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Article

SemiMarkov: An R Package for Parametric
Estimation in Multi-State Semi-Markov Models

Agnieszka Listwon Philippe Saint-Pierre
Gdansk University of Technology Université Pierre et Marie Curie
Paris
Abstract

Multi-state models provide a relevant tool for studying the observations of a continuous-
time process at arbitrary times. Markov models are often considered even if semi-Markov
are better adapted in various situations. Such models are still not frequently applied
mainly due to lack of available software. We have developed the R package SemiMarkov
to fit homogeneous semi-Markov models to longitudinal data. The package performs
maximum likelihood estimation in a parametric framework where the distributions of the
sojourn times can be chosen between exponential, Weibull or exponentiated Weibull one.
The package computes and displays the hazard rates of sojourn times and the hazard rates
of the semi-Markov process. The effects of covariates can be studied with a Cox propor-
tional hazards model for the sojourn times distributions. The number of covariates and
the distribution of sojourn times can be specified for each possible transition providing
a great flexibility in a model’s definition. This article presents parametric semi-Markov
models and gives a detailed description of the package together with an application to
asthma control.

Keywords: multi-state semi-Markov models, parametric estimation, exponentiated Weibull
distribution, asthma, R package.

1. Introduction

In multi-state models of longitudinal data usually a process is assumed to be Markovian that
is the conditional probability distribution of future states depends only on the present state,
not on the whole sequence of past events. In various applications, the intensities between
states are supposed to be constant in time (homogeneity assumption) or piecewise constant
(Huszti et al. 2012; Saint-Pierre et al. 2003; Aguirre-Hernandez and Farewell 2002). A few
R packages have been developed to simplify the usage of multi-state Markov models. The
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msm package (Jackson 2012) allows to fit homogeneous Markov or hidden Markov model in
continuous-time and discrete-time. Non and semi parametric estimation of non homogenous
Markov models or competing risks models are possible using mstate package (Putter et al.
2011). The etm package (Allignol 2012) computes the Aalen-Johansen empirical transition
matrix whereas p3state (Meira-Machado and Roca-Pardinas 2012) focuses on the illness-death
model.

A non homogeneous Markov model is well adapted when the process evolution depends on
calendar time, age or time since the beginning of the study. However, the memoryless property
implies that the waiting times distributions in a Markov model is exponential. In cases when
this assumption is too restrictive, semi-Markov models can be considered since they involve
distributions of sojourn times as parameters. From a theoretical point of view, several results
are given in Limnios and Oprisan (2001). Non homogeneous semi-Markov models are very
complex and are rarely used in practical situations (Monteiro et al. 2006). In the homogeneous
case, a non parametric estimation of the semi-Markov process hazard rate can be found in
Gill (1980) or in Ouhbi and Limnios (1999). The parametric maximum likelihood estimation
is based on a parametric definition of the sojourn times distributions (Pérez-Océn et al. 1999).
Indeed, the Weibull or the exponentiated (generalized) Weibull distributions are efficient and
flexible to fit the N or U shape (of the hazard rates) common in biology (Foucher et al. 2006),
life science and reliability. Moreover, the parametric model allows to incorporate covariates in
the distribution of sojourn times using a proportional-hazards regression model (Cox 1972).

Few R (R Development Core Team 2010) packages have been developed to handle semi-
Markov or hidden semi-Markov model. The mhsmm package (O’Connell and Hojsgaard 2012)
performs estimation and prediction for multiple observation sequences in hidden semi-Markov
models. The msSurv package (Ferguson et al. 2012) provides non parametric estimation in
semi-Markov models but covariates are not considered. However, it seems that the parametric
approach is not yet implemented in statistical software. We have developed an R package
named SemiMarkov (Listwon and Saint-Pierre 2013) which performs parametric estimation
in a homogeneous semi-Markov model. The waiting times distributions can be chosen to be
the exponential, the Weibull, or the exponentiated Weibull distribution. Maximum likelihood
estimations of both, hazard rates of the semi-Markov process and hazard rates of sojourn
times can be deduced. Moreover, the effects of covariates on the process evolution can be
studied using a semi-parametric Cox model for the distributions of sojourn times. The number
of states, the possible transitions between them and the number of covariates affecting each
transition can be chosen in order to fit sparse model adapted to a specific application.

The rest of this paper is organized as follows. Section 2 describes the multi-state semi-Markov
models and the parametric maximum likelihood estimation used in the SemiMarkov package.
Section 3 describes the SemiMarkov package whereas the section 4 illustrates the different
functions included in the package through an example on severe asthma. Conclusions and
possible future extensions of this R package are discussed in Section 5.

2. Homogeneous semi-Markov model framework

2.1. Homogeneous semi-Markov process

Let us consider a Markov renewal process (Jn, Ty )neny where 0 =Ty < Ty < ... < T, < o0
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are the successive times of entry to states Jy, Ji,...,J, where J, # J,41 for all n € N.
The sequence (J;,)nen is an embedded homogeneous Markov chain taking values in a discrete
finite state space £ with transition probabilities pp; = P(Jn41 = j|Jn = h), n € N. Let
Sp = T, — T,,—1 be the inter-arrival time for all n € N*, d € Ry and (h,j) € E x E, the
Markov renewal kernel @Qj;(d) satisfies

th(d) == P(Jn+1 == j, Sn+1 S d|J0, ey Jn == h, Sl, .. ,Sn) == P(Jn+1 == j, Sn+1 S d|Jn == h)

(1)
Let N(t) =sup{n € N: T, <t ,t € Ry} the counting process which counts the total number
of observed transitions during the time interval [0, ¢]. The process J N(t)> Which represents the
state of the process at time ¢, defines a homogeneous semi-Markov process.

The probability distribution function of sojourn times is related to the semi-Markov kernel
through the transition probabilities of the embedded Markov chain,

. i(d
Fpj(d) = P(Spy1 < d|Jp = h, Jn11 =j) = Q;]h() (2)
j

Let us suppose that the survival function Gjy;(.), the density function fy;(.) and the hazard
rate oy (.) associated to this probability distribution can be defined. The survival function of

sojourn time in state h is defined by Gp(d) = 1=P(Sp+1 < d|Jp = h) = 3", p pnj(1—Fpj(d)).
The hazard rate of the semi-Markov process is defined by

. P11 =7,d< Sp1 <d+ Ad|J, =h,Spy1 > d
)\hj(d) _ Ali}Eo ( +1 =7 +1 ~ | +1 )

_ Phjifri(d) .
- éhi(‘?d)’ h#]v (3)

Mn(d) = = Anj(d).

2.2. Sojourn times distribution

Let us assume that distributions of sojourn times belong to a parametric family. The simplest
model is obtained using the exponential distribution &£(op;), for which the hazard rate is
constant over time (corresponding to the Markov case) and is related to a single positive
parameter o,
1
apj(d) = —,Vd > 0. (4)
Uhj

The Weibull distribution (Weibull 1951), which generalizes the exponential one, is often used
in practical applications. Indeed, the Weibull distribution with two parameters W(op;, vp;)
is well adapted to deal with various shapes of monotone hazards,

ang(d) = 20 (d) 5)

Ohj \Ohj

where op; > 0 is a scale parameter and v,; > 0 is a shape parameter. The exponentiated
Weibull distribution EW(op;, vhj, 0n;) (Mudholkar and Srivastava 1993) with an additional
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shape parameter ¢5,; > 0 is very useful to fit U and N shapes of hazard rates

s ()" e (&) - )M
(e (- (2)™])

These three distributions which allow to fit various shapes of the hazard ratio are nested: a
EW(op;,1,1) is equivalent to a W(oy;, 1) which is equivalent to a £(op;). The Wald test can
be used to test each parameter and evaluate the relevance of a given distribution.

() =

2.3. Parametric maximum likelihood estimation

In a parametric framework, distributions of sojourn times are supposed to belong to a class of
parametric functions. For each transition, the distribution (which depends on a finite number
of parameters) can be specified using either the hazard rate ay;(-), the density f5;(-) or the
cumulative distribution function Fp;(-).

The likelihood function associated to a single semi-Markov process can be written as

N
L= HpJn—lJann—lJn(STl) x (G (U))°, (7)

n=1

where N is the total number of observed transitions between two different states, U denotes
the duration between the time of the last observation and Ty time of the end of the study. The
indicator § is equal to 1 if the last sojourn time U is right-censored by the end of the study.
Indeed, the last duration and the last arrival state are unknown unless the process entered an
absorbing state (6 = 0). When an observation is right-censored (6 = 1), the survival function
of the sojourn times is taken into account. The first part of Equation 7 involves density
function and probabilities of Markov chain, it corresponds to the contribution of the observed
transitions.

Consider that each individual 7 = 1,...,k, is associated to a semi-Markov process (Jy, (), >
0) with N;(t) =sup{n € N: T} < tt € R.}. Equation 7 can be used to compute each indi-
vidual contribution to the likelihood L;. The full likelihood L is the product of all individual
likelihood contributions Lj;.

2.4. Cox proportional model

The influence of covariates on the sojourn times distributions can be studied using a Cox
proportional regression model (Cox 1972). Let Zp; be a vector of explanatory variables and
Br; a vector of regression parameters associated to the transition from state h to state j. The
hazard rate is defined by

ah](d‘ZhJ) = ath(d)eXp(/B;szhj)7 d > 07 h7j € E7 h 7& j7 (8)

where ag(d) denotes the baseline hazard defined in section 2.2.

In this model, the regression coefficients can be interpreted in terms of relative risk. As
in the Cox model, time-dependent covariates can be considered assuming that the value of
the covariate is constant between two consecutive events. Let us mention that the previous
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notation allows to consider different sets of covariates for each transition. It is then possible
to consider sparse models with only significant regression parameters.

3. The SemiMarkov R package

3.1. Package description

The SemiMarkov package was developed to analyze longitudinal data using multi-state
semi-Markov models. The main function semiMarkov of the package computes the para-
metric maximum likelihood estimation in the homogeneous semi-Markov model introduced in
section 2.

Format of data

A data set asthma is included in the SemiMarkov package. This cohort study (longitudinal
data) of severe asthmatic patients can be analyzed using multi-state semi-Markov models.
The data frame to be used in the function semiMarkov must be similar to the asthma data :
a table in long format (one row per transition and possibly several rows by individual) that
must contain the following informations

1. id: the individual identification number
2. state.h: state left by the process
3. state. j: state entered by the process

4. time: sojourn time in state.h

The rows must be grouped by individuals and ordered chronologically within groups. By
definition of a semi-Markov model the waiting times must be known. Therefore, the transitions
between the same states are not possible. If such transitions are observed, the row must be
combined with the next transition to obtain a transition from state h to state j with h # j.
The last sojourn time of a semi-Markov process is observed only when the process enters an
absorbing state. In other cases, the final state and the last sojourn time is unknown due
to right-censoring process. In such case, it is only known that the censored sojourn time is
greater than the last observed sojourn time (in practice, the last observed sojourn time is
deduced from the date of the end of the study). A censored transition can be specified by a
transition from h to h (so that such transitions are distinct from the rest of transitions). One
can also identify the unknown arrival state using the argument cens. The dataset may also
include additional explanatory variables (for instance, some individual’s characteristics). The
values of these covariates must be given for each individual and for each transition in order
to take fixed or time-dependent covariates into account (one value for each row of the data
frame data).

Functions description

Following is a brief description of the package functions.
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e table.state: Computes a frequency table counting the number of observed transitions
in the data set.

e param.init: Defines default or specified initial values of the parameters.

e semiMarkov: Computes the parametric maximum likelihood estimation of multi-state
semi-Markov models.

e hazard: For any object of classes semiMarkov and param.init, the function computes
the values of the hazard rate of sojourn times or the values of the hazard rate of the
semi-Markov process for a given vector of times.

e summary.semiMarkov, summary.hazard, print.semiMarkov, print.hazard: Summary
and printing methods for objects of classes semiMarkov and hazard.

e plot.hazard: Plot method for objects of class hazard.

Sojourn times distribution

The parametric estimation in homogeneous semi-Markov models is based on the specification
of the sojourn times distribution. The following distributions are available in the package
SemiMarkov : exponential ("E", "Exp" or "Exponential"), Weibull ("W" or "Weibull") and
exponentiated Weibull ("EW", "EWeibull" or "Exponentiated Weibull"). If the logical value
TRUE is given then the default is the Weibull distribution. These distributions are nested when
the appropriate parameters are equal to 1 (see Section 2). The estimations of the distribution
parameters are given with standard deviations and p-values of the Wald test (Hp : ©; = 1).
One can then evaluate, for instance, the relevance of the exponentiated Weibull distribution
in comparison to the Weibull or the exponential distribution.

Multi-state model definition

The multi-state approach requires to define the states of the process and to specify the struc-
ture of the model (the number of states and the possible transitions between them). The
function table.state returns a matrix which gives the number of observed transitions in the
data set. This function can help to define the argument mtrans required in the semiMarkov
and the hazard functions. The square matrix mtrans includes informations on possible tran-
sitions and on the distributions of waiting times. The element hj of the matrix mtrans is
either a logical value FALSE (when the transition from h to j is not possible) or a character
representing the sojourn time distribution. According to semi-Markov models, the diagonal
elements of mtrans are all equal to FALSE. Note that only the transitions specified in mtrans
will be considered in the analysis. In case of the three-state model described in Figure 1 where
the sojourn times associated to each transition are Weibull distributed, the matrix mtrans
will be defined as follows

R> mtrans

[,1] [,2] [,3]
[1’] HFALSEII Ilwll llwll
[2 ,] "wll llFALSEIl Ilw||
[3 ’] lel Ilwll IIFALSEH
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The argument states is a character vector used to define the names of states, possible values
are those included in the data’s columns state.h and state. j.

Covariates

The effect of covariates on the process evolution can be investigated considering a Cox pro-
portional hazard model for the hazard rates of waiting times. A set of covariates can be
specified using the argument cov. The argument cov_tra is used to indicate which covari-
ates affect which transitions : cov_tra is a list of vectors where the k-th vector provides
the transitions affected by the k-th covariate. The elements of these vectors can only con-
sist of transitions specified in the argument mtrans. For example, considering the model
defined in Figure 1 where a covariate "A” affects all transitions leaving state 1 whereas
the covariate "B” affects the transitions leaving state 2: the arguments will be respectively
cov=as.data.frame(cbind(A,B)) and cov_tra=list(c("12","13"),c("21","23")). The
interpretation of the regression coefficients in terms of relative risks (as in the Cox model)
can help to quantify the effect of covariates and to understand the process evolution. For
each estimation of regression coefficients, standard deviation and p-value of the Wald test
(Hp : B =0) are given.

Initial values

The optimization procedure used in the maximum likelihood estimation requires definition
of initial values of the parameters: the distribution parameters, the transition probabilities
and the regression coefficients associated to the covariates. Default values are equal to 1
for the distribution parameters, and 0 for the regression coefficients. The initial transition
probabilities are calculated by simple proportions: the number of observed transitions from
state h to state j divided by the total number of observed transitions from state h. The
function param.init can be used to define specific initial values of the parameters. An object
of class param.init can then be given as argument in the semiMarkov and hazard functions.
The total number of parameters depends on: the number of states, the possible transitions,
the chosen distributions and the covariates.

3.2. Parametric maximum likelihood estimation

The semiMarkov function

The main function semiMarkov estimates the parameters of a multi-state homogeneous semi-
Markov model using the parametric maximum likelihood estimation. Several R packages
are needed to run the function. The package numDeriv (Gilbert and Varadhan 2012) that
allows to approximate the hessian matrix of second derivatives for the estimated parameters.
The package MASS (Ripley et al. 2012) is used to obtain the inverse of the hessian matrix.
The maximization of the likelihood is performed using the Augmented Lagrangian Adaptive
Barrier Minimization Algorithm implemented in the function constrOptim.nl from the R
package alabama (Varadhan 2012). Indeed, we have to face an optimization with constraints
since sums of the probabilities associated to transitions leaving the same states are all equal
to 1 (the sums in rows of transitions matrix).

The following arguments are used in the function semiMarkov: arguments related to the data
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(data, cov), arguments related to the model (states, mtrans, cov_tra, cens) and initial
values (dist_init, proba_init, coef_init). Default values are defined for the distributions
of waiting times and for the initial values. The function semiMarkov returns an object of
the class semiMarkov which recalls the chosen model, gives informations on the optimization
method and provides the parameters estimation together with their standard deviations. For
each regression coefficient 3, the p-value of the Wald test when testing the absence of effect
(Hyp : p = 0) is also provided whereas for each distribution parameter o (or v or ) the
p-value of the Wald test when testing Hy : 0 = 1 is given. The Wald test for the transition
probabilities is less useful and is not performed.

The hazard function

The hazard rate of sojourn time and the hazard rate of the semi-Markov process can be
deduced from the parameters and the distributions of sojourn times using Equation 8 and
Equation 3, respectively. The function hazard computes vectors of hazard rates values using
either the estimations included in an object of class semiMarkov or the specific values defined
by an object of class param.init. The argument type is used to choose the type of hazard
rate: alpha for the hazard rates of waiting times and lambda for the hazard rates of the
semi-Markov process.

The hazard function returns the values of the hazard rates associated to a vector of times.
By default, the hazard rates are calculated for a vector of ordered times of length 1000 where
the starting value is equal to 0 and the ending value is determined by the longest sojourn
times. The length of a vector, its starting and ending values can be specified by the user. One
can also enter a whole vector of times, for instance, the different values of the sojourn times
observed in the data. If covariates are used in the model, the hazard rates can be obtained for
given values of the covariates using the argument cov: for time-fixed covariate a single value
is needed whereas a vector of values is required for time-dependent covariates. By default,
all covariates values are set equal to 1. Note that the function hazard does not require to
specify the model or the distributions. Indeed, these informations are already included in the
objects semiMarkov or param.init.

3.3. Showing results

An object of the class semiMarkov contains data description, the considered model and the
results of the MLE that may be displayed using summary . semiMarkov and print.semiMarkov.
The functions summary.hazard and print.hazard provide the type of hazard rates, the vector
of times and the associated values of hazard rates. An object of the class hazard can be plotted
using plot.hazard. For each transition, the function generates a plot representing one or
more (up to ten) hazard rates.

4. Application to asthma control data

A follow-up study of severe asthmatic patients was conducted in France between 1997 and
2001 by ARIA (Association pour la Recherche en Intelligence Artificielle). Adult asthmatics
were prospectively enrolled over a 4-year period by a number of French chest physicians.
The data reflects the real follow-up of patients consulting at varied times according to their
perceived needs. At each visit, several covariates were recorded and asthma was evaluated
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State 1

Optimal control

State 2

Sub-optimal control

State 3

Unacceptable control

Figure 1: The three states model used for asthma control evolution.

using the concept of control scores (Saint-Pierre et al. 2006). The control scores can be used to
define the subject’s state at each consultation. The considered model to study the evolution
of asthma consists of three transient states (Figure 1): the optimal control (State 1), the
sub-optimal control (State 2) and the unacceptable control (State 3). A random selection of
371 patients with at least two visits (data asthma) is included in the package SemiMarkov.
A total of 557 transitions between states are observed and no deaths are reported. Together
with the control scores at each time, three covariates are included in the data: Severity
(disease severity : coded 1 if severe, 0 if mild-moderate asthma), BMI (Body Mass Index : 1
if BMI>25, 0 if BMI<25) and Sex (1 if men, 0 if women). The data frame asthma is a table
with one row per transition. The rows corresponding to the same subject are grouped and
ordered chronologically. The columns of asthma data are : the patient identification number
(id), the state left by the process (state.h), the arrival state (state.j), the sojourn time
in state state.h (time) and binary covariates (Severity, BMI, Sex). Note that the variable
BMI is a time-dependent covariate.

R> library("SemiMarkov")
R> data("asthma")
R> head(asthma)

id state.h state.]j time Severity BMI Sex
1 2 3 2 0.15331964 1 1 0
2 2 2 2 4.12320329 1 1 0
3 3 3 1 0.09582478 1 1 1
4 3 1 3 0.22997947 1 1 1
5 3 3 1 0.26557153 1 1 1
6 3 1 1 5.40725530 1 1 1

There are no absorbing states in the considered model (Figure 1). The last sojourn time is
then right-censored. Its value is the time between the last visit and the date of the end of the
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study. A censored observation is identified by a transition into the same state. In such case,
the value of state.h is equal to the value of state.j and the value of time is the censored
sojourn time.

R> table.state(asthma)

$table.state
i 2 3

1 152 95 44

2 112 116 71

3 115 120 103

$Ncens

[1] 371

In a primary analysis, the data are stratified according to the values of the covariates. The
effect of covariates and the proportional hazard assumption can be evaluated by representing
the hazard rates in each stratum. In a second step, a proportional model can be considered to
study the effect of covariates. For instance, one can consider a model with BMI as covariate
and the Weibull distribution for the waiting times.

R> states <- c("1","2","3")

R> mtrans <- matrix(FALSE, nrow=3, ncol=3)

R> mtrans([1,2:3] <- c("W","W")

R> mtrans[2,c(1,3)] <= c("W","W")

R> mtrans[3,c(1,2)] <- c("W","W")

R> BMI <- as.data.frame (asthma$BMI)

R> fit <- semiMarkov(data=asthma, states=states, mtrans=mtrans, cov=BMI)

The semiMarkov function provides estimations of parameters of the waiting times distribu-
tions, the standard deviations, the confidence intervals and the Wald test statistics (Hy :
0n; = 1). One can observe that the coefficient 123 associated to the transition from state 2
to state 3 is not significantly different from 1. The exponential distribution can then be used
instead of the Weibull distribution for this transition.

R> fit$table.dist

$Sigma

Transition Sigma  SD Lower_CI Upper_CI Wald_test p_value
1 1 ->29.369 2.41 4.64 14.09 12.05  5e-04
2 1 ->30.418 0.08 0.26 0.58 51.58 0
3 2 ->1 5.011.24 2.57 7.45 10.37 0.0013
4 2 ->30.713 0.12 0.49 0.94 6.07 0.0137
5 3 ->10.275 0.02 0.23 0.32 1001.15 0
6 3 -> 2 3.357 0.79 1.81 4.9 8.92 0.0028

$Nu
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Transition Nu SD Lower_CI Upper_CI Wald_test p_value

1 1 ->20.532 0.05 0.44 0.63 95.83 0
2 1->3 1.18 0.14 0.9 1.46 1.65 0.199
3 2->1 0.51 0.04 0.43 0.59 142.16 0
4 2 ->31.048 0.1 0.86 1.24 0.25 0.6171
5 3 ->11.431 0.1 1.24 1.62 19.8 0
6 3 -> 2 0.556 0.04 0.47 0.64 163.75 0

The regression coefficients associated with BMI can be analyzed using the Wald test statistics
(Ho : Br; = 0). For instance, the estimation of the coefficient associated to the transition
from state 3 to state 1 is significantly different from 0 (5 = —0.447,p = 0.028). It means that
a BMI>25 decreases the risk of leaving the unacceptable state to enter the optimal control
state.

R> fit$table.coef

Transition Covariates Estimation  SD Lower_CI Upper_CI Wald_test p_value

1 1 ->2 Betal -0.2788780 0.22 -0.72 0.16 1.56 0.2117
2 1 ->3 Betal -0.8784935 0.35 -1.57 -0.19 6.27 0.0123
3 2 >1 Betal 0.0317064 0.19 -0.35 0.41 0.03 0.8625
4 2 >3 Betal -0.1116779 0.27 -0.64 0.41 0.17 0.6801
5 3 ->1 Betal -0.4473445 0.20 -0.85 -0.05 4.84 0.0278
6 3 ->2 Betal -0.1469088 0.18 -0.50 0.21 0.65 0.4201

The effect of BMI on the hazards of waiting times and on the hazards of the semi-Markov
process can also be evaluated using the hazard and plot functions (Figure 2).

R> plot(hazard(fit,cov=0), hazard(fit,cov=1),transitions=c("31"))
R> plot(hazard(fit,cov=0, type="lambda"), hazard(fit,cov=1,type="lambda"),
transitions = c("31"))

Finally, multivariate models can be considered. However, the number of parameters can
quickly be too important comparing to the size of data set (due to the complex form of the
waiting times distributions and to the number of covariates under study). The optimization
method can then fail to reach convergence. It is therefore important to consider sparse models
using adapted distributions and keeping only the regression coefficients significantly different
from 1.

R> SEV <- as.data.frame(asthma$Severity)

R> fit2 <- semiMarkov(data=asthma, cov=as.data.frame(cbind(BMI,SEV)), states=
states, mtrans=mtrans, cov_tra=l1ist(c("13","31"),c("23")))

5. Discussion

11
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Figure 2: The hazard rate of waiting time (left) and the hazard rate of the semi-Markov
process (right) for the transition 31 for BMI=0 (black line) and for BMI=1 (red line).

Semi-Markov multi-state models are proven to be very useful in various applications. They
are extensions of Markov models in which the evolution of a process is independent from time
spent in a state between two consecutive events. Such assumption is too stringent in some
applications. In such case, semi-Markov models are of great interest for modeling the sojourn
(waiting) times distributions. However, the implementation of such approach is complex and
there are barely any packages or macros to adjust such models. The SemiMarkov package
allows to fit parametric homogeneous semi-Markov models by maximizing the likelihood. The
choice of waiting times distributions, in particular the exponentiated Weibull distribution,
allows to fit various shapes of hazard rates functions. An advantage of the parametric approach
is the possibility to study the effects of covariates via a proportional hazard model. In order
to obtain sparse models adapted to the process of interest, the user can choose the number of
covariates and the distributions of waiting times for each transition. Some extensions of the
SemiMarkov package could be of interest. For instance, the package could be updated to deal
with more waiting times distributions. The methodology can be adapted to include random
effects in order to deal with the correlation between subjects. Interval censored data could also
be analyzed using a penalized likelihood approach (Foucher et al. 2010) or using an estimation
method with piecewise constant hazard rates (Kapetanakis et al. 2012). The optimization
step is a crucial point and need to be investigated. Indeed, the multi-state approach is often
limited by the number of parameters with several covariates. The adaptation of methods
dealing with high dimensional data to the multi-state model framework is of high interest as
well.
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