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Abstract

We investigate an optimal control problem which arises in the optimization of an amplification
technique for misfolded proteins. The improvement of this technique may play a role in the detection
of prion diseases. The model consists in a linear system of differential equations with a nonlinear
control. The appearance of oscillations in the numerical simulations is understood by using the
Perron and Floquet eigenvalue theory for nonnegative irreducible matrices. Then to overcome the
unsolvability of the optimal control, we relax the problem. In the two dimensional case, we solve
explicitly the optimal relaxed control problem when the final time is large enough.
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1 Introduction

Transmissible Spongiform Encephalopathies (TSE) are fatal, infectious, neurodegenerative diseases.
They include bovine spongiform encephalopathies (BSE) in cattle, scrapie in sheep and Creutzfeldt-
Jakob disease (CJD) in human. During the so-called “mad-cow crisis” in the 90’s, people were infected
by a variant of BSE by ingesting contaminated pieces of beef. More recently, CJD was transmitted
between humans via blood or growth hormones. Because of the long incubation times (some decades),
TSE still represent an important public health risk. There is no ante mortem diagnosis currently
available to detect infected individuals and prevent possible contaminations. A promising tool to
design a diagnosis test is the protein misfolded cyclic amplification (PMCA) technique [7, 29, 30].

The PMCA principle is based on the “protein-only hypothesis” [16, 27]. According to this widely
accepted hypothesis, the infectious agent of TSE, known as prions, may consist in misfolded proteins
called PrPsc (for Prion Protein scrapie). The PrPsc replicates in a self-propagating process, by
converting the normal form of PrP (called PrPc for Prion Protein cellular) into PrPsc. The PMCA
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enabled to consolidate the idea of an autocatalytic replication of PrPsc by nucleated polymerization.
In this model originally proposed by Landsbury [17], PrPsc is considered to be a polymeric form of
PrPc. Polymers can lengthen by addition of PrPc monomers, and they can replicate by splitting into
smaller fragments. The PrPc is mainly expressed by the cells of the central nervous system, so PrPsc
concentrates in this zone. The amount of PrPsc in tissues such as blood is very small and this is why
it is very difficult to diagnose an infected individual.

The PMCA mimics in vitro the nucleation/polymerization mechanism occurring in vivo with the
aim to quickly amplify the polymers present in minute amount in an infected sample. It is a cyclic
process, where each cycle consists in two phases: the incubation phase during which the polymerization
is favored due to the presence of a large quantity of PrPc monomers, and the sonication phase when the
PrPsc polymers are broken down with ultrasounds. The incubation phase is expected to increase the
size of the polymers, while the ultrasounds are known to increase the fragmentation of the polymers
and so increase their number. This technique could allow us to detect PrPsc in the samples of blood
for instance. But for now, it is not efficient enough to do so. Mathematical modelling and optimization
tools can help to optimize the PMCA protocol.

The mathematical modeling of prion proliferation with ordinary or partial differential equation
(PDE) produced a large literature since the first model of Griffith [16]. Today, the most widely studied
nucleation/polymerization model is the one of Masel [24]. A PDE version of this model has been
introduced by Greer et al. [15] and studied by many authors including [5, 6, 10, 12, 13, 18, 28, 32, 36].
Starting from it, we propose to model the PMCA with the following controlled size-structured PDE

∂tf(t, ξ) + r(u(t))∂ξ
(
τ(ξ)f(t, ξ)

)
= u(t)

(∫ ∞

ξ

β(ζ)κ(ξ, ζ)f(t, ζ) dζ − β(ξ)f(t, ξ)

)
(1.1)

with the boundary condition f(t, 0) = 0 for every time t ≥ 0. The unknown f(t, ξ) is the number, or
density of polymers of size ξ > 0 at time t. The size of the polymers increases by polymerization with
respect to the individual growth rate τ(ξ). The terms in the large brackets on the right-hand side of
(1.1) form the fragmentation operator, with β(ξ) the global fragmentation rate and κ(ξ, ζ) the frag-
mentation kernel. The conservation of the quantity of polymerized proteins during the fragmentation
process requires that this kernel satisfies the following standard condition (see [9] for instance)

∫ ζ

0
ξ κ(ξ, ζ) dξ = ζ. (1.2)

The fragmentation is modulated by a multiplicative factor u(t) ∈ [umin, umax] which represents the
sonication intensity. The control u(t) ≡ umin = 1 corresponds to the absence of sonication, while
u(t) ≡ umax > 1 represents the maximal power of the sonicator. We assume that the sonication does
not only increase the fragmentation but also influence the polymerization process. This is taken into
account by the positive term r(u(t)) where the function r should be decreasing if we consider that the
ultrasounds have a negative effect on the growth of the polymers. The optimal control problem we
are interested in is, starting with a given initial size distribution f(t = 0, ξ) = f0(ξ) ≥ 0, to maximize
the objective

J(u) =

∫ ∞

0
ξf(T, ξ) dξ, (1.3)

which represents the total quantity of polymerized proteins at a given final time T .
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For the mathematical study in this paper, we consider a n-compartment approximation of (1.1)

dxi
dt

+ r(u(t))(τixi − τi−1xi−1) = u(t)




n∑

j=i+1

βj κi,j xj − βixi


 , for 1 ≤ i ≤ n,

with β1 = 0 and τn = 0. This is a finite dimensional ordinary differential system, linear in x =
(x1, . . . , xn)

T , which can be written under a matrix form

{
ẋ = uFx+ r(u)Gx, t ∈ [0, T ],

x(t = 0) = x0 > 0,
(1.4)

where G is the growth matrix

G =




−τ1
τ1 −τ2 0

. . .
. . .

0 τn− 2 −τn− 1

τn− 1 0




, (1.5)

and F is the fragmentation matrix

F =




0

−β2 (κijβj)i<j
. . .

0
−βn



. (1.6)

In (1.4) and in the following, if x = (x1, . . . , xn)
T , by x > 0 (and we also write x is positive) we mean

that xi > 0 for every i ∈ {1, · · · , n}. We use the same notation for row vectors.
We assume that

τi > 0 and βi+1 > 0, ∀i ∈ [1, n − 1]. (1.7)

The mass conservation assumption (1.2) on κ becomes

j−1∑

i=1

i κij = j, j = 2, · · · , n. (1.8)

The quantity (1.3) we want to maximize writes

J(u) =
n∑

i=1

i xi(T ). (1.9)

Such n-compartment optimal control problems have been widely studied in cancer chemotherapy
and the conclusion is usually that the optimal control is bang-bang since singular controls are not
optimal [19, 20, 21, 22, 33]. In contrast with these results, we show that, for our problem, the optimal
control is essentially singular.
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The organization of the paper is the following. In Section 2, we investigate eigenvalue optimization
problems related to the optimal control problem (1.9). More precisely we maximize the Perron eigen-
value with respect to constant control parameters and compare the maximum to Floquet eigenvalues,
which are the analogue of Perron eigenvalues for periodic coefficients. We remark that fast oscillating
controls can provide a greater Floquet eigenvalue than the optimal Perron eigenvalue. This obser-
vation indicates that a classical optimal control may not exist and motivates the relaxation of the
problem. The relaxed control problem, for which the set of controls is extended to its convex hull, is
investigated in Section 3. We prove that the trajectories corresponding to the constant control which
maximizes the Perron eigenvalue in the new convex set satisfy the Pontryagin Maximum Principle
(see Proposition 8). In Section 4, we state and prove the main result of the paper (Theorem 18) which
treats the case of the two-compartment model: for n = 2 the optimal relaxed control is unique and
can be computed explicitly. Except for initial and terminal times, i.e., t close to 0 or close to T ,
this optimal control is equal to the constant which maximizes the Perron eigenvalue. Finally, in the
Appendix, we give the details of the proofs for the results of Section 2.

2 Eigenvalue problems

For a fixed parameter u > 0 and for r(u) > 0, the matrix uF + r(u)G is irreducible (see, for instance,
[31, Section 2.8] for a definition of irreducible) and has nonnegative extra-diagonal entries. So the
Perron-Frobenius theorem (see, for instance, [31, Section 5.3]) applies and ensures the existence of a
simple dominant eigenvalue λP . In our case, this eigenvalue is positive and it provides the exponential
growth rate of the solutions to the equation ẋ = (uF + r(u)G)x (see, for instance, [26, Section 6.3.1]).
A first question is to investigate the dependence of the first eigenvalue on the parameter u. Maximizing
the Perron eigenvalue is related to our optimal control problem (1.9). It can be regarded as the limit
when T → +∞ of our optimization problem when we restrict to constant controls. A remarkable fact
is that for some coefficients, the dependence u 7→ λP (u) can be non monotonic and there may exist
an optimal value uopt for which λP admits a global maximum on R

+. Theorem 1, which is proved in
Appendix A, gives sufficient conditions for the existence of such a global optimum.

Theorem 1. Assume that r : R+ → R
+∗ is continuous and admits an expansion of the form

∃ l > 0, rl ≥ 0, r(u) = r0 + rlu
−l + o

u→+∞

(
u−l
)
. (2.1)

Consider also that (τi)1≤i≤n satisfies the condition

∃ k ∈ N
∗ such that ∀ i ≤ k, τi = i τ1 and τk+1 > (k + 1)τ1. (2.2)

Then there exists an optimal value uopt > 0 which satisfies

∀u ≥ 0, λP (u) ≤ λP (uopt).

The interpretation is that in this case, there is a compromise between too much sonication which
forms many small polymers but may have a small growth rate, and too high sonication which forms
large polymers but in small quantity.

The theory of Perron-Frobenius can be extended to periodic controls: this is the Floquet theory.
It ensures that for time periodic matrices which are monotonic and irreducible for any time, there
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exists a dominant eigenvalue. It allows one to define for a periodic control u(t) a Floquet eigenvalue
λF [u] > 0 which prescribes, as in the case of the Perron eigenvalue, the asymptotic exponential growth
rate of the solutions to the equation ẋ = (u(t)F + r(u(t))G)x (see [26, Section 6.3.2] for instance).
A natural question is then to compare these periodic eigenvalues to the best constant one λP (uopt).
Theorem 2, which is proved in Appendix B, ensures that if r satisfies the condition

r′′(uopt)

r(uopt)− uopt r′(uopt)
> 0, (2.3)

then the value uopt is a saddle point in the set of periodic controls. This means that there exist
periodic controls which provide a larger growth rate than λP (uopt).

Theorem 2. Assume that there exists an optimal value uopt for the Perron eigenvalue and that
uoptF + r(uopt)G is diagonalizable. Define for a frequency ω > 0 and a perturbation ε > 0 the Floquet
eigenvalue λF (ε, ω) := λF [uopt + ε cos(ωt)]. Then we have

lim
ω→+∞

∂2

∂ε2
λF (0, ω) =

1

2

r′′(uopt)

r(uopt)− uopt r′(uopt)
λP (uopt).

The computation of second order approximation of the Floquet eigenvalue is used to detect “reso-
nance” in population models with periodic coefficients (see [1] and the references therein). For these
models, resonance is said to occur if periodic variations in the coefficients increase the growth rate.

The link between the eigenvalue problem and the optimal control problem (1.9) is investigated
in [4] when the function r is a constant. In this case, there exists an optimal control u∗(t) which is
essentially equal to the best constant uopt of the Perron optimization problem (see Chapter 5 in [12]
for numerical simulations). Under condition (2.3) and the assumptions of Theorem 2, such a behavior
is not expected since we can find oscillating controls which provide a better eigenvalue than uopt. The
aim of this paper is to investigate the optimal control problem (1.9) in the case where there exists an
optimal constant uopt ∈ (umin, umax) and the function r satisfies Assumption (2.3). The first question
is the existence of an optimal control since the numerical simulations in Figure 1 show oscillations.
These questions are investigated in the following section by using the relaxed control theory.

3 Relaxed Control and the Pontryagin maximum principle

Let umin and umax be two positive real numbers such that umin < umax. We consider in this section a
function r ∈ C2([umin, umax]) satisfying

r(u) > 0, ∀u ∈ [umin, umax], (3.1)

r′′(u) > 0, ∀u ∈ (umin, umax), (3.2)

r(u)− ur′(u) > 0, ∀u ∈ (umin, umax), (3.3)

and we assume that there exists a strict optimum uopt ∈ (umin, umax) for the Perron eigenvalue. Under
these assumptions, condition (2.3) is automatically fulfilled. Remark that condition (3.3) is satisfied
when r is decreasing and satisfies (3.1), which are relevant conditions from the viewpoint of biology.
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Figure 1: Piecewise optimal controls u∗(t) obtained for different values of ∆t with the decreasing
convex function r(u) = 2

1+u . The control varies between umin = 1 and umax = 8 and the final time
is T = 48. The dimension of the model is n = 3 and the coefficients are τ1 = 1, τ2 = 10, β2 = 0.5,
β3 = 1, κ1,2 = 2 and κ1,3 = κ2,3 = 1. The time step varies as follows: ∆t = 0.8 (top left), ∆t = 0.6
(top right), ∆t = 0.4 (bottom left) and ∆t = 0.2 (bottom right).

To study this case, it will be convenient to use the equivalent alternative statement of (1.4) where x
is solution to {

ẋ(t) = u(t)Fx(t) + v(t)Gx(t), t ∈ [0, T ],

x(t = 0) = x0 > 0,
(3.4)

with the two dimensional control (u, v) which belongs to the graph of the function r, i.e.,

∀ t ∈ [0, T ], (u(t), v(t)) ∈ Ω := Graph(r) = {(u, r(u)), umin ≤ u ≤ umax} .

Let

ψ := (1, 2, · · · , n) ∈ R
n (3.5)

be the mass vector. Note that, from (1.6), the mass conservation assumption (1.8) and (3.5), one has

ψF = 0. (3.6)
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The optimal control problem (1.9) now becomes

maximize J(u, v) = ψx(T ), (u, v) : [0, T ] → Ω is a Lebesgue measurable function, (3.7)

subject to dynamics (3.4). Since the function r is strictly convex, the graph Ω is not a convex subset
of R2 and, since the kernel of G is not reduced to {0}, for any x > 0, the velocity set

V(x) = {(uF + vG)x, (u, v) ∈ Ω}
is also not convex. For this kind of situation, the existence of an optimal control for (3.7) cannot
be ensured and it is standard to relax the problem by replacing the control set Ω by its convex hull
Conv(Ω) (see, for instance, [23, Section 4.2]). One replaces problem (3.7) by the following optimal
control problem

maximize J(u, v) = ψx(T ), (u, v) : [0, T ] → Conv(Ω) is a Lebesgue measurable function, (3.8)

subject to dynamics (3.4). For this problem, the velocity set is the convex hull of V(x), so it is convex
and the existence of an optimal control is ensured by classical results (see [23, Theorem 5 p. 271] for
instance). Moreover,

• The supremum in problem (3.7) is equal to the maximum in problem (3.8).

• Let (u∗, v∗) : [0, T ] → Conv(Ω) be a measurable function which is optimal for problem (3.8).
Then one can easily construct a sequence of piecewise constant functions (un, vn)n∈N → Ω such
that, for any ϕ ∈ L∞(0, T ),

∫ T

0
unϕdt −→

∫ T

0
u∗ϕdt and

∫ T

0
vnϕdt −→

∫ T

0
v∗ϕdt as n→ +∞. (3.9)

Let us emphasize that (3.9) implies that

J(un, vn) → J(u∗, v∗) as n→ +∞.

In particular, (un, vn)n∈N is a maximizing sequence for problem (3.7).

Now we want to obtain information on the optimal controls for (3.8) by using the Pontryagin
maximum principle. This principle in our case gives the following theorem.

Theorem 3 (Pontryagin Maximum Principle (PMP)). Let (u∗, v∗) be an optimal control for problem
(3.8) and let x∗ be the corresponding trajectory (i.e., the solution of (3.4) with (u, v) := (u∗, v∗)). Call
p∗ : [0, T ] → R

n the row vector solution of the adjoint linear equation

ṗ∗(t) = −p∗(t)(u∗F + v∗G), (3.10)

with the transversality condition
p∗(T ) = ψ. (3.11)

Let us define the Hamiltonian as

H(x, p, u, v) := p(uF + vG)x. (3.12)

Then the maximality condition

H(x∗(t), p∗(t), u∗(t), v∗(t)) = max
(u,v)∈Conv(Ω)

H(x∗(t), p∗(t), u, v) (3.13)

holds for almost every time t ∈ [0, T ] and there exists a constant H∗ ∈ R such that

H(x∗(t), p∗(t), u∗(t), v∗(t)) = H∗, for almost every t ∈ [0, T ]. (3.14)
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Remark 4. Since, for any positive u and v, the matrix uF + vG has nonnegative extra-diagonal
entries, we have, using (3.4), (3.5), (3.10) and (3.11),

x∗(t) > 0 and p∗(t) > 0, for every time t ∈ [0, T ]. (3.15)

The Pontryagin maximum principle is useful to obtain information on the optimal control. It allows
us to prove (Corollary 6 below) that the optimal control lies on the line Σ defined by (see Figure 2)

Σ := Graph(σ) = {(u, σ(u)), umin ≤ u ≤ umax} , (3.16)

where σ is the affine function defined by

σ(u) = θu+ ζ

with

θ :=
r(umax)− r(umin)

umax − umin
, (3.17)

ζ :=
umaxr(umin)− uminr(umax)

umax − umin
. (3.18)

The set Σ is the string which links (umin, r(umin)) to (umax, r(umax)). Since r is convex, the boundary
of the control set Conv(Ω) is ∂Conv(Ω) = Ω ∪Σ.

One has the following lemma which is illustrated by the incoming arrows in Figure 2.

Lemma 5. Let (u, v) ∈ Conv(Ω) \ Σ. Then, for ε > 0 small enough,

((1 + ε)u, (1 + ε)v) ∈ Conv(Ω).

Ω

Conv(Ω) Σ

uu

v

r(u)

Figure 2: The set Ω, the string Σ and the convex hull Conv(Ω) for r a decreasing and convex function.
The arrows oriented along the vectors (u, r(u)) point inside Conv(Ω) on the lower boundary Ω.
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Proof of Lemma 5. Let Int(Conv(Ω)) be the interior of Conv(Ω). If (u, v) ∈ Int(Conv(Ω)), then the
result follows from the fact that Int(Conv(Ω)) is an open set by definition. It remains to study the
case where (u, v) ∈ Ω \ {(umin, r(umin))} ∪ {(umax, r(umax))}, i.e., v = r(u) with u ∈ (umin, umax). We
have, using (3.3),

(1 + ε)r(u)− r((1 + ε)u) = (1 + ε)r(u)− r(u)− εur′(u) + o
ε→0+

(ε)

= ε(r(u)− u r′(u) + o
ε→0+

(1)) ≥ 0, for ε small and positive.

Hence, if ε > 0 is small enough, r((1 + ε)u) ≤ (1 + ε)r(u). Moreover, by (3.2), we have r(u) < σ(u)
and, therefore, if ε is small enough, (1 + ε)r(u) ≤ σ((1 + ε)u).
The proof is complete.

As a consequence of Theorem 3 and Lemma 5, we have the following corollary.

Corollary 6. Let (u∗, v∗) be an optimal control for problem (3.8). Then, for almost every time
t ∈ [0, T ], the optimal control (u∗(t), v∗(t)) ∈ Σ.

Proof of Corollary 6. By (3.14), there exists a sequence (tn)n∈N of elements in [0, T ] such that

H(x∗(tn), p
∗(tn), u

∗(tn), v
∗(tn)) = H∗, (3.19)

tn → T as n→ +∞. (3.20)

Extracting a subsequence if necessary we may assume, without loss of generality, that there exists
ṽ ∈ R such that

ṽ ∈ [r(umax), r(umin)] ⊂ (0,+∞), (3.21)

v∗(tn) → ṽ as n→ +∞. (3.22)

Letting n→ +∞ in (3.19), and using (3.6), (3.11), (3.12), (3.20) and (3.22), one gets that

H∗ = ṽψGx(T ). (3.23)

From (1.5), (1.7) and (3.5), one gets that
ψG > 0, (3.24)

which, together with (3.15), implies that

ψGx(T ) > 0. (3.25)

From (3.21), (3.23) and (3.25), one obtains

H∗ > 0.

Let t ∈ [0, T ] be such that

(u∗(t), v∗(t)) ∈ Conv(Ω) \ Σ, (3.26)

H(x∗(t), p∗(t), u∗(t), v∗(t)) = H∗. (3.27)

From Lemma 5 and (3.26), there exists ε > 0 such that ((1 + ε)u∗(t), (1 + ε)v∗(t)) ∈ Conv(Ω). Using
(3.27), one has

H(x∗(t), p∗(t), (1 + ε)u∗(t), (1 + ε)v∗(t)) = (1 + ε)H(x∗(t), p∗(t), u∗(t), v∗(t))
= (1 + ε)H∗

> H∗ = H(x∗(t), p∗(t), u∗(t), v∗(t)),

which shows that (3.13) does not hold. Since, by Theorem 3, (3.13) holds for almost every t ∈ [0, T ],
this, together with (3.14), concludes the proof of Corollary 6.
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Now we look for controls and corresponding trajectories which satisfy the optimality condition (3.13).
To that end, we take advantage of our analysis of the Perron eigenvalue problem. For (u, v) ∈ Conv(Ω),
define the Perron eigenvalue λP = λP (u, v) of the matrix uF + vG and the corresponding right and
left eigenvectors X > 0 and φ > 0 normalized as follows

λPX = (uF + vG)X, ‖X‖1 = 1, (3.28)

λPφ = φ(uF + vG), φX = 1, (3.29)

where, for x = (x1, · · · , xn)T , ‖x‖1 :=
∑n

i=1 |xi|. The function (u, v) 7→ λP (u, v) admits an optimum
(ū, v̄) on the compact set Conv(Ω) (See Figure 3 for the numerical simulations). We denote by λ̄P , X̄
and φ̄ the corresponding optimal eigenelements. First, we notice that Lemma 5 implies that, as for
the optimal control, the optimum (ū, v̄) of λP belongs to Σ.

Corollary 7. The optimal point (ū, v̄) = argmax(u,v)∈Conv(Ω) λP (u, v) satisfies

(ū, v̄) ∈ Σ \
{
(umin, r(umin)), (umax, r(umax))

}
.

Proof of Corollary 7. Multiplying (3.28) on the left by ψ and using (3.6), one gets

λP (u, v)ψX = vψGX, ∀(u, v) ∈ Conv(Ω). (3.30)

From ψ > 0 (see (3.5)), X > 0, (3.24) and (3.30), one gets

λP (u, v) > 0, ∀(u, v) ∈ Conv(Ω). (3.31)

(For a different proof of (3.31), see the proof of Lemma 27.) From Lemma 5, (3.31) and from the
following linearity of the eigenvalue

∀α, u, v > 0, λP (αu, αv) = αλP (u, v),

we deduce that (ū, v̄) ∈ Σ. Moreover (ū, v̄) 6∈
{
(umin, r(umin)), (umax, r(umax))

}
because we have

assumed that uopt = argmaxu∈[umin,umax] λP (u, r(u)) ∈ (umin, umax).

We now prove that (ū, v̄), associated with accurate trajectories, satisfies the optimality condi-
tion (3.13).

Proposition 8. Let R > 0 and S > 0. Then the constant control (ū, v̄) and the associated canonical
direct and adjoint trajectories {

x̄(t) = RX̄ eλ̄P t,

p̄(t) = Sφ̄ e−λ̄P t,
(3.32)

satisfy the maximality condition

H(x̄(t), p̄(t), ū, v̄) = max
(u,v)∈Conv(Ω)

H(x̄(t), p̄(t), u, v), ∀t ∈ [0, T ]. (3.33)

Proof of Proposition 8. Without loss of generality, we may assume that R = S = 1. From (3.12),
(3.28), (3.29) and (3.32), we obtain, for every t ∈ [0, T ],

H(x̄(t), p̄(t), ū, v̄) = λP (ū, v̄). (3.34)
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r(uopt)

uopt

(ū, v̄)

u

v

Figure 3: The eigenvalue function λP (u, v) on the convex hull Conv(Ω) for r(u) = 2
1+u , umin = 1,

umax = 8, n = 3, τ1 = 1, τ2 = 10, β2 = 0.5, β3 = 1, κ1,2 = 2 and κ1,3 = κ2,3 = 1.

For any (u, v) ∈ Conv(Ω), we have, for every t ∈ [0, T ],

H(x̄(t), p̄(t), u, v) =p̄(t)(uF + vG)x̄(t)

=p̄(t)(ūF + v̄G)x̄(t) + p̄(t)
(
(u− ū)F + (v − v̄)G

)
x̄(t)

=H(x̄(t), p̄(t), ū, v̄) + φ̄
(
(u− ū)F + (v − v̄)G

)
X̄. (3.35)

Testing (3.28) against the adjoint eigenvector φ and using the normalization φX = 1 (see (3.29)),
we obtain

λP (u, v) = φ(uF + vG)X. (3.36)

Differentiating (3.36) with respect to u and using (3.28) together with (3.29), we get

∂λP
∂u

=
∂φ

∂u
(uF + vG)X + φFX + φ(uF + vG)

∂X

∂u

= λP (u, v)
∂φ

∂u
X + φFX + λP (u, v)φ

∂X

∂u

= λP (u, v)
∂(φX)

∂u
+ φFX

= φFX. (3.37)

We obtain in the same way that
∂λP
∂v

= φGX. (3.38)

From (3.34), (3.35), (3.37) and (3.38), we obtain

H(x̄(t), p̄(t), u, v) = λP (ū, v̄) +

(
u− ū
v − v̄

)
· ∇λP (ū, v̄). (3.39)
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Moreover, since Conv(Ω) is convex and λP is maximal in Conv(Ω) at (ū, v̄),

(
u− ū
v − v̄

)
· ∇λP (ū, v̄) ≤ 0, ∀(u, v) ∈ Conv(Ω). (3.40)

From (3.39) and (3.40), we get that (ū, v̄) satisfies the maximality condition (3.33).
The proof is complete.

Remark 9. We easily check from (3.28) and (3.29) that the trajectories (3.32) are solutions to the
direct and adjoint equations (3.4) and (3.10) with the constant control (ū, v̄). For these trajectories
to satisfy additionally the initial condition in (3.4) and the terminal condition (3.11), the initial
distribution x0 > 0 has to be taken collinear to X̄ > 0 and the objective we want to maximize has to
be modified by replacing in (3.8) the vector ψ by a positive vector and collinear to φ̄.

All the results of this section give indications that the optimal relaxed controls do not lie on Ω,
which would explain the oscillations that we observed numerically in Figure 1. In the next section,
we precise these indications in the case of a two-compartment model.

4 Dimension n = 2

As in the previous sections, umin and umax are two positive real numbers such that umin < umax and
r ∈ C2([umin, umax]). We still assume that (3.1) and (3.2) hold. However, we no longer assume that
(3.3) holds. We precise what has been done in the two previous sections in the two dimensional case.
First we give the form of the matrices F and G in dimension 2 (see (1.5)-(1.8)):

F =

(
0 2β
0 −β

)
, G =

(
−τ 0
τ 0

)
,

with β > 0 and τ > 0. Notice that, for the sake of clarity, we have skipped the indices of the
coefficients: the coefficient β stands for β2 and τ stands for τ1.

In dimension 2, the optimal control still lies on Σ even if (3.3) is no longer assumed to hold. This
is a consequence of the following lemma.

Lemma 10. For any control (u, v) ∈ (L∞((0, T ); (0,+∞)))2, the solution p = (p1, p2) to the adjoint
equation

ṗ = −p(uF + vG), p(T ) = ψ = (1, 2),

satisfies
(2p1 − p2)(t) > 0 and (p2 − p1)(t) > 0, ∀ t ∈ [0, T ). (4.1)

Proof of Lemma 10. Denote by p̃ the vector

p̃ :=

(
p̃1
p̃2

)
:=

(
p2 − p1
2p1 − p2

)
.

It satisfies the equation

˙̃p = −
(
−vτ uβ
2vτ −uβ

)
p̃, p̃(T ) =

(
1
0

)
,

the result of the lemma follows.
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4.1 The case r(umin) ≤ r(umax)

As a consequence of Lemma 10, we can solve very simply the optimal control problem in the case
when r(umin) ≤ r(umax).

Corollary 11. If r is such that r(umin) ≤ r(umax), then the optimal control is, for almost every
t ∈ [0, T ],

(u∗, v∗) ≡ (umax, r(umax)).

Proof of Corollary 11. Let x∗ be the trajectory corresponding to the control (u∗, v∗). Let p∗ : [0, T ] →
R
2 be the row vector solution of (3.10)-(3.11). When r(umin) ≤ r(umax), we have, for every (u, v) ∈

Conv(Ω), u ≤ umax and v ≤ r(umax). From Lemma 10, we know that, for every time t ∈ [0, T ),

p∗(t)Gx∗(t) = τ(p∗2(t)− p∗1(t))x
∗
1(t) > 0 and p∗(t)Fx∗(t) = β(2p∗1(t)− p∗2(t))x

∗
2(t) > 0.

We conclude by using the maximality property (3.13).

4.2 The case r(umin) > r(umax)

In this subsection we treat the case where r(umin) > r(umax) which is more biologically relevant than
the case r(umin) ≤ r(umax), but also more delicate. We start from a corollary of Lemma 10 which
ensures that the optimal control lies on the boundary Σ of Conv(Ω).

Corollary 12. Let (u∗, v∗) be an optimal control for problem (3.8). Then (u∗(t), v∗(t)) lies on Σ for
almost every t ∈ [0, T ].

Proof of Corollary 12. We use the same notations as in the proof of Corollary 11. Since Σ is a string of
the convex (see (3.2)) function r, we have that v ≤ σ(u) for every (u, v) ∈ Conv(Ω). From Lemma 10,
we deduce that, for every time t ∈ [0, T ),

p∗(t)Gx∗(t) = τ(p∗2(t)− p∗1(t))x
∗
1(t) > 0.

Then, using the maximality property (3.13), we conclude that v∗(t) = σ(u∗(t)) for almost every
t ∈ [0, T ].

Using Corollary 12, we can reduce the optimal control problem (3.8) to the control set Σ. Then
v = σ(u) = θu + ζ with θ defined in (3.17) and ζ defined in (3.18). Notice that the assumption
r(umax) < r(umin) ensures that

θ < 0 and ζ > 0.

The dynamic equation (3.4) and the adjoint equation (3.10) become respectively

ẋ = u(F + θG)x+ ζGx, (4.2)

ṗ = −up(F + θG)− ζpG, (4.3)

and the relaxed optimal control problem (3.8) is replaced by

maximize J(u) = ψx(T ), u : [0, T ] → [umin, umax] is a Lebesgue measurable function, (4.4)

subject to dynamics (4.2) with x(0) = x0 > 0. Call

HΣ(x, p, u) = up(F + θG)x+ ζpGx

13



the Hamiltonian for dynamics (4.2)-(4.3) and define by

Φ(x, p) :=
∂HΣ(x, p, u)

∂u
= p(F + θG)x

the switching function. For (x, p) solution to (4.2)-(4.3), we also call switching function the quantity

Φ(t) := Φ(x(t), p(t)). (4.5)

The maximum condition of the PMP writes for problem (4.4)

HΣ(x
∗(t), p∗(t), u∗(t)) = max

u∈[umin,umax]
HΣ(x

∗(t), p∗(t), u) (4.6)

for almost every t ∈ [0, T ], and it is verified for (x∗, p∗, u∗) if and only if Φ∗(t) = Φ(x∗(t), p∗(t)) satisfies

Φ∗(t) = 0 or

{
Φ∗(t) > 0 when u∗(t) = umax,
Φ∗(t) < 0 when u∗(t) = umin,

(4.7)

for almost every t ∈ [0, T ]. First we look for singular trajectories on open intervals I, i.e., (x, p, u)
with x ∈ C0(I; (0,+∞)2), pT ∈ C0(I; (0,+∞)2), u ∈ L∞(I; [umin, umax]) solutions of (4.2)-(4.3) such
that

Φ(t) = 0, for almost every t ∈ I.

Theorem 13. For a nonempty open interval I, t ∈ I 7→ (x(t), p(t), u(t)) is a singular trajectory if
and only if

u(t) = using :=
ζτ√

−2θτβ

2β +
√−2θτβ

β + 2
√
−2θτβ − θτ

, for almost every t ∈ I, (4.8)

and there exist two positive real numbers R and S such that

x(t) = RXeλt and p(t) = Sφ e−λt, ∀t ∈ I, (4.9)

where

• λ is the Perron eigenvalue of the matrix using(F + θG) + ζG and

λ =
ζτβ

β + 2
√
−2θτβ − θτ

, (4.10)

• X and φ are respectively direct and adjoint positive eigenvectors of the matrix using(F +θG)+ζG
associated to the Perron eigenvalue λ.

Proof of Theorem 13. Let us first remark that using defined by (4.8) satisfies

using =
ζ

−θ

√
−2θτβ − θτ

β + 2
√−2θτβ − θτ

∈
(
0,

ζ

−θ
)
.

thus, usingθ + ζ > 0 and the matrix usingF + (usingθ + ζ)G satisfies the assumptions of the Perron-
Frobenius theorem.
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First step: “If” part. Simple computations prove that

X = (2
√
β,

√
−2θτ)T , (4.11)

φ = (
√
β +

√
−2θτ , 2

√
β +

√
−2θτ) (4.12)

are, respectively, right and left eigenvectors of the matrix using(F+θG)+ζG associated to the eigenvalue
λ defined by (4.10). Since X > 0 and φ > 0 are positive, they are necessarily Perron eigenvectors of
this matrix and λ is its Perron eigenvalue λP (using).
Let x̄ : I → R

2, p̄ : I → R
2, ū : I → R be defined by

x̄(t) := eλtX, p̄(t) := e−λtφ and ū(t) = using, ∀t ∈ I. (4.13)

As already used in the previous section, (x̄, p̄, ū) are solutions of (4.2)-(4.3). It remains only to check
that along this trajectory (x̄, p̄, ū), Φ = 0, which holds since Φ = φ(F +θG)X = 0. Notice that because
φ(F + θG)X = λ′P (using)φX, we also get that using is a critical point of λP .

Second step: “Only if” part. Suppose that (x, p, u) is a singular trajectory on an open interval I.
We have Φ(t) = p(t)(F + θG)x(t) = 0 on I. This gives the relation

− θτx1(p1 − p2) + βx2(2p1 − p2) = 0. (4.14)

Differentiating Φ with respect to t on I, we get

Φ̇ = ζp[F,G]x = 0,

where [F,G] := FG−GF is the Lie bracket of F and G. It provides a second identity

x1(2p1 − p2) + 2x2(p1 − p2) = 0. (4.15)

If we differentiate Φ a second time, we get

Φ̈ = ζup
(
[ [F,G], F ] + θ[ [F,G], G ]

)
x+ ζ2p[ [F,G], G ]x = 0. (4.16)

Using (4.15), we obtain

p([ [F,G], F ])x =4τβ2p1x2,

p([ [F,G], G ])x =− 2τ2βp2x1.

We remark that

p
(
[ [F,G], F ] + θ([ [F,G], G ]

)
x =

ζp

u
[ [F,G], G ]x = −2ζ

u
τ2βp2x1

cannot vanish because x > 0 and p > 0. So we can divide (4.16) by this term and we get

u =
−ζp([ [F,G], G ])x

p([ [F,G], F ])x+ θp([ [F,G], G ])x
=

ζτp2x1
2βp1x2 − θτp2x1

. (4.17)

Consider now (4.14)-(4.15) as a system of equations for the unknown (x1, x2). Since x is positive, this
system must have a vanishing determinant and it gives the relation

β(2p1 − p2)
2 + 2θτ(p1 − p2)

2 = 0.
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Using (4.1) in Lemma 10, we can write

2p1 − p2 =

√
−2θτ

β
(p2 − p1),

and finally we get
p1
p2

=

√
β +

√
−2θτ

2
√
β +

√
−2θτ

. (4.18)

Similarly, if we consider (4.14)-(4.15) as a system of equations for the positive unknown (p1, p2), from
the fact that the determinant vanishes, we obtain

θτx21 + 2βx22 = 0.

Since x > 0, θ < 0 and τ > 0, we deduce that

x1 =

√
2β

−θτ x2. (4.19)

Plugging (4.18) and (4.19) into (4.17), we get (4.8). From (4.11), (4.12), (4.13), (4.18) and (4.19), one
gets the existence of R : I → (0,+∞) and S : I → (0,+∞) such that

x = Rx̄ and p = Sp̄.

Using the fact that (x, p, using) and (x̄, p̄, using) are both solutions of (4.2)-(4.3), one readily gets that
Ṙ = Ṡ = 0.

The proof is complete.

In the proof of Theorem 13, we have pointed out a link between the singular trajectories and the
critical points of the Perron eigenvalue. In Theorem 14, we prove that using is actually the unique
maximum of λP .

Theorem 14. The Perron eigenvalue λP (u) of the matrix u(F + θG)+ ζG is well defined on (0,
ζ

−θ )
and it reaches its unique maximum at ū = using.

Proof of Theorem 14. The function u 7→ θu+ ζ is positive on (0, ζ
−θ ), so the matrix uF + (θu+ ζ)G

satisfies the hypotheses of the Perron-Frobenius theorem on this interval. The function u 7→ λP (u) is
positive for u ∈ (0, ζ

−θ ) (see (3.31)) and tends to zero as u tends to 0 or to ζ
−θ . So λP necessarily has

a maximum on (0, ζ
−θ ).

Every critical point of λP provides with (4.9) a singular trajectory. Since Theorem 13 ensures that
there exists a unique singular trajectory (up to multiplicative constants for x and p), this gives the
uniqueness of the critical point of λP . Therefore this critical point realizes the maximum of λP on
(0, ζ

−θ ) and the proof is complete.

Remark 15. The proof of Theorem 14 can be done by explicit computations, without using the unique-
ness of the singular control. This instructive and useful computational proof is given in Appendix C.

As an immediate consequence of the proofs of Theorems 13 and 14, we have explicit expressions of
the optimal eigenelements.
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Corollary 16. The maximal Perron eigenvalue is

λ̄P = λP (ū) =
ζτβ

β + 2
√−2θτβ − θτ

and the associated right and left eigenvectors are given by

X̄ = (2β,
√

−2θτβ)T and φ̄ = (β +
√

−2θτβ, 2β +
√

−2θτβ).

We are now ready to exhibit the unique optimal control when the horizon T is large enough. It
consists mainly in the singular control using, except in the regions close to the endpoints of [0, T ]. For
small time, the optimal control depends on the initial data x0 and it consists in reaching as fast as
possible the singular trajectory. Then the control remains constant equal to the value which maximizes
the Perron eigenvalue (see Figure 4). At the end of the experiment, the control is umin due to the
transversality condition induced by the objective function. This kind of strategy is known as turnpike
properties (see [35, 37] for instance), the “turnpike” is the singular trajectory which corresponds to
the Perron eigenvector X with an exponential growth of maximal rate λP (ū).
We divide the construction of the optimal control in two steps. First, we build a control such that

the PMP is satisfied (Theorem 17). Then, with an analysis of the switching function Φ(t), we prove
that this is the only possible one (Theorem 18).

Before stating the results, let us define projective variables. For x = (x1, x2)
T and p = (p1, p2),

where x1, x2, p1 and p2 are positive real numbers, we define

y :=
x1

x1 + x2
∈ [0, 1] and q :=

p1
p1 + p2

∈ [0, 1].

For (x(t), p(t)) a solution to (4.2)-(4.3), the projections y(t) and q(t) satisfy the dynamics

ẏ = Y(y, u) := 2uβ − (3uβ + (uθ + ζ)τ)y + uβy2, (4.20)

q̇ = Q(q, u) := −
[
(θu+ ζ)τ − (3(θu+ ζ)τ − uβ)q + (2(θu+ ζ)τ − 3uβ)q2

]
. (4.21)

In our problem the initial condition x(0) = x0 = (x01, x
0
2)
T > 0 and the terminal condition p(T ) = Ψ =

(1, 2) > 0 guarantee that x(t) and p(t) are positive for all t ∈ [0, T ]. So y(t) and q(t), which satisfy

y(0) =
x01

x01 + x02
and q(T ) =

1

3
,

are well defined and belong to (0, 1) for every time t ∈ [0, T ]. Finally for u in [umin, umax], let Y (u) ∈
(0, 1) be the projection of the Perron eigenvector X(u) of the matrix uF + (θu+ ζ)G and let π(u) be
the projection of the adjoint Perron eigenvector φ(u).

Theorem 17. There exist a time Tψ > 0 and a function T0 defined on [0, 1], satisfying

∀y ∈ [0, 1] \ {Y (ū)}, T0(y) > 0, T0(Y (ū)) = 0, sup
[0,1]

T0 < +∞,

such that, for T > T0(y(0)) + Tψ, the control defined by

u∗(t) =





{
umin if y(0) > Y (ū)
umax if y(0) < Y (ū)

for t ∈ [0, T0(y(0))],

ū for t ∈ (T0(y(0)), T − Tψ],
umin for t ∈ (T − Tψ, T ],

(4.22)

satisfies the maximality property (4.6). Moreover the corresponding trajectories y∗(t) and q∗(t) satisfy
y∗ ≡ Y (ū) and q∗ ≡ π(ū) on [T0(y(0)), T − Tψ].
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Based on Theorem 17, we can state our main theorem.

Theorem 18. There exists a time Tc > Tψ+sup
[0,1]

T0 such that, for every final time T > Tc, the control

defined by (4.22) is the unique solution to the optimal relaxed control problem (4.4).

For the optimal relaxed control (u∗, σ(u∗)) → Σ given by (4.22), we can easily build a sequence
of piecewise constant functions (un, vn)n∈N → Ω which converges weakly to (u∗, σ(u∗)), as claimed
in (3.9). It suffices to replace u∗ = ū on the interval [T0, T − Tψ) by

un(t) =

{
umin if t ∈ [T0 + (k − 1)∆t, T0 + (k − 1)∆t+∆min)

umax if t ∈ [T0 + (k − 1)∆t+∆min, T0 + k∆t)
, for k = 1, · · · , n,

where we have defined

∆t =
T − (T0 + Tψ)

n
, ∆min :=

umax − ū

umax − umin
∆t and ∆max :=

ū− umin

umax − umin
∆t, (4.23)

and to set vn = r(un). This sequence oscillates more when n increases, keeping the same mean values

∫ T

0
un(t) dt =

∫ T

0
u∗(t) dt and

∫ T

0
vn(t) dt =

∫ T

0
v∗(t) dt.

This is what happens in Figure 1 when we solve numerically a discretized optimal control problem.

Before proving Theorems 17 and 18, we give some useful preliminary results. First note that for u
fixed in [umin, umax], Y (u) and π(u) are the unique steady states of respectively (4.20) and (4.21) in
the interval [0, 1]. Moreover we know the sign of the vector fields.

Lemma 19. For every u in [umin, umax],

(y − Y (u))Y(y, u) < 0, ∀y ∈ [0, 1] \ {Y (u)}, (4.24)

(q − π(u))Q(q, u) > 0, ∀q ∈ [0, 1] \ {π(u)}. (4.25)

Proof. Let u ∈ [umin, umax]. The function y 7→ (y − Y (u))Y(y, u) is a third order polynomial which
vanishes only at y = Y (u) on the interval [0, 1]. We obtain (4.24) by computing for instance Y(0, u) =
2uβ > 0 and Y(1, u) = −(uθ + ζ)τ < 0. The same argument allows to prove (4.25).

Corollary 20. For u fixed in [umin, umax], every solution y of (4.20) with y(0) in [0, 1] satisfies

(y(t)− Y (u))2 ↓ 0 when t→ +∞,

and every solution q of (4.21) with q(0) in [0, 1] satisfies

(q(t)− π(u))2 ↓ 0 when t→ −∞.

Proof. We get from (4.24) that

d

dt
(y(t)− Y (u))2 = 2(y(t)− Y (u))Y(y(t), u) < 0

while y(t) 6= Y (u), and from (4.25) that

d

dt
(q(−t)− π(u))2 = −2(q(−t)− π(u))Q(q(−t), u) < 0

while q(t) 6= π(u).
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Figure 4: Top left: the optimal control for T = 24, n = 2, θ = −0.2, ζ = 1, τ = 0.1, β = 0.05 and the
initial data x0 = (0, 1)T . Top right: the corresponding trajectories x1(t) and x2(t). Bottom left: the
switching function Φ(t). Bottom right: the evolution of the objective ψx(t) = x1(t) + 2x2(t).

Remark 21. Corollary 20 allows to recover the property that y(t) ∈ (0, 1) and q(t) ∈ (0, 1) for every
t ∈ [0, T ] as soon as y(0) ∈ (0, 1) and q(T ) ∈ (0, 1).

From the proof of Corollary 20 we readily get another useful consequence of Lemma 19.

Corollary 22. For u fixed in [umin, umax], every solution y of (4.20) satisfies

{
0 < y(0) < Y (u) =⇒ ∃!T > 0, y(−T ) = 0,

Y (u) < y(0) < 1 =⇒ ∃!T > 0, y(−T ) = 1.

The following lemma orders the steady states Y (u) and π(u) for different values of u.

Lemma 23. We have the comparisons

Y (umin) < Y (ū) < Y (umax) and π(umin) > π(ū) > π(umax) >
1

3
.
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Proof. We study the variations of the function u 7→ Y (u). Starting from the computations in the
computational proof of Theorem 14 in Appendix C, we get

Y (u) =
λP (u) + uβ

λP (u) + uβ + (uθ + ζ)τ
=
uβ − (uθ + ζ)τ +

√
∆

uβ + (uθ + ζ)τ +
√
∆
,

and by differentiation

Y ′(u) =
2h(u)

(
uβ + (uθ + ζ)τ +

√
∆
)2 with h(u) := βζτ − θτ

√
∆+

∆′

2
√
∆
(uθ + ζ)τ.

To have the sign of h on [0,
ζ

−θ ], we differentiate h with respect to u

h′(u) =
(uθ + ζ)τ

4∆
√
∆

(
2∆∆′′ − (∆′)2

)
.

We know from Lemma 33 in Appendix C that 2∆∆′′ − (∆′)2 < 0. So h is decreasing and since

h(
ζ

−θ ) = 2ζβτ > 0, we get that h > 0 on [0,
ζ

−θ ]. Then Y is increasing and

Y (umin) < Y (ū) < Y (umax).

For the variations of π(u), we compute

π(u) =
λP (u) + uβ

λP (u) + 3uβ
=

uβ − (uθ + ζ)τ +
√
∆

5uβ − (uθ + ζ)τ +
√
∆

and

π′(u) =
4g(u)

(
5uβ − (uθ + ζ)τ +

√
∆
)2 with g(u) = β

(
ζτ −

√
∆+

u∆′

2
√
∆

)
.

Using Lemma 33 in Appendix C we have

g′(u) =
β

4∆
√
∆

(
2∆∆′′ − (∆′)2

)
< 0,

so g < 0 since g(0) = 0. We obtain that π(u) is decreasing and

π(umin) > π(ū) > π(umax) > π
( ζ

−θ
)
=

1

3
.

We give now a last lemma and a corollary, which are key points in the proofs of Theorem 17 and
Theorem 18.

Lemma 24. The switching function Φ defined in (4.5) satisfies the equation

Φ̇ = Λ1Φ+ Λ2,

with

Λ1 := ζτ
x1
x2

and Λ2 := ζτ(p2 − p1)
(
−θτ

(x1
x2

)2
− 2β

)
x2.

Moreover for every t ∈ [0, T ] we have Λ1(t) > 0 and

sign(Λ2(t)) = sign(y(t)− Y (ū)),

where, for every real number a, sign(a) = 1 if a > 0, sign(a) = −1 if a < 0 and sign(a) = 0 if a = 0.
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Proof. From the positivity of x(t), we get Λ1(t) > 0. For Λ2, it is noteworthy from Lemma 10 that
p2 − p1 > 0. Thus, the sign of Λ2 does not depend on p and from Corollary 16, we get

sign(Λ2) = sign

(
x21
x22

− 2β

−θτ

)
= sign

((
y

1− y

)2

−
(

Y (ū)

1− Y (ū)

)2
)

= sign(y − Y (ū)).

Corollary 25. For all t > 0, we have





(
Φ∗(t) ≥ 0 and y∗(t) < Y (ū)

)
=⇒

(
Φ∗(s) > 0, ∀s < t

)
,

(
Φ∗(t) ≤ 0 and y∗(t) > Y (ū)

)
=⇒

(
Φ∗(s) < 0, ∀s < t

)
.

Proof. Assume that Φ∗(t) ≥ 0 and y∗(t) < Y (ū). If Φ∗(t) = 0, then Lemma 24 gives Φ̇∗(t) < 0 so there
exists t′ < t such that Φ∗ > 0 on (t′, t). As a consequence u∗ ≡ umax on (t′, t) which ensures by using
Lemma 19 and Lemma 23 that y∗(t′) < Y (ū). So we can restrict to the case Φ∗(t) > 0, y∗(t) < Y (ū)
and we suppose by contradiction that

∃t0 < t, Φ∗(t0) = 0 and Φ∗(s) > 0, ∀s ∈ (t0, t). (4.26)

Using Lemma 19 and Lemma 23, we obtain that y∗ < Y (ū) on [t0, t]. By Lemma 24 we get that Λ2 < 0

and then Φ̇∗ < Λ1Φ
∗ on [t0, t]. By Grönwall’s inequality we deduce that Φ∗(t0) > Φ∗(t) e

−
∫
t

t0
Λ1(s) ds >

0. This contradicts (4.26) so the first implication of Lemma 25 is proved. The proof of the second
implication follows from a similar argument.

In the proofs of Theorem 17 and Theorem 18, we will use the following compact definitions: a triplet
(y, u, y0) (resp. (q, u, q0)) is said to be solution to (4.20) (resp. to (4.21)) if y satisfies Equation (4.20)
(resp. Equation (4.21)) with the control u and the initial condition y(0) = y0 (resp. q(0) = q0).

Proof of Theorem 17. We first define T0. From Corollary 20 and Lemma 23, we know that

∀y0 ∈ [0, Y (ū)), ∃!T0(y0) > 0, (y, umax, y
0) is solution to (4.20) =⇒ y(T0(y

0)) = Y (ū),

and

∀y0 ∈ (Y (ū), 1], ∃!T0(y0) > 0, (y, umin, y
0) is solution to (4.20) =⇒ y(T0(y

0)) = Y (ū).

The function T0 thus defined is bounded on [0, 1]. This is a consequence of the Cauchy-Lipschitz
theorem for Equation (4.20), which ensures that for all y ∈ [0, 1], T0(y) ≤ max{T0(0), T0(1)}.
The time Tψ is also defined by using Corollary 20 and Lemma 23

∃!Tψ > 0, (q, umin, 1/3) is solution to (4.21) =⇒ q(−Tψ) = π(ū). (4.27)

Once T0 and Tψ are defined, it only remains to verify that the control defined by (4.22) and the
associated trajectories y∗ and q∗ satisfy the maximality condition (4.6). For this, it suffices to check
that property (4.7) of the switching function Φ∗(t) = Φ(x∗(t), p∗(t)) holds (see Figure 4 for a numerical
illustration).
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In the interval [T0(y(0)), T − Tψ], we have u∗ = ū, y∗ ≡ Y (ū) and q∗ ≡ π(ū). Thus, by Theorem 13
and Theorem 14, we have Φ∗ = 0.
We have from the definition of T0 that, if y(0) > Y (ū), then u∗ ≡ umin and y∗ > Y (ū) in the interval

[0, T0(y(0))). Using Lemma 24 we deduce from y∗ > Y (ū) that Λ2 > 0 and then, since Φ(T0(y(0))) = 0,
that Φ∗ < 0 in the interval [0, T0(y(0))). The same argument proves that, if y(0) < Y (ū), then
u∗ ≡ umax and Φ∗ > 0 in the interval [0, T0(y(0))).
In the interval (T − Tψ, T ] we have u∗(t) ≡ umin, so we get from y∗(T − Tψ) = Y (ū), Corollary 20

and Lemma 23 that y∗(t) < Y (ū). It follows from Lemma 24 that for every t ∈ (T −Tψ, T ], Λ2(t) < 0,
and then Φ∗(t) < 0 since Φ∗(T − Tψ) = 0.

Proof of Theorem 18. Let t ∈ [0, T ] 7→ u∗(t) be a control such that the maximality condition (4.6)
is satisfied. Let x∗, p∗, y∗, q∗ and Φ∗ be the corresponding functions. Since Φ∗(T ) = θτx∗1(T ) < 0,
necessarily, u∗ = umin in a neighborhood of T . We start from time T and analyze the problem
backward in time.

First step: we prove by contradiction that

∃η, T1 > 0 (both independent of x0) s.t. T > T1 =⇒ y∗(T ) 6∈ [Y (umin)− η, Y (umin) + η].

We start from the fact that

φ(umin)(F + θG)X(umin) = λ′P (umin) > 0. (4.28)

(The first equality of (4.28) can be obtained by differentiating (u(F + θG) + ζG)X(u) = λP (u)X(u)
with respect to u and by using φ(u)(u(F + θG) + ζG) = λP (u)φ(u).) Property (4.28) ensures that
there exists ε > 0 such that

max{|y − Y (umin)|, |q − π(umin)|} ≤ ε =⇒ Φ(x, p) > 0. (4.29)

Using Lemma 23 and decreasing ε > 0 if necessary, we may assume that π(umin) − ε > 1/3. Then
from Corollary 20 and Lemma 23 we have that

∃!T1,1 > 0, (q, umin, 1/3) is solution to (4.21) =⇒ q(−T1,1) = π(umin)− ε.

Consider now η > 0 such that, for (y, umin, y
0) solution to (4.20),

y0 ∈ [Y (umin)− η, Y (umin) + η] =⇒ ∀t ∈ [−T1,1, 0], y(t) ∈ [Y (umin)− ε, Y (umin) + ε]. (4.30)

(This η > 0 exists since (y, u) := (Y (umin), umin) is a solution of (4.20).) Still decreasing ε > 0 if
necessary and using Lemma 23, we may assume that

Y (umin) + ε < Y (ū). (4.31)

By Corollary 22, Lemma 23 and (4.31)

∃!T1,2 > 0, (y, umax, Y (umin) + ε) is solution to (4.20) =⇒ y(−T1,2) = 0.

Let T1 := T1,1 + T1,2 and T > T1. Let us assume that y∗(T ) belongs to [Y (umin)− η, Y (umin) + η]. If
Φ∗ < 0 in [T −T1,1, T ], then u∗ ≡ umin in [T −T1,1, T ], and, by the definition (4.30) of η, y∗(T −T1,1) ∈
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[Y (umin) − ε, Y (umin) + ε], which, together with (4.29) gives Φ∗(T − T1,1) > 0. Hence Φ∗ < 0 on
[T − T1,1, T ] does not hold and there exists t0 ∈ [T − T1,1, T ] such that Φ∗(t0) = 0 and Φ∗ < 0 in
(t0, T ]. From (4.30) we have y∗(t0) 6 Y (umin) + ε < Y (ū), which, with Corollary 25, gives that
Φ∗(t) > 0 for every t ∈ [0, t0). In particular, u∗ ≡ umax on [0, t0]. Finally, using the definition of
T1,2 > 0, we get that y∗(T − t0 − T1,2) 6 0, which is not possible since x∗ > 0 in [0, T ]. So y∗(T )
cannot belong to [Y (umin)− η, Y (umin) + η].

Second step: we prove that

∃T2 > 0, T > T2 =⇒ y∗(T ) 6∈ [0, Y (umin)− η].

By Corollary 22,

∃!T2,1 > 0, (y, umin, Y (umin)− η) is solution to (4.20) =⇒ y(−T2,1) = 0

and, using additionally Lemma 23,

∃!T2,2 > 0, (y, umax, Y (umin)− η) is solution to (4.20) =⇒ y(−T2,2) = 0.

For T > T2 := T2,1 + T2,2, the terminal value y∗(T ) cannot belong to [0, Y (umin) − η]. If y∗(T ) is in
[0, Y (umin)− η], then either Φ∗(t) < 0 on [T −T2,1, T ] and in this case y∗(T −T2,1) ≤ 0, or there exists
t0 ∈ [T − T2,1, T ] such that Φ∗(t0) = 0 and in this case we have from Corollary 25 that Φ∗(t) > 0 for
t < t0, so u = umax and y∗(t0 − T2,2) ≤ 0. Neither of these two cases is possible since x∗ > 0 on [0, T ].

Third step: we prove that

∃T3 > 0, T > T3 =⇒ y∗(T ) 6∈ [Y (umin) + η, 1] \ {Yψ}

where Yψ := y(Tψ) for (y, umin, Y (ū)) solution to (4.20), with Tψ defined in (4.27).
We start from the fact that, by Corollary 22,

∃!T3,1 > 0, (y, umin, Y (umin) + η) is solution of (4.20) =⇒ y(−T3,1) = 1.

Let us assume that T > T3,1. If y∗(T ) ∈ (Y (umin) + η, 1], then there exists a time t0 > T − T3,1 such
that Φ∗(t0) = 0 because y∗(t) has to be less than 1 for every time in [0, T ]. Increasing t0 if necessary,
we may also impose that Φ∗ < 0 in (t0, T ]. It is not possible to have y∗(t0) > Y (ū) because in this
case, by Lemma 24, we would have Φ∗(t0) = 0 with (Φ∗)′(t0) = Λ2(t0) > 0, which cannot hold since
Φ∗ < 0 in (t0, T ]. So we necessarily have y∗(t0) ≤ Y (ū).
If y∗(t0) < Y (ū), then, by Corollary 25, Φ∗ is positive on [0, t0). But by Corollary 22 and Lemma 23

∃!T3,2 > 0, (y, umax, Y (ū)) is solution of (4.20) =⇒ y(−T3,2) = 0.

So we get that y∗(t0) cannot be less than Y (ū) if T > T3 := T3,1 + T3,2.
Hence, for T > T3, we have y∗(t0) = Y (ū). We deduce from this identity, together with Φ∗(t0) = 0,

that q∗(t0) = π(ū) and it implies that t0 = T − Tψ, where Tψ is defined in the proof of Lemma 17. As
a consequence, the only possible value for y∗(T ) is Yψ = y(Tψ) ∈ (Y (ū), 1), where y is the solution of
(4.20) with u ≡ umin such that y(0) = Y (ū).

Here, we have proved that, for T > max{T1, T2, T3}, the only possible control which satisfies the PMP
takes the value umin in [T − Tψ, T ]. Moreover, the associated trajectories satisfy y∗(T − Tψ) = Y (ū)
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and q∗(T − Tψ) = π(ū). Then, using Lemma 19 and Corollary 25 with the same kind of arguments
as above, it is straightforward to check that the control defined by (4.22) is the only control which
satisfies the PMP for T > Tc := max{T1, T2, T3}. Since any optimal control satisfies the maximality
condition (4.6), we conclude that this is the only optimal control.

Corollary 26. Asymptotically in T we have the convergence

lim
T→+∞

ln(J(u∗))

T
= λP (ū).

A similar ergodic result is proved in [4] in the case of dimension n = 3 but without proving that the
limit is λP (ū).

5 Conclusion and perspectives

We have modeled the PMCA protocol by a system of differential equations with a control term. The
analysis of the optimal control problem, which aims to maximize the efficiency of the PMCA, makes
appear that the solution may not be a classical control but a relaxed one. Such a theoretical optimal
control cannot be realized experimentally. Nevertheless it can be approached by altering incubation
and sonication phases.

Our main result provides, in dimension 2, the optimal ratio between the two phases. It is given
by Ropt :=

∆max

∆min
= ū−umin

umax−ū
(see (4.23)), where ū ∈ (umin, umax) is the constant which maximizes the

Perron eigenvalue in the convex hull of the original control set. To approach the optimal relaxed
control via an alternation of incubation and sonication phases, the switching frequency has to be
high. But the frequency is limited experimentally, for instance due to the warming engendered by
the sonication. To maintain the temperature of the sample at a reasonable level, sufficiently long
rest phases (corresponding to incubation) have to be intercalated between the sonication phases.
Considering such experimental constraints, a close-to-optimal strategy should be to switch as fast
as possible between sonication and incubation phases, keeping the optimal ratio Ropt between the
respective durations.

Before practicing this strategy in a real PMCA protocol, the parameters of the model have to
be estimated from experiments. This requires precise measurements of the size distribution of the
polymers and inverse problem methods as the one detailed in [11] (see also the references therein). To
use our result in dimension 2, the sizes of the polymers have to be divided into two pools and the mean
polymerization and fragmentation coefficients of the two pools have to be estimated. If one wants to
improve the accuracy of the method, a higher dimensional model should be used. But it appears that,
even for the case of three compartments, the mathematical analysis is much more delicate than in
dimension two.
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Appendix

A Perron eigenvalue

For u > 0 fixed and r(u) > 0, denote by (λP (u),XP (u), φP (u)) the Perron eigenelements of the matrix
M(u) := uF + r(u)G defined by

{
λPXP =M(u)XP , XP > 0, ‖XP ‖1 = 1,
λPφP = φPM(u), φP > 0, φPXP = 1.

In the current section we investigate the dependence of these elements on the control parameter u. Such
eigenelements also exist for the continuous growth-fragmentation equation (1.1) (see [9] for instance),
and their dependence on parameters is investigated in [3, 13].

The function r : R+ → R
+∗ is assumed to be continuous and bounded. Theorem 1 is an immediate

consequence of the following Lemma 27 and Theorem 28.

Lemma 27. The eigenelements λP , XP and φP are continuous functions of u on R
+. Moreover, we

have
λP (u) > 0 for u > 0 and lim

u→0
λP (u) = 0.

Proof. Since the function r is continuous, the coefficients of the matrix M(u) depend continuously
on u. As a consequence, the characteristic polynomial of M(u) varies continuously with u. The first
eigenvalue λP is the largest root of this characteristic polynomial and the Perron-Frobenius theorem
ensures that the multiplicity of this root is 1. So λP is a continuous function of u.
Let u ≥ 0 and (uk)k∈N be a positive sequence which converges to u. Since ‖XP (uk)‖1 = 1 there

exists a subsequence of (XP (uk))k which converges to a limit X∞. By continuity of λP (u) and M(u),
this limit satisfies M(u)X∞ = λP (u)X∞ and ‖X∞‖1 = 1. By uniqueness of the first eigenvector, we
conclude that the whole sequence (XP (uk))k converges to X∞ = XP (u) and so XP is a continuous
function of u. Since (XP (uk))k is a positive convergent sequence, it is lower bounded and we deduce
from the normalization φPXP = 1 that the sequence (φP (uk))k is bounded. The same as for XP , we
conclude from the uniqueness of the adjoint eigenvector that φP is a continuous function of u.
Define Θ := (1, 1, · · · , 1) and, for j = 2, · · · , n, Kj :=

∑j−1
i=1 κij > 0. We have: ΘXP = ‖XP ‖1 = 1

since XP > 0, ΘG = 0 from (1.5), and ΘF = (0,K2β2, · · · ,Knβn)
T from (1.6). So multiplying the

identity λPXP =M(u)XP by Θ we get

λP (u) = uΘFXP ≤ u max
2≤j≤n

Kjβj

which ensures that λP (u) is positive for u positive and tends to zero when u→ 0.

Theorem 28. Under Assumptions (2.1) and (2.2), we have the expansions

k < l, =⇒ λP (u) = r0τ1 +

[
rk+1
0 (τk+1 − (k + 1)τ1)

k∏

i=1

τi
βi+1

]
u−k + o

u→+∞
(u−k),

k = l, =⇒ λP (u) = r0τ1 +

[
rk+1
0 (τk+1 − (k + 1)τ1)

k∏

i=1

τi
βi+1

+ rkτ1

]
u−k + o

u→+∞
(u−k),

k > l, =⇒ λP (u) = r0τ1 + rlτ1u
−l + o

u→+∞
(u−l).
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This result can be related to Corollary 1 in [3] which provides an expansion of the first eigenvalue
for the continuous growth-fragmentation model. The proof of Theorem 28 uses the following lemma
which gives the asymptotic behavior of the eigenvector XP = (x1, x2, · · · , xn)T .

Lemma 29. Assume that r(u) admits a limit r0 > 0 when u tends to +∞, then

∀i ∈ [1, n], xi(u) ∼
u→+∞

ri−1
0

i−1∏

j=1

τj
βj+1

u1−i. (A.1)

Proof of Lemma 29. We prove by induction on i that

ui−1xi(u) −−−−→
u→+∞

ri−1
0

i−1∏

j=1

τj
βj+1

and ui−1xj(u) −−−−→
u→+∞

0, ∀j > i. (IH)

i = 1 : We have by definition

(r(u)G+ uF )XP (u) = λP (u)XP (u) with ‖XP (u)‖1 = 1. (A.2)

We use ψ = (1, 2, · · · , n), which satisfies ψF = 0 (see (3.6)). Testing (A.2) against ψ on the left, we
obtain

r(u)ψGXP (u) = λP (u)ψXP (u) (A.3)

and so λP (u) is bounded since ‖XP (u)‖1 = 1 and r is bounded. Dividing by u in (A.2), we get
(
r(u)

u
G+ F

)
XP (u) =

λP (u)

u
XP (u). (A.4)

The sequence XP (u) is bounded and thus convergence occurs when u→ +∞ for a subsequence. But
from (A.4) the limit X∞

P must satisfy FX∞
P = 0 so the whole sequence converges to

X∞
P = δ := (1, 0 · · · , 0)T .

i→ i+ 1 : (i+ 1 ≤ n) We have

uiFXP (u) = ui−1λP (u)XP (u)− ui−1r(u)GXP (u).

We consider the n− i last lines of this matrix identity and find



−βi+1

(2κkjβj)
. . .

0
−βn







uixi+1(u)

...

uixn(u)




=




(λP (u) + r(u)τi+1)u
i−1xi+1(u)− r(u)τiu

i−1xi(u)

...

λP (u)u
i−1xn(u)− r(u)τn−1u

i−1xn−1(u)




by (IH)−−−−→
u→+∞




−r0τi · ri−1
0

i−1∏

j=1

τj
βj+1

0



,

which concludes the proof of Lemma 29.
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Proof of Theorem 28. Notice that k < n since τn = 0 and τ1 > 0. Using (A.3), the convergence of XP

to δ = (1, 0 · · · , 0)T and the convergence of r to r0, we obtain that λP (u) converges when u → +∞
and that the limit λ∞P satisfies

r0ψGδ = λ∞P ψδ, (A.5)

which gives
λ∞P = r0τ1. (A.6)

Once we have this limit, we need to estimate the difference λP (u) − λ∞P when u→ +∞. To do so we
make the difference between (A.3) and (A.5) which gives, by using (A.6),

(λP (u)− r0τ1)ψXP (u) + r0τ1ψ(XP (u)− δ) = r(u)ψG(XP (u)− δ) + (r(u)− r0)ψGδ. (A.7)

Now we use the result of Lemma 29 which gives an equivalent to XP (u) when u → +∞, and As-
sumption (2.1) which gives an equivalent to r(u) − r0 when u → +∞, to deduce an equivalent to
λP (u)− λ∞P . Denoting m := min (k, l), we obtain from (A.7)

um(λP (u)− r0τ1)ψXP (u) = umr(u)ψG(XP (u)− δ) + um(r(u)− r0)ψGδ − umr0τ1ψ(XP (u)− δ)

= umr0ψ(G− τ1Id)(XP (u)− δ) + um(r(u)− r0)ψGXP (u)

= umr0

n−1∑

j=1

(τj − jτ1)(xj(u)− δ1,j) + um(r(u)− r0)ψGXP (u)

= r0

n−1∑

j=k+1

(τj − jτ1)u
mxj(u) + um(r(u)− r0)ψGXP (u)

(A.1)−−−−→
u→+∞

1l{k≤l}r
k+1
0 (τk+1 − (k + 1)τ1)

k∏

i=1

τi
βi+1

+ 1l{k≥l}rlτ1,

where δ1,j = 1 if j = 1 and δ1,j = 0 otherwise.

B Floquet eigenvalue

For a T -periodic control u(t), the Floquet theorem ensures that there is a Floquet eigenvalue λF [u(·)]
and a T -periodic function XF [u(·)](t) solution to

d

dt
XF (t) = [M(u(t)) − λF ]XF (t).

The Floquet eigenvalues can sometimes be compared to the Perron eigenvalues [8, 14]. Here we make
periodic variations around the optimal constant control uopt to find whether or not periodic controls
can provide a better eigenvalue than λP (uopt).

Consider directional perturbations u(t) = uopt + εγ(t), where γ is a fixed T -periodic function and
ε a varying parameter. For the sake of clarity, we denote by λF (ε) := λF [uopt + εγ(·)] the Floquet
eigenvalue associated to ε, XF (ε; t) := XF [uopt+εγ(·)](t) the eigenfunction and X ′

F (ε; t) := ∂εXF (ε; t)
its derivative with respect to ε. We also use the notation

〈f〉 := 1

T

∫ T

0
f(t) dt
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for the time average of any T -periodic function f(t).
Now we compute the derivatives of λF (ε) which correspond to the directional derivatives of the

Floquet eigenvalue at the point uopt. This kind of differentiation technique is used in [25] to prove
the results about the optimization of the Perron eigenvalue in the case of the continuous cell division
problem. A formula which involves only the coefficients of the equation and the first eigenvectors is
obtained for the first and second derivatives. Here, the computation of the second derivative requires a
basis of eigenvectors, and so cannot be extended to continuous models. ForM(uopt) diagonalizable, we
choose two bases (X1,X2, · · · ,Xn) and (φ1, φ2, · · · , φn) of direct and adjoint eigenvectors associated
to the eigenvalues λ1 = λP (uopt) = λF (0) ∈ R, λ2 ∈ C, · · · , λn ∈ C such that φiXi = 1 and φiXj = 0
if i 6= j. Moreover, we choose X1 positive and normalized to have X1 = XP (uopt) = XF (ε = 0).

Proposition 30 (First order condition). We have

dλF
dε

(0) = 〈γ〉dλP
du

(uopt) = 0 .

Hence, uopt is a critical point also in the class of periodic control.

As in [1, 2], the first derivative of the Floquet eigenvalue is zero and we need to go to the following
order.

Proposition 31 (Second order condition). If M(uopt) is diagonalizable, we have

d2λF
dε2

(0) = 〈γ2〉φ1M ′′(uopt)X1 + 2

n∑

i=2

〈γ2i 〉(λ1 − λi)(φ1M
′(uopt)Xi)(φiM

′(uopt)X1),

where γi(t) := φiX
′
F (0; t)(φiM

′(uopt)X1)
−1 is the unique T -periodic solution to the ODE

γ̇i(t) + λ1γi(t) = γ(t) + λiγi(t). (B.1)

Remark 32. For γ ≡ 1, we obtain the second derivative of the Perron eigenvalue

d2λ1
du2

(uopt) = φ1M
′′(uopt)X1 + 2

n∑

i=2

(φ1M
′Xi)(φiM

′X1)

λ1 − λi
,

which is negative since uopt is a maximum. This formula appears in [34]. There exists a physical
interpretation in terms of repulsive/attractive forces among the eigenvalues.

Proof of Proposition 30. First we give an expression of the first derivative for the Perron eigenvalue.
By definition, we have

M(u)XP = λPXP ,

which provides by differentiation

λ′PXP + λPX
′
P =M ′(u)XP +M(u)X ′

P .

Testing against the adjoint eigenvector φP , we obtain

λ′P + λPφPX
′
P = φPM

′(u)XP + φPM(u)X ′
P .

Since

φPM(u) = λPφP , (B.2)
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we have
λ′P = φPM

′(u)XP = φP (r
′(u)G + F )XP .

Now, starting from the Floquet eigenvalue problem, we have

∂tXF + λF (ε)XF =M(uopt + εγ)XF ,

which provides by differentiation with respect to ε that

∂tX
′
F + λ′F (ε)XF + λF (ε)X

′
F = γ(t)M ′(uopt + εγ)XF +M(uopt + εγ)X ′

F . (B.3)

We test the preceding equation against φ1 and we evaluate at ε = 0. We obtain, using (B.2),

∂t(φ1X
′
F ) + λ′F = γφ1M

′(uopt)X1,

and, after integration in time,

λ′F =

(
1

T

∫ T

0
γ(t) dt

)
φ1M

′(uopt)X1 =

(
1

T

∫ T

0
γ(t) dt

)
dλP
du

(uopt) = 0.

It proves the first order condition.

Proof of Proposition 31. We test (B.3) against another adjoint eigenvector φi and we evaluate at ε = 0.
Using Proposition 30 and denoting γi(t) := φiX

′
F (t)(φiM

′(uopt)X1)
−1, we obtain

γ̇i(t) + λ1γi(t) = γ(t) + λiγi(t). (B.4)

Next, we differentiate (B.3) with respect to ε and we get

∂tX
′′
F + λ′′F (ε)XF + 2λ′F (ε)X

′
F + λFX

′′
F

=γ2M ′′(uopt + εγ)XF + 2γM ′(uopt + εγ)X ′
F +M(uopt + εγ)X ′′

F .

We evaluate at ε = 0 and we test against φ1 to find, using once more Proposition 30,

∂t(φ1X
′′
F ) + λ′′F (0) = γ2φ1M

′′(uopt)X1 + 2γ(t)φ1M
′(uopt)X

′
F . (B.5)

We decompose the unknown X ′
F along the basis (X1, · · · ,Xn)

X ′
F =

n∑

i=1

γi(t)(φiM
′(uopt)X1)Xi .

We have in particular

φ1M
′(uopt)X

′
F =

n∑

i=2

γi(t)(φiM
′(uopt)X1)(φ1M

′(uopt)Xi) .

To conclude, we integrate (B.5) on [0, T ] to obtain

λ′′F (0) = 〈γ2〉φ1M ′′(uopt)X1 + 2

n∑

i=2

〈γγi〉(φiM ′(uopt)X1)(φ1M
′(uopt)Xi)

and use the identity

(λ1 − λi)

(∫ T

0
γ2i (t) dt

)
=

∫ T

0
γ(t)γi(t) dt,

which can be checked by multiplying (B.4) by γi and by integrating the result on [0, T ].
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Now we can prove Theorem 2 stated in Section 2 by using the result of Proposition 31.

Proof of Theorem 2. We consider the periodic function

γ(t) = cos(ωt)

and we denote by λF (ε, ω) the Floquet eigenvalue corresponding to the periodic control uopt+ε cos(ωt).
We compute the 2π/ω-periodic solution γi(t) to (B.1)

γi(t) =
λ1 − λi

ω2 + (λ1 − λi)2
cos(ωt) +

ω

ω2 + (λ1 − λi)2
sin(ωt)

and then we obtain the formula

λ′′F (0, ω) =
1

2
φ1M

′′(uopt)X1 +

n∑

i=2

λ1 − λi
ω2 + (λ1 − λi)2

(φ1M
′(uopt)Xi)(φiM

′(uopt)X1).

But we have
φ1M

′′(uopt)X1 = r′′(uopt)φ1GX1

and we can compute φ1GX1 by doing the appropriate combination of

λP (uopt) = φ1(r(uopt)G+ uoptF )X1

and
λ′P (uopt) = 0 = φ1(r

′(uopt)G+ F )X1

to obtain

φ1M
′′(uopt)X1 =

r′′(uopt)

r(uopt)− uoptr′(uopt)
λP (uopt).

Thus, we have the limit

lim
ω→+∞

λ′′F (0, ω) =
1

2

r′′(uopt)

r(uopt)− uoptr′(uopt)
λP (uopt).

C Alternative proof of Theorem 14

Second proof of Theorem 14. The characteristic polynomial of the matrix uF + (θu+ ζ)G is

X2 +
(
(θu+ ζ)τ + uβ

)
X − u(θu+ ζ)βτ.

The discriminant of this polynomial is

∆ = (θu+ ζ)2τ2 + u2β2 + 6u(θu+ ζ)βτ

= (θ2τ2 + β2 + 6θβτ)u2 + 2ζτ(θτ + 3β)u+ ζ2τ2. (C.1)

Since 0 < u <
ζ

−θ , we have ∆ > 0. Define new relevant parameters

A := θτ + β, B :=
√

−2θβτ, C := θτ + 3β and D := ζτ.
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With these notations, discriminant (C.1) writes

∆ = (A2 − 2B2)u2 + 2CDu+D2,

and the first eigenvalue of uF + (uθ + ζ)G is

λP (u) =
1

2

(
−Au−D +

√
∆
)
> 0.

Differentiating twice this expression we get

λ′′P (u) =
2∆∆′′ − (∆′)2

4∆

and the following lemma ensures, together with ∆ > 0, that this second derivative is negative.

Lemma 33. For all u we have

2∆∆′′ − (∆′)2 < 0.

Proof of Lemma 33. We compute 2∆∆′′ − (∆′)2 = 4D2(A2 − 2B2 −C2) = −32D2β2 < 0.

We obtain that λP is a strictly concave function of u and thereby, since it vanishes at the ends of
the interval (0, ζ

−θ ), it admits a unique critical point ū which is the maximum. We conclude noticing
that using is a critical point of λP .

We can also check the identity ū = using by computation. The optimal value ū satisfies λ′P (ū) = 0,
with

λ′P (u) =
1

2

(
∆′

2
√
∆

−A

)
.

To obtain ū, we solve the equation (
∆′
)2

= 4A2∆, (C.2)

which writes

−2B2(A2 − 2B2)u2 − 4B2CDu+D2(C2 −A2) = 0.

The discriminant of this binomial is

D = 8A2B2D2(C2 + 2B2 −A2) = 64A2B2D2β2,

and the roots are

u± =
D

B

BC ± 2βA

2B2 −A2
.

A solution to λ′P (u) = 0 is a solution to (C.2) which satisfies
∆′

A
> 0. The computations give

∆′(u−)

A
= 4β

D

B
> 0 and

∆′(u+)

A
= −4β

D

B
< 0,

so λ′P (u) = 0 has a unique solution which is

ū = u− =
D

B

BC − 2βA

2B2 −A2
.
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Finally we write, from (4.8),

using =
D

B

2β +B

C − 2A+ 2B

=
D

B

(2β +B)(C − 2A− 2B)

(C − 2A)2 − 4B2

=
D

B

2βA −BC

A2 − 2B2

= u− = ū.
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