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Optimization of an Amplification Protocol for Misfolded Proteins

by using Relaxed Control

Jean-Michel Coron∗ Pierre Gabriel† Peipei Shang‡

Abstract

We investigate an optimal control problem which arises in the optimization of an amplification
technique for misfolded proteins. The improvement of this technique may play a role in the detection
of prion diseases. The model consists in a linear system of differential equations with a nonlinear
control. The appearance of oscillations in the numerical simulations is understood by using the
Perron and Floquet eigenvalue theory for nonnegative irreductible matrices. Then to overcome the
unsolvability of the optimal control, we relax the problem. In the two dimensional case we solve
explicitely the optimal relaxed control problem when the final time is large enough.

Keywords: optimal control, relaxed control, Perron eigenvalue, Floquet eigenvalue, structured pop-
ulations.

2010 Mathematics Subject Classification. 49J15, 35Q92, 37N25.

1 Introduction

Transmissible Spongiform Encephalopathies (TSE) are fatal, infectious, neurodegenerative diseases.
They include bovine spongiform encephalopathies (BSE) in cattle, scrapie in sheep and Creutzfeldt-
Jakob disease (CJD) in human. During the so-called “mad-cow crisis” in the 90’s, people were infected
by a variant of BSE by ingesting contaminated pieces of beef. More recently, CJD was transmitted
between humans via blood or growth hormones. Because of the long incubation times (some decades),
TSE still represent an important public health risk. Indeed, there is no ante mortem diagnosis
currently available to detect infected individuals and prevent possible contaminations. A promising
tool to design a diagnosis test is the protein misfolded cyclic amplification (PMCA) technique [5, 27,
28].

The PMCA principle is based on the “protein-only hypothesis” [14, 25]. According to this widely
accepted hypothesis, the infectious agent of TSE, known as prions, may consist in misfolded proteins
called PrPsc (for Prion Protein scrapie). The PrPsc replicates in a self-propagating process, by
converting the normal form of PrP (called PrPc for Prion Protein cellular) into PrPsc. The PMCA
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enabled to consolidate the idea of an autocatalytic replication of PrPsc by nucleated polymerization.
In this model originally proposed by Landsbury [15], PrPsc is considered to be a polymeric form of
PrPc. Polymers can lengthen by addition of PrPc monomers, and they can replicate by splitting into
smaller fragments. The PrPc is mainly expressed by the cells of the central nervous system, so PrPsc
concentrates in this zone. The amount of PrPsc in tissues such as blood is very small and this is why
it is very difficult to diagnose an infected individual.

The PMCA mimics in vitro the nucleation/polymerization mechanism occurring in vivo with the
aim to quickly amplify the polymers present in minute amount in an infected sample. It is a cyclic
process, where each cycle consists in two phases: the incubation phase during which the polymerization
is favored due to the presence of a large quantity of PrPc monomers, and the sonication phase when the
PrPsc polymers are broken down with ultrasounds. The incubation phase is expected to increase the
size of the polymers, while the ultrasounds are known to increase the fragmentation of the polymers
and so increase their number. This technique could allow us to detect PrPsc in the samples of blood
for instance. But for now, it is not efficient enough to do so. Mathematical modelling and optimization
tools can help to optimize the PMCA protocol.

The mathematical modeling of prion proliferation with ordinary or partial differential equation
(PDE) produced a large literature since the first model of Griffith [14]. Today, the most widely studied
nucleation/polymerization model is the one of Masel [22]. A PDE version of this model has been
introduced by Greer et al. [13] and studied by many authors including [3, 4, 8, 10, 11, 16, 26, 30, 33].
Starting from it, we propose to model the PMCA with the following controlled size-structured PDE

∂tf(t, ξ) + r(u(t))∂ξ
(
τ(ξ)f(t, ξ)

)
= u(t)

(∫ ∞

ξ

β(ζ)κ(ξ, ζ)f(t, ζ) dζ − β(ξ)f(t, ξ)

)
(1.1)

with the boundary condition f(t, 0) = 0 for every time t ≥ 0. The unknown f(t, ξ) is the number, or
density of polymers of size ξ > 0 at time t. The size of the polymers increases by polymerization with
respect to the growth rate τ(ξ). The terms in the large brackets on the right hand side of (1.1) form
the fragmentation operator, with β(ξ) the global fragmentation rate and κ(ξ, ζ) the fragmentation
kernel. The conservation of the quantity of polymerized proteins during the fragmentation process
requires that this kernel satisfies the following standard condition (see [7] for instance)

∫ ζ

0
ξ κ(ξ, ζ) dξ = ζ. (1.2)

The fragmentation is modulated by a multiplicative factor u(t) ∈ [umin, umax] which represents the
sonication intensity. The control u(t) ≡ umin = 1 corresponds to the absence of sonication, while
u(t) ≡ umax > 1 represents the maximal power of the sonicator. We assume that the sonication does
not only increase the fragmentation but also influence the polymerization process. This is taken into
account by the positive term r(u(t)) where the function r should be decreasing if we consider that the
ultrasounds have a negative effect on the growth of the polymers. The optimal control problem we
are interested in is, starting with a given initial size distribution f(t = 0, ξ) = f0(ξ) ≥ 0, to maximize
the objective

J(u) =

∫ ∞

0
ξf(T, ξ) dξ, (1.3)

which represents the total quantity of polymerized proteins at a given final time T .
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For the mathematical study in this paper, we consider a n-compartment approximation of (1.1)

dxi
dt

+ r(u(t))(τixi − τi−1xi−1) = u(t)




n∑

j=i+1

βj κi,j xj − βixi


 , for 1 ≤ i ≤ n,

with β1 = 0 and τn = 0. This is a finite dimensional ordinary differential system, linear in x =
(x1, . . . , xn)

T , which can be written under a matrix form

{
ẋ = uFx+ r(u)Gx, t ∈ [0, T ],

x(t = 0) = x0 > 0,
(1.4)

where G is the growth matrix

G =




−τ1
τ1 −τ2 0

. . .
. . .

0 τn− 2 −τn− 1

τn− 1 0




, (1.5)

and F is the fragmentation matrix

F =




0

−β2 (κijβj)i<j
. . .

0
−βn



. (1.6)

In (1.4) and in the following, if x = (x1, . . . , xn)
T , by x > 0 (and we also write x is positive) we mean

that xi > 0 for every i ∈ {1, · · · , n}. We use the same notation for row vectors.
We assume that

τi > 0 and βi+1 > 0, ∀i ∈ [1, n − 1]. (1.7)

The mass conservation assumption (1.2) on κ becomes

j−1∑

i=1

i κij = j, j = 2, · · · , n. (1.8)

The quantity (1.3) we want to maximize writes

J(u) =
n∑

i=1

i xi(T ). (1.9)

Such n-compartment optimal control problems have been widely studied in cancer chemotherapy
and the conclusion is usually that the optimal control is bang-bang since singular controls are not
optimal [17, 18, 19, 20, 31]. In contrast with these results, we show that, for our problem, the optimal
control is essentially singular.
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The organization of the paper is the following. In Section 2, we investigate eigenvalue optimization
problems related to the optimal control problem (1.9). More precisely, we aim to maximize the
Perron and Floquet eigenvalues with respect to constant or periodic control parameters. Starting
from information on these eigenvalue problems, we analyze in Section 3 a relaxed control problem. In
Section 4, we treat the case where n = 2 and give explicitly the optimal relaxed control. Finally, in
the Appendix, we give the details of the proofs for the results of Section 2.

2 Eigenvalue problems

For a fixed parameter u > 0 and for r(u) > 0, the matrix uF + r(u)G is irreducible (see, for instance,
[29, Section 2.8] for a definition of irreducible) and has nonnegative extra-diagonal entries. So the
Perron-Frobenius theorem (see, for instance, [29, Section 5.3]) applies and ensures the existence of a
simple dominant eigenvalue λP . In our case, this eigenvalue is positive and it provides the exponential
growth rate of the solutions to the equation ẋ = (uF + r(u)G)x (see, for instance, [24, Section 6.3.1]).
A first question is to investigate the dependence of the first eigenvalue on the parameter u. Indeed,
maximizing the Perron eigenvalue is related to our optimal control problem (1.9). It can be regarded
as the limit when T → +∞ of our optimization problem when we restrict to constant controls. A
remarkable fact is that for some coefficients, the dependence u 7→ λP (u) can be non monotonic and
there may exist an optimal value uopt for which λP admits a global maximum on R

+. Theorem 1,
which is proved in Appendix A, gives sufficient conditions for the existence of such a global optimum.

Theorem 1. Assume that r : R+ → R
+∗ is continuous and admits an expansion of the form

∃ l > 0, rl ≥ 0, r(u) = r0 + rlu
−l + o

u→+∞

(
u−l

)
. (2.1)

Consider also that (τi)1≤i≤n satisfies the discrete convexity condition

∃ k ∈ N
∗ such that ∀ i ≤ k, τi = i τ1 and τk+1 > (k + 1)τ1. (2.2)

Then there exists an optimal value uopt > 0 which satisfies

∀u ≥ 0, λP (u) ≤ λP (uopt).

The interpretation is that in this case, there is a compromise between too much sonication which
forms many small polymers but may have a small growth rate, and too high sonication which forms
large polymers but in small quantity.

The theory of Perron-Frobenius can be extended to periodic controls: this is the Floquet theory.
It ensures that for time periodic matrices which are monotonic and irreducible for any time, there
exists a dominant eigenvalue. It allows one to define for a periodic control u(t) a Floquet eigenvalue
λF [u] > 0 which prescribes, as in the case of the Perron eigenvalue, the asymptotic exponential growth
rate of the solutions to the equation ẋ = (u(t)F + r(u(t))G)x (see [24, Section 6.3.2] for instance).
A natural question is then to compare these periodic eigenvalues to the best constant one λP (uopt).
Theorem 2, which is proved in Appendix B, ensures that if r satisfies the condition

r′′(uopt)

r(uopt)− uopt r′(uopt)
> 0, (2.3)
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then the value uopt is a saddle point in the set of periodic controls. This means that there exist
periodic controls which provide a larger growth rate than λP (uopt).

Theorem 2. Assume that there exists an optimal value uopt for the Perron eigenvalue and that
uoptF + r(uopt)G is diagonalisable. Define for a frequency ω > 0 and a perturbation ε > 0 the Floquet
eigenvalue λF (ε, ω) := λF [uopt + ε cos(ωt)]. Then we have

lim
ω→+∞

∂2

∂ε2
λF (0, ω) =

1

2

r′′(uopt)

r(uopt)− uopt r′(uopt)
λP (uopt).

The link between the eigenvalue problem and the optimal control problem (1.9) is investigated
in [2] when the function r is a constant. In this case, there exists an optimal control u∗(t) which is
essentially equal to the best constant uopt of the Perron optimization problem (see Chapter 5 in [10]
for numerical simulations). Under condition (2.3) and the assumptions of Theorem 2, such a behavior
is not expected since we can find oscillating controls which provide a better eigenvalue than uopt. The
aim of this paper is to investigate the optimal control problem (1.9) in the case where there exists an
optimal constant uopt ∈ (umin, umax) and the function r satisfies Assumption (2.3). The first question
is the existence of an optimal control since the numerical simulations in Figure 1 show oscillations.
These questions are investigated in the following section by using the relaxed control theory.

3 Relaxed Control and the Pontryagin maximum principle

Let umin and umax be two positive real numbers such that umin < umax. We consider in this section a
function r ∈ C2([umin, umax]) satisfying

r(u) > 0, ∀u ∈ [umin, umax], (3.1)

r′′(u) > 0, ∀u ∈ (umin, umax), (3.2)

r(u)− ur′(u) > 0, ∀u ∈ (umin, umax), (3.3)

and we assume that there exists a strict optimum uopt ∈ (umin, umax) for the Perron eigenvalue. Under
these assumptions, condition (2.3) is automatically fulfilled. Remark that condition (3.3) is satisfied
when r is decreasing and satisfies (3.1), which are relevant conditions from view point of biology. To
study this case, it will be convenient to use the equivalent alternative statement of (1.4) where x is
solution to {

ẋ(t) = u(t)Fx(t) + v(t)Gx(t), t ∈ [0, T ],

x(t = 0) = x0 > 0,
(3.4)

with the two dimensional control (u, v) which belongs to the graph of the function r, i.e.,

∀ t ∈ [0, T ], (u(t), v(t)) ∈ Ω := Graph(r) = {(u, r(u)), umin ≤ u ≤ umax} .

Let

ψ := (1, 2, · · · , n) ∈ R
n (3.5)

be the mass vector. Note that, from (1.6), the mass conservation assumption (1.8) and (3.5), one has

ψF = 0. (3.6)
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Figure 1: Piecewise optimal controls u∗(t) obtained for different values of ∆t with the decreasing
convex function r(u) = 2

1+u . The control varies between umin = 1 and umax = 8 and the final time
is T = 48. The dimension of the model is n = 3 and the coefficients are τ1 = 1, τ2 = 10, β2 = 0.5,
β3 = 1, κ1,2 = 2 and κ1,3 = κ2,3 = 1. The time step varies as follows: ∆t = 0.8 (top left), ∆t = 0.6
(top right), ∆t = 0.4 (bottom left) and ∆t = 0.2 (bottom right).

The optimal control problem (1.9) now becomes

maximize J(u, v) = ψx(T ), (u, v) : [0, T ] → Ω is a Lebesgue measurable function, (3.7)

subject to dynamics (3.4). Since the function r is strictly convex, the graph Ω is not a convex subset
of R2 and, since the kernel of G is not reduced to {0}, for any x > 0, the velocity set

V(x) = {(uF + vG)x, (u, v) ∈ Ω}

is also not convex. For this kind of situation, the existence of an optimal control for (3.7) cannot
be ensured and it is standard to relax the problem by replacing the control set Ω by its convex hull
H(Ω) (see, for instance, [21, Section 4.2]): One replaces problem (3.7) by the following optimal control
problem

maximize J(u, v) = ψx(T ), (u, v) : [0, T ] → H(Ω) is a Lebesgue measurable function, (3.8)
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subject to dynamics (3.4). For this problem, the velocity set is the convex hull of V(x), so it is convex
and the existence of an optimal control is ensured by classical results (see [21, Theorem 5 p. 271] for
instance). Moreover,

• The supremum in problem (3.7) is equal to the maximum in problem (3.8).

• Let (u∗, v∗) : [0, T ] → H(Ω) be a measurable function which is optimal for problem (3.8). Then
one can easily construct a sequence of piecewise constant functions (un, vn)n∈N → Ω such that,
as n tends to +∞,

un ⇀ u∗ weakly in σ(L1, L∞) and vn ⇀ v∗ weakly in σ(L1, L∞). (3.9)

Let us emphasize that (3.9) implies that

J(un, vn) → J(u∗, v∗) as n→ +∞.

In particular, (un, vn)n∈N is a maximizing sequence for problem (3.7).

Now we want to obtain informations on the optimal controls for (3.8) by using the Pontryagin
maximum principle. This principle in our case gives the following theorem.

Theorem 3 (Pontryagin Maximum Principle (PMP)). Let (u∗, v∗) be an optimal control for problem
(3.8) and let x∗ be the corresponding trajectory (i.e., the solution of (3.4) with (u, v) := (u∗, v∗)). Call
p∗ : [0, T ] → R

n the row vector solution of the adjoint linear equation

ṗ∗(t) = −p∗(t)(u∗F + v∗G), (3.10)

with the transversality condition
p∗(T ) = ψ. (3.11)

Let us define the Hamiltonian as

H(x, p, u, v) := p(uF + vG)x. (3.12)

Then the maximality condition

H(x∗(t), p∗(t), u∗(t), v∗(t)) = max
(u,v)∈H(Ω)

H(x∗(t), p∗(t), u, v). (3.13)

holds for almost every time t ∈ [0, T ] and there exists a constant H∗ ∈ R such that

H(x∗(t), p∗(t), u∗(t), v∗(t)) = H∗, for almost every t ∈ [0, T ]. (3.14)

Remark 4. Since, for any positive u and v, the matrix uF + vG has nonnegative extra-diagonal
entries and is irreducible, we have, using (3.4), (3.5), (3.10) and (3.11),

x∗(t) > 0 and p∗(t) > 0, for every time t ∈ [0, T ]. (3.15)

The Pontryagin maximum principle is useful to obtain information on the optimal control. It allows
us to prove (Corollary 6 below) that the optimal control lies on the line Σ defined by (see Figure 2)

Σ := Graph(σ) = {(u, σ(u)), umin ≤ u ≤ umax} ,
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where σ is the affine function defined by

σ(u) = θu+ ζ

with

θ :=
r(umax)− r(umin)

umax − umin
, (3.16)

ζ :=
umaxr(umin)− uminr(umax)

umax − umin
. (3.17)

The set Σ is the string which links (umin, r(umin)) to (umax, r(umax)). Since r is convex, the boundary
of the control set H(Ω) is ∂H(Ω) = Ω ∪Σ.
One has the following lemma which is illustrated by the incoming arrows in Figure 2.

Lemma 5. Let (u, v) ∈ H(Ω) \Σ. Then, for ε > 0 small enough,

((1 + ε)u, (1 + ε)v) ∈ H(Ω).

Ω

H(Ω)
Σ

uu

v

r(u)

Figure 2: The set Ω, the string Σ and the convex hull H(Ω) for r a decreasing and convex function.
The arrows oriented along the vectors (u, r(u)) point inside H(Ω) on the lower boundary Ω.

Proof of Lemma 5. Let Int(H(Ω)) be the interior of H(Ω). If (u, v) ∈ Int(H(Ω)), then the result
follows from the fact that Int(H(Ω)) is an open set by definition. It remains to study the case where
(u, v) ∈ Ω \ {(umin, r(umin))} ∪ {(umax, r(umax))}, i.e., v = r(u) with u ∈ (umin, umax). We have, using
(3.3),

(1 + ε)r(u)− r((1 + ε)u) = (1 + ε)r(u)− r(u)− εur′(u) + o
ε→0+

(ε)

= ε(r(u)− u r′(u) + o
ε→0+

(1)) ≥ 0, for ε small and positive.

Hence, if ε > 0 is small enough, r((1 + ε)u) ≤ (1 + ε)r(u). Moreover, by (3.2), we have r(u) < σ(u)
and, therefore, if ε is small enough, (1 + ε)r(u) ≤ σ((1 + ε)u).
The proof is complete.
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As a consequence of Theorem 3 and Lemma 5, we have the following corollary.

Corollary 6. Let (u∗, v∗) be an optimal control for problem (3.8). Then, for almost every time
t ∈ [0, T ], the optimal control (u∗(t), v∗(t)) ∈ Σ.

Proof of Corollary 6. Indeed, by (3.14), there exists a sequence (tn)n∈N of elements in [0, T ] such that

H(x∗(tn), p
∗(tn), u

∗(tn), v
∗(tn)) = H∗, (3.18)

tn → T as n→ +∞. (3.19)

Extracting a subsequence if necessary we may assume, without loss of generality, that there exists
ṽ ∈ R such that

ṽ ∈ [r(umax), r(umin)] ⊂ (0,+∞), (3.20)

v∗(tn) → ṽ as n→ +∞. (3.21)

Letting n→ +∞ in (3.18), and using (3.6), (3.11), (3.12), (3.19) and (3.21), one gets that

H∗ = ṽψGx(T ). (3.22)

From (1.5), (1.7) and (3.5), one gets that
ψG > 0, (3.23)

which, together with (3.15), implies that

ψGx(T ) > 0. (3.24)

From (3.20), (3.22) and (3.24), one obtains

H∗ > 0.

Let t ∈ [0, T ] be such that

(u∗(t), v∗(t)) ∈ H(Ω) \ Σ, (3.25)

H(x∗(t), p∗(t), u∗(t), v∗(t)) = H∗. (3.26)

From Lemma 5 and (3.25), there exists ε > 0 such that ((1 + ε)u∗(t), (1 + ε)v∗(t)) ∈ H(Ω). Using
(3.26), one has

H(x∗(t), p∗(t), (1 + ε)u∗(t), (1 + ε)v∗(t)) = (1 + ε)H(x∗(t), p∗(t), u∗(t), v∗(t))
= (1 + ε)H∗

> H∗ = H(x∗(t), p∗(t), u∗(t), v∗(t)),

which shows that (3.13) does not hold. Since, by Theorem 3, (3.13) holds for almost every t ∈ [0, T ],
this, together with (3.14), concludes the proof of Corollary 6.

Now we look for controls and corresponding trajectories which satisfy the optimality condition (3.13).
To that end, we take advantage of our analysis of the Perron eigenvalue problem. For (u, v) ∈ H(Ω),
define the Perron eigenvalue λP = λP (u, v) of the matrix uF + vG and the corresponding right and
left eigenvectors X > 0 and φ > 0 normalized as follows

λPX = (uF + vG)X, ‖X‖1 = 1, (3.27)

λPφ = φ(uF + vG), φX = 1, (3.28)
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r(uopt)

uopt

(ū, v̄)

u

v

Figure 3: The eigenvalue function λP (u, v) on the convex hull H(Ω) for r(u) = 2
1+u , umin = 1,

umax = 8, n = 3, τ1 = 1, τ2 = 10, β2 = 0.5, β3 = 1, κ1,2 = 2 and κ1,3 = κ2,3 = 1.

where, for x = (x1, · · · , xn)T , ‖x‖1 :=
∑n

i=1 |xi|. The function (u, v) 7→ λP (u, v) admits an optimum
(ū, v̄) on the compact set H(Ω) (See Figure 3 for the numerical simulations). We denote by λ̄P , X̄
and φ̄ the corresponding optimal eigenelements. First, we notice that Lemma 5 implies that, as for
the optimal control, the optimum (ū, v̄) of λP lies on Σ.

Corollary 7. We have (ū, v̄) ∈ Σ \
{
(umin, r(umin)), (umax, r(umax))

}
.

Proof of Corollary 7. Multiplying (3.27) on the left by ψ and using (3.6), one gets

λP (u, v)ψX = vψGX, ∀(u, v) ∈ H(Ω). (3.29)

From ψ > 0 (see (3.5)), X > 0, (3.23) and (3.29), one gets

λP (u, v) > 0, ∀(u, v) ∈ H(Ω). (3.30)

(For a different proof of (3.30), see the proof of Lemma 20.) Corollary 7 follows from Lemma 5, (3.30)
and from the following linearity of the eigenvalue

∀α, u, v > 0, λP (αu, αv) = αλP (u, v).

We now build a solution to the relaxed control problem (3.4) which satisfies the optimality condi-
tion (3.13).
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Proposition 8. Let R > 0 and S > 0. Then the constant control (ū, v̄) and the following corresponding
direct and adjoint trajectories {

x̄(t) = RX̄ eλ̄P t,

p̄(t) = Sφ̄ e−λ̄P t,
(3.31)

satisfy the maximality condition

H(x̄(t), p̄(t), ū, v̄) = max
(u,v)∈H(Ω)

H(x̄(t), p̄(t), u, v), ∀t ∈ [0, T ]. (3.32)

Proof of Proposition 8. Without loss of generality, we may assume that R = S = 1. From (3.12),
(3.27), (3.28) and (3.31), we obtain, for every t ∈ [0, T ],

H(x̄(t), p̄(t), ū, v̄) = λP (ū, v̄). (3.33)

For any (u, v) ∈ H(Ω), we have, for every t ∈ [0, T ],

H(x̄(t), p̄(t), u, v) =p̄(t)(uF + vG)x̄(t)

=p̄(t)(ūF + v̄G)x̄(t) + p̄(t)
(
(u− ū)F + (v − v̄)G

)
x̄(t)

=H(x̄(t), p̄(t), ū, v̄) + φ̄
(
(u− ū)F + (v − v̄)G

)
X̄. (3.34)

Testing (3.27) against the adjoint eigenvector φ and using the normalization φX = 1 (see (3.28)),
we obtain

λP (u, v) = φ(uF + vG)X. (3.35)

Differentiating (3.35) with respect to u and using (3.27) together with (3.28), we get

∂λP
∂u

=
∂φ

∂u
(uF + vG)X + φFX + φ(uF + vG)

∂X

∂u

= λP (u, v)
∂φ

∂u
X + φFX + λP (u, v)φ

∂X

∂u

= λP (u, v)
∂(φX)

∂u
+ φFX

= φFX. (3.36)

We obtain in the same way that
∂λP
∂v

= φGX. (3.37)

From (3.33), (3.34), (3.36) and (3.37), we obtain

H(x̄(t), p̄(t), u, v) = λP (ū, v̄) +

(
u− ū
v − v̄

)
· ∇λP (ū, v̄). (3.38)

Moreover, since H(Ω) is convex and λP is maximal in H(Ω) at (ū, v̄),

(
u− ū
v − v̄

)
· ∇λP (ū, v̄) ≤ 0, ∀(u, v) ∈ H(Ω). (3.39)

From (3.38) and (3.39), we get that (ū, v̄) satisfies the maximality condition (3.32).

The proof is complete.
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Remark 9. For the trajectories (3.31) to satisfy additionally the initial condition of (3.4) and the
terminal condition (3.11), the initial distribution x0 > 0 has to be taken collinear to X̄ > 0 and the
objective we want to maximize has to be modified by replacing in (3.8) the vector ψ by a positive vector
and collinear to φ̄.

All the results of this section give indications that the optimal relaxed controls do not lie on Ω,
which would explain the oscillations that we observed numerically in Figure 1. In the next section,
we precise these indications in the case of a two compartments model.

4 Dimension n = 2

As in the previous sections, umin and umax are two positive real numbers such that umin < umax and
r ∈ C2([umin, umax]). We still assume that (3.1) and (3.2) holds. However, we no longer assume that
(3.3) holds. We precise what has been done in the two previous sections in the two dimensional case.
First we give the form of the matrices F and G in dimension 2 (see (1.5)-(1.8)):

F =

(
0 2β
0 −β

)
, G =

(
−τ 0
τ 0

)
,

with β > 0 and τ > 0. Notice that, for the sake of clarity, we have skipped the indices of the
coefficients: the coefficient β stands for β2 and τ stands for τ1.

In dimension 2, the optimal control still lies on Σ even if (3.3) is no longer assumed to hold. This
is a consequence of the following lemma.

Lemma 10. For any control (u, v) ∈ (L∞((0, T ); (0,+∞)))2, the solution p = (p1, p2) to the adjoint
equation

ṗ = −p(uF + vG), p(T ) = ψ = (1, 2),

satisfies
(2p1 − p2)(t) > 0 and (p2 − p1)(t) > 0, ∀ t ∈ [0, T ). (4.1)

Proof of Lemma 10. Denote by p̃ the vector

p̃ :=

(
p̃1
p̃2

)
:=

(
p2 − p1
2p1 − p2

)
.

It satisfies the equation

˙̃p = −
(
−vτ uβ
2vτ −uβ

)
p̃, p̃(T ) =

(
1
0

)
,

the result of the lemma follows.

Corollary 11. Let (u∗, v∗) be an optimal control for problem (3.8). Then (u∗(t), v∗(t)) lies on Σ for
almost every t ∈ [0, T ].

Proof of Corollary 11. Let x∗ be the trajectory corresponding to the control (u∗, v∗). Let p∗ : [0, T ] →
R
2 be the row vector solution of (3.10)-(3.11). Since Σ is a string of the convex (see (3.2)) function

r, we have that v ≤ σ(u) for every (u, v) ∈ H(Ω). From Lemma 10, we deduce that, for every time
t ∈ [0, T ),

p∗(t)Gx∗(t) = τ(p∗2(t)− p∗1(t))x
∗
1(t) > 0.

Then, using the maximality property (3.13), we conclude that v∗(t) = σ(u∗(t)) for almost every
t ∈ [0, T ].
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Corollary 12. If r is such that r(umin) ≤ r(umax), then the optimal control is, for almost every
t ∈ [0, T ],

(u∗, v∗) ≡ (umax, r(umax)).

Proof of Corollary 12. We use the same notations as in the proof of Corollary 11. When r(umin) ≤
r(umax), we have, for every (u, v) ∈ H(Ω), u ≤ umax and v ≤ r(umax). From Lemma 10, we know
that, for every time t ∈ [0, T ),

p∗(t)Gx∗(t) = τ(p∗2(t)− p∗1(t))x
∗
1(t) > 0 and p∗(t)Fx∗(t) = β(2p∗1(t)− p∗2(t))x

∗
2(t) > 0.

We conclude by using the maximality property (3.13).

The result in Corollary 12 solves very simply the optimal control problem in the case r(umin) ≤
r(umax). The case when

r(umin) > r(umax) (4.2)

is more delicate and we investigate it now. From now on, we assume that (4.2) holds. Using Corol-
lary 11, we can reduce the optimal control problem (3.8) to the control set Σ. Then v = σ(u) = θu+ ζ
with θ defined in (3.16) and ζ defined in (3.17). The dynamic equation (3.4) and the adjoint equation
(3.10) become respectively

ẋ = u(F + θG)x+ ζGx, (4.3)

ṗ = −up(F + θG)− ζpG. (4.4)

The assumption r(umax) < r(umin), together with (3.16) and (3.17), ensures that

θ < 0 and ζ > 0.

Call

HΣ(x, p, u) = up(F + θG)x+ ζpGx

the Hamiltonian for dynamics (4.3)-(4.4) and define by

Φ(x, p) :=
∂HΣ(x, p, u)

∂u
= p(F + θG)x

the switching function. First we look for singular trajectories on open intervals I, i.e., (x, p, u) with
x ∈ C0(I; (0,+∞)2), pT ∈ C0(I; (0,+∞)2), u ∈ L∞(I; [umin, umax]) solutions of (4.3)-(4.4) such that

Φ(t) := Φ(x(t), p(t)) = 0, for almost every t ∈ I.

Theorem 13. For a nonempty open interval I, t ∈ I 7→ (x(t), p(t), u(t)) is a singular trajectory if
and only if

u(t) = using :=
ζτ√−2θτβ

2β +
√
−2θτβ

β + 2
√−2θτβ − θτ

, for almost every t ∈ I, (4.5)

and there exist two positive real numbers R and S such that

x(t) = RXeλt and p(t) = Sφ e−λt, ∀t ∈ I, (4.6)

where
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• λ is the Perron eigenvalue of the matrix using(F + θG) + ζG and

λ =
ζτβ

β + 2
√
−2θτβ − θτ

, (4.7)

• X and φ are respectively direct and adjoint positive eigenvectors of the matrix using(F +θG)+ζG
associated to the Perron eigenvalue λ.

Proof of Theorem 13.
Let us first remark that using defined by (4.5) satisfies

using =
ζ

−θ

√
−2θτβ − θτ

β + 2
√−2θτβ − θτ

∈
(
0,

ζ

−θ
)
.

thus, usingθ + ζ > 0 and the matrix usingF + (usingθ + ζ)G satisfies the assumptions of the Perron-
Frobenius theorem.
First step: “If” part. Simple computations prove that

X = (2
√
β,

√
−2θτ)T , (4.8)

φ = (
√
β +

√
−2θτ , 2

√
β +

√
−2θτ) (4.9)

are, respectively, right and left eigenvectors of the matrix using(F+θG)+ζG associated to the eigenvalue
λ defined by (4.7). Since X > 0 and φ > 0 are positive, they are necessarily Perron eigenvectors of
this matrix and λ is its Perron eigenvalue λP (using).
Let x̄ : I → R

2, p̄ : I → R
2, ū : I → R be defined by

x̄(t) := eλtX, p̄(t) := e−λtφ and ū(t) = using, ∀t ∈ I. (4.10)

As already used in the previous section, (x̄, p̄, ū) are solutions of (4.3)-(4.4). It remains only to check,
along this trajectory (x̄, p̄, ū), Φ = 0, which indeed holds since Φ = φ(F + θG)X = 0 (and because
φ(F + θG)X = λ′P (using)φX, we also get that using is a critical point of λP .)
Second step: “Only if” part. Suppose that (x, p, u) is a singular trajectory on an open interval I.

We have Φ(t) = p(t)(F + θG)x(t) = 0 on I. This gives the relation

− θτx1(p1 − p2) + βx2(2p1 − p2) = 0. (4.11)

Differentiating Φ with respect to t on I, we get

Φ̇ = ζp[F,G]x = 0,

where [F,G] := FG−GF is the Lie bracket of F and G. It provides a second identity

x1(2p1 − p2) + 2x2(p1 − p2) = 0. (4.12)

If we differentiate Φ a second time, we get

Φ̈ = ζup
(
[ [F,G], F ] + θ[ [F,G], G ]

)
x+ ζ2p[ [F,G], G ]x = 0. (4.13)

Using (4.12), we obtain

p([ [F,G], F ])x =4τβ2p1x2,

p([ [F,G], G ])x =− 2τ2βp2x1.
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We remark that

p
(
[ [F,G], F ] + θ([ [F,G], G ]

)
x =

ζp

u
[ [F,G], G ]x = −2ζ

u
τ2βp2x1

cannot vanish because x > 0 and p > 0. So we can divide (4.13) by this term and we get

u =
−ζp([ [F,G], G ])x

p([ [F,G], F ])x+ θp([ [F,G], G ])x
=

ζτp2x1
2βp1x2 − θτp2x1

. (4.14)

Consider now (4.11)-(4.12) as a system of equations for the unknown (x1, x2). Since x is positive, this
system must have a vanishing determinant and it gives the relation

β(2p1 − p2)
2 + 2θτ(p1 − p2)

2 = 0.

Using (4.1) in Lemma 10, we can write

2p1 − p2 =

√
−2θτ

β
(p2 − p1),

and finally we get

p1
p2

=

√
β +

√
−2θτ

2
√
β +

√
−2θτ

. (4.15)

Similarly, if we consider (4.11)-(4.12) as a system of equations for the positive unknown (p1, p2), from
the fact that the determinant vanishes, we obtain

θτx21 + 2βx22 = 0.

Since x > 0, θ < 0 and τ > 0, we deduce that

x1 =

√
2β

−θτ x2. (4.16)

Plugging (4.15) and (4.16) into (4.14), we get (4.5). From (4.8), (4.9), (4.10), (4.15) and (4.16), one
gets the existence of R : I → (0,+∞) and S : I → (0,+∞) such that

x = Rx̄ and p = Sp̄.

Using the fact that (x, p, using) and (x̄, p̄, using) are both solutions of (4.3)-(4.4), one readily gets that
Ṙ = Ṡ = 0.

The proof is complete.

In the proof of Theorem 13, we have pointed out a link between the singular trajectories and the
critical points of the Perron eigenvalue. In Theorem 14, we prove that using is actually the unique
maximum of λP .

Theorem 14. The Perron eigenvalue λP (u) of the matrix u(F + θG)+ ζG is well defined on (0,
ζ

−θ )
and it reaches its unique maximum at ū = using.
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Proof of Theorem 14. The function u 7→ θu+ ζ is positive on (0,
ζ

−θ ), so the matrix uF + (θu+ ζ)G

satisfies the hypotheses of the Perron-Frobenius theorem on this interval. Notice that λP (u) tends

to zero as u tends to 0 or to
ζ

−θ , so λP necessarily has a maximum on (0,
ζ

−θ ). The characteristic

polynomial is
X2 +

(
(θu+ ζ)τ + uβ

)
X − u(θu+ ζ)βτ.

The discriminant of this polynomial is

∆ = (θu+ ζ)2τ2 + u2β2 + 6u(θu+ ζ)βτ

= (θ2τ2 + β2 + 6θβτ)u2 + 2ζτ(θτ + 3β)u+ ζ2τ2. (4.17)

Since 0 < u <
ζ

−θ , we have ∆ > 0. Define new relevant parameters

A := θτ + β, B :=
√

−2θβτ, C := θτ + 3β and D := ζτ.

With these notations, discriminant (4.17) writes

∆ = (A2 − 2B2)u2 + 2CDu+D2,

and the first eigenvalue of uF + (uθ + ζ)G is

λP (u) =
1

2

(
−Au−D +

√
∆
)
> 0.

The optimal value ū satisfies λ′P (ū) = 0, with

λ′P (u) =
1

2

(
∆′

2
√
∆

−A

)
.

To obtain ū, we solve the equation (
∆′

)2
= 4A2∆, (4.18)

which writes
−2B2(A2 − 2B2)u2 − 4B2CDu+D2(C2 −A2) = 0.

The discriminant of this binomial is

D = 8A2B2D2(C2 + 2B2 −A2) = 64A2B2D2β2,

and the roots are

u± =
D

B

BC ± 2βA

2B2 −A2
.

A solution to λ′P (u) = 0 is a solution to (4.18) which satisfies
∆′

A
> 0. The computations give

∆′(u−)

A
= 4β

D

B
> 0 and

∆′(u+)

A
= −4β

D

B
< 0,

so λ′P (u) = 0 has a unique solution which is

ū = u− =
D

B

BC − 2βA

2B2 −A2
.
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Since using is also a critical point of λP , we have that ū = using. This identity can also be checked by
computation, from (4.5),

using =
D

B

2β +B

C − 2A+ 2B

=
D

B

(2β +B)(C − 2A− 2B)

(C − 2A)2 − 4B2

=
D

B

2βA −BC

A2 − 2B2

= u− = ū.

As an immediate consequence of the proofs of Theorems 13 and 14, we have explicit expressions of
the optimal eigenelements.

Corollary 15. The maximal Perron eigenvalue is

λP (ū) =
ζτβ

β + 2
√
−2θτβ − θτ

and the associated right and left eigenvectors are given by

X = (2β,
√

−2θτβ)T and φ = (β +
√

−2θτβ, 2β +
√

−2θτβ).

Remark 16. Theorem 13 can also be proved without computation by noticing that every critical
point of λP provides with (4.6) a singular trajectory. Since there exists a singular trajectory (up
to multiplicative constants for x and p), this gives the uniqueness of the critical point of λP and,

therefore, this critical point realizes the maximum of λP on (0,
ζ

−θ ). One can even prove Theorem 13

and Theorem 14 together by showing that there exists at most a singular trajectory (up to multiplicative
constants for x and p) and that every critical point of λP provides with (4.6) a singular trajectory.

We are now ready to exhibit the unique optimal control when the horizon T is large enough. It
consists mainly in the singular control using, except in the regions close to the endpoints of [0, T ]. For
small time, the optimal control depends on the initial data x0 and it consists in reaching as fast as
possible the singular trajectory. Then the control remains constant equal to the value which maximizes
the Perron eigenvalue (see Figure 4). At the end of the experiment, the control is umin due to the
transversality condition induced by the objective function. This kind of strategy is known as turnpike
properties (see [34] for instance), the “turnpike” is the singular trajectory which corresponds to the
Perron eigenvector X with an exponential growth of maximal rate λP (ū).

We divide the construction of the optimal control in two steps. First, we build a control such that
the PMP is satisfied. Then, with an analysis of the switching function Φ(t), we prove that this is the
only possible one.

Before stating the results, let us give some notations. For x = (x1, x2)
T and p = (p1, p2), where x1,

x2, p1 and p2 are positive real numbers, we define the projected variables

y :=
x1

x1 + x2
∈ [0, 1] and q :=

p1
p1 + p2

∈ [0, 1]. (4.19)
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For (x(t), p(t)) a solution to (4.3)-(4.4), the projections y(t) and q(t) satisfy the dynamics

ẏ = Y(y, u) := 2uβ − (3uβ + (uθ + ζ)τ)y + uβy2, (4.20)

q̇ = Q(q, u) := −
[
(θu+ ζ)τ − (3(θu+ ζ)τ − uβ)q + (2(θu+ ζ)τ − 3uβ)q2

]
. (4.21)

For u in [umin, umax], let Y (u) ∈ (0, 1) be the projection of the Perron eigenvector X(u) of the matrix
uF + (θu+ ζ)G and let π(u) be the projection of the adjoint Perron eigenvector φ(u). Note that, for
every u in [umin, umax],

(y − Y (u))Y(y, u) < 0, ∀y ∈ [0, 1] \ {Y (u)}, (4.22)

(q − π(u))Q(q, u) > 0, ∀q ∈ [0, 1] \ {π(u)}. (4.23)

In particular, for u fixed in [umin, umax],

• Every solution y of (4.20) with y(0) in [0, 1] lies in [0,1] for every t ∈ [0,+∞) and converges to
Y (u) as t→ +∞.

• Every solution of (4.21) with q(0) in [0, 1] stays in [0,1] for every t ∈ (−∞, 0] and converges to
π(u) as t→ −∞.

In our problem, denote by x0 = (x01, x
0
2)
T , then y and q satisfy the initial and terminal conditions

y(0) =
x01

x01 + x02
, q(T ) =

1

3
,

which belong to [0, 1], so y(t) and q(t) lie in [0, 1] for every time t ∈ [0, T ].

Lemma 17. There exist a time Tψ > 0 and a function T0 defined on [0, 1], satisfying

∀y ∈ [0, 1] \ {Y (ū)}, T0(y) > 0, T0(Y (ū)) = 0, sup
[0,1]

T0 < +∞,

such that, for T > T0(y(0)) + Tψ, the control defined by

u∗(t) =





{
umin if y(0) > Y (ū)
umax if y(0) < Y (ū)

for t ∈ [0, T0(y(0))],

ū for t ∈ (T0(y(0)), T − Tψ],
umin for t ∈ (T − Tψ, T ],

(4.24)

satisfies the PMP. Moreover, we have y = Y (ū) and q = π(ū) on [T0(y(0)), T − Tψ].

Based on Lemma 17, we have the following theorem

Theorem 18. There exists a time Tc > Tψ+sup
[0,1]

T0 such that, for every final time T > Tc, the control

defined by (4.24) is the unique optimal control of the problem

{
ẋ = u(F + θG)x+ ζGx,
x(0) = x0 > 0,

J(u) = ψx(T ) → max .
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For the optimal relaxed control (u∗, σ(u∗)) → Σ given by (4.24), we can easily build a sequence of
piecewise constant functions (un, vn)n∈N → Ω such that (un, vn) ⇀ (u∗, σ(u∗)) weakly in σ(L1, L∞).
It suffices to replace u∗ = ū on the interval (T0, T − Tψ] by

un(t) =

{
umin if t ∈ (T0 + (k − 1)∆t, T0 + (k − 1)∆t+∆min]

umax if t ∈ (T0 + (k − 1)∆t+∆min, T0 + k∆t]
, for k = 1, · · · , n,

where we have defined

∆t =
T − (T0 + Tψ)

n
, ∆min :=

umax − ū

umax − umin
∆t and ∆max :=

ū− umin

umax − umin
∆t, (4.25)

and to set vn = r(un).

Proof of Lemma 17. For y(0) ∈ [0, Y (ū)), we want to check that the solution y of (4.20) with u = umax

reaches Y (ū) in finite time T0(y(0)) > 0. By (4.22), this is true if and only if Y (umax) > Y (ū). In the
same way for the case y(0) ∈ (Y (ū), 1], we need to check that Y (umin) < Y (ū). To that end, we study
the variations of the function u 7→ Y (u). Starting from the computations in the proof of Theorem 14,
we get

Y (u) =
λP (u) + uβ

λP (u) + uβ + (uθ + ζ)τ
=
uβ − (uθ + ζ)τ +

√
∆

uβ + (uθ + ζ)τ +
√
∆
,

and by differentiation

Y ′(u) =
2h(u)

(
uβ + (uθ + ζ)τ +

√
∆
)2 with h(u) := βζτ − θτ

√
∆+

∆′

2
√
∆
(uθ + ζ)τ.

To have the sign of h on [0,
ζ

−θ ], we differentiate h:

h′(u) =
(uθ + ζ)τ

4∆
√
∆

(
2∆∆′′ − (∆′)2

)

and we have with the notations in the proof of Theorem 14

2∆∆′′ − (∆′)2 = 4D2(A2 − 2B2 − C2) = −32D2β2 < 0.

So h is decreasing and since h(
ζ

−θ ) = 2ζβτ > 0, we get that h > 0 on [0,
ζ

−θ ]. Then Y is increasing

and

Y (umin) < Y (ū) < Y (umax). (4.26)

In the time interval [T − Tψ, T ], we consider the projection q of the adjoint function p (see (4.19)).

We need to prove that, starting from q(T ) =
1

3
, the (backward) solution q of (4.21) with u = umin

reaches π(ū) in a finite time Tψ < T . We proceed as for the direct equation. We compute

π(u) =
λP (u) + uβ

λP (u) + 3uβ
=

uβ − (uθ + ζ)τ +
√
∆

5uβ − (uθ + ζ)τ +
√
∆

and

π′(u) =
4g(u)

(
5uβ − (uθ + ζ)τ +

√
∆
)2 with g(u) = β

(
ζτ −

√
∆+

u∆′

2
√
∆

)
.
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We have

g′(u) =
β

4∆
√
∆

(
2∆∆′′ − (∆′)2

)
< 0.

Hence g < 0 since g(0) = 0. We obtain

π(umin) > π(ū) > π(umax) > π
( ζ

−θ
)
=

1

3
, (4.27)

which, together with (4.23) gives the conclusion.

The last point to prove Lemma 17 is to verify that the control we have built by (4.24) satisfies the
maximality condition, i.e.,

HΣ(x(t), p(t), u
∗(t)) = max

u∈[umin,umax]
HΣ(x(t), p(t), u), ∀t ∈ [0, T ],

where (x, p) is the solution of (4.3)-(4.4) satisfying the boundary condition x(0) = (x01, x
0
2)
T > 0 and

p(T ) = (1, 2). For this, it suffices to check that the switching function Φ(t) = Φ(x(t), p(t)) is positive
when u∗(t) = umax, negative when u

∗(t) = umin, and null when u∗(t) = ū (see Figure 4 for a numerical
illustration). In the interval [T0(y(0)), T − Tψ], we have u∗ = ū, but we also have y = Y (ū) and
p = π(ū). Thus, by Theorem 13 and Theorem 14, Φ = 0. For the endpoints intervals, the key point
is to notice that Φ satisfies the equation

Φ̇ = Λ1Φ+ Λ2, (4.28)

with

Λ1 := ζτ
x1
x2
,

Λ2 := ζτ(p2 − p1)
(
−θτ

(x1
x2

)2
− 2β

)
x2.

Let us point out that

sign(Λ2(t)) = sign(y(t)− Y (ū)), ∀t ∈ [0, T ], (4.29)

where, for every real number a, sign(a) = 1 if a > 0, sign(a) = −1 if a < 0 and sign(a) = 0 if a = 0.
Indeed, using Corollary 15, we can write

Λ2 =
ζτ

2β

p2 − p1
x2

(√
−2θτβx1 + 2βx2

)(√
−2θτβx1 − 2βx2

)

=
ζτ

2β

(
2β +

√
−2θτβ

)x1 + x2
x2

(p2 − p1)
(√

−2θτβx1 + 2βx2
)
(y − Y (ū))

and, from Lemma 10, we know that p2 − p1 > 0. It is noteworthy that the sign of Λ2 does not depend
on p. In the interval [0, T0(y(0))), if y(0) > Y (ū), we have u∗(t) ≡ umin and y(t) > Y (ū). We deduce
that, in this case, Λ2(t) > 0 and, since Φ(T0(y(0))) = 0, we have Φ(t) < 0 in the interval [0, T0(y(0))).
The same argument proves that, if y(0) < Y (ū), then u∗(t) ≡ umax and Φ(t) > 0 in the interval
[0, T0(y(0))). In the interval (T − Tψ, T ], we have u∗(t) ≡ umin, since y(T − Tψ) = Y (ū), we have
y(t) < Y (ū). It follows that Λ2(t) < 0, then Φ(t) < 0 since Φ(T − Tψ) = 0.

The proof of Lemma 17 is complete.
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Figure 4: Top left: the optimal control for T = 24, n = 2, θ = −0.2, ζ = 1, τ = 0.1, β = 0.05 and the
initial data x0 = (0, 1)T . Top right: the corresponding trajectories x1(t) and x2(t). Bottom left: the
switching function Φ(t). Bottom right: the evolution of the objective ψx(t) = x1(t) + 2x2(t).

Proof of Theorem 18. Let t ∈ [0, T ] 7→ u∗(t) be a control such that the PMP is satisfied. Let x∗, p∗,
y∗, q∗ and Φ∗ be the corresponding functions. Since Φ∗(T ) = θτx∗1(T ) < 0, necessarily, u∗ = umin in
a neighborhood of T . We start from time T and analyze the optimal control backward in time.

First we prove by contradiction that there exist η > 0 and T1 > 0 (both independent of x0) such
that, if T > T1, y

∗(T ) cannot belong to [Y (umin)− η, Y (umin) + η]. We start from the fact that

φ(umin)(F + θG)X(umin) = λ′P (umin) > 0. (4.30)

(The first equality of (4.30) can be obtained by differentiating (u(F + θG) + ζG)X(u) = λP (u)X(u)
with respect to u and by using φ(u)(u(F + θG) + ζG) = λP (u)φ(u).) Property (4.30) ensures that
there exists ε > 0 such that

max{|y − Y (umin)|, |q − π(umin)|} ≤ ε =⇒ Φ(x, p) > 0. (4.31)

Using (4.27) and decreasing ε > 0 if necessary, we may assume that π(umin) − ε > 1/3. Then
there exists T1,1 > 0 such that, if q is the solution of (4.21) with u = umin and q(0) = 1/3, one
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has q(−T1,1) = π(umin) − ε. Consider now η > 0 such that, every solution y of (4.20) with control
u = umin satisfying y(0) ∈ [Y (umin)− η, Y (umin) + η] remains in [Y (umin)− ε, Y (umin) + ε] during the
interval of time [−T1,1, 0]. (This η > 0 exists since (y, u) := (Y (umin), umin) is a solution of (4.20).)
Still decreasing ε > 0 if necessary and using (4.26), we may assume that

Y (umin) + ε < Y (ū). (4.32)

By (4.22), (4.26) and (4.32), there exists (a unique) T1,2 > 0 such that the solution y of (4.20) with
control u = umax and such that y(0) = Y (umin) + ε, satisfies y(−T1,2) = 0. Let T1 := T1,1 + T1,2 and
T > T1. Let us assume that y∗(T ) belongs to [Y (umin)−η, Y (umin)+η]. If Φ

∗ < 0 in [T −T1,1, T ], then
u∗ = umin in [T − T1,1, T ], and, by the property of η, y∗(T − T1,1) ∈ [Y (umin)− ε, Y (umin) + ε], which,
together with (4.31) gives Φ∗(T − T1,1) > 0. Hence Φ∗ < 0 on [T − T1,1, T ] does not hold and there
exists t′ ∈ [T − T1,1, T ] such that Φ∗(t′) = 0 and Φ∗ < 0 in (t′, T ]. Then y∗(t′) 6 Y (umin) + ε < Y (ū),
which, with (4.28) and (4.29), gives (Φ∗)′(t′) < 0. Hence, for t < t′ close to t′, Φ∗ > 0 in [t, t′) and
u∗ = umax almost every where in [t, t′). Then, from (4.22), (4.26), (4.28) and (4.29), one gets that, for
every t ∈ [0, t′), Φ∗(t) > 0 and y∗(t) < Y (ū). In particular, u∗ = umax almost every where in [0, t′].
Then, using the definition of T1,2 > 0, we get that y∗(T − t′ − T1,2) 6 0, which is not possible since
x∗ > 0 in [0, T ]. Hence y∗(T ) cannot belong to [Y (umin)− η, Y (umin) + η].
By (4.22), there exists (a unique) T2 > 0 such that, if y is the solution of (4.20) with u = umin

and y(0) = Y (umin) − η, then y(−T2) = 0. For T > T2, the terminal value y∗(T ) cannot be in
[0, Y (umin)− η]. Indeed, if y∗(T ) is in [0, Y (umin)− η], using (4.22), (4.26), (4.28) and (4.29), one gets
that y∗ < Y (umin) < Y (ū) in [0, T ], Φ∗ < 0 in [0, T ], u∗ = umin almost every where in [0, T ]. With the
definition of T2, this leads to y

∗(T − T2) 6 0, which, again, is not possible since x∗ > 0 on [0, T ].
By (4.22), there exists T3,1 > 0 such that, if y is the solution of (4.20) with u = umin and y(0) =

Y (umin) + η, then y(−T3,1) = 1. Let us assume that T > T3,1. If y∗(T ) ∈ (Y (umin) + η, 1], then
there exists a time t0 > T − T3,1 such that Φ∗(t0) = 0 because y∗(t) has to be less than 1 for
every time in [0, T ]. Increasing t0 if necessary, we may also impose that Φ∗ < 0 in (t0, T ]. It is not
possible to have y∗(t0) > Y (ū) because in this case, by (4.28) and (4.29), we would have Φ∗(t0) = 0
with (Φ∗)′(t0) = Λ2(t0) > 0, which cannot hold since Φ∗ < 0 in (t0, T ]. So we necessarily have
y∗(t0) ≤ Y (ū). If y∗(t0) < Y (ū), then, by (4.29), Λ2(t0) < 0, Φ∗(t) > 0 for t < t0 close to t0, which
implies that u∗(t) = umax for almost every t < t0 close to t0. From (4.28) and (4.29), we get that Φ∗

remains positive for every time in [0, t0) because y
∗ remains less than Y (ū) and thus Λ2 < 0. By (4.22)

and (4.26), there exists (a unique) T3,2 > 0 such that, if y is the solution of (4.20) with u = umax and
y(0) = Y (ū), then y(−T3,2) = 0. We get that y∗(t0) cannot be less than Y (ū) if T > T3 =: T3,1 + T3,2.
Hence, for T > T3, we have y∗(t0) = Y (ū). We deduce from this identity, together with Φ∗(t0) = 0,
that q∗(t0) = π(ū) and it implies that t0 = T −Tψ, where, Tψ is defined in the proof of Lemma 17. As
a consequence, the only possible value for y∗(T ) is y(Tψ) ∈ (Y (ū), 1), where y is the solution of (4.20)
with u = umin such that y(0) = Y (ū).
Here, we have proved that, for T > max{T1, T2, T3}, the only possible control which satisfies the

PMP takes the value umin in [T − Tψ, T ]. Moreover, the associated trajectories satisfy y∗(T − Tψ) =
Y (ū) and q∗(T − Tψ) = π(ū). Then, using (4.28) with the same kind of arguments as above, it is
straightforward to check that the control defined by (4.24) is the only control which satisfies the PMP
for T > Tc := max{T1, T2, T3}. Since any optimal control satisfies the PMP (see Theorem 3), we
conclude that this is the only optimal control.

Corollary 19. Asymptotically in T we have the convergence

lim
T→+∞

ln(J(u∗))

T
= λP (ū).

22



A similar ergodic result is proved in [2] in the case of dimension n = 3 but without proving that the
limit is λP (ū).

5 Conclusion and perspectives

We have modeled the PMCA protocol by a system of differential equations with a control term.
The analysis of the optimal control problem which aims to maximize the efficiency of the PMCA
makes appear strong relations with the optimization of the Perron eigenvalue for constant controls.
In dimension 2 the explicit solution indicates that, for the efficiency of the technique to be almost
maximal, the ratio between the length of the sonication phases and the duration of the incubation
phases has to be close to ∆max

∆min
= ū−umin

umax−ū
(see (4.25)) where ū ∈ (umin, umax) is the constant which

maximizes the Perron eigenvalue.

However many works remain to do before applying our results for the optimization of real PMCA
experiments. First the cases of dimensions higher than two should be investigated. But it appears
that even for the dimension three the situation is much more delicate than in dimension two. Then
to use the mathematical results in practice, the parameters of the model have to be estimated from
experiments. This requires precise measurements of the size distribution of the polymers and inverse
problem methods as the one detailed in [9] (see also the references therein).

Appendix

A Perron eigenvalue

For u > 0 fixed and r(u) > 0, denote by (λP (u),XP (u), φP (u)) the Perron eigenelements of the matrix
M(u) := uF + r(u)G defined by

{
λPXP =M(u)XP , XP > 0, ‖XP ‖1 = 1,
λPφP = φPM(u), φP > 0, φPXP = 1.

In the current section we investigate the dependence of these elements on the control parameter u. Such
eigenelements also exist for the continuous growth-fragmentation equation (1.1) (see [7] for instance),
and their dependence on parameters is investigated in [1, 11].

The function r : R+ → R
+∗ is assumed to be continuous and bounded. Theorem 1 is an immediate

consequence of the following Lemma 20 and Theorem 21.

Lemma 20. The eigenelements λP , XP and φP are continuous functions of u on R
+. Moreover, we

have

λP (u) > 0 for u > 0 and lim
u→0

λP (u) = 0.

Proof. Since the function r is continuous, the coefficients of the matrix M(u) depend continuously
on u. As a consequence, the characteristic polynomial of M(u) varies continuously with u. The first
eigenvalue λP is the largest root of this characteristic polynomial and the Perron-Frobenius theorem
ensures that the multiplicity of this root is 1. So λP is a continuous function of u.

23



Let u ≥ 0 and (uk)k∈N be a positive sequence which converges to u. Since ‖XP (uk)‖1 = 1 there
exists a subsequence of (XP (uk))k which converges to a limit X∞. By continuity of λP (u) and M(u),
this limit satisfies M(u)X∞ = λP (u)X∞ and ‖X∞‖1 = 1. By uniqueness of the first eigenvector, we
conclude that the whole sequence (XP (uk))k converges to X∞ = XP (u) and so XP is a continuous
function of u. Since (XP (uk))k is a positive convergent sequence, it is lower bounded and we deduce
from the normalization φPXP = 1 that the sequence (φP (uk))k is bounded. The same as for XP , we
conclude from the uniqueness of the adjoint eigenvector that φP is a continuous function of u.

Define Θ := (1, 1, · · · , 1) and, for j = 2, · · · , n, Kj :=
∑j−1

i=1 κij > 0. We have: ΘXP = ‖XP ‖1 = 1
since XP > 0, ΘG = 0 from (1.5), and ΘF = (0,K2β2, · · · ,Knβn)

T from (1.6). So multiplying the
identity λPXP =M(u)XP by Θ we get

λP (u) = uΘFXP ≤ u max
2≤j≤n

Kjβj

which ensures that λP (u) is positive for u positive and tends to zero when u→ 0.

Theorem 21. Under Assumptions (2.1) and (2.2), we have the expansions

k < l, =⇒ λP (u) = r0τ1 +

[
rk+1
0 (τk+1 − (k + 1)τ1)

k∏

i=1

τi
βi+1

]
u−k + o

u→+∞
(u−k),

k = l, =⇒ λP (u) = r0τ1 +

[
rk+1
0 (τk+1 − (k + 1)τ1)

k∏

i=1

τi
βi+1

+ rkτ1

]
u−k + o

u→+∞
(u−k),

k > l, =⇒ λP (u) = r0τ1 + rlτ1u
−l + o

u→+∞
(u−l).

This result can be related to Corollary 1 in [1] which provides an expansion of the first eigenvalue
for the continuous growth-fragmentation model. The proof of Theorem 21 uses the following lemma
which gives the asymptotic behavior of the eigenvector XP = (x1, x2, · · · , xn)T .

Lemma 22. Assume that r(u) admits a limit r0 > 0 when u tends to +∞, then

∀i ∈ [1, n], xi(u) ∼
u→+∞

ri−1
0

i−1∏

j=1

τj
βj+1

u1−i. (A.1)

Proof of Lemma 22. We prove by induction on i that

uixi+1(u) −−−−→
u→+∞

ri0

i∏

j=1

τj
βj+1

and uixj(u) −−−−→
u→+∞

0, ∀j > i+ 1. (IH)

i = 0 : We have by definition

(r(u)G+ uF )XP (u) = λP (u)XP (u) with ‖XP (u)‖1 = 1. (A.2)

We use ψ = (1, 2, · · · , n), which satisfies ψF = 0 (see (3.6)). Testing (A.2) against ψ on the left, we
obtain

r(u)ψGXP (u) = λP (u)ψXP (u) (A.3)
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and so λP (u) is bounded since ‖XP (u)‖1 = 1 and r is bounded. Dividing by u in (A.2), we get
(
r(u)

u
G+ F

)
XP (u) =

λP (u)

u
XP (u). (A.4)

The sequence XP (u) is bounded and thus convergence occurs when u→ +∞ for a subsequence. But
from (A.4) the limit X∞

P must satisfy FX∞
P = 0 so the whole sequence converges to

X∞
P = δ := (1, 0 · · · , 0)T .

i→ i+ 1 : (i+ 2 ≤ n) We have

ui+1FXP (u) = uiλP (u)XP (u)− uir(u)GXP (u).

We consider the n− i− 1 last lines of this matrix identity and find



−βi+2

(2κkjβj)
. . .

0
−βn







ui+1xi+2(u)

...

ui+1xn(u)




=




(λP (u) + r(u)τi+2)u
ixi+2(u)− r(u)τi+1u

ixi+1(u)

...

λP (u)u
ixn(u)− r(u)τn−1u

ixn−1(u)




by (IH)−−−−→
u→+∞




−r0τi+1 · ri0
i∏

j=1

τj
βj+1

0



,

which concludes the proof of Lemma 22.

Proof of Theorem 21. Notice that k < n since τn = 0 and τ1 > 0. Using (A.3), the convergence of XP

to δ = (1, 0 · · · , 0)T and the convergence of r to r0, we obtain that λP (u) converges when u → +∞
and that the limit λ∞P satisfies

r0ψGδ = λ∞P ψδ, (A.5)

which gives
λ∞P = r0τ1. (A.6)

We make the difference between (A.3) and (A.5). By (A.6), we obtain

(λP (u)− r0τ1)ψXP (u) + r0τ1ψ(XP (u)− δ) = r(u)ψG(XP (u)− δ) + (r(u)− r0)ψGδ. (A.7)

Denoting m := min (k, l) and using (A.7), we obtain

um(λP (u)− r0τ1)ψXP (u) = umr(u)ψG(XP (u)− δ) + um(r(u)− r0)ψGδ − umr0τ1ψ(XP (u)− δ)

= umr0ψ(G− τ1Id)(XP (u)− δ) + um(r(u)− r0)ψGXP (u)

= umr0

n−1∑

j=1

(τj − jτ1)(xj(u)− δ1,j) + um(r(u)− r0)ψGXP (u)

= r0

n−1∑

j=k+1

(τj − jτ1)u
mxj(u) + um(r(u)− r0)ψGXP (u)

(A.1)−−−−→
u→+∞

1l{k≤l}r
k+1
0 (τk+1 − (k + 1)τ1)

k∏

i=1

τi
βi+1

+ 1l{k≥l}rlτ1,
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where δ1,j = 1 if j = 1 and δ1,j = 0 otherwise.

B Floquet eigenvalue

For a T -periodic control u(t), the Floquet theorem ensures that there is a Floquet eigenvalue λF [u(·)]
and a T -periodic function XF [u(·)](t) solution to

d

dt
XF (t) = [M(u(t)) − λF ]XF (t).

The Floquet eigenvalues can sometimes be compared to the Perron eigenvalues [6, 12]. Here we make
periodic variations around the optimal constant control uopt to find whether or not periodic controls
can provide a better eigenvalue than λP (uopt).

Consider directional perturbations u(t) = uopt + εγ(t), where γ is a fixed T -periodic function and
ε a varying parameter. For the sake of clarity, we denote by λF (ε) := λF [uopt + εγ(·)] the Floquet
eigenvalue associated to ε, VF (ε; t) := VF [uopt + εγ(·)](t) the eigenfunction and V ′

F (ε; t) := ∂εVF (ε; t)
its derivative with respect to ε. We also use the notation

〈f〉 := 1

T

∫ T

0
f(t) dt

for the time average of any T -periodic function f(t).
Now we compute the derivatives of λF (ε) which correspond to the directional derivatives of the

Floquet eigenvalue at the point uopt. This kind of differentiation technique is used in [23] to prove
the results about the optimization of the Perron eigenvalue in the case of the continuous cell division
problem. A formula which involves only the coefficients of the equation and the first eigenvectors is
obtained for the first and second derivatives. Here, the computation of the second derivative requires a
basis of eigenvectors, and so cannot be extended to continuous models. ForM(uopt) diagonalizable, we
choose two bases (X1,X2, · · · ,Xn) and (φ1, φ2, · · · , φn) of direct and adjoint eigenvectors associated
to the eigenvalues λ1 = λP (uopt) = λF (0) ∈ R, λ2 ∈ C, · · · , λn ∈ C such that φiXi = 1. Moreover, we
choose X1 positive and normalized to have X1 = XP (uopt) = XF (ε = 0).

Proposition 23 (First order condition). We have

dλF
dε

(0) = 〈γ〉dλP
du

(uopt) = 0 .

Hence, uopt is a critical point also in the class of periodic control.

We need to go to the following order.

Proposition 24 (Second order condition). If M(uopt) is diagonalizable, we have

d2λF
dε2

(0) = 〈γ2〉φ1M ′′(uopt)X1 + 2

n∑

i=2

〈γ2i 〉(λ1 − λi)(φ1M
′(uopt)Xi)(φiM

′(uopt)X1),

where γi(t) := φiX
′
F (0; t)(φiM

′(uopt)X1)
−1 is the unique T -periodic solution to the ODE

γ̇i(t) + λ1γi(t) = γ(t) + λiγi(t). (B.1)
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Remark 25. For γ ≡ 1, we obtain the second derivative of the Perron eigenvalue

d2λ1
du2

(uopt) = φ1M
′′(uopt)X1 + 2

n∑

i=2

(φ1M
′Xi)(φiM

′X1)

λ1 − λi
,

which is negative since uopt is a maximum. This formula appears in [32]. There exists a physical
interpretation in terms of repulsive/attractive forces among the eigenvalues.

Proof of Proposition 23. First we give an expression of the first derivative for the Perron eigenvalue.
By definition, we have

M(u)XP = λPXP ,

which provides by differentiation

λ′PXP + λPX
′
P =M ′(u)XP +M(u)X ′

P .

Testing against the adjoint eigenvector φP , we obtain

λ′P + λPφPX
′
P = φPM

′(u)XP + φPM(u)X ′
P .

Since

φPM(u) = λPφP , (B.2)

we have
λ′P = φPM

′(u)XP = φP (r
′(u)G + F )XP .

Now, starting from the Floquet eigenvalue problem, we have

∂tXF + λF (ε)XF =M(uopt + εγ)XF ,

which provides by differentiation with respect to ε that

∂tX
′
F + λ′F (ε)XF + λF (ε)X

′
F = γ(t)M ′(uopt + εγ)XF +M(uopt + εγ)X ′

F . (B.3)

We test the preceding equation against φ1 and we evaluate at ε = 0. We obtain, using (B.2),

∂t(φ1X
′
F ) + λ′F = γφ1M

′(uopt)X1,

and, after integration in time,

λ′F =

(
1

T

∫ T

0
γ(t) dt

)
φ1M

′(uopt)X1 =

(
1

T

∫ T

0
γ(t) dt

)
dλP
du

(uopt) = 0.

It proves the first order condition.

Proof of Proposition 24. We test (B.3) against another adjoint eigenvector φi and we evaluate at ε = 0.
Using Proposition 23 and denoting γi(t) := φiX

′
F (t)(φiM

′(uopt)X1)
−1, we obtain

γ̇i(t) + λ1γi(t) = γ(t) + λiγi(t). (B.4)

Next, we differentiate (B.3) with respect to ε and we get

∂tX
′′
F + λ′′F (ε)XF + 2λ′F (ε)X

′
F + λFX

′′
F

=γ2M ′′(uopt + εγ)XF + 2γM ′(uopt + εγ)X ′
F +M(uopt + εγ)X ′′

F .
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We evaluate at ε = 0 and we test against φ1 to find, using once more Proposition 23,

∂t(φ1X
′′
F ) + λ′′F (0) = γ2φ1M

′′(uopt)X1 + 2γ(t)φ1M
′(uopt)X

′
F . (B.5)

We decompose the unknown X ′
F along the basis (X1, · · · ,Xn)

X ′
F =

n∑

i=1

γi(t)(φiM
′(uopt)X1)Xi .

We have in particular

φ1M
′(uopt)X

′
F =

n∑

i=2

γi(t)(φiM
′(uopt)X1)(φ1M

′(uopt)Xi) .

To conclude, we integrate (B.5) on [0, T ] to obtain

λ′′F (0) = 〈γ2〉φ1M ′′(uopt)X1 + 2

n∑

i=2

〈γγi〉(φiM ′(uopt)X1)(φ1M
′(uopt)Xi)

and use the identity

(λ1 − λi)

(∫ T

0
γ2i (t) dt

)
=

∫ T

0
γ(t)γi(t) dt,

which can be checked by multiplying (B.4) by γi and by integrating the result on [0, T ].

Now we can prove Theorem 2 stated in Section 2 by using the result of Proposition 24.

Proof of Theorem 2. We consider the periodic function

γ(t) = cos(ωt)

and we denote by λF (ε, ω) the Floquet eigenvalue corresponding to the periodic control uopt+ε cos(ωt).
We compute the 2π/ω-periodic solution γi(t) to (B.1)

γi(t) =
λ1 − λi

ω2 + (λ1 − λi)2
cos(ωt) +

ω

ω2 + (λ1 − λi)2
sin(ωt)

and then we obtain the formula

λ′′F (0, ω) =
1

2
φ1M

′′(uopt)X1 +

n∑

i=2

λ1 − λi
ω2 + (λ1 − λi)2

(φ1FXi)(φiFX1).

But we have

φ1M
′′(uopt)X1 = r′′(uopt)φ1GX1

and we can compute φ1GX1 by doing the appropriate combination of

λP (uopt) = φ1(r(uopt)G+ uoptF )X1

and

λ′P (uopt) = 0 = φ1(r
′(uopt)G+ F )X1

28



to obtain

φ1M
′′(uopt)X1 =

r′′(uopt)

r(uopt)− uoptr′(uopt)
λP (uopt).

Thus, we have the limit

lim
ω→+∞

λ′′F (0, ω) =
1

2

r′′(uopt)

r(uopt)− uoptr′(uopt)
λP (uopt).
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