N

HAL

open science

Failure preventive mechanism for IPsec gateways

Daniel Palomares, Daniel Migault, Maryline Laurent

» To cite this version:

Daniel Palomares, Daniel Migault, Maryline Laurent. Failure preventive mechanism for IPsec gate-
ways. ICCIT ’13: The Third International Conference on Communications and Information Technol-
ogy, Jun 2013, Beirut, Lebanon. pp.167-172, 10.1109/ICCITechnology.2013.6579543 . hal-00860251

HAL Id: hal-00860251
https://hal.science/hal-00860251

Submitted on 10 Sep 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00860251
https://hal.archives-ouvertes.fr

Failure Preventive Mechanism for IPsec Gateways

Daniel Palomares*, Daniel Migault*, Maryline Laurent
*France Telecom, {firstname.lastname} @orange.com
TMines—Télécom, Télécom SudParis, CNRS Samovar UMR 5157, maryline.laurent@telecom-sudparis.eu

Abstract—Operators are mainly using IPsec Virtual Private
Networks (VPNs) to extend a security domain over untrusted
networks. A VPN is usually established when an End-User (EU)
and a Security Gateway (SG) negotiate security associations
(SA). For a better QoS, the SGs are geographically distributed
so they are as close as possible to EU. As such, the higher
is the level of responsibility of the SG, the higher is the risk
to be overloaded and to break down.This paper presents a
mechanism for extracting and reinstalling security associations
as well as a mechanism to transfer a given IPsec traffic from
one SG to another. We also propose an additional mechanism
for solving the mis-synchronization of IPsec anti-replay counters
and IKEv2 Messages ID counters. Finally some performance
measurements are provided in terms of delays, and packet loss,
and prove feasibility of the approach. Results obtained through
real implementation showed that the system time to extract an
IKEv2/IPsec session is in a range of 5ms up to 15ms whereas
the system time to restore an IKEv2/IPsec session can take 2ms
up to 22ms.

Index Terms—IPsec, IKEv2, Security Gateway Handover,
IPsec Clustering, Failure-Preventive, QoS.

I. INTRODUCTION

IPsec is a security framework at the network layer allowing
IP and upper-layer protocols to benefit from encrypted and
authenticated communications. They are mostly used tu secure
peer-to-gateway or gateway-to-gateway communications, also
called VPN (Virutal Private Networks). When providing VPN
services based on IPsec, an End-User (EU) commonly makes
use of the IKEv2 protocol [1] to negotiate IKEv2 security
associations (IKE_SAs) and further IPsec security associations
(IPsec_SAs) towards a security gateway (SG). In order to
reduce delays and improve communications, the path between
an EU and the SG should be as short as possible. As such,
operators may rely on geographically distributed pool of SGs
to provide a high QoS. On the other hand, an operator that
offers fail-over capacities should be able to transfer VPN
sessions from one SG to another. Motivation may be to spread
the workload among different SGs, as well as to provide high
availability features in case a SG fails. The scenario we are
considering is an EU that sets up a VPN towards an SG (E.g.
SG1) which gives access to a trusted network. The EU is first
authenticated by using IKEv2 protocol with either pre-shared
keys, EAP-AKA, EAP-SIM, certificates, etc. Then, further
IKEv2 exchanges allow to set up the VPN (i.e. IKE_SAs
and IPsec_SAs). At a given time, SG1 is overloaded, whereas
some other SGs are not (E.g. SG2). The operator wants to
move this VPN session from SG1 towards SG2, so it transfers
all the IKEv2/IPsec context. The main goal of transferring all
IKEv2/IPsec context is to avoid re-authentication against SG2.

In fact, re-authentication would increase signaling and would
interrupt the communication which could be critical for real-
time based applications. Note that if SG1 and SG2 do not
have the same IP address, then the EU MUST also update
its IKE_SAs and IPsec_SAs. Transferring the IKEv2/IPsec
context introduces the following constraints: (1) identification
of the IKEv2/IPsec parameters so it can be extracted and
reinstalled into another SG. Notice that some parameters of the
context requires perfect timing, which is much more difficult
to get than the context itself, (2) two gateways with different
IP addresses bring complexity as the hosts should consider the
management of their tunnel and their SAs (mobility aspect), as
well as the distance between SGs introduces network delays.

Section II describes details of an IKEv2/IPsec state. Sec-
tion III introduces a proposed mechanism to perform IPsec
Context Transfers (referred to as IPsec-CXT throughout this
paper), a description of GET and PUT functions and a step-
by-step description of an IPsec-CXT. Finally, sections IV
and V describe our implementation as well as the testbed
results.

II. IKEV2/IPSEC CONTEXT DETAILED DESCRIPTION

The IKEv2/IPsec context contains all the information nego-
tiated through IKEv2 protocol as well as all the information
contained in the IPsec databases. Most of the current operating
systems implement the SAD and SPD in the kernel while the
PAD is mostly a database that exists in the userland space.
The SAD, SPD and PAD are defined as follows:

- Security Association Database SAD: contains all the
information related to each unidirectional IPsec_SA (spi,
concerned protocols, SA’s lifetime, algorithms, keys,
etc.).

- Security Policy Database SPD: defines how the packets
that match the IPsec policies are handled by the device:
PROTECTed, BYPASS or DISCARD IPsec.

- Peer Authorization Database:links the SPD with the
key management protocol (i.e. IKEv2). This database
determines if an identity is allowed or not to establish
a VPN with the device.

The Security Associations (SAs) contained in the SAD can
be configured manually, but this is obviously not scalable
when big amounts of IPsec connections are established with
different devices. Thus, IKEv2 (see [1]) is the protocol that
sets a secure channel (a.k.a. IKE_SA) between two end-
points in order to negotiate and continuously update all the
IPsec related information (a.k.a. CHILD_SA or IPsec_SA)
between them. First, during IKEv2 initial exchanges (known

as Phase 1), one of the end-points (INITIATOR) triggers the
communication by sending an IKE_INIT request. The other
end-point (RESPONDER) replies back with an IKE_INIT
response. At this point, both nodes have a shared secret to
perform encryption and integrity protection for further IKEv2
exchanges, and have agreed on the following parameters of
their IKE_SA:

- Cryptographic algorithms: algorithms to protect further
IKE exchanges, a Diffie-Hellman Group and a pseudo-
random function.

- SKEYSEED: secret key from which all keys are derived
for that IKE_SA (SKe encryption key to ensure confi-
dentiality, SKa authentication key to ensure integrity and
SKd derivation key master secret that will be used to
compute further CHILD_SAs keys).

- IKE_SPI: IKE_SPI stands for IKE Security Parameter
Index. It uniquely identifies an IKE_SA.

- Lifetime: duration of an IKE_SAs.

- Nonces: Ni (INITIATOR nonce) and Nr (RESPONDER
nonce). These are randomly generated values to reinforce
the security (freshness to the key materials).

- Message ID counters: the ID counters provide anti-replay
for IKEv2 exchanges by increasing the ID counter by one
for every emitted IKEv2 message.

- IKEv2 window size: if the window size has a value of "N”,
it implies that there can be N un-acknowledged IKEv2
requests at any given time during communication.

During the Phase 2 of IKEv2, the INITIATOR sends a
IKE_AUTH request and the RESPONDER replies with an
IKE_AUTH response. Now, the nodes consult their PAD in
order to authenticate each other. As mentioned, the PAD
determines if the identity of a given node is allowed or not
to establish a CHILD_SA. The PAD is composed of the
following information:

- Identifiers: IDi (INITIATOR ID) and IDr (RESPONDER
ID). Usually an IPv4/IPv6 address, a fully-qualified do-
main name, an email address,etc.

- Authentication Method: pre-shared key, EAP, certificates,
RSA, etc.

The establishment of the CHILD_SA (negotiation of param-
eters stored in the SAD and SPD) is piggybacked during the
IKE_AUTH exchange. It is done just once the authentica-
tion and the authorization are performed. When Phase 2 is
done, both nodes agree on the following parameters of their
CHILD_SAs: Concerning the SAD

- CHILD_SA SPI. a 32 bits unique identifier of the
CHILD_SA.

- IP addresses: source/destination IP address of the IKEv2
compliant nodes.

- IPsec Protocol: AH (Authentication Header) or ESP
(Encapsulating Security Payload).

- Sequence number counter: value to control every incom-
ing/outgoing IP packet protected with IPsec, preventing
replay or unauthorized re-injection of already processed
IPsec traffic.

- Anti-replay window size N: any packet with the sequence
number X + N is discarded, where X is the awaited
sequence number.

- ESP/AH information: Encryption and/or authentication
algorithms, keys, initialization values, key lifetimes.

- Lifetime: time interval or byte count after which a SA
must be replaced with a new SA (and new SPI).

- IPsec Protocol Mode: tunnel or transport mode.

- Path MTU: maximum size of an IPsec packet that can be
transmitted without fragmentation.

Concerning the SPD

- IPsec Protocol Mode: tunnel or transport mode.

- Header’s IP Address: source/destination IP addresses of
the IKEv2 compliant nodes.

- Source/Destination IP addresses of the communications:
if transport mode is being used, these addresses are the
same as those used for routing purposes, whereas in
tunnel mode these IPs concern the end-points of the
communications (which could be an internal IP address
of a protected subnet).

- Upperspec: upper-layer protected protocol.

- Policy rules: DENY, BYPASS or PROTECT the targeted
traffic.

III. PROTOCOL DESCRIPTION

We propose a framework (fig. 1) to dynamically transfer
an IKEv2/IPsec context from one SG to another. The transfer
between two SGs is performed with CXTP protocol (see [2]).
In order to improve the IPsec-CXT, we defined two operations:
GET and PUT. GET extracts the IKEv2/IPsec context for a
given tunnel, whereas PUT makes installation of it. Details of
an IKEv2/IPsec state are also described in [3].

CXTP
Protocol

N GET
IKEv2 IKE_SA + CHILD_SA
Protocol

[PUT
IKE_SA + CHILD_SA

IPsec
Databases

Fig. 1. Schema of an IKEv2/IPsec Context Transfer Mechanism in a Gateway

A. Context Transfer Protocol (CXTP)

The IETF’s experimental protocol, CXTP [2], enables trans-
ferring contexts for various services (E.g. QoS, Security, Au-
thentication, etc.) between different SGs. A Context Transfer
(CT) can be either Mobile Controlled (initiated by End-Users)
or Network Controlled (initiated by the newly active SG nSG
or the previously active SG pSG). Once the CT is activated, it
may happen that one of the end-points already knows towards
which destination the context will be transferred. This case
is known as predictive mode, and it is the most favorable
scenario in terms of packet loss and performance, mostly
because the context transfer takes place before the handover is

done. On the other hand, if the context transfer occurs abruptly,
it is known as reactive mode. Obviously this mode is less
beneficial for an IKEv2/IPsec connection in terms of packet
loss and performance.

B. Functions Added: GET and PUT

We implemented two functions in order to successfully
recover a whole IKEv2/IPsec context. By now, we GET a
context and store it into a plain text file. We also implemented
a function to PUT (re-install) an IKEv2/IPsec context into
a SG directly from the previously stored plain text file. See
figure 1 to observe the graphical representation. Both GET
and PUT functions are implemented in strongSwan, which
communicate with the kernel through the Netlink XFRM
APIL. This API has recently been modified in order to solve
issues concerning the IPsec replay sequence counters syn-
chronization. Netlink XFRM allows to modify these counters
at any time in order to synchronize them. This feature is
very useful when clustering security gateways. On the other
hand, the lookup of the IKE_SA and CHILD_SA inside
strongSwan is done through its connection name (we refer
to it as “<conn-name>" in the examples): the command
ipsec get <conn-name> performs GET whereas the
command ipsec put <conn-name> performs PUT.

C. RFC5685 - Redirect Mechanism

The RFC5685 describes a method (see VI and [4]) that
allows to redirect an IKEv2/IPsec session from a previously
active SG towards a newly active SG. This mechanism does
not pre-authenticate an EU against the newly active SG, actu-
ally the EU needs to renegotiate the cryptographic information
from scratch. Our proposal aims to combine this redirect
mechanism with the transfer of the IKEv2/IPsec context,
therefore the EU does not need to re-authenticate its session.
The step number 5 in figure 2 corresponds to the IKEv2
exchanges concerning redirect mechanism during an active
session.

D. Step-by-Step IKEv2/IPsec Context Transfer

This section presents the sequence of steps of an [Psec-CXT
using predictive mode with CXTP. Figure 2 represents all the
steps to perform :

1) The EU establishes a tunnel with SG1 and indicates
support of redirect mechanism.

2) A trigger incident happens (E.g. SG1 overloaded). The
SG1 initiates IPsec-CXT and sends a CTD message (wi-
hch contains IKE_SA+SAD+SPD+PAD information).

3) SG2 receives the context and performs PUT.

4) SG2 acknowledges the IPsec-CXT and sends Context
Transfer Data Received CTDR message to SG1. SGI
sends a REDIRECT message to EU. REDIRECT tells to
EU that the SG1 is moving from @SG1 to @SG2. The
[NO_REAUTH_IPSEC_CXT_TRANSMITTED] notify
payload advises the EU that its session is already mi-
grated to the newly active SG. Finally, the [IPSEC_SYN]

notify payload synchronizes both the message ID and the
IPsec replay counters.

5) EU receives the REDIRECT request.
[NO_REAUTH_IPSEC_CXT_TRANSMITTED]
notify payload confirms the IPsec-CXT from @SGl1
to @SG2. EU updates its IKE_SA and CHILD_SAs
and the IKEv2/IPsec counters are synchronized through
[IPSEC_SYN] payload.

6) Finally, EU performs the handover and acknowledges
with an INFORMATIONAL response to SGI.

End-User IPsec Gateway IPsec Gateway

@EU @SG1 @SG2
% .

(| IKEV2/IPSEC TUNNEL B ‘
p | N[REDIRET_SUPPORTED] ipsec get <conn-name>
A
CT trigger /Z’ﬁx CTD {IKE_SA+ CHILD_SA}

TIME

‘ ipsec put <conn-name> ‘ |
f

4)

INFORMATIONAL Request i
{N(REDIRECT, @5G2,
[NO_REAUTH_IPSEC_CXT_TRANSMITTED],[IPSEC_SYN]}

INFORMATIONAL Response {}

CTDR {}

Handover
@n @

; IKEV2/IPSEC TUNNEL

Fig. 2. Exchanges during an IKEv2/IPsec Context Transfer

IV. IMPLEMENTATION - STRONGSWAN 4.5.0

Our implementation is based on StrongSwan 4.5.0 [5], a
widely used IKEv2 open-source implementation for linux
environments. A daemon called starter initializes the IPsec
framework and launches the different daemons defined through
configuration files (i.e. ipsec.conf where parameters are
stored). The daemon responsible of IKEv2 is called charon. It
intercepts the IP packets at the IP stack and applies the security
policies (whether to perform encryption/authentication or not).
This daemon is initiated as a thread, a master daemon creates
simultaneous processes and feeds them with different informa-
tion. This way, strongSwan works as a highly parallelized ap-
plication. As stated in section III-B, we added two new func-
tions: get and put commands. These functionalities allow
to dynamically manage the traffic of a concerned IKEv2/IPsec
session. The ipsec get <conn-name> command recov-
ers all the information concerning the IKE_SA, PAD, SAD and
SPD of an already established IKEv2/IPsec session. Then, a
SG can re-install the previously recovered context with the
command ipsec put <conn-name>.

A. Testbed description

Our platform is composed of two desktop stations. Both
operating systems run over Ubuntu (v12.04LTS in the IPsec
EU, and v11.10 in the SG). We did not use the newest
version of Ubuntu in the SG as the v11.10 was the recent
one when we implemented GET and PUT functions. Our
tests are performed locally on the same SG, which avoids the
interactions and delays introduced by CXTP. In other words,
these tests are especially focused on the interaction with the
IPsec stack.

First of all, we focused on measuring the time to establish a
single VPN on a SG by varying the number of VPN connec-
tions. Then, we measured the impact for upper-layers caused
by the interruption during the functions GET and PUT at the
IPsec layer (refer to figure Sa to see the exchanges during a
GET and PUT). All the tests are performed with HTTP traffic
over Ethernet links. Measurements show statistical results and
quartiles. During these tests, we used Traffic Control in order
to vary the bandwidth limit during the HTTP download and
thus study the impact over different transmission rates. To
generate statistical results, 100 measurements were done.

The tests have been measured by using the command t ime,
which writes a message to standard output giving timing
statistics about this program run. The outputs of time are
(i) the elapsed real time between invocation and termination
of the command, (ii) the user CPU time and (iii) the system
CPU time. We considered the value of the elapsed real time
in order to evaluate our stats results. For simplicity, we will
refer to elapsed real time as t ime. This is how we measured
the time it takes for a given command to run.

V. PERFORMANCE TESTS & RESULTS

Our graphs are represented in box-and-whiskers style. This
kind of representation is mostly used to plot statistical data.
For each measurement (based on 100 samples) the box-and-
whisker plot indicates: (i) the smallest observation, (ii) lower
quartile, (iii) the upper quartile and (iv) the largest observation.
The space between the lower and upper quartile represents
50% of the samples. For more clarifications, refer to [6]. The
different testbed measurements are performed over Ethernet
links (some of them with different bandwidths). We also
loaded the SG by establishing different VPN tunnels for each
TCP connection granulated by its port number. For example, a
TCP connection using port 80 will not traverse the same tunnel
as a TCP connection using port 81. They will use different
cryptographic material and thus different IKEv2/IPsec tunnels.

0.95 I:IIZF
0.9 - q

0.85 - =

s | & T
oot +T
oot T

70 709 “0p SB0p “%0p S0p 60p ‘0o

Time to seta VPN (s)

700,

Number of Virtual Private Networks

Fig. 3. VPN Establishment Time

A. First Test - VPN Establishment Time

The first test measures the time for establishing IKEv2/IPsec
tunnels between two end-points. The tunnels were initiated
one after the other to avoid half-opened IKE-SAs. This is not
a stress test but a load test. Figure 3 gives the results for

20
ot _Time-quartile =]
—_— »
w =
152 o 2
EnZ & 2
== Qg =
azfo =
[SSht= =B
] 2 @ » » @ »
© © » » » & & & & & &
— = =2 =2 2 5 5 = 5 = =
Ll L O O T S5 o o o o o
wr = = = = = & 5 S S S S
d o o o o & 8 8 38 R
o 7 = 8 838 R 3
@ s
.l
2L . P P L
0 <o Yo Yo S0 % o o Sop Voo Yoo S " o,
Number of VPNs
(a) GET Test
22 rom @
= = =
<h 20 oo oo o
b2} = = =
1S > = o
= 288
=
o s
1a [
>|3*
© iz [
11
54
o 222222
e Ir 2222222aaaaz
> ¢ EE&sagzezaz==Z=Z2=2
====== S o g9 o9
E 283832838888 838R
s =

N2

Number of VPNs
(b) PUT Test

Fig. 4. Experimental IKEv2/IPsec Context Management

initializing 10, 100, 200, 300, 400, 500, 700 and 1k tunnels.
We can clearly see that the time measured is proportionally
higher as the amount of VPNs rises. Establishment of 10
tunnels takes 0.31s to 0.41s, whereas 1000 tunnels may take
0.89s up to 1s for a single VPN establishment. All the other
measures (i.e. 100, 200, 300 tunnels ...) show results between
0.3s and 1s for a single VPN establishment.

B. Second Test - GET and PUT Times

Our second test consists in measuring the time to GET and
to PUT an active IKEv2/IPsec context. First, we established
different scenarios (different amount of active tunnels): 10, 20,
30, 40, 50, 60, 70 , 100, 200, 300, 400, 500, 600, 700 and
1k active VPN tunnels. Then, we proceed to GET ten (10)
randomly chosen VPNs over each scenario (10,100,200...).
The resulting time to GET 10 randomly chosen VPNs is
divided by 10 in order to obtain the average time to perform
a GET over a single VPN connection. Detailed results are
shown in figure 4a. We can observe that the values are quite
similar for all the scenarios (we consider the case of 10 and
30 VPNs isolated variations, which is normal). The command
ipsec get performs its task in a range of 5ms up to 15ms.
By the way, by observing figure 4a we can realize that a
loaded SG (600-700 VPNs) takes more likely 13ms-15ms to
perform a GET over a single VPN whereas for a relieved
SG these times are around 5ms and 12ms. Then, we proceed
to PUT the ten (10) previously randomly chosen VPNs for
each scenario (10,100,200...). The time that the script takes to
PUT these connections is divided by ten (10). This results in
the average time to PUT a single VPN active session. Figure
4b shows the measurements concerning the PUT function for
all the scenarios. It represents the time that a SG takes to
install a single IKEv2/IPsec context from a file. We observe

that strongSwan takes a range of 2ms up to 22ms to perform
a PUT of a single VPN.

C. Third Test - Upper-layer’s Reactivity

We observed the reactivity of upper-layer protocols facing
interruptions at the IPsec layer on SG’s side. The test con-
sists to GET and PUT a single VPN connection during an
HTTP download. We perform this with different traffic rates
(controlled with Traffic Control implementation for linux [7]).
Figure 5a illustrates a protocol representation of what happens
during this test. Initially, a VPN is established between an
EU and the SG. Then, we start an HTTP download by
using the command wget. The source file is placed on the
EU’s side whereas the SG is configured as the destination.
Even if in real life an EU (and not the SG) is usually the
destination when downloading files from the Internet, we
chose this methodology in order to analyze the impact of
a SG facing interruptions at the IPsec layer. Thus, after the
download has been performed during five (5) seconds, we
GET the whole IKEv2/IPsec context on the SG, causing it
to loose connectivity with the peer. The EU continues to
send ESP packets as it is unaware of the GET function
performed on the SG side. We considered different interruption
times (I's Time_Sleeps of 10, 30 and 60 seconds) before
performing a PUT function. Finally, once the IKEv2/IPsec
context is reinstalled, we observed the time to finish the HTTP
download. As we carry HTTP traffic over an IPsec protected
communication, we set the HTTP parameters through wget
to be as flexible as possible facing interruptions. Also, as
we measured different traffic rates during the downloads, we
changed the size of the file being downloaded (because big
size files would take too much time to download at lower
rates). Table I shows the different file sizes used for each traffic
rate. Figure 5 represents the download time concerning all file

Interruption Rate File
Time T's Size
10 kB/s IMB

100 kB/s SMB

10s, 30s 500 kB/s 20MB
and 60s 1 MB/s 20MB
2 MB/s 20MB

3 MB/s 100MB

5 MB/s 100MB

10 MB/s 100MB

TABLE I

THIRD TEST - INTERRUPTION TIMES, TRAFFIC RATE AND FILE S1ZES

sizes and rates. Each figure (5b, 5c and 5d) shows the
download times for each interruption T's. We observe that at
lower traffic rates (less than 3000kB/s), the measures are very
stable because the quartiles are very thin. For higher traffic
rates (more than 3000kB/s), the download time is unstable
and so the quartiles are more spread and thicker. On the other
hand, the three graphs have a similar behavior. Even though
they are all offset by their corresponding interruption time.

Finally, this test represents the impact of the interruption at
the IPsec layer during an active session.

VI. POSITION OF OUR WORK & RELATED WORK

Concerning [Psec-CTX there are different mechanisms that
have similar approaches:

- RFC6311: Protocol Support for High Availability of
IKEv2/IPsec [8]. This RFC proposes an extension to the
IKEv2 protocol. It aims to solve the refreshing of both
IKEv2 (IKE_SA) and IPsec (CHILD_SA or IPsec_SA)
counters due to a mismatch caused by a failure take-
over process. Although it involves changes to the IKEv2
protocol, this extension handles the renegotiation of the
IKEv2/IPsec counters in an efficient manner.

- RFC4067 Context Transfer Protocol [2] This proto-
col introduces a generic mechanism that allows context
transfer between SGs. In our scenario, Context Transfer
Protocol (CXTP) is the protocol we could use to transfer
an IKEv2/IPsec context between Security Gateways. One
issue when using CXTP under this scenario is that the
EU is actually involved during the SG migration, thus
increasing the number of messages exchanged between
the EU and the IPsec SG. CXTP can be triggered by
one of the SGs (network controlled) or by the EU
itself (mobile controlled, or controlled by the EU). In
both cases, a message named CTAR (Context Transfer
Activate Request message) must be sent from the EU
towards one of the IPsec SGs during the context transfer.

- Mobility Related Documents: [9] and [10] addresses
EU’s IP mobility and multihoming. When an EU changes
its IP address, the IKEv2/IPsec contexts are not valid
anymore and the EU looses connectivity. An INFOR-
MATIONAL exchange allows all concerned SAs to be
updated and thus let the node remain connected and
protected with IPsec.

- Allard [11] addresses the IPsec context transfer between
two Security Gateways with an implementation using
IKEv1. In contrast, our work is positioned using IKEv2,
which involves differences compared with IKEv1 (see
section 2.3.1 in [12]): less signalization, mobile friendly
([9] [10]), better performance and less complexity.

- RFC5685 Redirect Mechanism for the Internet Key
Exchange Protocol Version 2 (IKEv2) [4] proposes an
IKEv2 extension to redirect an IKEv2/IPsec session from
one gateway to another. It does NOT pre-authenticate
the EU prior to the connection towards a new Security
Gateway (SG). The EU needs to renegotiate a new SA
with the new SG.

- Yu [13] proposes to solve availability issues on IPsec
by simulating a cluster mechanism for IPsec gateways.
Even if we do not implement a cluster, we consider it a
similar work, as seamless switching mechanism spreads
SAs among both active and standby SGs. The author
does not recommend a High-Reliable link between the
gateways in order to communicate their SAs. However, it
mentions that the members of a cluster could be deployed

1Psec Peer IPsec Gateway “c
J @EU @sG1

IKE INIT
IKE_AUTH

IKEv2/IPsec Tunnel @EU-@SG1

136m
peojumoq d1LH

@

=]

ESP
ESP
ESP

TIME

&

ESP
ESP X
ESP X

IKEv2/IPsec Tunnel @EU-@SG1

700 809 700y 2009300 %00, 00g,

1nd 23sd| 139 29sd|
Seco

W A A

oo v,

ESP
ESP

Download Rate in kB/s
(b) Dowload Time with T's=10s

(a) Detail of the test

Fig. 5.

in different network segments. The results are based on
simulations and not a real implementation, which could
differ from reality.

VII. CONCLUSION

We proposed a mechanism to dynamically manage IPsec-
CXT. Our proposal aims to solve the reliability of overloaded
IPsec SGs. By performing IPsec-CXT, a SG can manage
the traffic and distribute efficiently the different IPsec tun-
nels between different servers of a cluster. Additionally, we
studied through a real implementation the time to establish
an IKEv2/IPsec session, as well as we measured the time to
extract and re-install a security context. Finally, we measured
the impact for upper-layers through different interruption times
at the IPsec layer during an HTTP-based download. Future
works will consider measuring the impact of the CXTP proto-
col and the communication between physically different SGs.
Additionally to GET and PUT operations, we will consider
the added network delays when performing an IPsec-CXT.
We will also consider other mobility mechanisms [9] [10],
instead of Redirect Mechanism [4]. Regarding a classic net-
work behavior, we consider the results of GET and PUT
functions as optimistic. Based on the results in section V-B,
the worst case to perform a GET and a PUT are 15ms
and 22ms respectively. We can even discard network delays
since predictive mode performs IPsec-CXT prior to mobility
operations, and thus the reestablishment of the tunnel could
be done within 37ms (15ms to GET + 22ms to PUT) plus
the time to update the Security Associations at the EU’s side.

(c) Dowload Time with T's=30s

[1]

[2]

[3]

[4]

[5]
[6]
[7]
[8]

[9]

(10]

(11]

[12]

[13]

700 S0p 700, 2009500, %00, 700, 700 %09 700, 2009500, %00, 7004,

Download Rate in kB/s
(d) Dowload Time with T'g=60s

Download Rate in kB/s

Upper-layer’s Reactivity

REFERENCES

C. Kaufman, P. Hoffman, Y. Nir, and P. Eronen, “Internet Key Exchange
Protocol Version 2 (IKEv2),” RFC 5996 (Proposed Standard), Internet
Engineering Task Force, Sep. 2010, updated by RFC 5998.

J. Loughney, M. Nakhjiri, C. Perkins, and R. Koodli, “Context Transfer
Protocol (CXTP),” RFC 4067 (Experimental), Internet Engineering Task
Force, Jul. 2005.

D. Palomares, “Mechanisms to Ensure Continuity of Service for
IPsec/IKEv2 Based Communications,” in ICSNA-2011: International
Conference on Secure Networking and Applications ,24-25 October,
Paris, France. FT - France Télécom, Division R&D, Issy Les
Moulineaux (France Télécom), 2011.

V. Devarapalli and K. Weniger, “Redirect Mechanism for the Internet
Key Exchange Protocol Version 2 (IKEv2),” RFC 5685 (Proposed
Standard), Internet Engineering Task Force, Nov. 2009.

A. Steffen., “the OpenSource IPsec-based VPN Solution: StrongSwan.”
[Online]. Available: http://www.strongswan.org

Wikipedia, “Boxplot — Wikipedia The Free Encyclopedia.” [Online].
Available: http://en.wikipedia.org/wiki/Box_plot

M. Devera, “HTB Linux queuing discipline manual - user guide.”
[Online]. Available: http://luxik.cdi.cz/~devik/qos/htb/manual/userg.htm
R. Singh, G. Kalyani, Y. Nir, Y. Sheffer, and D. Zhang, “Protocol
Support for High Availability of IKEv2/IPsec,” RFC 6311 (Proposed
Standard), Internet Engineering Task Force, Jul. 2011.

P. Eronen, “IKEv2 Mobility and Multihoming Protocol (MOBIKE),”
RFC 4555 (Proposed Standard), Internet Engineering Task Force, Jun.
2006.

D. Migault, “MOBIKE eXtension (MOBIKE-X) for Transport Mobility
and Multihomed IKE_SA,” (Work in Progress), Internet Engineering
Task Force, Sep. 2009.

F. Allard, J.-M. Bonnin, J.-M. Combes, and J. Bournelle, “IKE Context
Transfer in an IPv6 Mobility Environment,” in MobiArch’08, 22 aoiit,
Seattle (WA), USA. FT - France Télécom, Division R&D, Issy
Les Moulineaux (France Télécom), RSM - Dépt. Réseaux, Sécurité et
Multimédia (Institut Mines-Télécom-Télécom Bretagne-UEB), 2008.
S. Frankel and S. Krishnan, “IP Security (IPsec) and Internet Key Ex-
change (IKE) Document Roadmap,” RFC 6071 (Informational), Internet
Engineering Task Force, Feb. 2011.

L. Yu, S. Jia, C. Xu, J. Guan, and D. Gao, “An ipsec seamless switching
mechanism with high availability and scalability by extending ikev2
protocol,” IET Conference Publications, vol. 2011, no. CP588, 2011.

