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Ethogenetics and the Evolutionary Design of Agent Behavigr

Sébastien PICAULT and Samuel LANDAU
LIP6, Université Pierre et Marie Curie
75 252 Paris CEDEX 05, FRANCE

ABSTRACT

This paper introduces the conceptEthogenetics which
addresses the issue of the design of evolvable agent behav-
iors. We first emphasize the need of a new approach to-
wards existing evolutive approaches for this field, and out-
line the principles ofEthogenetics. We then describe a
model, ATNOSFERES, that we use to experimentally inves-
tigate this concept. Finally, we discuss the properties and
features of theATNOoSFERES model and propose further
extensions.

Keywords

Ethogenetics, Evolutionary Computing, Agent Behavior,
ATN, Control Architectures

1 INTRODUCTION : LIMITATIONS OF EXISTING
APPROACHES

The purpose oEthogenetics (EG) is the design of evolv-
able agent behaviors, possibly with agents operating at dif
ferent organization levels. The behavior of the agents ofiea
level may either be given, or bauilt from an hereditary sub-
strate (a bit string called “chromosome”). This new apploac
is an attempt to overcome problems raised by classical evo-
lutionary paradigms in the design b&haviors

Genetic Algorithms [1, 2, 3] andEvolutionary Strate-
gies [4, 5] allow non-semantic manipulations of the geno-
types (strings of bits or arrays of floats), inducing in most
cases gradual modifications in the phenotypes. Thus they en-
sure that individuals produce children with quite the same
level of adaptation to the environment than their own. How-
ever, these evolutionary algorithms have a very poor expres
sive power, since their purpose is the optimization of a et o
parameters [6] in behaviors whittave to be given a priori

On the contrary, th&enetic Programming paradigm [7]
is based on the evolution pfogramg(i.e. instructions trees),
thus their expressive power is much higher. But the genetic
operators associated with trees operate in a syntactic way o
semantic structures, so they induce strong variationseén th
effects of the resulting program ; in addition, the impact of
the genetic operators tightly depends on the level at which
they operate (a modification near the root is likely to have a

deeper influence than one on a leaf). Moreover, the behavior
of an agent cannot be reduced to a program.

Thus, for designing evolvable agent behaviors, there is
a need for an approach that would be able to combine the
advantages oBenetic Algorithms andGenetic Program-
ming. TheEthogenetics approach has been designed in or-
der to address this issue.

2 ETHOGENETICS

Ethogenetics provides general principles to the design of
evolutive agent behaviors — the ability baild agent behav-
iors (with a large expressive power) from a meaningless ge-
netic substrate. Since Darwinian evolution is a blind pssce

its use to produce agent behaviors and collective behawiors
multi-agent systems implies several properties, mainly-co
sequences of two principles : continuity and expressive be-
havioral power.

2.1 Continuity

The environmental selection pressure acts on the whole sys-
tem, on its ability to react, to perform a task, to reach alle
tive goals and so on. Adapted systems are selected to pro-
duce “offspring” : other systems, the genotype of which is a
mixture of those of their “parents”. The adaptation degree o
the offspring systems should be close to their parents dhes (
not, the adaptive effect of natural selection gets lost)usTh

the behavior building process has to be :

e robust towards mutationssmall variations in the geno-
type should induce in most cases only small variations
in the phenotype;

e independent from the structure of the genetic substrate
. unlike Genetic Programming (where the hierarchical
tree structure has heavy consequences), distant parts of
the genotype should have few effects on each other.
Thus it is useful to dissociate the semantic structure
(that produces the behavior) from the “syntactic” one
(the genetic substrate). When this requirement is not
fulfilled, semantics tightly constrains syntax, so that
syntactic manipulations (resulting from “blind” genetic
operations) often destroys the semantic structure.
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The second major requirement in order to prodagent be-
haviorsis the ability to design complex behaviors. Thus the
semantic structure used for that goal should have at least th
expressive power of a program tree (a tree provides more
interesting features as a semantic structure rather than as
syntactic structure). But these behaviors, even if complex
should meet some requirements :

e Behaviors should be understandable may be useful
to provide the agents withinderstandable behaviors
: some control architectures such as artificial neural
networks might be very efficient, but the resulting
behavior cannot be clearly described. The ability to
easily interpret the behaviors would allow on the one
hand to understandhat has been selected, and on the
other hand, to explicitly specify some of the behaviors
using this same structure, allowing to sepriori the
behaviors of some agents.

e Behaviors should be able to adapSince the system
will have to operate in a given environment, it should
be able to adapt itself, to reconfigure according to en-
vironmental constraints. Thus the semantic structure
representing behaviors should avoid using explicit pa-
rameters : parameters are a kind of shortcut, they reflect
prior knowledge about the environment. The building
of situated behaviordas to be independent from any
parameters, in order to keep more flexibility.

In the next section, we preseATNoSFERES, a model
aimed at investigatingthogenetics properties.

3 DESCRIPTION OF THE ATNoSFERES MODEL

3.1 General principles
Ethogenetics [8] are part of a larger project,
ATNOSFERES [9], which uses thesFERES [10] frame-
work as a tool for modelling the agents classes, integrating
those classes to the system, designing an environmental
simulator and providing classical evolutionary technigjue

In particular ATNOSFERES provides a general class, the
ATNAgent , the behavior of which is produced through the
following steps:

1. atranslator produces tokens from the string,

2. an interpreter uses these tokens as instructions to build
a graph (an ATN),

3. finally, the graph determines the behavior of the agent.

The translator and the interpreter themselves are agents;
in the following lines, we will consider that their behavier
given, but it could evolve as well to provide the system with
higher autonomy.

1ATN stands for Augmented Transition Network
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The ATNAgent class is intended to behave according to an
ATN graph [11]. ATN have previously been used by [12] for
designing agent behaviors. Each subclas&TflAgent is
associated with two collections of tokens: condition ones a
action ones. The actions are behavioral “primitives” tteat ¢

be performed by the agent, the conditions are perceptions or
stimuli that induce action selection. The edges of the graph
are labeled with a set of conditions and a sequence of actions
(see figure 1).

The ATN built by adding nodes and edges to a basic struc-
ture containing two nodes: a “Real Start Node” and a “Real
End Node”. At each time step, the agent (initially in the
“Real Start Node” state) randomly chooses an edge among
those having eithemo conditionin their label, orall condi-
tions simultaneously trudt performs the actions associated
with this edge and jumps to the destination node. It stops
working when its state is the “Real End Node”.

actionl! condition1?

O——

action3!
action2!

action2!

condition2?

Figure 1: An example of ATN.

3.3 The Interpreter

The purpose of the interpreter is to build an ATN from to-
kens. Some of these tokens will be action or condition ones
that are used to label edges between nodes in the ATN. The
other ones are interpreted as instructions, either to ereat
nodes or connect them, or to manipulate the structure under
construction.

As we mentioned in section 1, the structure built by the
tokens sequence has to be robust towards mutations. For in-
stance, the replacement of one token by another, or its dele-
tion, should have only bbcal impact rather than transform-
ing the whole graph. Therefore, we use a “top-level” pro-
gramming language operating on a list (see table 1).

If an instruction cannot execute successfully, it is simply
ignored, except instructions operating on nodes (icen-
nectanddupObjec} which are “pushed” in the list until new
nodes are produced; then they try to execute again with the
new data. Finally, when the interpreter does not receive to-
kens any more, it terminates the ATN: actions and condi-
tions tokens still present between nodes are treated@iit
connectiongso that new edges are created) and the consis-
tency of the ATN is checked (“Real Start Node” is linked to
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condmon’) (z..) — (condition? z ...
action! (z..) — (action!z..)
node(z..) — (N;z..)?
startNode(z ...) —  (N;z..)°
endNodgz ...) — (N;z..)°
connect(c2? z N; y -
- 17 za2! at(l' ENju ) — (zNjyztNju..)d
dup(ru ) = (rzy..)
dupObject{zy N; z...) — (N;zyN;z..)
popRoll(zy ...2) — (y..zz)
pushRoll(z ...y z) — (zz..y)
swap(ry )= (yz..)
forget(zy..)+[z..] — (y.)+[zz..]°
recall(z ..)+[yz..] — (yz.)+][z..]°

acreates a nod&/;

bcreates a nod#y; and connects “RealStartNode” to it

Ccreates a nod#’; and connects it to “RealEndNode”

dcreates an edge betweafy andNV;, with (c1?& c2?) as condition
label and the lis{al! ,a2! } as action label

ewith an auxiliary stack

Table 1: The ATN-building language.

nodes having no incoming edges, except from themselves; in
the same way, nodes having no outgoing edges are linked to
“Real End Node”).

3.4 The Translator
The translator has a very simple behavior. It reads the geno-
type (a string of bits) and decodes it into a sequence of to-
kens. It uses genetic codgi.e. a function

G:{0,1}" — T (|T]|<2")
where7 is a set of tokens, which includes both action and
condition ones (specific to the agent to build) and those un-
derstood by the interpreter (see table 1).

Depending on the number of tokens available, the genetic
code might be more or less redundant. If necessary, it can be
designed in order to resist mutations, but we will not discus
this issue in this paper.

4 EXPERIMENTS

The purpose of this section is both to demonstrate how the
system works by using it on a simple example (with a single
class of agents operating at the same level), and to provide
some results regarding the behaviors that evolved in the fol
lowing experiments.

4.1 Experimental setup

To illustrate the evolution of simple behaviors, let us con-
sider an experiment with a discrete environment containing
a color light bulb and a single agent (instance of a subclass

vl U i gl

tion and perception abilities described in table 2. We want
the agent to go to the right when the light is green and to the
left when it is red. To make the agent behavior evolve, we
apply the rules of darwinian selection over a population of
100 homogeneous agents.

el TV gt Litdioy) vwilkii i e

Actions Conditions
N  no action

Rl move to the g?

true when the

right lightis green
L!'  move to the r? true when the
left lightis red
U moveup rand? true with
probability
p=20.5

D! move down

Table 2: Action and condition tokens of tHe'NAni mat
agent.

The genetic code for these agents contains the 11 inter-
preter tokens and the 8 action/condition tokens; thus itlaee
at least 32=2 codons. In the following experiments, a 32-
codon genetic code has been automatically built from a cir-
cular list containing the interpreter and action/condiitto-
kens. The chromosome of the agents is initialhaadombit
string with arandom lengti{from 200 to 300 bits).

We evaluate the fitness of each agent by making it run dur-
ing 100 time steps in its environment. The color of the light
bulb randomly flips (with probability 0.05 at each time step)
from green to red and vice-versa. The rewarding rules in the
fitness function are: +1 point if the move is correct, -1 point
if it is erroneous (e.g. left when green), 0 in the other cases
(e.g. move up). Only the first move performed during the
currenttime step is rewarded (“do nothing” is not considere
as amove).

At each generation, the agents are evaluated through their
average fitness (calculated over 10 runs in the above condi-
tions) and selected to produce 30 new agents (by crossing
over chromosomes), thus replacing 30 agents removed from
the old population (depending on their fitness, too).

We have experimented with various mutation strategies,
among them:

1. before their evaluatiorgll agentsare subject to punc-
tual random mutations of their chromosome with rate
(r % of the bits are randomly flipped);

2. same situation, byt % of the mutations are random
insertions or deletions of codons in the chromosome,
instead of punctual mutations.

4.2 Results
As agents are initialized in their “Real Start Node” stakes, t
first time step is used to jump to one of the available nodes.
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agents only depends from their ATN structure and its ability
to respond to environmental changes. Thus, the maximum
fitness in these experiments is 99 (correct answers at each
time step after the first one).
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100

max fitness
avg fitness -------
in fitness -------

fitness

generations

Figure 2: Evolution of the fitness (punctual mutations only,
r =1 %).

Figure 2 shows the average evolution of the fithess with
the first mutation strategy. It has been calculated from 10
experiments. Figure 3 shows the average evolution of the
fitness with the second mutation strategy, and the evolution
of the chromosome length (10 experiments too). In a few
cases (almost in the first strategy), no good solution isdoun
before 500 generations.

5 DISCUSSIONS

5.1 Results analysis

Though the problem to solve is very simple, these results val
idate theATNoSFERES model for evolving agent behaviors
from a fine-grain substrate. But we would like to focus on the
specificity of this model and give a qualitative analysishaf t
behaviors produced by natural selection.

The ATN described on figure 4 is the “optimal” solution
to this problem (99 points with the simplest ATN structure):
when the light is red, go to the left; when it is green, go to
the right. To produce this ATN, only 35 bits are theoretigall
required, for example to encode the following tokens:

‘node 0?, R, dupObjectL! , r?, dupObjec4

(with a maximal use of implicit connections). But in this
solution the order and nature of tokens is crucial, thus it is
highly vulnerable to mutations. In addition to this, the aize
have much more bits in their chromosome than necessary —
this can be a source of inadequate behavior.

The experimental results show that two strategies are used
to produce an adequate behavior (99 points). The first one

x fithess
g fitness -------

in fitness -------

80

60

40

fitness

20

20 L : i L AR SRR
0 50 100 150 200 250 300 350 400 450 500
generations

400

max ‘chv Ienglh‘
avg chr length -------
min chr length -------

350

chromosome length
w
]
8
3

250 ©

200 b
0 50 100 150 200 250 300 350 400 450 500

generations

Figure 3: Evolution of the fitness and chromosome length
(random insertions and deletionsz 1 %, p = 20 %)

consists in building a simple ATN (very close or same than
the “optimal” ATN on figure 4), by delaying the node cre-
ation and thus using tokens that have no effect. For instance
a 207-bit chromosome encoding the following tokens:

L!, dup swap popRoll popRol| forget popRoll
swap forget recall recalf R! , L! , recall rand?, L!,
forget startNode R! , dup g?, dupObject popRoll
pushRol[L! , forget pushRol/L! , r?, startNode for-
get dup dupObjectr?, Rl , forget dup R! , dup, g?,
popRoll

produces an ATN very close to figure 4, with labet?,(

LI L' RI R!') on one edge andgP, R! R!') on the other.
This is a good example of using the properties of the ATN-
building language.

The agents using the second strategy build a complex ATN
in which a small subset only is used, for instance like the
ATN on figure 5. It leads to exactly the same behavior than
the “optimal” solution, since a large part of it cannot be
reached from the other nodes.
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Figure 4: The “optimal” ATN (providing the highest fithess
with the simplest structure).

L!
" R R

Real
End
Node

Real
Start
Node

9? NI

R!

Figure 5: An ATN built by natural selection, implementing
the best behavioral strategy.

5.2 TheATNoSFERES model with regard to
Ethogenetics

The ATNoSFERES model fulfills the Ethogenetics re-

quirements expressed in section 2. Preliminary experisment

[9] [13] have validated the use &TNOSFERES regarding

the following aspects:

e the ability to evolveadequatergents behaviors in a sim-
ple situation, frontandom graphs

e the consistency of the ATN-building evolutionary lan-
guage.

The experimental results have also confirmed that the gen-
eration of behaviors do not rely on a precise structure in the
genotype: various adequate solutions have been found] base
either on different graph-building strategies, or on the ab
properties of the graphs (more details can be found in [9]).

5.3 Advantages of theATNoSFERES model

As an evolutive approach, the ATNOSFERES model
provides three main features.

First, it separates the genetic information structureilpoét
string, the lexical structure) from its interpretation (dTthe
semantic structure). Thus, the semantic structure budt-is
ways correct The behavior described by the ATN always has
a meaning —even if itis not adequate to the environment. Not
having to worry about the syntactic correctness of the auto-
matically designed semantic structure is a good point over
many other evolutive approaches.
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netic operators. The level of influence of the classical ge-
netic operators — mutation and crossover — does not depend
on the parts of the bit string they involve (neither on their
location in the bit string nor on their size). This is also a
main advantage over many evolutive approaches. As a mat-
ter of fact, mutations only have a local impact in the expres-
sion of the genetic information, and crossovers involve bit
substrings which carry locally functional genetic code. We
might also consider more exotic genetic operators, such as
deletions/insertions in the bit string. These operatoisan
ticular permit to smoothly manage string resizing, sina@yth
only have a local impact in th&TNoSFERES model.

The third feature is that the model does not use any pa-
rameter to build behaviors. The behaviors execution only
depends on environmental conditions, thus hard-coded ge-
netic parameters are not even needed. Apart from behaviors
design, parameters encoding is a problem in many evolutive
approaches, (see for example discussion on epistasis]in [14
but as long as building behaviors is concerned, we think it
should be considered not to rely on fixed parameters in order
to produce situated, adaptive behaviors.

As a model for designing multi-agent systems, the
ATNOSFERES model does not set any restriction on the
agent level specification. Furthermore, agents can be in-
troduced later on at a lower organization level (for in-
stance inside an agent), keeping the latter structure, if a
finer-grain agent specification is needed. @npos-

i t eAgent, derived from theATNAgent class, was in-
troduced INATNOSFERES to encapsulate finer-grain agent
specifications. The description of ti@nposi t eAgent

and the agent level specification issuesANOSFERES
have been developed and discussed in [13].

As a model for automatic behavior design (as part

of ATNOSFERES), ATNs use a simplified framework,
where only the conditions and actions of the agents have to
be specified. Then, with an ATN as the structure for behavior
description, it is possible to directly describe and exptaie
behavior of any agent.

6 CONCLUSIONS AND PERSPECTIVES

We have presentdethogenetics, an approach for evolutive
agents behaviors, and discussed its specific features.nio su
marize, interesting agents behaviors can be built through a
evolutionary approach that is able to ensaomtinuity be-
tween the genetic substrate and the phenotypic behavibr, an
a high expressive powen the behavior produced. We pro-
pose therefore a two-step building that leads to graphebase
behaviors thATNOSFERES model).

We have then presented tA@NoSFERES model, and a
simple problem solved witiATNoSFERES. We made an
analysis of its results in order to exhibit the model specific
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of Ethogenetics as an evolutive behaviors design approach.

The ATNOSFERES model is currently under experimen-
tation for more complex behavior design, especially in the
case where some agents are made up of finer-grain agents.

In further works, we plan to introduce a metabolic regula-
tory mechanism, associated with the actions within the ATN.
It will act as an environmental constraint, allowing or dis-
abling some edge transitions at a given time.
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