal is to show that the Radul cocycle (2.6) on S0H(R
n) is cohomologous in HP1(SH(Rn))

to simple inhomogeneous (B,b)-cocycles of higher degree, making the computation of the index

problem easier. We shall always use coordinates adapted to the foliation Rp × Rq.

We shall give two ways of constructing these cocycles. Before beginning these constructions, we

briefly recall how to define the (B,b)-bicomplex.

3.1. The (B,b)-bicomplex. LetA be an associative algebra over C. For k > 0, denote by CCk(A)

the space of (k + 1)-linear forms on the unitalization A+ of A such that φ(a0, . . . ,ak) = 0 when

ai = 1 for some i > 1. Then, define the differentials

B : CCk+1(A) → CCk(A), b : CCk(A) → CCk+1(A)

by the formulas

Bφ(a0, . . . ,ak) =

k∑

i=0

(−1)ikφ(1,ai, . . . ,ak,a0, . . . ,ai−1)

bφ(a0, . . . ,ak+1) =

k∑

i=0

(−1)iφ(a0, . . . ,ai−1,aiai+1,ai+2, . . . ,ak+1)

+ (−1)k+1φ(ak+1a0, . . . ,ak)

14



that is, B2 = b2 = 0. Moreover, B and b anticommute, which allows to define the (B,b)-bicomplex

...
...

...

. . .
B // CC2(A)

B //

b

OO

CC1(A)
B //

b

OO

CC0(A)

b

OO

. . .
B // CC1(A)

B //

b

OO

CC0(A)

b

OO

. . .
B // CC0(A)

b

OO

Then, the periodic cyclic cohomology HP•(A) is the cohomology of the total complex. More

precisely, it is the cohomology of the 2-periodic complex

. . .
B+b // CCeven(A)

B+b // CCodd(A)
B+b // CCeven(A)

B+b // . . .

where

CCeven(A) = CC0(A) ⊕ CC2(A)⊕ . . .

CCodd(A) = CC1(A)⊕ CC3(A)⊕ . . .

Hence, there are only an even and an odd periodic cyclic cohomology groups, respectively denoted

HP0(A) and HP1(A).

Remark 3.1. Sometimes, authors consider the total differential B− b instead of B+ b.

3.2. General context. Recall from Section 1.5 that the residue trace of a Heisenberg pseudodif-

ferential operator P ∈ ΨH(R
n) of symbol σ is given by

(3.1)

∫

−P =
1

(2π)n

∫

S∗

HRn

ιL

(
σ−(p+2q)(x, ξ)

ωn

n!

)

where σ−(p+2q) is the Heisenberg homogeneous term of order −(p + 2q) in the asymptotic ex-

pansion of σ, ω =
∑

i dxidξi is the standard symplectic form on T∗Rn = Rn
x × Rn

ξ , and L is the

generator of the Heisenberg dilations, given by the formula

L =

p∑

i=1

ξi∂ξi
+ 2

n∑

i=p+1

ξi∂ξi

Note that in this example, the sub-elliptic sub-laplacian has not a compact resolvent since we

work on Rn. However, the results in Section 1.6.2 on the Wodzicki residue still holds because we

consider pseudodifferential operators which have compact support.

We first extend the trace on Ψ−∞(Rn) given in (2.5) to a graded trace on the graded algebra

Ψ−∞(Rn)⊗Λ•T∗Rn, using a Berezin integral :

Tr(K ⊗ α) = α[2n]Tr(K)

where K ∈ Ψ−∞(Rn), and α[2n] is the coefficient of the form dx1 . . .dxndξ1 . . .dξn in α (the

wedges are dropped to simplify notations). Here, we emphasize once more that T∗Rn is seen as

the vector space Rn
x × Rn

ξ . Therefore Λ•T∗Rn stands for the exterior algebra of the vector space

T∗Rn = Rn
x × Rn

ξ , and not for the vector bundle of exterior powers of the cotangent bundle, as

usual.
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Moreover, the Wodzicki residue trace on ΨH(R
n) is given by a zeta function regularisation of this

trace. Therefore, the latter procedure also extends the Wodzicki residue trace to a graded trace on

the graded algebra ΨH(R
n)⊗Λ•T∗Rn. The latter descends to a graded trace on SH(Rn)⊗Λ•T∗Rn.

The composition law of pseudodifferential operators, or the star-product of symbols for the latter,

are extended to these algebras just by imposing that they commute to elements of the exterior

algebra.

Remark also that the following commutation relations hold

[xi, ξj] = iδi,j, [xi, xj] = [ξi, ξj] = 0

where we denote i =
√
−1. In short, ad(xi) and ad(ξi) are respectively the differentiation of

symbols with respect to the variables ξi and xi.

Finally, let F be the multiplier on SH(R
n)⊗Λ•T∗Rn defined by

F =
∑

i

(xidξi + ξidxi)

As the two following lemmas might indicate, this operator will play a role rather similar to

operators usually denoted by F when dealing with finitely summable Fredholm modules. The

difference is that this F here is not the main object of study, and acts more as an intermediate

towards the main result.

Lemma 3.2. F2 is equal to iω, where ω is the standard symplectic form on T∗Rn. In

particular, F2 commutes to every element in SH(R
n)⊗Λ•T∗Rn.

Lemma 3.3. For every symbol a ∈ SH(R
n), one has

[F,a] = ida = i
∑

i

(
∂a

∂xi
dxi +

∂a

∂ξi
dξi

)

The proof of both lemmas follows from a simple computation, just using the commutation relations

mentioned above. Another important property of the multiplier F, easy to verify, is the following

Lemma 3.4. For every a ∈ SH(R
n)⊗Λ•T∗Rn, we have

∫

−[F,a] = 0

3.3. Construction by excision. The previous lemma shows that it may be relevant to con-

sider the following cyclic cocycles on Ψ−∞(Rn), inspired of Connes’ cyclic cocycles associated to

Fredholm modules (see [2] or [3]).

(3.2) φ2k(a0, ...,a2k) =
k!

ik(2k)!
Tr

(
a0[F,a1] . . . [F,a2k]⊗

ωn−k

n!

)

for 0 6 k 6 n. Therefore, we obtain the following result, very similar to that of Connes.

Proposition 3.5. The periodic cyclic cohomology classes of the cyclic cocycles φ2k are

independant of k.

Proof. Set

(3.3) γ2k+1(a0, . . . ,a2k+1) =
(k + 1)!

ik+1(2k + 2)!
Tr

(
a0F[F,a1] . . . [F,a2k+1]⊗

ωn−k

n!

)

It is then a straightforward calculation to verify that (B+ b)γ2k+1 = φ2k − φ2k+2, which shows

the result. �
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At this stage, we are not very far from being done. To obtain the desired cyclic cocycles on the

algebra S0HR
n ⊗ Λ•T∗Rn from those previously constructed, it suffices to push the latter using

excision in periodic cyclic cohomology. Indeed, as we have the pseudodifferential extension

0→ Ψ−∞(Rn) → Ψ0
H(R

n) → S0HR
n → 0

we look at the image of the (B,b)-cocycles φ2k under the boundary map

∂ : HP0(Ψ−∞(Rn)) −→ HP1(S0HR
n)

Thanks to this, the cocycles (3.2) involving the operator trace, which are highly non local, will be

avoided and transferred to cocycles involving the Wodzicki residue.

To compute the image of the the cocycles (3.2) under the excision map ∂, we lift the cocycles φ2k

on Ψ−∞(Rn) to cyclic cochains φ̃2k ∈ CC•(Ψ0
H(R

n)) using a zeta function regularization,

φ̃2k(a0, ...,a2k)

=
k!

ik(2k)!

1

2k + 1

2k∑

i=0

Pfz=0Tr

(
a0[F,a1] . . . [F,ai]∆

−z/4[F,ai+1] . . . [F,a2k]⊗
ωn−k

n!

)

For k = 0, we already know that ∂[φ0] is represented by the Radul cocycle

c(a0,a1) =

∫

−a0δa1

where δa1 = [log |ξ| ′,a1].

Now, let k ∈ N. Then, the usual construction of the boundary map in cohomology associated to

an extension gives that ∂[φ2k] is represented by the inhomogeneous (B,b)-cocycle

(B+ b)φ̃2k = ψ2k−1 + φ2k+1 ∈ CC2k−1(Ψ0
H(Rn))⊕ CC2k+1(Ψ0

H(Rn))

where ψ2k−1 = Bφ̃2k and φ2k+1 = bφ̃2k are given by

(3.4) ψ2k−1(a0, . . . ,a2k−1)

=
k!

ik(2k)!

2k−1∑

i=0

(−1)i+1

∫

−

(
a0[F,a1] . . . [F,ai]δF[F,ai+1] . . . [F,a2k−1]⊗

ωn−k

n!

)

(3.5) φ2k+1(a0, . . . ,a2k+1)

=
k!

ik(2k + 1)!

2k+1∑

i=1

(−1)i−1

∫

−

(
a0[F,a1] . . . [F,ai−1]δai[F,ai+1] . . . [F,a2k+1]⊗

ωn−k

n!

)

where we define ψ−1 as zero. φ1 is precisely the Radul cocycle. For the clarity of the exposition,

the calculations will be detailed later in Appendix A. Then, we have :

Theorem 3.6. The Radul cocycle c is cohomologous in the (B,b)-complex, to the (B,b)-

cocycles (ψ2k−1,φ2k+1), for all 1 6 k 6 n.

Indeed, usual properties of boundary maps in cohomology automatically ensures this result. As

a matter of fact, one can be more precise and give explicitly the transgression cochains allowing

to pass from one cocycle to another. For this, we lift the transgression cochain γ given in (3.3) to
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the (B,b)-cochain γ̃ ∈ CC•(ΨH(Rn)), using the same trick as before :

γ̃2k+1 =
(k + 1)!

ik+1(2k + 2)!

1

2k + 3

[
Pfz=0Tr

(
a0∆

−z/4F[F,a1] . . . [F,a2k+1]⊗
ωn−k−1

n!

)

+

2k+1∑

i=0

Pfz=0Tr(a0F[F,a1] . . . [F,ai]∆
−z/4[F,ai+1] . . . [F,a2k+1]⊗

ωn−k−1

n!

)]

and the term i = 0 of the sum means Pfz=0Tr(a0F∆
−z[F,a1] . . . , [F,a2k+1]⊗ ωn−k−1

n!
) in the right

hand-side.

Proposition 3.7. The inhomogeneous (B,b)-cochains

φ̃2k − φ̃2k+2 − (B + b)γ̃2k+1 = γ2k − γ ′
2k+2 ∈ CC2k(Ψ0

H(Rn))⊕ CC2k+2(Ψ0
H(Rn))

for 0 6 k 6 n, viewed as cochains on SH(R
n), are transgression cochains between (ψ2k−1,φ2k+1)

and (ψ2k+1,φ2k+3), that is,

(ψ2k−1 + φ2k+1) − (ψ2k+1 + φ2k+3) = (B+ b)(γ2k − γ ′
2k+2)

Moreover, one has

(3.6) γ2k(a0, . . . ,a2k)

=
k!

2ik+1(2k + 1)!

2k∑

i=0

(−1)i
∫

−

(
a0F[F,a1] . . . [F,ai]δF[F,ai+1] . . . [F,a2k+1]⊗

ωn−k−1

n!

)

(3.7) γ ′
2k(a0, . . . ,a2k) =

∫

−

(
a0δa1[F,a2] . . . [F,a2k]⊗

ωn−k

n!

)

+
k!

ik(2k + 1)!

2k∑

i=1

(−1)i−1

∫

−

(
a0F[F,a1] . . . [F,ai−1]δai[F,ai+1] . . . [F,a2k]⊗

ωn−k

n!

)

That φ̃2k − φ̃2k+2 − (B + b)γ̃2k+1 gives a transgression cochain comes once again from the con-

struction of a boundary map in cohomology associated to a short exact sequence. Once more, the

calculations leading to these formulas are given in Appendix A.

3.4. Construction with Quillen’s Algebra Cochains. The interest about Quillen’s theory of

cochains here is that the (B,b)-cocycles we want to get are obtained purely algebraically, since

we do not need to pass first through (B,b)-cocycles on the algebra of regularizing operators. For

the convenience of the reader, we briefly recall this formalism, and let him report to the original

paper [12] or the Appendix B for more details.

3.4.1. Preliminaries. Let A an associative algebra over C with unit. The bar construction B of

A is the differential graded coalgebra B =
⊕

n>0 Bn, with Bn = A⊗n for n > 0 with coproduct

∆ : B→ B⊗ B

∆(a1, . . . ,an) =

n∑

i=0

(a1, . . . ,ai)⊗ (ai+1, . . . ,an)

The counit map η is the projection onto A⊗0 = C, and the differential is b ′ :

b ′(a1, . . . ,an+1) =

n∑

i=1

(−1)i−1(a1, . . . ,aiai+1, . . . ,an+1)

which is defined as the zero map on B0 and B1. These operations confer a structure of differential

graded coalgebra to B.
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A bar cochain of degree n on A is a n-linear map over A with values in an algebra L. These

cochains form a complex denoted Hom(B,L), whose differential is given by

δbarf = (−1)n+1fb ′

for f ∈ Homn(B,L). Moreover, one has a product on Hom(B,L) : If f and g are respectively

cochains of degrees p and q, it is given by

fg(a1, . . . ,ap+q) = (−1)pqf(a1, . . . ,ap)g(ap+1, . . . ,ap+q)

Therefore, Hom(B,L) has a structure of differential graded algebra.

We next define ΩB and ΩB,♮ to be the following bicomodules over B :

ΩB = B⊗A⊗ B, ΩB,♮ = A⊗ B

Here, the ♮ in exponent means that ΩB,♮ is the cocommutator subspace of ΩB. Thanks to this,

one can show that the differential δbar induced on ΩB,♮ is in fact the Hochschild boundary, and

deduce that the complex (Hom(ΩB,♮,C),b) is isomorphic to the Hochschild complex (CC•(A),b)

of A, with degrees shifted by one.

We recall Quillen’s terminology. Let L be a differential graded algebra. Elements of Hom(ΩB,L)

will be called Ω-cochains, and those in Hom(ΩB,♮,L) as Hochschild cochains. Recall also that

the bar cochains are the elements of Hom(B,L).

Important fact. A cochain f of this kind has three degrees : a A-degree as a multilinear

map over A, a L degree and a total degree f, which is sum. This is the one which will be considered.

The map ♮ : ΩB,♮ → ΩB, defined by the formula

♮(a1 ⊗ (a2, . . . ,an)) =

n∑

i=1

(−1)i(n−1)(ai+1, . . . ,an)⊗ a1 ⊗ (a2, . . . ,ai)

induces a map from Hochschild cochains to bar cochains. If we have a (graded) trace τ : L −→ C,

we then obtain a morphism of complexes

τ♮ : Hom(ΩB,L) −→ Hom(ΩB,♮,C)

f 7−→ τ♮(f) = τf♮

3.4.2. Return to the initial problem. We can now return to our context. Let A be the algebra

S0H(R
n) of Heisenberg formal symbols on Rn = Rp × Rq, and B the bar construction of A. Also,

let L be the graded algebra S0H(R
n)⊗Λ•T∗Rn. The product on these algebras is the star-product

of symbols, twisted with the product on the exterior algebra. The injection

ρ : A −→ L

is a homomorphism of algebras. As a consequence, ρ should be viewed as a 1-cochain of "curvature"

zero, e.g δbarρ+ ρ
2 = 0. We introduce a formal parameter ε of odd degree such that ε2 = 0, and

shall actually work in the extended algebra

Hom(B,L)[ε] = Hom(B,L) + εHom(B,L)

The role of that ε is to kill the powers of log |ξ| ′ which are not classical symbols, and to keep only

its commutator with other symbols.

Now, denote ∇ = F + ε log |ξ| ′, and ∇2 = F2 + ε[log |ξ| ′, F] the square of ∇, and introduce the

"connection" ∇ + δbar + ρ. The fact that this operator does not belong to the algebra above is

not a problem, since we shall only have interest in its "curvature", which is well defined,

K = ∇2 + [∇, ρ] = F2 + ε[log |ξ| ′, F] + [F+ ε log |ξ| ′, ρ]
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and its action on Hom(B,L)[ε] with commutators. Here, we emphasize that the commutators

involved are in fact graded commutators. Let τ be the graded trace on Hom(B,L)[ε] ⊗ Λ•T∗Rn

given by

τ(x+ εy) =

∫

−y

It turns out that the cocycles (3.4) and (3.5) constructed using excision in the previous section

are obtained by considering the even cochain

θ = τ(∂ρ · eK) ∈ Hom(ΩB,♮,C)

where ∂f · g is defined, for f,g ∈ Hom(ΩB,L) of respective degrees 1 and n − 1, by the following

formula :

(∂f · g)♮(a1 ⊗ (a2, . . . ,an)) = (−1)|g|f(a1)g(a2, . . . ,an)

The calculation of θ becomes easier if one remarks that

eK = eF
2 · e[F,ρ]+ε[log |ξ|′,F+ρ]

as F2 = iω is central in L. Then, this easily provides that θ =
∑

k(θ
′
2k + θ ′′

2k), where

(3.8) θ ′
2k =

in−k+1

(2k − 1)!

2k−1∑

i=1

∫

−

(
∂ρ · [F, ρ]i−1δρ[F, ρ]2k−1−i ⊗ ωn−k+1

(n − k + 1)!

)

(3.9) θ ′′
2k =

in−k

(2k)!

2k−1∑

i=0

∫

−

(
∂ρ · [F, ρ]iδF[F, ρ]2k−1−i ⊗ ωn−k

(n − k)!

)

Evaluating on elements of A, this gives :

(3.10) θ ′
2k(a0, . . . ,a2k−1)

=
in−k+1

(2k − 1)!

2k−1∑

i=1

(−1)i
∫

−

(
a0[F,a1] . . . [F,ai−1]δai[F,ai+1] . . . [F,a2k−1]⊗

ωn−k+1

(n − k + 1)!

)

(3.11) θ ′′
2k(a0, . . . ,a2k−1)

=
in−k

(2k)!

2k−1∑

i=0

(−1)i+1

∫

−

(
a0[F,a1] . . . [F,ai]δF[F,ai+1] . . . [F,a2k−1]⊗

ωn−k

(n − k)!

)

The signs above not appearing in the cochains (3.8) and (3.9) occur since the ai, δρ and δF are

odd.

As announced earlier, we observe that θ ′
2k and θ ′′

2k are up to a certain constant term the cochains

φ2k−1 and ψ2k−1 obtained in (3.4) and (3.5). The difference in signs is due to Quillen’s formalism,

which considers the total differential B − b, see Remark B.4. Unfortunately, each component of

θ2k = θ ′
2k + θ

′′
2k of θ is not a (B,b)-cocycle, but taking the entire cochain θ into account, this is.

To prove this, it only suffices to check that all the things we defined have the good algebraic

properties to fit into Quillen’ proof. This is the content of the following lemma, which is actually

a "Bianchi identity" with respect to the "connection" ∇ + δbar + ρ.

Lemma 3.8. (Bianchi identity.) We have (δbar + adρ + ad∇)K = (δbar + adρ+ ad∇)eK = 0,

where ad denotes the (graded) adjoint action.
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Remark 3.9. The thing which guarantees this identity is that [∇,∇] = 0. Then, the proof is

the same as that given in the paper of Quillen, [12], Section 7. Thanks to this lemma, we directly

know that (B−b)θ = 0, by adapting the arguments of [12], Sections 7 and 8. For the convenience

of the reader, we recalled these arguments in Appendix B. This result can be refined, and we get

the same results as those obtained using excision.

Theorem 3.10. The inhomogeneous Hochschild cochains

θ ′′
2k − θ ′

2k+2 ∈ Hom2k(ΩB,♮,C)⊕ Hom2k+2(ΩB,♮,C)

for 0 6 k 6 n, define a (B,b)-cocycle.

Proof. Introduce a parameter t ∈ R, and consider the following family of curvatures (Kt) :

Kt = ∇2,t + [tF+ ε log |ξ| ′, ρ]

where ∇2,t = F2 + ε[log |ξ| ′, tF]. Because the identity [∇,∇2,t] still holds, we have a Bianchi

identity

(δbar + adρ+ ad∇)Kt = 0

Thus, the Hochschild cochain

θt = τ♮(∂ρ · eKt) ∈ Hom(ΩB,♮,C)[t]

satisfies the relation (B− b)θt = 0 for every t ∈ R, where we denote by R[t] the polynomials with

coefficients in an algebra R. Therefore, this relation also holds for every k, for the coefficient of

tk. This coefficient is the cochain θ ′′
2k + θ ′

2k+2, thus, θ ′′
2k − θ ′

2k+2 defines a (B,b)-cocycle. �

Denote by Ω = [F, ρ]+ε[log |ξ| ′, ρ+F]. The cochains which cobounds these cocycles (up to modify

each of them by a constant term depending on their degrees) may be obtained rather easily by

using suitable linear combinations of pairs of bar cochains (µ2j,µ2j+1), where µ is given by :

µk = τ

(
∂ρ · e

F2

k!

k∑

i=0

ΩiFΩk−i

)

Doing this gives transgression formulas in the spirit of those obtained in Proposition 3.7.

3.5. Index theorem. Now we know that the Radul cocycle on S0HR
n

c(a0,a1) =

∫

−a0δa1

with δa1 = [log |ξ| ′,a1], is cohomologous to the inhomogeneous (B,b)-cocycle

ψ2n−1 + φ2n+1 ∈ CC2n−1(S0H(R
n))⊕ CC2n+1(S0H(R

n))

recalling that,

ψ2n−1(a0, . . . ,a2n−1) =
1

in(2n)!

2n−1∑

i=0

(−1)i+1

∫

−a0[F,a1] . . . [F,ai]δF[F,ai+1] . . . [F,a2n−1]

φ2n+1(a0, . . . ,a2n+1) =

1

in(2n + 1)!

2n+1∑

i=1

(−1)i−1

∫

−a0[F,a1] . . . [F,ai−1]δai[F,ai+1] . . . [F,a2n+1]
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it suffices to compute ψ2n−1 + φ2n+1 to obtain an index theorem. To begin, we first notice that

by Lemma 3.3, we may rewrite the cocycles above as

(3.12) ψ2n−1(a0, . . . ,a2n−1) =
i2n−1

in(2n)!

2n−1∑

i=0

(−1)i+1

∫

−a0da1 . . .daiδFdai+1 . . .da2n−1

(3.13) φ2n+1(a0, . . . ,a2n+1) =
i2n−1

in(2n + 1)!

2n+1∑

i=1

(−1)i−1

∫

−a0da1 . . .dai−1δaidai+1 . . .da2n+1

The construction of the Wodzicki residue to Λ•T∗Rn-valued symbols in the Paragraph 3.2 imposes

that the
∫
− selects only the coefficient associated to the volume form dx1 . . .dxndξ1 . . .dξn. In

(3.13), this coefficient must be a sum of terms of the form ∂b1

∂x1
. . . ∂bn

∂xn

∂b2n+1

∂ξ1
. . . ∂b2n

∂ξn
for some

Heisenberg symbols b1, . . . ,bn of order 0. Such terms have Heisenberg pseudodifferential order

−(p + 2q).

However, in (3.13), there is in each sum an additional factor of the form δai, which is a symbol

of degree −1. Hence, the symbols appearing in the formula are at most of Heisenberg order

−(p + 2q+ 1), and vanishes because of (3.1).

The formula for the cocycle (3.12) also reduces to a more simple one, but which is in general

non-zero. A simple computation gives that

δF = i




p∑

i=1

ξ3idξi

|ξ| ′4
+
1

2

n∑

i=p+1

ξidξi

|ξ| ′4





Then, we proceed as we did to obtain the formula (3.13). The coefficient on dx1 . . .dxndξ1 . . .dξn
of the symbols in (3.12) must be of the form

(i) ∂b1

∂x1
. . . ∂bn

∂xn

∂b2n+1

∂ξ1
. . .

ξ3
i

|ξ|′4
. . . ∂b2n

∂ξn
if 1 6 i 6 p,

(ii) ∂b1

∂x1
. . . ∂bn

∂xn

∂b2n+1

∂ξ1
. . . ξi

|ξ|′4
. . . ∂b2n

∂ξn
if p + 1 6 i 6 n

where in each point, the term depending on |ξ| ′4 replaces the term ∂b2n+i

∂ξi
. In all case, these terms

are of order −(p+ 2q). Thus, if we denote the Heisenberg principal symbol by

σ : S0H(R
n) → C∞(S∗HR

n)

the symbol of order −(p+ 2q) of a0da1 . . .daiδFdai+1 . . .da2n−1 is

σ(a0)dσ(a1) . . .dσ(ai)δFdσ(ai+1) . . .dσ(a2n−1) = (−1)iδFσ(a0)dσ(a1) . . .dσ(a2n−1)

We emphasize that the latter product is no more the star-product but the usual product of

functions.

The vector field L =
∑p

j=1 ξj∂ξj
+ 2

∑n
j=p+1 ξj∂ξj

on T∗Rn is the generator of the Heisenberg

dilations. This implies that ιLdσ(ai) = dσ(ai) · L = 0 since the ai are symbols of order 0. Using

(3.1), and observing that ιLδF = i, we obtain

ψ2n−1(a0, . . . ,a2n−1) =
(−1)n

(2πi)n(2n − 1)!

∫

S∗

HRn

σ(a0)dσ(a1) . . .dσ(a2n−1)

So, we have proved the following theorem

Theorem 3.11. The Radul cocycle is (B,b)-cohomologous to the homogeneous (B,b)-

cocycle on SH(R
n) defined by

ψ2n−1(a0, . . . ,a2n−1) =
1

(2πi)n(2n − 1)!

∫

S∗

HRn

σ(a0)dσ(a1) . . .dσ(a2n−1)
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From this theorem and the pairing (2.2), given for any [φ] ∈ HP1(SH(R
n) and u ∈ K1(SH(Rn) by

the formula

〈[φ],u〉 =
∑

k>0

(−1)kk!(φ2k+1 ⊗ tr)(u,u−1, . . . ,u,u−1)

one has the following index theorem for Heisenberg elliptic pseudodifferential operators of order 0,

which only depends on the principal symbol. Here, working in the framework of cyclic cohomology

is convenient because we can directly pass from scalar symbols to matrices thanks to Morita

equivalence.

Theorem 3.12. Let P ∈MN(Ψ0
H(R

n)) a Heisenberg elliptic pseudodifferential operator of

symbol u ∈ GLN(S0H(R
n)), and [u] ∈ K1(S

0
H(R

n)) its (odd) K-theory class. Then, we have a

formula for the Fredholm index of P :

Ind(P) = Tr(Ind[u]) = −
(n − 1)!

(2πi)n(2n − 1)!

∫

S∗

HRn

tr(σ(u)−1dσ(u)(dσ(u)−1dσ(u))n−1))

4. Discussion on manifolds with conical singularities

Studying index theory on manifolds with singularities is actually one of the motivations for study-

ing a residue index formula adapted to cases where the zeta function exhibits multiple poles. It is

indeed known for many years that zeta functions of differential operators on conic manifolds have

double poles, see for example the paper of Lescure [8]. In the pseudodifferential case, even triple

poles may occur, see [6].

We shall first recall briefly what we need from the theory of conic manifolds, e.g pseudodifferential

calculus, residues and results on the associated zeta function. This review part essentially follows

the presentation of [6].

4.1. Generalities on b-calculus and cone pseudodifferential operators. In our context,

manifolds with conical singularities are just manifolds with boundary with an additional structure

given by a suitable algebra of differential operators.

More precisely, let M be a compact manifold with (connected) boundary, and r : M → R+ be a

boundary defining function, e.g a smooth function vanishing on ∂M and such that its differential is

non zero on every point of ∂M. We work in a collar neighbourhood [0, 1)r×∂Mx of the boundary,

the subscripts are the notations for local coordinates.

Definition 4.1. A Fuchs type differential operator P of order m is a differential operator

on M which can be written in the form

P(r, x) = r−m
∑

j+|α|6m

aj,α(r, x)(r∂r)
j∂αx

in the collar [0, 1)r × ∂Mx. The space of such operators will be denoted r−mDiffm
b (M).

Diffm
b (M) are the b-differential operators of Melrose’s calculus for manifolds with boundary. We

now recall the associated small b-pseudodifferential calculus Ψb(M).

Let M2
b be the b-stretched product of M, e.g the manifold with corners whose local charts are

given by the usual charts on M2 r ∂M2, and parametrized by polar coordinates over ∂M in M2.

More precisely, writing M×M near r = r ′ = 0 as

M2 ≃ [0, 1]r × [0, 1]r′ × ∂M2

this means that we parametrize the part [0, 1]r × [0, 1]r′ in polar coordinates

r = ρ cos θ, r ′ = ρ sinθ
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for ρ ∈ R+, θ ∈ [0,π/2]. The right and left boundary faces are respectively the points where θ = 0

and θ = π/2.

Let ∆b the b-diagonal of M2
b, that is, the lift of the diagonal in M2. Note that ∆b is in fact

diffeomorphic to M, so that any local chart on ∆b can be considered as a local chart on M.

Definition 4.2. The algebra of b-pseudodifferential operators of orderm, denotedΨm
b (M),

consists of operators P : C∞(M) → C∞(M) having a Schwartz kernel KP such that

(i) Away from ∆b, KP is a smooth kernel, vanishing to infinite order on the right and left

boundary faces.

(ii) On any local chart of M2
b intersecting ∆b of the form Ur,x ×R

n such that ∆b ≃ U× {0},

and where U is a local chart in the collar neighbourhood [0, 1)r × ∂Mx of ∂M, we have

KP(r, x, r
′, x ′) =

1

(2π)n

∫

ei(log(r/r
′)·τ+x·ξ)a(r, x, τ, ξ)dτdξ

where a(y,ν), with y = (r, x) and ν = (τ, ξ), is a classical pseudodifferential symbol of

order m, plus the condition that a is smooth in the neighbourhood of r = 0.

Remark that log(r/r ′) should be singular at r = r ′ = 0 if we would have considered kernels defined

on M2. Introducing the b-stretch product M2
b has the effect of blowing-up this singularity.

The algebra of conic pseudodifferential operators is then the algebra r−ZΨZ

b(M). The opposed

signs in the filtrations are only to emphasize that r∞Ψ−∞
b (M) is the associated ideal of regularizing

operators.

To such an operator A = r−pP ∈ r−pΨm
b , we define on the chart U the local density

ω(P)(r, x) =

(∫

|ν|=1

p−n(r, x, τ, ξ)ιLdτdξ

)
· dr
r
dx

where ν = (τ, ξ) and L is the generator of the dilations.

It turns out (but this is not obvious) that this a priori local quantity does not depend on the

choice of coordinates on M, and hence, define a globally defined density ω(P), smooth on M, that

we call the Wodzicki residue density. Unfortunately, the integral on M of this density does not

converge in general, as the boundary introduces a term in 1/r in the density. However, we can

regularize this integral, thanks to the following lemma. Here, Ωb denote the bundle of b-densities

on M, that is, the trivial line bundle with local basis on the form (dr/r)dx. The following lemma

from Gil and Loya is proved in [6].

Lemma 4.3. Let r−pu ∈ C∞(M,Ωb), and p ∈ R. Then, the function

z ∈ C 7−→
∫

M

rzu

is holomorphic on the half plane Rez > p, and extends to a meromorphic function with only

simple poles at z = p,p− 1, . . .. If p ∈ N, Its residue at z = 0 is given by

(4.1) Resz=0

∫

M

rzu(r, x)
dr

r
dx =

1

p!

∫

∂M

∂pr (r
pu(r, x))r=0 dx

Applying this regularization to the Wodzicki residue density is useful to many "residues traces"

that we immediately study.
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Traces on conic pseudodifferential operators. We first begin by defining different algebras

of pseudodifferential operators, introduced by Melrose and Nistor in [9]. The main algebra that

we shall consider is

A = r−ZΨZ(M) =
⋃

p∈Z

⋃

m∈Z

r−pΨm(M)

which clearly contains the algebra of Fuchs type operators. The ideal of regularizing operators

is

I = r∞Ψ−∞(M) =
⋃

p∈Z

⋃

m∈Z

r−pΨm(M)

and this explains why we note the two filtrations by opposite signs in A. Consider the following

quotients

Iσ = r∞ΨZ(M)/I, I∂ = rZΨ−∞(M)/I

Here, Iσ should be thought as an extension of the algebra of pseudodifferential operators in the

interior of M, whereas I∂ are regularizing operators up to the boundary. We finally define

A∂ = A/Iσ, Aσ = A/I∂, A∂,σ = A/(I∂ + Iσ)

Definition 4.4. Let P ∈ r−pΨm(M) be a conic pseudodifferential operator, with p,m ∈ Z.

According to Lemma 4.3, define the functionals Tr∂,σ, Trσ to be

Tr∂,σ(P) = Resz=0

∫

M

rzω(P)(r, x)
dr

r
dx =

1

p!

∫

∂M

∂pr (r
pω(P)(r, x))r=0 dx(4.2)

Trσ(P) = Pfz=0

∫

M

rzω(P)
dr

r
dx(4.3)

where Pf denotes the constant term in the Laurent expansion of a meromorphic function.

Remark 4.5. Using Lemma 4.3, one can show that Tr∂,σ(P) does not depend on the choice

of the boundary defining function r. This is not the case for Trσ(P), but its dependence on r can

be explicitly determined, cf. [6].

The "Partie Finie" regularization of a trace does not give in general a trace, and this is indeed

the same for the functional Trσ(P) acting on these algebras, the obstruction to that is precisely

the presence of the boundary. However, by definition, Trσ(P) clearly defines an extension of

the Wodzicki residue for pseudodifferential operators, one can expect that it is a trace on Iσ =

r∞ΨZ(M)/I.

Theorem 4.6. (Melrose - Nistor, [6, 9]) Trσ is, up to a multiplicative constant, the unique

trace on the algebra Iσ

By Lemma 4.3 and the definition above, the defect of Trσ to be a trace is precisely measured by

Tr∂,σ(P), which can therefore be viewed as a restriction of the Wodzicki residue to the boundary

∂M. Then, the following proposition seems natural.

Theorem 4.7. (Melrose - Nistor, [6, 9]) Tr∂,σ is, up to a multiplicative constant, the unique

trace on the algebras A∂, Aσ and A∂,σ

These two traces may be seen as "local" terms, since they only depend on the symbol of the

pseudodifferential operator considered. The first can be seen as a trace on interior of M, the

second is related to the boundary ∂M. There is one last trace to introduce, less easy to deal with

because this one is not local.
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Fix a holomorphic family Q(z) ∈ rαzΨ
βz
b (M), with α,β ∈ R, such that Q is the identity at z = 0.

Take P ∈ r−pΨm
b , with p,m ∈ Z and let (PQ(z))∆ be the restriction to the diagonal ∆ of M2 of

the Schwartz kernel of PQ(z). Melrose and Nistor noticed in [9] that (PQ(z))∆ is meromorphic in

C, with values in rαz−pC∞(M) with possible simple poles in the set
{
−n−m

β
,
−n −m + 1

β
, . . .

}

Definition 4.8. Let P ∈ r−pΨm
b be a conic pseudodifferential operator. Then, we define

Tr∂(P) =
1

p!

∫

∂M

∂pr (r
pPfz=0(PQ(z))∆)r=0 dx

If p is not an integer, then, Tr∂(P) is defined to be 0.

Remark 4.9. Tr∂(P) depend on the choice of the operator Q, but the dependence can be

explicitly determined, see [9].

There is an interpretation of Tr∂ analogous to those of Tr∂,σ : If the order of P is less than the

dimension of M, then Tr∂(P) is a kind of L2 of P restricted to the boundary. This is precisely the

content of the following result.

Theorem 4.10. (Melrose - Nistor, [6, 9]) Tr∂(P) is, up to a multiplicative constant, the

unique trace on the algebra

I∂ = rZΨ−∞(M)/I

Heat kernel expansion and zeta function. Now, let ∆ ∈ r−2Diff2
b(M) be fully elliptic, or

parameter elliptic with respect to a parameter α. We refer to [6] for the definition, what we

need to know is just that this condition ensures the existence of the heat kernel e−t∆ of A, and

that operators of the type P∆−z, with P ∈ r−pΨm
b , are of trace-class on rα−mL2b(M) for z in the

half-plane Rez > max{m+n
2

, p
2
}, n = dimM.

Example 4.11. As usual, we work in a collar neighbourhood of M. Then, the operator

(4.4) ∆ =
1

r2

(
(r∂r)

2 − ∆∂M +
(n − 2)2

4
+ a2

)

where a > 1, is and α = 1, is an example of such an operator. See [6] for more details.

Then, the traces introduced in the previous paragraph gives the coefficients of the expansion of

Tr(Pe−t∆).

Theorem 4.12. (Gil - Loya, [6]) Under the conditions above, we have

Tr(Pe−t∆) ∼t→0

∑

k>0

akt
(k−p)/2+(bk+βk log t)tk+(ck+γk log t+δk(log t)2)t(k−m−n)/2

where

βk = Ck(Trσ + Tr∂)(P∆
k)

γk = C′
KTr∂,σ(P∆

k−m−n)

δk = C′′
kTr∂,σ(P∆

k−m−n)

Ck, C
′
K, C′′

k are explicit (but not of interest for us).
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In particular, the coefficient of log t is

−
1

2
Trσ(P) −

1

2
Tr∂(P) −

1

4
Tr∂,σ(P)

and the coefficient of (log t)2 is

−
1

4
Tr∂,σ(P)

Using a Mellin transform, we can write

Tr(P∆−z/2 =
1

Γ(z/2)

∫∞

0

tz−1Tr(Pe−t∆)dt

and knowing, that z 7→
∫∞
1
tz−1Tr(Pe−t∆)dt is entire, the asymptotic expansion of the previous

proposition gives the following corollary on the zeta function.

Corollary 4.13. The zeta function z 7→ Tr(P∆−z/2) is holomorphic in the half-plane

Rez > max{m + n,p}, and extends to a meromorphic function with at most triple poles,

whose set is discrete. At z = 0, there are simple and double poles only, which are respectively

given by the terms of log t and (log t)2 in the heat kernel expansion of Tr(Pe−t∆).

4.2. Spectral triple and regularity. In this paragraph, we want to investigate if Fuchs type

operators on conic manifolds can define an abstract algebra of differential operators, so that the

local index formula we gave in the first section applies.

We start with a conic manifold. Let M be a manifold with connected boundary, with boundary

defining function r, endowed with the algebra of Fuchs type differential operators. The points (i),

(ii), (iii) of Definition 1.1 are verified, if for example we take for ∆ the fully-elliptic operator of

order 2 given in Example 4.4, and require that the order is given by the differential order. More

generally, working locally in a collar neighbourhood [0, 1)r×∂Mx of the boundary ∂M, elementary

calculations shows that

(4.5) [rpDiffm
b (M), rp

′

Diffm ′

b (M)] ⊂ rp+p′

Diffm+m′−1
b (M)

and as we shall see, the fact that the order in r does not decrease is the problem.

Let us denote by rpC∞(∂M) (find a better notation ...) the subalgebra of C∞(M) of functions f

which have an asymptotic expansion

f(r, x) ∼ rpfp(x) + r
p+1fp+1(x) + . . .

in a neighbourhood of r = 0. Here, the ∼ means that the rest of such an expansion is of the form

rNfN(r, x), with fN bounded in the collar [0, 1) × ∂M. The case p = 0 actually corresponds to

the smooth functions on the collar.

For the algebra of the spectral triple, it seems a good choice to look for a candidate among these

classes of functions. But doing so, the formula of Lemma 1.9 is no more asymptotic in the sense

of Definition 1.7. Indeed, if b(r, x) = rp for p ∈ N, the observation (4.5) shows that the terms

b(k) are in rp−2kDiffk
b(M), but by the properties of the zeta function given in the Corollary 4.13,

the function

z 7−→ Tr(b(k)∆−k−z)

is holomorphic for Re(z)+k > max
{

n+k
2

, 2k−p
2

}
, which is equivalent to Re(z) > max

{
n−k
2

,−p
2

}
.

Hence, if p > 0, the function above is in general not holomorphic at 0 when N goes to infinity. In

other terms, the spectral triple we may construct will be not regular, and local index formulas of

Connes-Moscovici, or those given at the beginning cannot be applied directly. As we have seen,

the main problem is due to the fact that there are two notions of order : The differential order,
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which is local, and "the order in r", which is not, and comes form the presence of the boundary

∂M.

However, we may recover some interesting informations on M from the zeta function. Note for

instance that the higher residue
∫
−

2
defined in Proposition 1.10 gives the trace Tr∂,σ.

∫
−

1
is,

modulo some constant terms, the sum of the three functionals Tr∂,σ, Trσ, Tr∂, which illustrates

that it is no more a trace on the algebra of conic pseudodifferential operators. The next paragraph

is a discussion on index theory.

4.3. A local index formula. The formula of Theorem 2.1 cannot be applied directly since we are

not in the context of regular spectral triples. However, there are always some relevant informations

to get on index theory.

Let M be a manifold with boundary, seen as a conic manifold, and consider the extension

0→ r∞Ψ−∞
b (M) → r−ZΨZ

b(M) → r−ZΨZ

b(M)/r∞Ψ−∞
b (M) → 0

Here, by an elliptic pseudodifferential operator P ∈ r−ZΨZ

b(M), we shall mean that P is invertible

in the quotient A = r−ZΨZ

b(M)/r∞Ψ−∞
b (M). Being fully elliptic is an extra condition on the

indicial or normal operator, which guarantees that P is Fredholm between suitable spaces. We

shall not enter into these details : What we want to investigate is just the pairing given in the

paragraph (2.2). In particular, if P is fully elliptic, then the pairing really calculates a Fredholm

index.

Now, let P,Q ∈ r−ZΨZ

b(M). We can still follow the "Partie Finie" argument given in the proof of

Theorem 2.1, so that we still have the Radul cocycle

c(P,Q) = Pfz=0Tr([P,Q]∆−z)

Resz=0Tr

(
P ·
(
Q − ∆−zQ∆−z

z

)
∆−z

)

As we already said, the Connes-Moscovici’s formula in Lemma 1.9 is no more asymptotic, but

from an algebraic viewpoint, the (1.2) still holds. So, for any integer N, which will be thought

large enough, we have

Q− ∆−zQ∆−z =

N∑

k=1

Q(k)∆−k +
1

2πi

∫

λ−z(λ − ∆)−1Q(N+1)(λ − ∆)−N−1 dλ

We now take advantage of the fact that the traces Trσ and Tr∂,σ vanishes when the differential

order of the operators is less that the dimension of M. We then have the following result.

Theorem 4.14. Let M be a conic manifold, i.e a manifold with boundary endowed with

a conic metric, and let r be a boundary defining function. Let ∆ be the "conic laplacian" of

Example 4.11. Then, the Radul cocycle associated to the pseudodifferential extension

0→ r∞Ψ−∞
b (M) → r−ZΨZ

b(M) → r−ZΨZ

b(M)/r∞Ψ−∞
b (M) → 0

is given by the following non local formula :

c(a0,a1) = (Tr∂,σ + Trσ)(a0[log∆,a1]) −
1

2
Tr∂,σ(a0[log∆, [log∆,a1]])+

+ Tr∂

(
a0

N∑

k=1

a
(k)
1 ∆−k

)
+

1

2πi
Tr

(∫
λ−za0(λ − ∆)

−1a
(N+1)
1 (λ − ∆)−N−1

)
dλ

for a0,a1 ∈ ΨZ

b(M)/r∞Ψ−∞
b (M)
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In the right hand-side, the first line consists in local terms only depending on the symbol of P,

the second line gives the non local contributions.

If P ∈ r−ZΨZ

b(M) is an elliptic operator, so that P defines an element in the odd K-theory group

K
alg
1 (A), and Q an inverse of P modulo A, we then obtain a formula for the index of P. The second

line of the formula above should be a part of the eta invariant (when it is defined). A perspective

may be to investigate how to compare these different elements in order to get another definition

of the eta invariant, suitable not only for Dirac operators but also for general pseudodifferential

operators.

Appendix A. Computations of Section 3.1

We give here the details of the different computations allowing to derive the different formulas of

Section 3.

A.1. Cocycles formulas. Recall that

φ̃2k(a0, . . . ,a2k)

=
k!

ik(2k)!

1

2k + 1

2k∑

i=0

Pfz=0Tr

(
a0[F,a1] . . . [F,ai]∆

−z/4[F,ai+1] . . . [F,a2k]⊗
ωn−k

n!

)

Formula (3.4). We compute ψ2k−1 = Bφ̃2k

Bφ̃2k(a0, ...,a2k−1)

=
k!

ik(2k)!

1

2k + 1

2k∑

i=0

Pfz=0Tr
[(

[F,a0] . . . [F,ai]∆
−z/4[F,ai+1] . . . [F,a2k−1]

− [F,a2k−1][F,a0] . . . [F,ai−1]∆
−z/4[F,ai] . . . [F,a2k−2] + . . .

+(−1)2k−1[F,a1] . . . [F,ai+1]∆
−z/4[F,ai+2] . . . [F,a2k−1][F,a0]

)
⊗ ωn−k

n!

]

Then, by the graded trace property, one can remark that all the terms of the sum
∑2k

i=0 . . . are

similar, so, this sum equals (2k + 1) times the term i = 0.

Bφ̃2k(a0, ...,a2k−1)

=
k!

ik(2k)!
Pfz=0Tr

[(
[F,a0] . . . [F,a2k−1]∆

−z/4 − [F,a2k−1][F,a0] . . . [F,a2k−2]∆
−z/4

+ . . . + (−1)2k−1[F,a1] . . . [F,a2k−1][F,a0]∆
−z/4

)
⊗ ωn−k

n!

]

=
k!

ik(2k)!

2k−1∑

i=0

Pfz=0Tr

(
[F,a0] . . . [F,ai]∆

−z/4[F,ai+1] . . . [F,a2k−1]⊗
ωn−k

n!

)
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where we used the graded trace property in the second equality. Then, writing [F,a0] = Fa0−a0F,

using the fact that F anticommutes with the [F,ai] and the graded trace property again, we obtain

Bφ̃2k(a0, ...,a2k−1)

=
k!

ik(2k)!

2k−1∑

i=0

Pfz=0Tr
(
a0[F,a1] . . . [F,ai]((−1)

2k−i∆−z/4F− (−1)iF∆−z/4)[F,ai+1]

. . . [F,a2k−1]⊗
ωn−k

n!

)

=
k!

ik(2k)!

2k−1∑

i=0

(−1)i+1Resz=0Tr

(
a0[F,a1] . . . [F,ai]

[F,∆−z/4]

z
[F,ai+1]

. . . [F,a2k−1]⊗
ωn−k

n!

)

From Theorem 2.1, or, to be more precise, the part of the proof allowing to pass from the Partie

Finie to the residue, we finally obtain

Bφ̃2k(a0, ...,a2k−1)

=
k!

ik(2k)!

2k−1∑

i=0

(−1)i+1

∫

−

(
a0[F,a1] . . . [F,ai]δF[F,ai+1] . . . [F,a2k−1]⊗

ωn−k

n!

)

= ψ2k−1(a0, . . . ,a2k−1)

�

Formula (3.5). We now compute φ2k+1 = bφ̃2k. As [F, . ] is an derivation on SH(R
n), the

following equality may be observed easily

bφ̃2k(a0, ...,a2k+1) =
k!

ik(2k + 1)!

2k∑

i=0

(−1)iPfz=0Tr
(
a0[F,a1] . . . [F,ai][ai+1,∆

−z/4]

[F,ai+2] . . . [F,a2k+1])⊗
ωn−k

n!

)

Again, from the proof of Theorem 2.1, we finally have

bφ̃2k(a0, ...,a2k+1)

=
k!

ik(2k + 1)!

2k+1∑

i=1

(−1)i−1

∫

−

(
a0[F,a1] . . . [F,ai−1]δai[F,ai+1] . . . [F,a2k+1]⊗

ωn−k

n!

)

= φ2k+1(a0, ...,a2k+1)

�

A.2. Transgression formulas. We now give the details of the computations needed to obtain

the formulas of Proposition 3.7. Recall that

γ̃2k+1(a0, . . . ,a2k+1)

=
(k + 1)!

ik+1(2k + 2)!

1

2k + 3

[
Pfz=0Tr

(
a0∆

−z/4F[F,a1] . . . [F,a2k+1]⊗
ωn−k−1

n!

)

+

2k+1∑

i=0

Pfz=0Tr

(
a0F[F,a1] . . . [F,ai]∆

−z[F,ai+1] . . . [F,a2k+1]⊗
ωn−k−1

n!

)]

where the term i = 0 of the sum means Pfz=0Tr
(
a0F∆

−z[F,a1] . . . , [F,a2k+1]⊗ ωn−k−1

n!

)
.
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Formula (3.6). We compute Bγ̃2k+1(a0, . . . ,a2k). By the graded trace property, applying

the operator B to each term of γ̃2k+1 yields the same contribution. As there are (2k + 3) terms,

we have

Bγ̃2k+1(a0, . . . ,a2k) =
(k + 1)!

ik+1(2k + 2)!
Pfz=0Tr

(
F[F,a0] . . . [F,a2k]

+ F[F,a2k][F,a0] . . . [F,a2k−1] + . . . + F[F,a1] . . . F[F,a2k][F,a0])∆
−z/4 ⊗ ωn−k−1

n!

)

Writing (k+1)!

(2k+2)!
= 1

2
k!

(2k+1)!
, knowing that F anticommutes to the [F,ai] and that F2 = iω is

central, developing F[F,a0] and finally using the graded trace property, we obtain

Bγ̃2k+1(a0, . . . ,a2k)

=
k!

ik+1(2k + 1)!
· 1
2

2k∑

i=0

Pfz=0

(
(a0F

2 − Fa0F)[F,a1] . . .∆
−z/4 . . . [F,a2k])⊗

ωn−k−1

n!

)

Once again using that F2 = iω, we can write

φ̃2k(a0, . . . ,a2k)

=
k!

ik+1(2k + 1)!

2k∑

i=0

Pfz=0Tr

(
a0F

2[F,a1] . . . [F,ai]∆
−z/4[F,ai+1] . . . [F,a2k]⊗

ωn−k−1

n!

)

hence,

(φ̃2k − Bγ̃2k+1)(a0, . . . ,a2k)

=
k!

ik+1(2k + 1)!
· 1
2

2k∑

i=0

Pfz=0

(
(a0F

2 + Fa0F)[F,a1] . . .∆
−z/4 . . . [F,a2k]⊗

ωn−k−1

n!

)

=
k!

ik+1(2k + 1)!
· 1
2

2k∑

i=0

Pfz=0

(
a0F[F,a1] . . . ((−1)

iF∆−z/4 − (−1)2k−i∆−z/4F)

. . . [F,a2k]⊗
ωn−k−1

n!

)

Finally, we obtain

(φ̃2k − Bγ̃2k+1)(a0, . . . ,a2k)

=
k!

2ik+1(2k + 1)!

2k∑

i=0

(−1)i
∫

−

(
a0F[F,a1] . . . δF . . . [F,a2k]⊗

ωn−k−1

n!

)

= γ2k(a0, . . . ,a2k)

�

Formula (3.7). We now calculate bγ̃2k+1. Writing a1F = −[F,a1] + Fa1 and using the

derivation property of [F, . ],

bγ̃2k+1(a0, . . . ,a2k+2)

= −φ̃2k+2(a0, . . . ,a2k+2)

+
(k + 1)!

ik+1(2k + 3)!

[
Pfz=0

(
a0[a1,∆

−z/4][F,a2] . . . [F,a2k+2]⊗
ωn−k−1

n!

)

+

2k+1∑

i=0

(−1)iPfz=0

(
a0F[F,a1] . . . [ai+1,∆

−z/4][F,a2] . . . [F,a2k+2]⊗
ωn−k−1

n!

)]
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Finally,

(φ̃2k+2 + bγ̃2k+1)(a0, . . . ,a2k+2)

=
(k + 1)!

ik+1(2k + 3)!

[ ∫
−

(
a0δa1[F,a2] . . . [F,a2k+2]⊗

ωn−k−1

n!

)

+

2k+2∑

i=1

(−1)i−1

∫

−

(
a0F[F,a1] . . . δai . . . [F,a2k+2]⊗

ωn−k−1

n!

)]

= γ2k+2(a0, . . . ,a2k+2)

�

Appendix B. Complements on Section 3.2

For the convenience of the reader, we recall here Quillen’s picture of (B,b)-cocycles and how it is

used to obtain Theorem 3.10 from the Bianchi identity of Lemma B.5.

B.1. More on Quillen’s formalism. Let A be an associative algebra over C, and B be the bar

construction of A. Recall that ΩB and ΩB,♮ are the following bicomodules over B :

ΩB = B⊗A⊗ B, ΩB,♮ = A⊗ B

Theorem B.1. One has a complex of period 2

. . .
∂ // B

β // ΩB,♮ ∂ // B
β // . . .

with ∂ = ∂♮ : ΩB,♮ → B, where ♮ : ΩB,♮ → ΩB, ∂ : ΩB → B, β : B → ΩB,♮ are defined by the

following formulas :

♮(a1 ⊗ (a2, . . . ,an)) =

n∑

i=1

(−1)i(n−1)(ai+1, . . . ,an)⊗ a1 ⊗ (a2, . . . ,ai)

∂(a1, . . . ,ap−1)⊗ ap ⊗ (ap+1, . . . ,an) = (a1, . . . ,an)

∂(a1 ⊗ (a2, . . . ,an)) =

n∑

i=1

(−1)i(n−1)(ai+1, . . . ,an,a1,a2, . . . ,ai)

β(a1, . . . ,an) = (−1)n−1an ⊗ (a1, . . . ,an−1) − a1 ⊗ (a2, . . . ,an)

As Quillen shows in [12], it turns out that the 2-periodic complex constructed above is exactly the

Loday-Quillen cyclic bicomplex with degrees shifted by one, and is therefore equivalent to Connes

(B,b)-bicomplex. The shift of the degrees makes that elements of the algebra A become odd in

the bar construction, while they are even in the cyclic bicomplex.

Now, let L be a differential graded algebra. The maps ∂ and β of the periodic complex induces

maps from bar cochains to Hochschild cochains (with values in L) and conversely by pull-back.

The following formula is a key step.

Lemma B.2. Let f,g ∈ Hom(B,L) be bar cochains. Then, we have

β(τ♮(∂f · g)) = −τ([f,g])

We carry a purely computational proof, because of the way we introduced Quillen’s formalism. A

more elegant and conceptual proof is given in Quillen’s article [12], paragraph 5.2. The proof of

this lemma is based on the following formula,

(B.1) (∂f · g)♮(a1 ⊗ (a2, . . . ,an)) =
∑

n−p<i6n

(−1)i(n−1)(f · g)(ai+1, . . .an,a1, . . . ,ai)
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where f and g be bar cochains of respective degrees p and n − p. The case p = 1 will be often

used, so we give it :

(B.2) (∂f · g)♮(a1 ⊗ (a2, . . . ,an)) = (−1)|g|f(a1)g(a2, . . . ,an)

Proof. Let f and g be bar cochains of respective degrees p and n − p. By definition,

β(τ♮(∂f · g)) = τ(∂f · g)♮β, and using (B.1), so,

β(τ♮(∂f · g))(a1, . . . ,an)

= τ(∂f · g)♮(((−1)n−1an ⊗ (a1, . . . ,an−1) − a1 ⊗ (a2, . . . ,an))

= τ




∑

n−p<i6n

(−1)n−1(−1)i(n−1)(f · g)(ai, . . .an,a1, . . . ,ai−1)

−
∑

n−p<i6n

(−1)i(n−1)(f · g)(ai+1, . . .an,a1, . . . ,ai)




The first sum of the last equality can be rewritten
∑

n−p<i6n

(−1)n−1(−1)i(n−1)(f · g)(ai, . . .an,a1, . . . ,ai−1)

=
∑

n−p−1<i6n−1

(−1)i(n−1)(f · g)(ai+1, . . .an,a1, . . . ,ai)

and noting that (−1)n(n−1) = 1, we obtain

β(τ♮(∂f · g))(a1, . . . ,an)

= τ((−1)(n−p)(n−1)(f · g)(an−p+1, . . . ,an,a1, . . . ,an−p) − (f · g)(a1, . . . ,an))
= τ((−1)(n−p)(n−1)(−1)p|g|f(an−p+1, . . . ,an)g(a1, . . . ,an−p) − (f · g)(a1, . . . ,an))
= τ((−1)(n−p)(n−1)(−1)p|g|(−1)(|f|+p)(|g|+n−p)g(a1, . . . ,an−p)f(an−p+1, . . . ,an)

− (f · g)(a1, . . . ,an))
= τ((−1)(n−p)(n−p−1)(−1)|f|·|g|(g · f)(a1, . . . ,an−p,an−p+1, . . . ,an)

− (f · g)(a1, . . . ,an))
where we used the (graded) trace property of τ in the third equality.

As we have (−1)(n−p)(n−p−1) = 1, this yields the result. �

We can now give Quillen’s picture of (B,b)-cocycles.

Theorem B.3. Let θ ∈ Hom(ΩB,♮,C) be a Hochschild cochain, and η ∈ Hom(B,C) be the

bar cochain defined by

ηk(a1, . . . ,ak) = θ(1,a1, . . . ,ak)

Suppose that for each k, we have

δbarηk = (−1)kβθk+1, δbarθk+1 = (−1)k∂ηk+2

and that in addition, θn+1(a0,a1, . . . ,an) = 0 if ai = 1, for i > 1.

Then, for all k, Bθk+1 = bθk−1.

Remark B.4. This means that if we redefine signs correctly in θ, we obtain a (B,b)-cocycle

in our sign conventions.
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B.2. Complements on Remark 3.9. We give here the details of Quillen’s arguments. The only

thing we have done towards the original paper [12] is to mix the arguments of Sections 7 and 8.

Lemma B.5. (Bianchi identity.) We have (δbar + adρ+ ad∇)K = (δbar + adρ+ ad∇)eK = 0,

where ad denotes the (graded) adjoint action.

Proof. Let D be the derivation δbar + adρ + ad∇. It suffices to check that D(K) = 0, the

other equality will follow in virtue of the differentiation formula

D(eK) =

∫1

0

e(1−s)KD(K)esKds

We first remark that [∇,∇2] = 0, using that ε commutes (in the graded sense) with elements of

Hom(B,L) and that ε2 = 0. Furthermore δbar∇2 = 0 since δbar vanishes on 0-cochains. Therefore,

D(K) = (δbar + adρ+ ad∇)(∇2 + [∇, ρ])

= δbar[∇, ρ] + [ρ, [∇, ρ]] + [ρ,∇2] + [∇, [∇, ρ]]

= [∇, ρ2] + ρ[∇, ρ] − [∇, ρ]ρ + [ρ,∇2] + [∇2, ρ]

= 0

The result is proved. �

According to Theorem B.3, let us define the bar cochain η ∈ Hom(B,C) :

η2k−1(a1, . . . ,a2k−1) = θ2k(1,a1, . . . ,a2k+1)

Also remark that η = τ(eK).

Proposition B.6. The bar and Hochschild cochains η and θ satisfies the relations

δbarη = ±βθ, δbarθ = ±∂η
The ± means that the sign is positive in the even case and negative in the odd case.

Proof. For the first formula of the proposition, we have

δbarη = δbar(τ(e
K)) = τ(δbare

K) = τ(δbare
K + [∇, eK]) = −τ([ρ, eK]) = ±β(τ♮(∂ρ · eK))

The second equality uses the trace property of τ, the third is the Bianchi identity of the lemma

above, and the last one is Lemma B.2.

For the second formula, first recall that δbarρ+ ρ
2 = 0. Then, one has :

δbar(τ
♮(∂ρ · eK)) = τ♮(∂(−ρ2)eK − ∂ρ · δbare

K)

0 = τ♮([ρ,∂ρ · eK]) = τ♮((ρ · ∂ρ+ ∂ρ · ρ)eK − ∂ρ · [ρ, eK])
0 = τ♮([∇,∂ρ · eK]) = τ♮(∂[∇, ρ]eK − ∂ρ · [∇, eK])

Adding these three equations, using Bianchi identity and δbarρ+ ρ
2 = 0 yields

δbar(τ
♮(∂ρ · eK)) = τ♮(∂[∇, ρ]eK) = τ♮(∂K · eK)

The last equality follows from the definition of K. Moreover,

∂(eK) = τ♮(∂eK) =

∫1

0

τ♮(e(1−t)K · ∂K · etK)dt = τ♮(∂K · eK)

where last equality stands because of the trace property. This concludes the proof. �

Hence, Theorem B.3 shows that θ gives rise to a (B,b)-cocycle (up to changing signs). The same

arguments may be used to complete the proof of Theorem 3.10.
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