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Bessel inequality for robust stability analysis of time-delay system

F. Gouaisbauta,b, Y. Aribaa,c and A. Seureta,d

Abstract— This paper addresses the problem of the stability
analysis for a linear time-delay systems via a robust analysis
approach and especially the quadratic separation framework.
To this end, we use the Bessel inequality for building operators
that depend on the delay. They not only allow us to model the
system as an uncertain feedback system but also to control
the accuracy of the approximations made. Then, a set of
LMIs conditions are proposed which tends on examples to the
analytical bounds for both delay dependent stability and delay
range stability.

I. INTRODUCTION

The rapid development of networked controlled systems

has highlighted the need to understand why and how a

transmission delay could destabilize an overall closed-loop

system. For over a decade, many researchers have thus

studied stability of delay systems and nowadays several

methodologies are well established. Among the most in-

teresting are the analytical methods based on the study of

the characteristic equation [1], [2], which often lead to non

conservative results. The other side of the coin is that such

methods are not suitable for uncertain systems and time-

varying delay systems. Other popular techniques are those

based on the search of a Lyapunov functional ([3] and

references therein). Indeed, if a linear delay system is stable,

a Lyapunov functional, called complete Lyapunov functional,

may be built. Nevertheless, it reveals itself quite complicated

because these parameters are solutions of a partial differential

equation [4]. Many works are therefore dedicated to the

construction of approximate complete Lyapunov functionals

by considering extended state variables [5], [6] at the cost

of an increased computational complexity. At the heart of

all these techniques are the use of integral inequalities

as Jensen’s [7] or Wirtinger’s ones [8], [9], [10]. These

inequalities are essential and have been developed to take

advantage of information on delayed signals and to reduce

the conservatism induced when one bounds the derivative

of the Lyapunov functional. The obtained criteria are then

often transformed into LMIs criteria through the use of slack

variables [11], [12], [13], [14]. Note that all these techniques

have been extended to various cases like time varying delay

or uncertain systems. At last, some methods lie on the use of

robust analysis methods such as Scaled Small Gain Theorem
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[15], [16], IQCs [17] or Quadratic Separation [18]. In this

context, the general idea is to consider the delay system as an

uncertain linear finite dimensional system. More precisely,

the trick is to model the delay system as a nominal finite

dimensional system in closed loop with some uncertainties

whose characteristics depend on the uncertain delay. Once

the modeling completed, a final work is to characterize the

uncertainty as precisely as possible. Generally, this uncer-

tainty is highly structured and is not a rational function with

respect to s. This difficulty is overcome by covering the delay

uncertainty by a class of larger unstructured uncertainties

whose bounds depend directly on the value of the delay [16].

This last step brings a lot of conservatism and many studies

have been conducted to understand the ins and outs [3].

In this paper, we are interested in studying stability of a linear

time delay system by use of the quadratic separation concept,

known to give interesting results [19]. The interconnected

model is provided by introducing a set of uncertainties which

can be viewed as the projection of a delay operator to the set

of Legendre polynomials. Once the model is designed, the

uncertainty set is embedded into a more suitable uncertainty

by the use of Bessel inequality. Invoking classical quadratic

separation theorem, it results a series of LMIs conditions

less and less conservative as the sequence of Legendre

polynomials is increasing. Note that two different types of

results are proposed, a pointwise delay stability theorem and

a delay-range stability theorem. On numerical examples, our

results show a clear improvement for the delay bound and

a reduction of numerical complexity. The paper is organized

as follows. Section 2 is devoted to the preliminaries and

especially recalls Bessel inequality. Section 3 provides with

a first result based on Bessel inequality. Then, section 4

develop the main results, a set of less and less conservative

LMIs conditions for the stability analysis. Two types of

results are proposed, a pointwise theorem and a delay range

theorem. Section 5 is dedicated to the illustration of our

techniques on some examples extracted from the literature.

Notations: Throughout the paper, the following notations are

used. 1n and 0m×n denote respectively the identity matrix of

size n and null matrix of size m × n. If the context allows

it, the dimensions of these matrices will be omitted. For two

symmetric matrices, A and B, A > (≥) B means that A−B
is (semi-) positive definite. AT denotes the transpose of A.

diag(A,B,C) stands for the block diagonal matrix.

II. PRELIMINARIES

A. Definitions and problem statement

We define by H the vector space of complex valued square

integrable functions on [−h, 0]. For any functions in H , we



define the hermitian inner product

〈f, g〉 =
∫ 0

−h

f(θ)g∗(θ)dθ,

where f and g belong to H . Basically, xi, xj ∈ H, i 6= j
are orthogonal if and only if 〈xi, xj〉 = 0. A sequence of

H , {e0, ..., en} is an orthonormal sequence if and only if

〈ei, ej〉 = κij , where κij is the kronecker notation. Based

on these definitions, we recall the Bessel inequality that will

be employed later in the paper.

Lemma 1 (Bessel inequality): Let {e0, e1, e2, ..., en} be

an orthonormal sequence in H . Then, for any f in H the

following inequality holds:

〈f, f〉 ≥
n∑

i=0

|〈f, ei〉|2

B. Problem statement

We consider the following time-delay system:

ẋ(t) = Ax(t) +Adx(t− h) (1)

where x(t) ∈ R
n is the state vector, A and Ad ∈ R

n×n

are constant matrices. The constant h is an unknown delay

belonging to an interval [hmin, hmax]. We aim at proving

stability of the time delay system (1) for all delays belonging

to this interval. To this end, we propose to employ the

concept of robust analysis widely used in the literature and

more specifically the principle of quadratic separation [19].

The key idea is to reformulate the delay system (1) as an

uncertain feedback system represented by the Figure 1. The

uncertainty ∇ is constructed according to the delay dynamics

[18], [17]. Then, the stability conditions follow by invoking

the theorem introduced below.

Let consider the interconnection defined by Figure 1 where

+

+
w

w

z

z

Fig. 1. Feedback system.

E and A are two, real valued, possibly non-square matrices

and ∇ is a linear operator which represents the system

uncertainties. This latter is assumed to belong to an uncertain

set ∇∇. For simplicity, we assume that E is full column rank.

Theorem 1 ([18]): The uncertain feedback system of Fig-

ure 1 is well-posed and stable if and only if there exists a

Hermitian matrix Θ = Θ∗ satisfying both conditions

[
E −A

]⊥∗
Θ
[
E −A

]⊥
> 0, (2)

[
1

∇

]∗

Θ

[
1

∇

]

≤ 0 , ∀∇ ∈ ∇∇ . (3)

III. AN INSTRUCTIVE RESULT

A. Some interesting inequalities

We aim at finding out some operators to describe accu-

rately the dynamics of the delay system. These operators

are then embedded into normed bounded uncertainties much

more easy to handle in a robust analysis concept. First of

all, let define a delay function f expressed using Laplace

transform;

f :

{
[−h, 0] → C

θ 7→ f(θ) = esθ
(4)

where s ∈ C
+. Obviously, f ∈ H and we get the following

lemma:

Lemma 2: Considering the delay function f , defined in

(4), the inequality 〈f, f〉 ≤ h holds.

Proof: omitted.

Consider now the two polynomials defined on θ ∈ [−h, 0]
by:

e0(θ) =
1√
h
, e1(θ) =

√

3

h

( 2

h
θ + 1

)

. (5)

It is straightforward to verify that these polynomials be-

long to H and satisfy the conditions 〈e0, e0〉 = 〈e1, e1〉 =
1 and 〈e0, e1〉 = 0. Hence, the pair {e0, e1} forms an

orthonormal sequence and applying Lemma 1, we have:

〈f, f〉 ≥ |〈f, e0〉|2 + |〈f, e1〉|2.
This last inequality puts us on the right track to set up two

delay-related operators δ0 and δ1:

δ0 =
√
h 〈f, e0〉 =

∫ 0

−h

esθdθ, (6)

δ1 =

√

h

3
〈f, e1〉 =

∫ 0

−h

esθ
( 2

h
θ + 1

)

dθ, (7)

Using the result of Lemma 2, it is proved that

δ0δ
∗
0 + 3δ1δ

∗
1 ≤ h2. (8)

It allows us to embed the operators together into a disk of

radius h.

Remark 1 (Jensen’inequality): Obviously, {e0} forms

also an orthogonal sequence and the inequality δ0δ
∗
0 ≤ h2 is

still true. This one, closely related to Jensen inequality has

been widely used to produce sufficient stability conditions

[20], [16]. Adding a second uncertainty δ1 can clearly reduce

the conservatism associated with the Jensen inequality at

the cost of an increasing complexity for ∇.

B. Modeling the delay system as an uncertain system

The main problem consists in modeling the delay system

(1) into an interconnected system as depicted in Figure 1. The

question is how can we describe (1) as precisely as possible

and keeping a constructive and tractable condition. In this

paper, the delay system is modeled with a set of uncertain

blocks (e.g. s−1, δ0 and δ1), which are then embedded in the

uncertain block ∇. Let choose the following set of operators

(viewed as an uncertain block):



∇ = diag

(

s−1
12n, e

−hs
1n,

[
δ01n
δ11n

])

, (9)

which connects with the equation w(t) = ∇z(t),

w(t) =











x(t)
t∫

t−h

x(θ)dθ

x(t− h)
α(t)

δ1[ẋ(t)]











and z(t) =







ẋ(t)
α(t)
x(t)
ẋ(t)






, (10)

where α(t) = x(t)−x(t−h). δ0 and δ1 are defined in (6) and

(7). The delay system (1) is then described by the equation










1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0











︸ ︷︷ ︸

E

z(t) =











A 0 Ad 0 0
1 0 −1 0 0
1 0 0 0 0
A 0 Ad 0 0
1 0 −1 −1 0
−1 2/h −1 0 1











︸ ︷︷ ︸

A

w(t).

(11)

C. A first stability condition

Having proposed a model for the delay system, the uncer-

tain set ∇ is characterized as follows.

Lemma 3: A quadratic constraint for the operator s−1 is

given by the following inequality for any positive definite

matrix P ,
[

1n

s−1
1n

]∗ [
0 −P

−P 0

] [
1n

s−1
1n

]

≤ 0.

A quadratic constraint for the operator e−hs is given by the

following inequality for any positive definite matrix Q,
[

1n

e−hs
1n

]∗ [ −Q 0

0 Q

] [
1n

e−hs
1n

]

≤ 0.

The proof of this lemma can be found in [21], [22].

Lemma 4: A quadratic constraint for the operator [δ0, δ1]
T

is given by the following inequality for any positive definite

matrix R,




1n

δ01n
δ11n





∗ 



−h2R 0 0

0 R 0

0 0 3R









1n

δ01n
δ11n



 ≤ 0.

Proof: Let consider R1/2, the square-root of R, which

is well defined since R > 0. We apply Bessel inequality (8)

to the signal R1/2f and it leads to

δ0Rδ∗0 + 3δ1Rδ∗1 − h2R ≤ 0.

Factorizing on the left and on the right by [1n, δ
∗
0
1n, δ

∗
1
1n] and

its transposed conjugate, the result of the lemma is obtained.

Let now gather all the above lemmas to build the matrix

inequality (3). For a matrix ∇ defined in (9) and a separator

of the form:

Θ =

[
Θ11 Θ12

ΘT
12 Θ22

]

, (12)

with Θ11 = diag
(
0,−Q,−h2R

)
, Θ12 =

[
diag (−P, 02n) 0

]
,Θ22 = diag (0, Q,R, 3R), the

constraint (3) holds.

A stability condition for time-delay systems of the form

of (1) is then given in the following theorem.

Theorem 2: For a given positive scalar h, if there exist

positive definite matrices P ∈ R
2n×2n, Q, R ∈ R

n×n, then

the system (1) is asymptotically stable if the following LMI

is satisfied:

[
E −A

]⊥∗
Θ
[
E −A

]⊥
> 0,

where matrices E , A and Θ are defined in (11) and (12).

Proof: It has been shown that system (1) could be

expressed as in Figure 1 with (9)-(10)-(11). Using the

separator Θ defined in (12) on the uncertainty ∇ defined in

(9), the condition (3) is satisfied. Hence, invoking Theorem

1, the aforementioned system is stable if the first condition

(2) is also satisfied with E , A and Θ defined in (11) and

(12).

IV. MAIN RESULTS

This section is devoted to the extension of the previous

theorem. The general idea is to build an increasing sequence

of orthogonal polynomials. For a given N ≥ 1, consider

now a set of orthogonal polynomials {e0, . . . , eN} based on

Legendre polynomials:

ek(θ) =

√

2k + 1

h
.(−1)k

k∑

l=0

pkl

(
θ + h

h

)l

, 0 ≤ k ≤ N,

where pkl = (−1)l
(
k
l

) (
k+l
l

)
. It can be proved that

{
〈ei, ej〉 = 0, for i 6= j
〈ei, ei〉 = 1.

Following the procedure exposed in the last section, we

define the corresponding operators δk, 0 ≤ k ≤ N :

δk =

√

h

2k + 1
〈f, ek〉 =

∫ 0

−h

(−1)k
k∑

l=0

pkl

(
θ + h

h

)l

esθdθ.

Consequently, the Bessel’s inequality states that

N∑

k=0

(2k + 1) δkδ
∗
k ≤ h2. (13)

At this stage, two different types of modeling are proposed.

The first model will lead to a stability criterion for a point-

wise delay, that is the criterion is only valid for a given delay

h. By exploiting the special structure of the interconnection,

the second model provides a delay range stability criterion,

which ensures robust stability over an interval [hmin, hmax].

A. A pointwise delay stability condition

Consider the following set of operators which can be

viewed as an extension of the previous equation (9) for ∇:

∇ = diag
(

s−1
1n(N+1), e

−hs
1n, δ̃N ⊗ 1n

)

(14)



where

δ̃k =
[

δ0 δ1
... δk

]T

It connects w(t) and z(t) via w(t) = ∇z(t) with

w(t) =







x(t)

δ̃N−1[x(t)]
x(t− h)

δ̃N [ẋ(t)]







and z(t) =







ẋ(t)

δ̃N−1[ẋ(t)]
x(t)
ẋ(t)






,

(15)

It remains to model the delay system (1) using the signals

z(t) and w(t) with a linear equation Ez = Aw(t). This

linear equation can be setup easily except the calculus of the

term δ̃N [ẋ(t)] which is tedious and have been placed in the

Appendix VII. It shows that

δk[ẋ] =

∫ 0

−h

(−1)k
k∑

l=0

pkl

(
θ + h

h

)l

ẋ(t+ θ)dθ,

= x(t)− (−1)kx(t− h)

− 1

h

(

UkV
−1E ⊗ 1n

)

δ̃N−1[x(t)],

where matrices V and Uk are respectively defined by equa-

tion (27) and (28) in the Appendix VII and E =

[
1N

01×N

]

.

Finally, the feedforward linear equation can be written as

Ez = Aw(t) with

E =

[
1(N+3)n

0(N+1)n×(N+3)n

]

,

and

A =







































A 0 . . . 0 Ad 0 . . . 0 0

0

.

.

.

0

0 . . . 0

.

.

.

.

.

.

0 . . . 0

0

.

.

.

0

1 0 0

. . .
.
.
.

0 1 0

1 0 . . . 0 0 0 . . . 0 0

A 0 . . . 0 Ad 0 . . . 0 0

−1

−1

.

.

.

−1

0 . . . 0
1

h
W1

.

.

.
1

h
WN

1

−1

.

.

.

(−1)N1

1 0 . . . 0

0 1 0

.

.

.
. . .

0 0 1







































(16)

with Wk = UkV
−1E ⊗ 1n. We propose now the following

pointwise delay stability theorem:

Theorem 3: For a given constant delay h, if there exist

positive definite matrices P ∈ R
(N+1)n×(N+1)n, Q, R ∈

R
n×n then the system (1) is asymptotically stable for the

given h if the following LMI is satisfied:

[
E −A

]⊥∗
Θ
[
E −A

]⊥
> 0 (17)

where matrices E , A and Θ are defined in (16) and (18).

Proof: We have shown that delay system (1) could be

expressed as in Figure 1 with (14)-(15)-(16). Following the

same procedure as in Theorem 2 and taking now into account

the general Bessel inequality (13), a suitable separator is

built:

Θ =

[
Θ1 Θ2

Θ∗
2 Θ3

]

(18)

with

Θ1 = diag
(
0(N+1)n,−Q,−h2R

)
,

Θ2 = diag
(
− P, 0n, 0n×(N+1)n

)
,

Θ3 = diag
(
0(N+1)n, Q,R, 3R, . . . , (2N + 1)R

)
.

Thus, for ∇ defined in (14) and the particular choice of

Θ in (18), the condition (3) is satisfied. Finally, invoking

Theorem 1, the aforementioned system is stable if the first

condition (2) is also satisfied.

Remark 2: In this section, the case N = 0 is not taken

into account and has been already treated in [18]. Taking

N = 1 recovers Theorem 2.

The proposed theorem proposes a stability result for a

given h and therefore may detect pockets of stability even

if the system is unstable for the delay h = 0. Furthermore,

compared to the literature, the criterion has less variables to

be optimized. Nevertheless, as it is exposed in subsection

below, if the delay h is uncertain, our criterion has to be

slightly transformed in order to get a delay range stability

criterion.

B. A delay range delay stability condition

The main idea is to consider that the delay is now an

uncertain parameter belonging to the interval [hmin, hmax].
In that case, we propose the following interconnection which

highlights this new uncertainty in the linear equation w(t) =
∇z(t). The uncertain block is defined by

∇ = diag(s−1
1n(N+1), e

−hs
1n,

1

h
1nN, δ̃N ⊗ 1n), (19)

where N ≥ 1. It connects the signals w(t) and z(t) defined

by {
w(t) = ∇z(t),
Ez(t) = Aw(t),

with






w(t) =









x(t)

δ̃N−1[x]
x(t− h)
y(t)

δ̃N [ẋ]









, z(t) =









ẋ(t)

δ̃N−1[ẋ]
x(t)

δ̃N−1[x]
ẋ(t)









(20)

and E =

[
1(2N+3)n

0(N+1)n×(2N+3)n

]

,

A =























































A 0 . . . 0 Ad 0 . . . 0 0 . . . 0 0

0

.

.

.

0

0 . . . 0

.

.

.

.

.

.

0 . . . 0

0

.

.

.

0

0 . . . 0

.

.

.

.

.

.

0 . . . 0

1 0 0

. . .
.
.
.

0 1 0

1 0 . . . 0 0 0 . . . 0 0 . . . 0 0

0

.

.

.

0

1 0

. . .

0 1

0

.

.

.

0

0 . . . 0

.

.

.

.

.

.

0 . . . 0

0 . . . 0 0

.

.

.

.

.

.

.

.

.

0 . . . 0 0

A 0 . . . 0 Ad 0 . . . 0 0 . . . 0 0

−1

−1

.

.

.

−1

0 . . . 0

.

.

.

.

.

.

0 . . . 0

1

−1

.

.

.

(−1)N1

0 . . . 0

W1

.

.

.

WN

1 0 . . . 0

0 1 0

.

.

.
. . .

0 0 1























































(21)



where Wk = UkV
−1E ⊗ 1n. V and Uk are defined by

equations (27) and (28) respectively.

A delay-range stability condition for time-delay systems

of the form of (1) is given in the following theorem.

Theorem 4: For given positive scalars hmin and hmax, if

there exist positive definite matrices P ∈ R
(N+1)n×(N+1)n,

Q, R ∈ R
n×n, and nN × nN matrices S1, S2, S3 then the

system (1) is asymptotically stable ∀h ∈ [hmin, hmax] if the

following LMI are satisfied:

[
E −A

]⊥∗
Θ
[
E −A

]⊥
> 0, S3 > 0, (22)

[
1nN γi1nN

]
[
S1 S2

S∗
2 S3

] [
1nN

γi1nN

]

≤ 0, for i = {1, 2}
(23)

where matrices E , A and Θ are defined in (21), (24) and

scalars γ1 = 1
hmin

and γ2 = 1
hmax

.

Proof: We have shown that system (1) could be

expressed as in Figure 1 with (19)-(20)-(21). Following the

same procedure as in Theorem 3, a suitable separator is built:

Θ =

[
Θ1 Θ2

Θ∗
2 Θ3

]

(24)

with

Θ1 = diag
(
0(N+1)n,−Q,S1,−h2

maxR
)
,

Θ2 = diag
(
− P, 0n, S2, 0n×(N+1)n

)
,

Θ3 = diag
(
0(N+1)n, Q, S3, R, 3R, . . . , (2N + 1)R

)
.

The quadratic constraint related to the operator 1
h1n, as

well as the additional LMI (23), are based on the vertex-

separator adapted from [21]. In our approach, the delay

has been embedded as an uncertainty in the upper block,

these latter conditions enforce h to belong to the interval

[hmin, hmax]. Thus, for ∇ defined in (19) and the particular

choice of Θ in (24), the condition (3) is satisfied. Finally,

invoking Theorem 1, the aforementioned system is stable if

the first condition (2) is also satisfied.

In this third theorem, we emphasize that the condition

assesses the stability of (1) robustly with respect to the

delay. The delay h is constant but uncertain, it is assumed to

belong to [hmin, hmax]. We will see through few numerical

examples that the above criterion is able to detect some

interval of stability (w.r.t. h) even if the delay-free system is

unstable.

V. EXAMPLES

A. First example

Considering the following academic numerical example

ẋ(t) =

[
−2 0
0 −0.9

]

x(t) +

[
−1 0
−1 −1

]

x(t− h). (25)

This system is stable for hmin = 0, and stability is

preserved up to hmax = 6.1725. Two different types of

results are reported. Table I compares our pointwise stability

theorem 3 with the method proposed by Gu et al [3] based

Theorems hmax number of variables

[3] (Ñ = 1) 6.053 7.5n2 + 3.5n

[3] (Ñ = 2) 6.165 10.5n2 + 4.5n

[3] (Ñ = 3) 6.171 14.5n2 + 4.5n

[3] (Ñ = 4) 6.171 20.5n2 + 5.5n

Th.3 (N = 0) 4.472 1.5n2 + 1.5n
Th.3 (N = 1) 6.059 3n2 + 2n
Th.3 (N = 2) 6.166 5.5n2 + 2.5n
Th.3 (N = 3) 6.1719 9n2 + 3n
Th.3 (N = 4) 6.17250 13.5n2 + 3.5n

TABLE I

POINTWISE METHOD: MAXIMAL ALLOWABLE DELAY hmax FOR SYSTEM

(25).

Theorems hmax number of variables

[24], [11], [12] 4.472 1.5n2 + 1.5n
[23],Dd = 2 5.71 4n2 + 2n
[23],Dd = 3 5.96 6.5n2 + 2.5n
[23],Dd = 4 6.05 10n2 + 3n

[13] 4.97 69n2 + 5n
[14] 5.02 18n2 + 18n
[19] 5.120 7n2 + 4n
[17] 6.1107 1.5n2 + 9n+ 9

Th.4 (N = 1) 6.058 6n2 + 2n
Th.4 (N = 2) 6.157 13.5n2 + 4.5n
Th.4 (N = 3) 6.169 27n2 + 6n
Th.4 (N = 4) 6.1724 45.5n2 + 7.5n

TABLE II

DELAY-RANGE METHOD: MAXIMAL ALLOWABLE DELAY hmax FOR

SYSTEM (25).

on well-known discretized complete Lyapunov functional

which is also a pointwise stability result. Our criterion gives

similar results but with much less decision variables. Note

that for N = 0, the classical upper-bound 4.472 based on

the Jensen’s inequality is recovered.

Table II compares the delay range stability Theorem 4 with

classical results from the literature. The partitioning approach

proposed by [23] based on the discrete delay decomposition

gives an upperbound which tends to the analytical value even

if the numerical complexity remains important The simula-

tions show that the best results are provided by Theorem 4.

B. Second example

Consider now the system:

ẋ(t) =

[
0 1
−2 0.1

]

x(t) +

[
0 0
1 0

]

x(t− h). (26)

First let notice that the delay-free system is unstable. For

this simple example, analytical method can be applied and

it is shown that (26) is stable for h ∈ [0.10016826, 1.717].
We aim at detecting this stability interval with Theorem 4.

The results are presented in Table III.

VI. CONCLUSION

This paper has proposed two criteria for assessing the

pointwise and delay-range stability of time delay systems



TABLE III

INTERVAL OF STABILIZING DELAYS FOR SYSTEM (26)

N hmin hmax

0 - -
1 0.1006 1.5404
2 0.1003 1.7122
3 0.1002 1.7178
4 0.1002 1.7178
5 0.10016829 1.7178
analytical 0.10016826 1.7178

by using a robust analysis approach. These results are based

on Legendre orthogonal polynomials and Bessel inequality.

It provides a sequence of LMIs conditions which are less

and less conservative, at least on examples. Future work

will be devoted to the proof of the conservatism reduction

and to the extension of this work to the time varying delay.

Acknowledgment: the authors thank Prof. K. Gu for his

valuable comments for improving the paper and for the com-

parison with the discretized complete Lyapunov functional

method [3].

VII. APPENDIX

This section explains how to construct the linear relation

between δ̃N [ẋ(t)] and the other components of the vector

w(t). First, let introduce intermediate variables:

µl =

∫ 0

−h

(
θ + h

h

)l

esθdθ, 0 ≤ l ≤ N.

Then, we have δk = (−1)k
k∑

l=0

pkl µl = Vkµ̃, with

µ̃ =
[
µ0 µ1 . . . µN

]T ∈ C
(N+1)×1

and

Vk = (−1)k
[
pk0 pk1 . . . pkk 0 . . . 0

]
∈ R

1×(N+1).

Defining the matrix V ∈ R
(N+1)×(N+1)

V =
[
V T
0 V T

1 . . . V T
N

]T
, (27)

we get δ̃N = V µ̃. Because V is non-singular we have

µ̃ = V −1δ̃.

Applying δk to ẋ(t) and integrating by parts, we obtain

δk[ẋ(t)] = (−1)k
∑k

l=0 p
k
l x(t)− (−1)kpk0x(t− h)

−(−1)k
∑k

l=1 p
k
l

l
hµl−1[x]

Let remark that (−1)k
∑k

l=0 p
k
l = 1 and pk0 = 1. Denoting

Uk = (−1)k
[
pk1 2pk2 . . . kpkk 0 . . . 0

]
∈ R

1×(N+1),
(28)

we finally have

δk[ẋ] =

∫ 0

−h

(−1)k
k∑

l=0

pkl

(
θ + h

h

)l

ẋ(t+ θ)dθ,

= x(t)− (−1)kx(t− h)−
(

UkV
−1E ⊗ 1n

)

y(t),

with y(t) = 1
h δ̃N−1[x] and E =

[
1N

01×N

]

.
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