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Abstract. In this paper we propose to introduce a new color interactive and selective filtering tool based
on the minimization of a weighted vectorial total variation termTVg with theL2 norm as data term. Our
goal is to filter one region of an image while preserving the other using a minimal interaction with the
user. To this end, we take benefit of a weighted vectorial regularization term TVg based on color moments
in order to perform our selective color filtering. Up to now, color momentshave been mainly introduced
for indexation purposes. In our case, the user selects some points in thearea to preserve and some other
points in the area to be filtered. Reference color moments are then computedon patches around the se-
lected points and are included in theTVg term through various functionsg. Two maing functions are
tested within the HSL color space leading to very interesting results on both synthetic and real images.
Convex optimization tools are then used to solve the minimization issue. An augmented Lagrangian
formulation leads to a simple and efficient algorithm based on Uzawa block relaxation schemes. Our
algorithm, while easy to be implemented, proves to be efficient in terms of computational cost due to its
robustness towards the choice of the penalty parameter. The proposedfiltering tool may be very interest-
ing as a pre-processing step for segmentation, movie post-production or object-oriented compression.

1 Introduction

In many image processing issues, a filtering step is requiredin order to remove noise or spurious details
from the initial image. The image may then be decomposed in regions (e.g. homogeneous regions) using a
segmentation algorithm, or some regions of interest may be selected using well-defined algorithms (active
contours for example). The interactive color filtering toolproposed in this paper is quite different from a
simple filtering step and may even be considered as a pre-segmentation algorithm. Indeed, the main idea
is to filter and simplify some parts of the image while preserving some others using some color properties
of the regions. In order to obtain such a filtering tool, a variational framework is settled. We focus on the
minimization of functionals that take benefit of a color weighted total variation (TVg) regularization term
coupled with the minimization of aL2 data term. The total variation (TV) regularization term owns some
interesting geometrical properties [19, 1, 6] that can be nicely used for denoising and segmentation. TheTV
regularization term was first proposed for denoising in [20]coupled with the minimization of theL2 norm as
a data term (the well-known ROF model). More recently, Bresson et al [1] proposed to introduce a spatially
adaptive TV term while using a functiong inside the integral of theTV term. The functiong allows to take
into account the image gradient in theTV term in order to preserve object boundaries during the denoising
process. Some other authors also take benefit of such a weighted TV [5, 13, 1, 14, 16, 17].

In this paper, we propose to settle an interactive color image filtering algorithm by introducing color
moments in the weighted TV regularization term. The user is expected to draw a curve on the region to be
removed and another curve on the region to be preserved. The color moments of the chosen points are then
computed on small patches and the corresponding characteristics are included in a well-adaptedg function
in theTVg term. As far as color moments are concerned, they are considered as a powerful color descriptor.



They have been introduced in [18] for image indexation and retrieval in order to complete or replace SIFT
descriptors. They appear to be more interesting than the classical color histograms used in [9, 11, 15]. Indeed,
color histograms are not able to represent the spatial layout of the color repartition. In an original manner,
we propose to take advantage of such a representation for ourselective color filtering tools. Concerning the
optimization of the whole functional (TVg+L2), we rely on the mathematical framework introduced in [16]
for grey level images. We propose to tackle the optimizationof the vectorialTVg+L2 using an augmented
Lagrangian approach and Uzawa block relaxation schemes. Our numerical scheme presents the advantage
to be robust regarding with the choice of the penalty parameter and is efficient in terms of computational
cost. The proposed filtering tool may be very interesting as apre-processing step for segmentation, movie
post-production or object-oriented compression.

In the rest of the paper, we first detail the main principles ofour selective filtering tool in section 2. Then
we propose to give the main lines of the optimization processin section 3. The color-based weighted TV is
introduced in section 4. Finally some experimental resultson both synthetic and real images are displayed
in order to check the availability of our tool.

2 Selective filtering based on the minimization of a weightedTV

2.1 Geometrical properties of TV and weighted TV

The classical ROF (Rudin, Osher and Fatemi) model [20] aims to recover the original imageu(x) given a
noisy imagef (x) by minimizing the total variation underL2 data fidelity:

E(u) =
∫

Ω
|∇ u(x)|dx+λ

∫
Ω
(u(x)− f (x))2dx, (1)

whereΩ ⊂ R
2, is the image domain andλ a positive scale parameter.

The first integral is the classical regularization term called TV (Total Variation) term. This term has proven
its efficiency for image restoration and also presents some interesting geometrical properties. In order to
better explain these properties, let us denote the upper level sets of the image byUα(u) = {x,u(x)> α} like
in [4]. From a geometrical point of view, the co-area formula[8] states that, for any function which belongs
to the space of bounded variations BV(Ω), there is a relation between the TV regularization term and the
perimeterPer(Uα) of the setUα . Indeed, we can writePer(Uα(u)) =

∫
Ω |∇χ Uα(u)|dx for all α whereχUα (u)

stands for the characteristic function of the setUα(u). Such geometrical features may contribute to explain
the properties of this regularization term. Indeed, when decreasing the weightλ of the data term, components
will be removed in an order determined by their size and theirgeometry. For example, small components
will be removed first and sharp angles will be smoothed. In [6], the authors establish a connection between
this model and morphological operators such as opening and morphological granulometry.

The introduction of ag function in TV may produce different filtering results. Indeed, theTVg term,
when applied to a characteristic set is equivalent to a weighted perimeter

∫
C g(s)dswhereC designates the

boundary of the set ands its arc length. In [1], the functiong is then chosen asg(x) = 1/(1+βGσ ∗ |∇ f |) in
order to introduce the image gradient directly in the regularization term. This term allows to preserve object
boundaries and sharp angles during the regularization process and can also be used for shape segmentation
[1]. Indeed, this regularization term corresponds to the classical criterion proposed in geodesic active con-
tours [2]. Note that such a spatially varying TV term has alsobeen investigated by different authors with
various g functions (e.g. for salt and pepper denoising) [5,13, 1, 14, 16, 17].



2.2 Color selective filter using weighted TV

In this paper, we propose to test the availability of the weighted TV regularization term in order to perform a
kind of selective filtering of the image components. This idea is closely related to the design of geometrical
filters in the framework of mathematical morphology where some shapes are removed on the basis of their
geometric properties. Some first examples of a geometrical filtering using theTVg term are given in [16, 17].
Rather than using geometric properties, we here propose to take benefit of color moments and of a vectorial
TV term in order to include some color features in the function g. In order to introduce a selective filtering
scheme, we add an interactive step where two regions are manually selected (using a curve drawn on each
region). Then the color moments of each point within each region are computed leading to a reference vector
of moment for each region. The functiong is then designed in order to filter one region while preserving the
other one and inversely. The main principle of this scheme isshown in Fig.1.

Fig. 1.Main principles of the proposed color interactive and selective filtering tool.

3 Fast dual minimization of TVg+L2

Let Ω be a three-dimensional bounded open domain ofR
d, d = 2,3 and a vector-valued functionu(x) =

(u1(x),u2(x),u3(x)) ∈ R
3 defined onΩ that corresponds to the color intensity with the three values of each

color channel. In the rest of the document, vector valued functions are denoted by bold-face letters (e.g.
u = (u1,u2,u3)). Let us also note the Euclidean scalar product byu · v = ∑3

i=1uivi , for u and v in R
d.

Moreover, foru ∈ Rd, we use the notation|u|2 = (u ·u)1/2 for the Euclidean norm.
Let g be a continuous, positive valued and bounded function defined on Ω, when dealing with color

images, we consider the following weighted total variationregularization term, denoted byTVg :

TVg(u) =
∫

Ω
g(x)

[

|∇ u1|
2
2+ |∇ u2|

2
2+ |∇ u3|

2
2

]1/2
dx.



The considered functiong is described later in section 4.
Let f = ( f1, f2, f3) be the input color image to be filtered, we propose to address the following vectorial

TVg+L2 minimization problem:

min
u∈X

E(u) = J(u)+λ
∫

Ω
|u(x)− f(x)|22dx. (2)

whereu is the unknown image to restore andX is a suitable functions space.

3.1 Augmented Lagrangian methods for theTVg+L2 model

In this section we propose to use convex optimization tools and dual approaches in order to solve (2). To
this end, we need to transform the convex minimization problem (2) into a suitable saddle-point problem by
introducing an auxiliary unknown as for the scalar case [16]. An augmented Lagrangian approach is then
introduced and solved using Uzawa relaxation schemes. Somedetails are given thereafter for the reader
convenience but only briefly for space reasons.

Let us introduce the auxiliary unknownp = f −u and rewrite the functionalE as

E(u,p) = TVg(u)+λ
∫

Ω
|p(x)|22dx. (3)

The minimization problem (3) becomes min(u,p)∈K E(u,p),, where the constraint setK is defined byK =
{(u,p) ∈ X×X | u+p− f = 0 in Ω} . It is obvious that the two minimization problems are equivalent. With
this constrained minimization problem, we associate the Lagrangian functionalL defined onX3 by

L (u,p;s) = E(u,p)+(s,u+p− f)X . (4)

In (4), s is the Lagrange multiplier associated with the constraint in K. SinceE is convex and continuous
and the constraint inK is linear, a saddle point(u∗,p∗;s∗) ∈ X3 of L exists and verifiesL (u∗,p∗;s) ≤
L (u∗,p∗;s∗)≤ L (u,p;s∗), ∀(u,p,s) ∈ X3.

We now introduce the augmented Lagrangian defined, forr > 0, by

Lr(u,p;s) = L (u,p;s)+
r
2
‖ u+p− f ‖2

L2 (5)

wherer is the penalty parameter. We then consider the following saddle-point problem

Lr(u∗,p∗;s)≤ Lr(u∗,p∗;s∗)≤ Lr(u,p;s∗), ∀(u,p,s) ∈ X3. (6)

It can be proved (easily) that a saddle point ofLr is a saddle point ofL and conversely. This is due to
the fact that the quadratic term inLr vanishes when the constraintu+p− f = 0 is satisfied. Some efficient
numerical schemes can be used to solve this problem like notably the Uzawa Block Relaxation methods
detailed thereafter. One important feature is that this algorithm is well-conditioned and robust against the
choice of the penalty parameterr [16].

3.2 Uzawa block relaxation methods

We apply the following Uzawa block relaxation method to solve the saddle-point (5) by using an alternative
minimization procedure (see e.g. [10, 12]). Givenp−1 ands0, we compute successivelyuk, pk andsk+1 as



follows

uk = argmin
u

Lr (u,pk−1,sk) (7)

sk+1/2 = sk+
r
2
(uk+pk−1− f ) (8)

pk = argmin
p

Lr (uk,p,sk) (9)

sk+1 = sk+1/2+
r
2
(uk+pk− f ) (10)

- Solution of subproblem (7) The functionalu 7→ Lr(u,pk−1;sk) can be rewritten asΦ1(u) := r
2 ‖ u ‖2

L2

+J(u)+(p̃,u)X +C, whereC is a constant and̃p = sk+ r(pk−1− f). Using Fenchel duality theory (see e.g.
[7]), the solution of (7) isuk = (∇ ·vk− p̃)/r wherevk is the solution of inf|v|22−g2≤0

1
2r ‖ ∇ ·v− p̃ ‖2

L2 . We

can then computevk using the following semi-implicit scheme due to Chambolle [3].

vℓ+1
i =

vℓ+ τ∇ (∇ ·vℓi − p̃i)

1+(τ/g)
[

∑3
i=1 |∇ (∇ ·vℓi − p̃i)|

2
2

]1/2
, i = 1,2,3, whereτ > 0 (11)

- Solution of subproblem(9) The functionalp 7→ Lr(uk,p;sk) can be rewritten as

Φ2(p) = (λ+ r/2) ‖ p ‖2
L2 +(sk+ r(uk− f),p)X +C,

whereC is a constant. A straightforward calculation yieldspk =−(sk+ r(uk− f))/(r +2λ).

- Uzawa block relaxation algorithm With the results above, we can now present the Uzawa block relax-
ation algorithms for theTVg+L2 model. The procedure is detailed in Algorithm 1. We iterate until relative
error on(uk,pk) becomes sufficiently small.

Algorithm 1 Uzawa block relaxation algorithm for (6)

Initialization. p −1, s0 andr > 0 given.
Iteration k≥ 0. Compute successivelyuk, pk andsk as follows.

Step 1. Setp̃ = sk+ r(pk−1− f) and computevk with (11) and thenuk = f−pk−1+
1
r
(∇ ·vk−sk).

Step 2. Update the Lagrange multiplier:sk+1/2 = sk+
r
2
(uk+pk−1− f).

Step 3. Computepk =−(sk+ r(uk− f))/(r +2λ)
Step 4. Update the Lagrange multiplier:sk+1 = sk+1/2+

r
2
(uk+pk− f).

Such algorithms are fast, easy to implement, and also robustto the choice of the penalty parameter which
allows to choose a value ofr that minimizes the number of iterations and so the computational cost [17].

4 Proposition of a weighted TV based on Color moments

Let us now introduce the weighted TV regularization designed for our color selective filtering tool. Given
a color imageu = (u1,u2,u3), we propose to take benefit of generalized color momentsMabc

pq introduced in



[18]. The color moment of orderp+q and degreea+b+c is defined as follows:

Mabc
pq =

∫ ∫
D

xp
1xq

2[u1(x1,x2)]
a[u2(x1,x2)]

b[u3(x1,x2)]
cdx1dx2 , (12)

wherex= (x1,x2) is a pixel in a 2D image anda, b, c , p andq some positive integers andD the domain of
computation of the moment (it can then be the whole image or a patch).

In order to use a semi-local information on color (which can be really interesting for texture regions),
we propose to compute color moments on small patches around each pixel of the considered region. We
denote this small neighborhood byDn wheren represents the half size of the neighborhood. Note that the
moments of degree 0 correspond simply to the classical geometric moments ofDn and so they do not pro-
vide useful information for filtering since they only encodethe fixed geometry ofDn. In our application
we consider 27 moments in order to reduce the computational time which areMabc

00 , Mabc
01 andMabc

10 with
(a,b,c) ∈ {(1,0,0);(0,1,0);(0,0,1);(1,1,0);(1,0,1);(0,1,1);(2,0,0);(0,2,0);(0,0,2)}. The correspond-
ing 27-vectors of moments are notedM(x) wherex∈ Ω. In our application we consider the HSL color space
for the computation which conducts in the practice to betterresults than the RGB color space. Note that the
space color can be changed easily using a simple conversion at the beginning of the process.

The semi-supervised filtering scheme has been previously described in Figure 1. In the first step, we draw
two curves on the image, one for the ”inside” region and the other for the ”outside” region. The ”outside”
regionΩout will be filtered and the ”inside” oneΩin remains without filtering. A small dilatation of what
we can call “the markers” is performed and the color moments for each selected region are then computed.
We present there two main solutions for the design of a weighted TV term taking into account these color
moments.

4.1 Definition of weighted TV based on the average moment vector

The most straightforward method is to compute an average moment vector of the markersΩin andΩout (aver-
aging each component of the vector). The average value for the componentα isµα

i = 1
|Ωi |

∫
Ωi

Mα(x1,x2)dx1dx2

with α ∈ [0,27] andi = in or out. We then propose to select the orderα∗ that corresponds to the maximum
distance between the two average values as follows :

α∗ = max
α∈[0,27]

(|(µα
in −µα

out)|) , (13)

We then propose to introduce the following thresholding function :

T(x) =

{

c1 i f Mα∗(x)< µα∗

c2 i f Mα∗(x)≥ µα∗
(14)

whereµα∗ corresponds to the average of the momentsMα∗ of orderα∗ of the whole imageΩ and is then
chosen as a threshold. We choosec1 = 0.01 andc2 = 1 or inversely in order to uppermost smooth the pixels
corresponding to the reference regionrout or r in. A regularized continuous version of the functionT(x) is
needed which is obtained by a Gaussian filtering:g(x) = Gσ ∗T(x) (σ = 0.05).

4.2 Definition of a weighted TV using1−nnselection

The previous method is not able to deal with large variationsof color inside each reference region. In order
to cope with this problem, we propose to consider the whole 27vector as a descriptor. We then compute the



L2 distance between the 27 moments of pixelx and the 27 moments of each pixel of the inside and outside
region and we select the nearest pixel in each reference region. So, for each pixelx of the image, we choose
the pixelx∗ in the reference regionr i (i = in or out) such that :x∗i = argminy∈r i

[

∑α(M
α(x)−Mα(y))2

]

. For
each pixelx, the pixelx∗i designates the pixel in the regionr i with the nearest moment values tox in the sense
of theL2 norm.

A thresholding function is then defined usingT(x) = c1 if x∗in ∈ r in and c2 if x∗in ∈ rout. We choose
c1 = 0.01 andc2 = 1 in order to uppermost smooth the pixels corresponding to the reference regionrout

while preservingr in. The role ofr in and rout can be inverted to preserverout. A regularized continuous
version of the functionT(x is needed which is obtained by a Gaussian filtering:g(x) = Gσ ∗T(x) (σ= 0.05).

5 Experimental results

To test our approach, we conduct tests on synthetic and natural images using the two differentg functions
(µ and 1−nn). The patch size is chosen asn= 3 which represents a good trade-off between precision and
quantity of information (a higher patch size can be needed inorder to filter texture with larger patterns).
The results are depicted in Fig.2 and Fig.3. In each figure, weboth display the two results obtained when
choosingr in or rout to be preserved.

The comparison betweenµ and 1−nn is straightforward. The 1−nn method outperforms significantly
the other one showing the interest of designing a well-adapted functiong. This can be easily explain sinceµ
only compares the average of the whole selection with the current moment of the pixel. The 1−nn method
selects interactively the nearest vector of moments insideeach region and then the nearest region (inside or
outside) to apply the filtering. So it delivers a more local descriptor of the selected regions.

Since the results give a strong smoothing effect on the outside region while preserving all the details of
the inside one, this method gives a straightforward way to perform an object-oriented compression. When
considering the “cats” image, a classic JPEG compression with a factor of 0.9 leads to an image of size 25Kb.
The same JPEG compression on the filtered image where the two cats are selected and the background is
smoothed leads to an image size of 17Kb. So, depending on the size of the region of interest, our filtering
method may compress the images with a ratio from 30% to 80% while preserving some selected components.
The algorithm can also be used as a pre-processing step for different applications such as segmentation or
object selection or even artistic post-production of images or movies.

(a) (b) (c) (d) (e) (f)

Fig. 2. Experimental results on a synthetic image and on two natural images (selection and filtering of the background
in (a) and of the geometric components in (b), selection and filtering of the two cats in (c) and of the background in (d),
selection and filtering of the leopard in (e) and of the background in (f)) usingµ approach and HSL space.



(a) (b) (c) (d) (e) (f)

Fig. 3. Experimental results on a synthetic image and on two natural images (selection and filtering of the background
in (a) and of the geometric components in (b), selection and filtering of the two cats in (c) and of the background in (d),
selection and filtering of the leopard in (e) and of the background in (f)) using 1−nnapproach and HSL space.
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