
HAL Id: hal-00860384
https://hal.science/hal-00860384v1

Submitted on 1 Sep 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

ATNoSFERES : a Model for Evolutive Agent Behaviors
Samuel Landau, Sébastien Picault, Alexis Drogoul

To cite this version:
Samuel Landau, Sébastien Picault, Alexis Drogoul. ATNoSFERES : a Model for Evolutive Agent
Behaviors. AISB Symposium on Adaptive Agents and Multi-Agent Systems, 2001, York, United
Kingdom. pp.1. �hal-00860384�

https://hal.science/hal-00860384v1
https://hal.archives-ouvertes.fr


ATNoSFERES : a Model for Evolutive Agent Behaviors

Samuel Landau; Sébastien Picault; Alexis Drogoul
LIP6; case 169; 4 place Jussieu, 75252 Paris Cedex 05, FRANCE

�Samuel.Landau,Sebastien.Picault,Alexis.Drogoul�@lip6.fr
http://www-poleia.lip6.fr/˜�landau,picault,drogoul�

Abstract

This paper introduces ATNoSFERES, a model aimed at designing evolutive and adaptive behaviors for agents or multi-
agent systems. We first discuss briefly the main problems raised by classical evolutionary models, which are not intended
to produce agents or behaviors but to solve problems. Then we provide detailed explanations about the model we propose
and its components. We also show through a simple example how the system works, and give some experimental results.
Finally, we discuss the features of our model and propose extensions.

Keywords

Genetic encoding, evolutionary computing, adaptive be-
haviors, agents, artificial life, ATN1

1 Introduction: limitations of exist-
ing models

ATNoSFERES (Picault and Landau, 2001) is a model for
designing evolvable agent behaviors, possibly with agents
operating at different organization levels. The behavior of
the agents of each level may either be given, or be built
from an hereditary substrate (a bit string called “chromo-
some”). This model is an attempt to overcome problems
raised by classical evolutionary paradigms in the design
of behaviors.

Genetic algorithms (Holland, 1975), (Goldberg, 1989),
(Bäck and Schwefel, 1993) allow non-semantic manipu-
lations of the genotypes (strings of bits), inducing in most
cases gradual modifications in the phenotypes. Thus they
ensure that individuals produce children with quite the
same level of adaptation to the environment than their
own. However, genetic algorithms have a very poor ex-
pressive power, since their purpose is the optimization of
a set of parameters in behaviors which have to be given a
priori.

On the contrary, the genetic programming paradigm
(Koza, 1992), (Gruau, 1994) is based on the evolution of
programs (i.e. instructions trees), thus their expressive
power is much higher. But the genetic operators asso-
ciated with trees operate in a syntactic way on semantic
structures, so they induce strong variations in the effects
of the resulting program ; in addition, the impact of the
genetic operators tightly depends on the level at which

1ATN stands for Augmented Transition Network

they operate (a modification near the root is likely to have
a deeper influence than one on a leaf). Moreover, the be-
havior of an agent cannot be reduced to a program.

The Typogenetics (Hofstadter, 1979) is an interesting
attempt to build a “life-like” formal system: strings are
translated into “typoenzymes” that operate on the exist-
ing strings to produce new ones. There are no genetic
operators in such a system – it works and evolves au-
tonomously. However, on the one hand the translation of
the strings and the production of new strings are pure de-
terministic processes (this can obviously become harmful
when trapped into a loop); on the other hand, the system
is not intended to be “used” for producing behaviors: its
purpose is only the production of strings.

Artifical life models such as Tierra (Ray, 1990) try to
investigate the possibilities given by the self-replication
of programs in a virtual world. In Tierra this world is a
virtual machine producing random errors ; the programs
replicate by treating their own instructions as data. Life-
like phenomena (parasitism for instance) have been ob-
served; however, there is no control at all over the evo-
lution of the system, and the behaviors of these virtual
organisms are only directed by their survival in the “mem-
ory” of the machine, i.e. in a very specific environment.

A first attempt to escape the behavioral limitations of
genetic algorithms, and to reinforce the autonomy of the
expression of the genotype without being caught into a
useless virtual world, has been implemented in the EDEN
model (Picault et al., 1997). In that model, a string is
translated into a list of instructions that are used as a pro-
gram, called an “enzyme”. These enzymes might have
very diverse functions (depending on the specification of
their “programming language”), among them, on the one
hand the translation of the string into new enzymes, and
on the other hand genetic operations on the string (random
mutations, deletions, insertion of substrings, replications,
etc.). The main obstacle in such a system is the high sen-



sibility of the enzymes to mutations, like in genetic pro-
gramming. This issue is crucial since the translation of
the string is performed by an enzyme (built from a gene
in the string, which is subject to mutations).

2 Description of our model

2.1 General principles

ATNoSFERES uses the SFERES framework (Landau
et al., 2001) as a tool for modelling the agents classes,
integrating those classes to the system, designing an envi-
ronmental simulator and providing classical evolutionary
techniques.

In particular, it provides a general class, the ATNA-
gent, the behavior of which is produced through the fol-
lowing steps:

1. a translator produces tokens from the string,

2. an interpreter uses these tokens as instructions to
build a graph (an ATN1 (Woods, 1970)),

3. finally, the graph determines the behavior of the
agent.

The translator and the interpreter themselves are agents;
in the following lines, we will consider that their behav-
ior is given, but it could evolve as well (like in EDEN) to
provide the system with higher autonomy.

2.2 The ATN Graph and the ATNAgent

The ATNAgent class is intended to behave according an
ATN graph. ATN have previously been used by Gues-
soum (1996) for designing agent behavior. Each subclass
of ATNAgent is associated with two collections of to-
kens: condition ones and action ones. The actions are be-
havioral “primitives” that can be performed by the agent,
the conditions are perceptions or stimuli that induce ac-
tion selection. The edges of the graph are labeled with a
set of conditions and a sequence of actions (see figure 1).

The ATN built by adding nodes and edges to a ba-
sic structure containing two nodes: a “Real Start Node”
and a “Real End Node”. At each time step, the agent (ini-
tially in the “Real Start Node” state) randomly chooses an
edge among those having either no condition in their la-
bel, or all conditions simultaneously true. It performs the
actions associated with this edge and jumps to the desti-
nation node. It stops working when its state is the “Real
End Node”.

2.3 The Interpreter

The purpose of the interpreter is to build an ATN from
tokens. Some of these tokens will be action or condition
ones that are used to label edges between nodes in the

Figure 1: An example of ATN.

Real
Start
Node

1 2 3

4

5

Real
End
Node

action1! condition1?

action2!

condition2?

action3!
action2!

co
nd

iti
on

3?

action5!
condition1?

condition4?

ATN. The other ones are interpreted as instructions, ei-
ther to create nodes or connect them, or to manipulate the
structure under construction.

As we mentioned in section 1, the structure built by
the tokens sequence has to be robust towards mutations.
For instance, the replacement of one token by another,
or its deletion, should have only a local impact, rather
than transforming the whole graph. Therefore, we use a
“top-level” programming language operating on a list (see
table 1).

Table 1: The ATN-building language.

token (initial list state) �� (resulting list)
condition? �� ���� �� �condition? � ����
action! �� ���� �� �action! � ����

node �� ���� �� ��� � ����a

startNode �� ���� �� ��� � ����b

endNode �� ���� �� ��� � ����c

connect �c2? � �� � c1? � a2! a1! � �� � ����
�� �� �� � � � �� � ����d

dup �� � ���� �� �� � � ����
dupObject �� � �� � ���� �� ��� � � �� � ����

popRoll �� � ��� �� �� �� ��� � ��
pushRoll �� ��� � �� �� �� � ��� ��

swap �� � ���� �� �� � ����
forget �� � ���� � �� ���� �� �� ���� � �� � ����e

recall �� ���� � �� � ���� �� �� � ���� � �� ����e

acreates a node ��
bcreates a node �� and connects “RealStartNode” to it
ccreates a node �� and connects it to “RealEndNode”
dcreates an edge between �� and��, with (c1?& c2?) as condition

label and the list �a1!,a2!� as action label
ewith an auxiliary stack

If an instruction cannot execute successfully, it is sim-
ply ignored, except instructions operating on nodes (i.e.
connect and dupObject) which are “pushed” in the list
until new nodes are produced; then they try to execute



again with the new data. Finally, when the interpreter
does not receive tokens any more, it terminates the ATN:
actions and conditions tokens still present between nodes
are treated as implicit connections (so that new edges are
created) and the consistency of the ATN is checked (“Real
Start Node” is linked to nodes having no incoming edges,
except from themselves; in the same way, nodes having
no outgoing edges are linked to “Real End Node”).

2.4 The Translator

The translator has a very simple behavior. It reads the
genotype (a string of bits) and decodes it into a sequence
of tokens. It uses a genetic code, i.e. a function

� � ��� ��� �� � (�� � � ��)

where � is a set of tokens, which includes both action and
condition ones (specific to the agent to build) and those
understood by the interpreter (see table 1).

Depending on the number of tokens available, the ge-
netic code might be more or less redundant. If necessary,
it can be designed in order to resist mutations, but we will
not discuss this issue in this paper.

3 Experiments

The purpose of this section is both to demonstrate how
the system works by using it on a simple example (with a
single class of agents operating at the same level), and to
provide some results regarding the behaviors that evolved
in the following experiments.

3.1 Experimental setup

To illustrate the evolution of simple behaviors, let us con-
sider an experiment with a discrete environment contain-
ing a color light bulb and a single agent (instance of a sub-
class of the general ATNAgent) with the action and per-
ception abilities described in table 2. We want the agent
to go to the right when the light is green and to the left
when it is red. To make the agent behavior evolve, we ap-
ply the rules of darwinian selection over a population of
100 homogeneous agents.

Table 2: Action and condition tokens of the agent.

Actions Conditions
N! no action

R!
move to the
right

g?
true when the light is
green

L!
move to the
left

r?
true when the light is
red

U! move up rand?
true with probability
� 	 ��


D! move down

The genetic code for these agents contains the 11 in-
terpreter tokens and the 8 action/condition tokens; thus
it needs at least 32=2� codons. In the following exper-
iments, a 32-codon genetic code has been automatically
built from a circular list containing the interpreter and ac-
tion/condition tokens. The chromosome of the agents is
initially a random bit string with a random length (from
200 to 300 bits).

We evaluate the fitness of each agent by making it run
during 100 time steps in its environment. The color of the
light bulb randomly flips (with probability 0.05 at each
time step) from green to red and vice-versa. The reward-
ing rules in the fitness function are: +1 point if the move
is correct, -1 point if it is erroneous (e.g. left when green),
0 in the other cases (e.g. move up). Only the first move
performed during the current time step is rewarded (“do
nothing” is not considered as a move).

At each generation, the agents are evaluated through
their average fitness (calculated over 10 runs in the above
conditions) and selected to produce 30 new agents (by
crossing over chromosomes), thus replacing 30 agents re-
moved from the old population (depending on their fit-
ness, too).

We have experimented with various mutation strate-
gies, among them:

1. before their evaluation, all agents are subject to punc-
tual random mutations of their chromosome with
rate 	 (	 % of the bits are randomly flipped);

2. same situation, but � % of the mutations are ran-
dom insertions or deletions of codons in the chro-
mosome, instead of punctual mutations.

3.2 Results

Figure 2: Evolution of the fitness (punctual mutations
only, 	 = 1 %).

-20

0

20

40

60

80

100

0 50 100 150 200 250 300 350 400 450 500

fit
ne

ss

generations

max fitness
avg fitness
min fitness

As agents are initialized in their “Real Start Node”
state, the first time step is used to jump to one of the avail-
able nodes. Then, during the 99 other time steps, the be-



Figure 3: Evolution of the fitness and chromosome length
(random insertions and deletions, 	 = 1 %, � = 20 %)

-20

0

20

40

60

80

100

0 50 100 150 200 250 300 350 400 450 500

fit
ne

ss

generations

max fitness
avg fitness
min fitness

200

250

300

350

400

0 50 100 150 200 250 300 350 400 450 500

ch
ro

m
os

om
e 

le
ng

th

generations

max chr length
avg chr length
min chr length

havior of the agents only depends from their ATN struc-
ture and its ability to respond to environmental changes.
Thus, the maximum fitness in these experiments is 99
(correct answers at each time step after the first one).

Figure 2 shows the average evolution of the fitness
with the first mutation strategy. It has been calculated
from 10 experiments. Figure 3 shows the average evolu-
tion of the fitness with the second mutation strategy, and
the evolution of the chromosome length (10 experiments
too). In a few cases (almost in the first strategy), no good
solution is found before 500 generations.

4 Discussions

Though the problem to solve is very simple, these results
validate the ATNoSFERES model for evolving agent be-
haviors from a fine-grain substrate. But we would like to
focus on the specificity of this model and give a qualita-
tive analysis of the behaviors produced by natural selec-
tion.

The ATN described on figure 4 is the “optimal” so-
lution to this problem (99 points with the simplest ATN
structure): when the light is red, go to the left; when it
is green, go to the right. To produce this ATN, only 35

bits are theoretically required, for example to encode the
following tokens:

node, g?, R!, dupObject, L!, r?, dupObject

(with a maximal use of implicit connections). But in this
solution the order and nature of tokens is crucial, thus
it is highly vulnerable to mutations. In addition to this,
the agents have much more bits in their chromosome than
necessary – this can be a source of inadequate behavior.

Figure 4: The “optimal” ATN (providing the highest fit-
ness with the simplest structure).

Real
Start
Node

1
Real
End
Node

g?

R!

r?

L!

Figure 5: An ATN built by natural selection, implement-
ing the best behavioral strategy.

Real
Start
Node

1

2

3 4

5
Real
End
Node

R!R!

N!

g?

R!

r?

L!

R!

r?

L!

The experimental results show that two strategies are
used to produce an adequate behavior (99 points). The
first one consists in building a simple ATN (very close or
same than the “optimal” ATN on figure 4), by delaying
the node creation and thus using tokens that have no ef-
fect. For instance, a 207-bit chromosome encoding the
following tokens:

L!, dup, swap, popRoll, popRoll, forget, popRoll,
swap, forget, recall, recall, R!, L!, recall, rand?,
L!, forget, startNode, R!, dup, g?, dupObject,
popRoll, pushRoll, L!, forget, pushRoll, L!, r?,
startNode, forget, dup, dupObject, r?, R!, forget,
dup, R!, dup, g?, popRoll

produces an ATN very close to figure 4, with labels (r?,
L!L!R!R!) on one edge and (g?, R!R!) on the other.
This is a good example of using the properties of the
ATN-building language.

The agents using the second strategy build a complex
ATN in which a small subset only is used, for instance like



the ATN on figure 5. It leads to exactly the same behavior
than the “optimal” solution, since a large part of it cannot
be reached from the other nodes.

5 Conclusions and perspectives

We have presented ATNoSFERES, a model for evolutive
agents behaviors.

As an evolutive approach, ATNoSFERES has two
main features. First, it separates the genetic information
structure (plain bit string, the lexical structure) from its
interpretation (ATN, the semantic structure). Thus, the
semantic structure built is always correct. The behavior
described by the ATN always has a meaning – even if it
is not adequate to the environment. Not having to worry
about the syntactic correctness of the automatically de-
signed semantic structure is a good point over many other
evolutive approaches.

The second main evolutive features are related to the
genetic operators. The level of influence of the classical
genetic operators – mutation and crossover – does not de-
pend on the parts of the bit string they involve (neither on
their location in the bit string nor on their size). This is
also a main advantage over many evolutive approaches.
As a matter of fact, mutations only have a local impact in
the expression of the genetic information, and crossovers
involve bit substrings which carry locally functional ge-
netic code. We might also consider more exotic genetic
operators, such as deletions/insertions in the bit string.
These operators in particular permit to smoothly manage
string resizing, since they only have a local impact in the
ATNoSFERES model.

As a model for designing agents, ATNoSFERES does
not set any restriction on the agent level specification.
Furthermore, agents can be introduced later on at a lower
organization level (for instance inside an agent), keeping
the latter structure, if a finer-grain agent specification is
needed.

Finally, as a model for automatic behavior design, AT-
NoSFERES provides a simplified framework, where only
the conditions and actions of the agents have to be spec-
ified. Then, with an ATN as the structure for behavior
description, it is possible to directly describe and explain
the behavior of any agent.

In further works, we plan to introduce a metabolic reg-
ulatory mechanism, associated with the actions within the
ATN. It will act as an environmental constraint, allowing
or disabling some edge transitions at a given time.

References

Thomas Bäck and Hans-Paul Schwefel. An overview
of evolutionary algorithms for parameter optimization.
Evolutionary Computation, 1(1):1–23, 1993.

David Edward Goldberg. Genetic algorithms in search,
optimization, and machine learning. Addison-Wesley
Pub. Co., 1989.

Frédéric Gruau. Neural Network Synthesis Using Cellular
Encoding and the Genetic Algorithm. PhD thesis, ENS
Lyon – Université Lyon I, january 1994.

Zahia Guessoum. Un environnement opérationnel de con-
ception et de réalisation de systèmes multi-agents. PhD
thesis, LIP6 – Université Paris VI, may 1996.

Douglas Hofstadter. Gödel, Escher, Bach: an Eternal
Golden Braid. Basic Books, Inc., New York, 1979.

John Henry Holland. Adaptation in natural and artificial
systems: an introductory analysis with applications to
biology, control, and artificial intelligence. Ann Arbor:
University of Michigan Press, 1975.

John R. Koza. Genetic Programming: On the Program-
ming of Computers by Means of Natural Selection.
MIT Press, Cambridge, Massachusetts, 1992.

Samuel Landau, Stéphane Doncieux, Alexis Drogoul, and
Jean-Arcady Meyer. SFERES, a Framework for De-
signing Adaptive Multi-Agent Systems. Technical re-
port, LIP6, Paris, 2001.

C. Langton, C. Taylor, J. D. Farmer, and S. Rasmussen,
editors. Artificial Life II, London, 1990. Addison-
Wesley.

Sébastien Picault and Samuel Landau. ATNoSFERES : a
Darwinian Evolutionary Model for Individual or Col-
lective Agent Behavior. Technical report, LIP6, Paris,
2001.

Sébastien Picault, David Servat, and Frédéric Ka-
plan. EDEN : un système évolutif endosémantique.
Technical report, École Nationale Supérieure des
Télécommunications, Paris, septembre 1997.

Thomas S. Ray. An evolutionary approach to synthetic
biology, zen and the art of creating life. In Langton
et al. (1990).

William A. Woods. Transition networks grammars for
natural language analysis. Communications of the As-
sociation for the Computational Machinery, 13(10):
591–606, 1970.


