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Abstract—DNSSEC deployment for large Internet Service
Provider (ISP) is an important issue. With the current archi-
tecture, migration of current DNS resolving platform requires
5 times more nodes. This paper introduces alternative archi-
tectures where the DNS traffic is split between the nodes of
the platform according to the queried Fully Qualified Domain
Names (FQDNs), rather than the IP addresses of the queries.
We show that such type of architecture requires up to 30%

less nodes. However, this load balancing technic results in a
non uniform distribution of the resources among the nodes
of the platform. Furthermore, operational teams are reluctant
to modify the existing load balancing infrastructure. Thus, we
investigate how pro-active caching over a Distributed Hash Table
(DHT) protocol, can optimize the resources of an ISP operational
DNSSEC resolving platform. We find out that it can reduce the
number of nodes by 3.5.

I. INTRODUCTION

DNS is the protocol that makes possible communications

based on names, by binding an IP address to a Fully Qualified

Domain Name (FQDN). As such, end users rely on a DNS

resolving platform to determine the IP address of the target,

which makes DNS resolution platform a critical element of

the Internet.

In July 2008, Dan Kaminsky showed that DNS was sensible

to cache poisoning attacks [1], and that the long term solution

was DNSSEC [2]. DNSSEC resolutions cost a lot more

than a DNS resolution, and experimental measurements [3]

show that depending on the implementation, migration to

DNSSEC for a resolving platform requires 169% to 500%
more resources. A crucial problem faced by ISPs is that

they manage large DNS Resolution Platforms of around 100
nodes, and migration from a 100 to a 500 node platform

represents too many Operational And Management (OAM)

issues. The purpose of this paper is to provide an architecture

that would optimize the DNSSEC resolving Platform so that

ISP can migrate from DNS to DNSSEC. In order to optimize

the resources of the platform, we attempt to limit DNS(SEC)

operations that require a lot of CPU. We focused two major

operations : DNS cache lookups and DNSSEC Resolutions.

Current DNS Resolution platforms are called IPXOR

and are represented in figure 1a. They are composed of a

load balancer [4] that splits the traffic among the nodes by

XORing the IP addresses of the DNS query. Each node of

the platform resolves the received DNS query. Such load

balancer distributes uniformly the load between the nodes,

but the same FQDN may be sent on different nodes, thus

triggering parallel resolutions.

At first, we estimate how splitting the DNS(SEC) traffic

between the nodes can significantly reduce the load of the

platform. We use a load balancer that splits the DNS(SEC)

traffic by hashing the FQDN. This architecture is called

FQDNSHA1 and is also represented in figure 1a. Contrary

to IPXOR, with FQDNSHA1, the node the load balancer

forwards the DNS query to is determined by the FQDN rather

than the IP addresses. Simulations show that FQDNSHA1

requires 30% less resources than IPXOR. On the other

hand, using such a load balancer, results in a very non

uniform distribution of the resources among the nodes of the

platform. More specifically, some nodes receive more queries

or perform more resolutions than the others. As a result

FQDN load balancing reduces the necessary resources, but

the remaining challenge is making the resources uniformly

distributed between the nodes.

A uniform distribution of the resources can be reached in

two ways. One way is to define specific rules for the load

balancer, that result in uniformly distributing the resources

between the nodes. With this solution, all the intelligence is

placed in the load balancer, and the nodes keep on responding

to the queries that are sent to them. This alternative has been

developed in [5], and made possible with [6] load balancers.

In this paper, we adopt the opposite view. We leave the

load balancer unchanged, like in IPXOR, and require some

intelligence in the nodes of the Resolving platform. With this

architecture, the nodes cooperate with each other. We base the

cooperation on Distributed Hash Table (DHT) mechanisms

like Pastry. Our motivations for this architecture is mainly

that load balancers are critical equipments under heavy load,

which makes operational teams reluctant to any modification.

Furthermore, modifying the nodes provides much flexibility

for innovation, and we can benefit from multiple mechanisms

that have been already elaborated. We evaluate the gains

provided by the DHT proactive caching architecture described

in [7], [8]. Modelisations and Simulations with our DNS

traffic shows that we can easily improve the platform

efficiency by 3.5 compared to the traditional architectures.

Note that in this paper, Pastry is used for a maximum of a

few hundred nodes, while Pastry was originally designed for

very large platforms of thousands or billions of nodes. As such,

we do not consider the routing discovery mechanisms provided
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by Pastry, but we take advantage of Pastry auto-configuration

capacity, its robustness to Deny of Service (DoS), and its cache

sharing mechanisms.

Note also that the optimizations discribed in this paper only

consider DNSSEC. In other words, the gains provided by the

proposed architecture do not apply for DNS. The reason is

that DHT or cache sharing architectures balances the cost

of a communication between nodes of the platform and a

DNS(SEC) resolution. With DNS, resolution costs almost as

much as a communication between nodes of the platform, thus

reducing the advantage of the proposed architecture. On the

other hand, DNSSEC resolution involves signature checks that

cost much more than a communication between nodes of the

platform. This provides significant advantage for cache sharing

and DHT architectures.

(a) FQDNSHA1,
IPSHA1, IPXOR

IP Load
Balancer

[1] DNS Query
[6] DNS 
Response

[2] DHT Query

[5] DHT Response

@
[3]/[4] DNS
Resolution

(b) DHT (Pastry)

Fig. 1. DNS Resolution Platform Architectures based on Load Balancers
and on DHT

The paper is organized as follows. Section II positions our

work. Section III presents simulations, with real DNS traffic,

different types of load balancers that consider - like IPXOR

- the IP addresses of the DNS queries, or - like FQDNSHA1

- the FQDN. FQDNSHA1 is shown to be more efficient by

up to 30%. Section III evaluates the gains provided by the

DHT proactive caching architecture and shows that we can

easily improve the platform efficiency by 3.5 compared to the

traditional architectures. Section V concludes this paper.

II. POSITION OF OUR WORK

This paper studies how load balancing DNS queries to

different nodes according to the queried FQDN rather than the

IP addresses improves the efficiency of the platform. To deploy

such a platform, we use the Pastry based architectures, and

Pastry features which enhance the cache sharing mechanisms.

As far as we know, no work has been conducted previously on

the FQDN load balancing, however some has been done on

DNS traffic analysis, resolving platform enhancement (cache

and resolution), DNS platform running over DHT, as well as

on Active Caching (AC).

[9] introduces the Zipf function for web traffic, and [10]

applies it on DNS traffic. [10], [11] study how many end

users should be aggregated to take advantage of the cache.

[12], [13] describe CoDNS and how cooperation of multiple

resolvers reduces the resolution’s latency by relying on mul-

tilocated resolvers. Our work is focused on a local multinode

platform, and thus all resolvers are expected to be located in a

single place. Furthermore, our work is more concerned about

resource optimization than resolution time.

[14] evaluates the performance of a DNS implementation over

Chord [15] and DHash [16]. [17], [18] analyze how DHT

enhances the Naming System robustness by considering Data

failure rate, Path failure rate and Path length. DNS efficiency

is related to the zone’s popularity and label number, whereas

DHT’s efficiency is related to the RRsets’s popularity. DHT

main drawback is its heavy routing algorithms, however active

caching - like Beehive [7] - achieves the same availability as

the current DNS. [7], [8] show how Beehive takes advantage

of a Zipf distribution to actively cache the proper data and

achieves a O(1) lookup performance over a DHT. DHT is

also more robust to orchestrated attacks.

Our work differs from the above mentioned work on at least

three aspects: we are using DHT protocols for a resolving

platform, and not for authoritative servers. The difference

between authoritative servers and resolving servers is that

authoritative servers respond with data they are hosting. On

the other hand resolving servers are requesting queries for

resolution. Resolution may involve querying multiple authori-

tative servers, as well as cache management operations. Then,

previous architectures did not consider DNSSEC. For author-

itative servers, the difference between DNS and DNSSEC

is mainly that larger data are hosted by the servers since

signatures are added. However, for resolving server, DNSSEC

makes resolution much more costly, since signature checks

are required. At last, the scope of previous research work

concerned the global Naming architecture, that is how all

authoritative DNS servers could take advantage of a DHT

architecture. In our case, DHT Pastry is only used for a local

resolving platform. In other words, we are not considering

a platform of more than 1000 independent nodes. Our work

considers less than 200 nodes administrated by the same

network administrator, on the same LAN.

However, our work is closely looking at the principle exposed

in Beehive [7], [8] and takes advantage of the Zipf distribution

of the DNS traffic. Simulations based on this principle shows

that this pro-active caching mechanism makes our platform up

to 3.5 times more efficient.

III. LOAD BALANCING ARCHITECTURES

This section evaluates the efficiency of different load bal-

ancing strategies from a 10 minute DNS live traffic captured

on one of our 18 node clusters that composes the DNS

Resolution platform. It shows that balancing traffic on the

platform according to FQDN rather than IP address requires

30% less ressources.

To evaluate the various architectures, we compute the distri-

bution of the CPU for each node of the platform. From the

10 minute DNS live capture, we replay the traffic and define

the number of Cache Hit and Cache Miss on each node of

the platform. To derive the global CPU of the node, we con-

sidered experimental measurements [3]. These measurements

benchmark for various implementations and DNS(SEC) con-

figurations the CPUs that correspond to a Cache Hit (CPUH )
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and a Cache Miss that requires a Resolution (CPUR).

The studied load balancing strategies are based on IPXOR

and FQDNSHA1 as mentioned in section I. We also introduce

two other strategies: IPSHA1 where splitting is done over the

SHA1 value of both IP source and destination of the queries,

and Random where the node selection is randomly performed.

IPSHA1 vs IPXOR shows the efficiency of SHA1 vs XOR

functions.

This section estimates CPU , the required CPU resources

to handle with the traffic. We considered two distinct actions

to be performed depending whether the FQDN is in the cache

or not. When a cache Hit occurs, the resolving node performs

a simple cache lookup and CPU resources are noted CPUH .

When a cache miss occurs, a resolution over the Internet

is required, and the necessary resources are noted CPUR.

CPU is expressed with CPUH and CPUR by considering

CPUH and CPUR (%CPU) for BIND9 (0.015%CPU ,

0.317%CPU ). IPXOR and IPSHA1 are very similar, and

perform better than Random. FQDNSHA1, on the other hand

provides a bi-cluster distribution: the low CPU and high CPU

groups. For DNS, the low CPU group has a high variance,

and the mean CPU of the high CPU group almost equals

CPU of IPSHA1. With DNSSEC results are better, there are

still two clusters but they have smaller variance, which means

that the CPU is more uniformly distributed. The mean CPU

value of both groups are closer to each other than in the case

of DNS, and in any case much lower than with Random or

IPSHA1 / IPXOR.

FQDNSHA1 seems promising since it offers a mean CPU

lower than any of the other architectures. FQDNSHA1

happens to be 1.117 more efficient for DNS, and 1.342 for

DNSSEC. However its major drawback is that it presents a non

uniform distribution. FQDNSHA1 improves the platform’s
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efficiency by roughly 30% compared to IPSHA1. However,

FQDNSHA1 does not present a uniform distribution of

the CPU among the nodes. This mostly results from the

difference between the number of queries associated to

FQDNs (the FQDN’s popularity) and the number of queries

associated to the users. FQDN’s popularity presents a higher

dispersion compared to the user’s number of queries. In

that sense, FQDNSHA1 distribution can not rely on a hash

function (SHA1) and we have to check that two popular

FQDNs cannot be assigned to the same Home. Establishing

such a distribution is out of scope of the paper, however we

have several solutions in mind. For instance, for a given hash

function, we can use a salt, concatenate the salt to the FQDN

to be hashed and consider hash(FQDN ||salt). The salt is

incremented until it splits properly the most popular FQDNs.

Another alternative is to build a routing table for the most

requested FQDNs [5], [19] whereas others are load balanced

with the hash function.

IV. PRO-ACTIVE CACHING DHT ARCHITECTURE

Section III shows that load balancing DNS traffic is

more efficient with FQDNSHA1 than with IPSHA1/XOR.

However, as shown in section I, load balancers that split the

traffic according to the FQDN are not widely available and

would require ISP to modify their current core infrastructure.

Furthermore, on an architecture point of view, such load

balancer still consists of a single point of failure. In order

to apply FQDNSHA1 principle, that is sending queries of

a FQDN on the same Home node, without modifying the

core network infrastructure of ISPs, we consider Pastry [20]

based architectures. In Pastry based architecture, queries are

identified according to the requested FQDN, and each node

resolves queries it Homes and routes other queries to their

Home node.

Pastry is widely known by the community, but other DHT

protocols may be used - like chord, Tapestry... The way we

use Pastry differs from what it was originally designed for.

First, the Pastry nodes constitute the platform and belong

to the same administrator, they are located in the same data

center, on the same LAN and every node knows all the other

nodes - the platform is not expected to be larger than a few

hundred nodes. We do not assert that the node ID is derived

from the data by a simple hash function (SHA1), but we may

apply a specific distribution known by all nodes. Finally, we

do not consider the Pastry routing discovery algorithm. On the

other hand, we take advantage of Pastry’s auto-configuration

mechanisms, robustness to DoS attacks [14], [17], [18] - as

such it may balance the sensitivity to DoS attacks introduced

by DNSSEC with heavier resolutions. We also take advantage

of the cache sharing mechanisms for enhancing Pastry based

platforms. Note that how FQDNs are associated to their

Home may require the autoconfiguration mechanism to

be reconsidered. Furthermore, robustness to DoS requires

architectures that cache somehow the responses.

The pro-active Pastry architecture is described in [7], [8]

and consists of caching in all pastry nodes the most γ popular

data. This architecture is especially efficient when requested

data follows a Zipf distribution. Figure 2b illustrates the

principle of Pastry Active Caching (Pastry-AC). Figure 2a

shows the popularity distribution of the FQDN whose

Zipf-like shape encourage to test the pro-active caching

architecture.

To compute figure IV, we modelize the Pastry-AC architec-

ture and compute it our the measured popularity distribution

of our 10 minute capture. Figure IV shows that caching

very FQDNs considerably enhances the performances. For



4
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Fig. 2. DNS traffic / Pastry Active Caching

DNSSEC in figure 3b, caching as little as γ = 100 makes

Pastry-AC twice as much efficient as FQDNSHA1. Interest-

ingly Pastry-AC also provides advanatge for DNS and caching

γ = 100 makes Pastry-AC makes Pastry-AC as efficient

as FQDNSHA1. Given the small amount of FQDNs to be

cached, this number can be increased to γ = 200 and thus

one can reasonably consider that for DNSSEC Pastry-AC

can reasonnably be considered as 3.5 more efficient than

IPSHA1/XOR.
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V. CONCLUSION

DNSSEC migration of large resolving platforms is expected

to increase their size by 5 if one keeps on using the current

DNS Resolving platform architecture. This paper first

evaluates different load balancing techniques and shows that

load balancing according to the FQDN rather than according

to IP addresses reduces the number of nodes by 30%.

Because FQDN load balancers significantly impact the ISP

core network infrastructure and still provide a single point

of failure, we considered Pastry based architectures and

their associated cache sharing optimizations. With the Zipf

distribution of FQDNs, we showed that Pastry-AC with

Active Cache sharing mechanisms can be at least 3.5 times

more efficient than traditional IP architectures.

We also have to consider such results regarding the

approximations we performed. We considered a constant

TTL. Then, we did not consider the impact of the size of the

cache on cache lookup or cache insertion. At last, we also

considered that IP addresses and FQDN were independent.
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linear program for load balancing dns(sec) requests,” in International

Journal of Critical Infrastructure Protection. Elsevier, 2012.
[6] F5-Networks, “F5, Networks: BIG-IP Global Traffic Manager: Imple-

mentation,” march 2010.
[7] V. Ramasubramanian and E. G. Sirer, “Beehive: O(1)lookup perfor-

mance for power-law query distributions in peer-to-peer overlays,” in
Proceedings of the 1st conference on Symposium on Networked Systems

Design and Implementation - Volume 1. Berkeley, CA, USA: USENIX
Association, 2004, pp. 8–8.

[8] ——, “Proactive Caching for Better than Single-Hop Lookup Perfor-
mance,” URL: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=?doi=
10.1.1.2.8918, 2007.

[9] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web caching
and Zipf-like distributions: evidence and implications ,” in INFOCOM

’99. Eighteenth Annual Joint Conference of the IEEE Computer and

Communications Societies. Proceedings. IEEE, vol. 1, march 1999, pp.
126 –134 vol.1.

[10] J. Jung, E. Sit, H. Balakrishnan, and R. Morris, “DNS performance and
the effectiveness of caching,” in Proceedings of the 1st ACM SIGCOMM

Workshop on Internet Measurement, ser. IMW ’01. New York, NY,
USA: ACM, 2001, pp. 153–167.

[11] J. Jung, A. W. Berger, and H. Balakrishnan, “Modeling TTL-based
Internet Caches,” in IEEE Infocom 2003, San Francisco, CA, april 2003.

[12] K. Park, V. S. Pai, L. Peterson, and Z. Wang, “CoDNS: Masking
DNS delays via Cooperative Lookups,” in Technical Report TR-690-04.
Princeton University Computer Science, 2004.

[13] ——, “CoDNS: improving DNS performance and reliability via coop-
erative lookups,” in Proceedings of the 6th conference on Symposium

on Opearting Systems Design & Implementation - Volume 6. Berkeley,
CA, USA: USENIX Association, 2004, pp. 14–14.

[14] R. Cox, A. Muthitacharoen, and R. Morris, “Serving DNS Using a Peer-
to-Peer Lookup Service,” in Revised Papers from the First International

Workshop on Peer-to-Peer Systems, ser. IPTPS ’01. London, UK:
Springer-Verlag, 2002, pp. 155–165.

[15] I. Stoica, R. Morris, D. Karger, F. M. Kaashoek, and H. Balakrishnan,
“Chord: A scalable peer-to-peer lookup service for internet applications,”
in SIGCOMM ’01: Proceedings of the 2001 conference on Applications,

technologies, architectures, and protocols for computer communications,
vol. 31. New York, NY, USA: ACM Press, october 2001, pp. 149–160.

[16] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica, “Wide-
area cooperative storage with CFS,” in Proceedings of the eighteenth

ACM symposium on Operating systems principles, ser. SOSP ’01. New
York, NY, USA: ACM, 2001, pp. 202–215.

[17] D. Massey, “A Comparative Study of the DNS Design with DHT-Based
Alternatives,” in In the Proceedings of IEEE INFOCOM’06, 2006.

[18] J. Risson, A. Harwood, and T. Moors, “Topology dissemination for
reliable one-hop distributed hash tables,” IEEE Transactions on Parallel

and Distributed Systems, vol. 20, pp. 680–694, 2009.
[19] Q. Xu, D. Migault, S. Sénécal, and S. Francfort, “K-means
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