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Introduction to 1-summability

and the resurgence theory

David Sauzin

Abstract

This text is about the mathematical use of certain divergent power series. The first
part is an introduction to 1-summability. The second part is an introduction to Écalle’s
resurgence theory. A few elementary or classical examples are given a thorough treatment
(the Euler series, the Stirling series, a less known example by Poincaré). Special attention
is devoted to non-linear operations and original demonstrations are included. The resurgent
approach to the classification of tangent-to-identity germs of holomorphic diffeomorphisms
in the simplest case is also included.
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The differential algebra C[[z−1]]1 and the formal Borel transform 6

3 The differential algebra
(
C[[z−1]], ∂

)
6

4 The formal Borel transform and the space of Gevrey-1 formal series C[[z−1]]1 9

5 The convolution in C[[ζ]] and in C{ζ} 10

The Borel-Laplace summation along R+ 13

6 The Laplace transform 13

7 The fine Borel-Laplace summation 14

8 The Euler series 16



1-summable formal series in an arc of directions 17

9 Varying the direction of summation 17

10 Return to the Euler series 22

11 The Stirling series 23

12 Return to Poincaré’s example 28
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This text is an extended version of the course given in Lima, which also incorporates material
from courses taught at the Scuola Normale Superiore di Pisa between 2008 and 2010. We tried
to make it as self-contained as possible, and accessible to undergraduate students, assuming
only on their part some familiarity with holomorphic functions of one complex variable. The
first part of the text (Sections 1–17) can be used as an introduction to 1-summability and to
the course of M. Loday [Lod13] in the same volume.

Introduction

1 Prologue

1.1 At the beginning of the second volume of his New methods of celestial mechanics [Po93],
H. Poincaré dedicates two pages to elucidating “a kind of misunderstanding between geometers
and astronomers about the meaning of the word convergence”. He proposes a simple example,
namely the two series ∑ 1000n

n!
and

∑ n!

1000n
. (1)

He says that, for geometers (i.e. mathematicians), the first one is convergent because the term
for n = 1.000.000 is much smaller than the term for n = 999.999, whereas the second one
is divergent because the general term is unbounded (indeed, the (n + 1)-th term is obtained
from the nth one by multiplying either by 1000/n or by n/1000). On the contrary, according
to Poincaré, astronomers will consider the first series as divergent because the general term is
an increasing function of n for n ≤ 1000, and they will consider the second one as convergent
because the first 1000 terms decrease rapidly.

He then proposes to reconcile both points of view by clarifying the role that divergent series
(in the sense of geometers) can play in the approximation of certain functions. He mentions the
example of the classical Stirling series, for which the absolute value of the general term is first
a decreasing function of n and then an increasing function; this is a divergent series and still,
Poincaré says, “when stopping at the least term one gets a representation of Euler’s gamma
function, with greater accuracy if the argument is larger”. This is the origin of the modern
theory of asymptotic expansions.1

1.2 In this text we shall focus on formal series given as power series expansions, like the Stirling
series for instance, rather than on numerical series. Thus, we would rather present Poincaré’s
simple example (1) in the form of two formal series∑

n≥0

1000n

n!
tn and

∑
n≥0

n!

1000n
tn, (2)

the first of which has infinite radius of convergence, while the second has zero radius of con-
vergence. For us, divergent series will usually mean a formal power series with zero radius of
convergence.

1In fact, Poincaré’s observations go even beyond this, in direction of least term summation for Gevrey series,
but we shall not discuss the details of all this in the present article; the interested reader may consult [Ra93],
[Ra12a], [Ra12b].
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Our first aim in this text is to discuss the Borel-Laplace summation process as a way of
obtaining a function from a (possibly divergent) formal series, the relation between the original
formal series and this function being a particular case of asymptotic expansion of Gevrey type.
For instance, this will be illustrated on Euler’s gamma function and the Stirling series (see
Section 11). But we shall also describe in this example and others the phenomenon for which
J. Écalle coined the name resurgence at the beginning of the 1980s and give a brief introduction
to this beautiful theory.

2 An example by Poincaré

Before stating the basic definitions and introducing the tools with which we shall work, we want
to give an example of a divergent formal series φ̃(t) arising in connection with a holomorphic
function φ(t) (later on, we shall come back to this example and see how the general theory
helps to understand it). Up to changes in the notation this example is taken from Poincaré’s
discussion of divergent series, still at the beginning of [Po93].

Fix w ∈ C with 0 < |w| < 1 and consider the series of functions of the complex variable t

φ(t) =
∑
k≥0

φk(t), φk(t) =
wk

1 + kt
. (3)

This series is uniformly convergent in any compact subset of U = C∗ \
{
− 1,−1

2 ,−
1
3 , . . .

}
, as is

easily checked, thus its sum φ is holomorphic in U .
We can even check that φ is meromorphic in C∗ with a simple pole at every point of the

form − 1
k with k ∈ N∗: Indeed, C∗ can be written as the union of the open sets

UN = {t ∈ C | |t| > 1/N}

for all N ≥ 1; for each N , the finite sum φ0 + φ1 + · · ·+ φN is meromorphic in UN with simple
poles at −1,−1

2 , . . . ,−
1

N−1 , on the other hand the functions φk are holomorphic in UN for all

k ≥ N+1, with |φk(t)| ≤
|w|k

k|t+ 1/k|
≤
(

1

N
− 1

N + 1

)−1 |w|k

k
, whence the uniform convergence

and the holomorphy in UN of φN+1 +φN+2 + · · · follow, and consequently the meromorphy of φ.
We now show how this function φ gives rise to a divergent formal series when t approaches 0.

For each k ∈ N, we have a convergent Taylor expansion at the origin

φk(t) =
∑
n≥0

(−1)nwkkntn for |t| small enough.

Since for each n ∈ N the numerical series

bn =
∑
k≥0

knwk (4)

is convergent, one could be tempted to recombine the (convergent) Taylor expansions of the φk’s

as φ(t)“=”
∑
k

(∑
n

(−1)nwkkntn

)
“=”

∑
n

(−1)n

(∑
k

knwk

)
tn, which amounts to considering

the well-defined formal series
φ̃(t) =

∑
n≥0

(−1)nbnt
n (5)
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as a Taylor expansion at 0 for φ(t). But it turns out that this formal series is divergent!
Indeed, the coefficients bn can be considered as functions of the complex variable w = es,

for w in the unit disc or, equivalently, for <e s < 0; we have b0 = (1 − w)−1 = (1 − es)−1 and
bn =

(
w d
dw

)n
b0 =

(
d
ds

)n
b0. Now, if φ̃(t) had nonzero radius of convergence, there would exist

A,B > 0 such that |bn| ≤ ABn and the formal series

F (ζ) =
∑

(−1)nbn
ζn

n!
(6)

would have infinite radius of convergence, whereas, recognizing the Taylor formula of b0 with
respect to the variable s, we see that F (ζ) =

∑
(−1)n ζ

n

n!

(
d
ds

)n
b0 = (1 − es−ζ)−1 has a finite

radius of convergence (F (ζ) is in fact the Taylor expansion at 0 of a meromorphic function with
poles on s+ 2πiZ, thus this radius of convergence is dist(s, 2πiZ)).

Now the question is to understand the relation between the divergent formal series φ̃(t) and
the function φ(t) we started from. We shall see in this course that the Borel-Laplace summation
is a way of going from φ̃(t) to φ(t), that φ̃(t) is the asymptotic expansion of φ(t) as |t| → 0 in
a very precise sense and we shall explain what resurgence means in this example.

Remark 2.1. We can already observe that the moduli of the coefficients bn satisfy

|bn| ≤ ABnn!, n ∈ N, (7)

for appropriate constants A and B (independent of n). Such inequalities are called Gevrey-1
estimates for the formal series φ̃(t) =

∑
bnt

n. For the specific example of the coefficients (4),
inequalities (7) can be obtained by reverting the last piece of reasoning: since the meromorphic
function F (ζ) is holomorphic for |ζ| < d = dist(s, 2πiZ) and bn = (−1)nF (n)(0), the Cauchy
inequalities yield (7) with any B > 1/d.

Remark 2.2. The function φ we started with is not holomorphic (nor meromorphic) in any
neighbourhood of 0, because of the accumulation at the origin of the sequence of simple poles
−1/k; it would thus have been quite surprising to find a positive radius of convergence for φ̃.

The differential algebra C[[z−1]]1

and the formal Borel transform

3 The differential algebra
(
C[[z−1]], ∂

)
3.1 It will be convenient for us to set z = 1/t in order to “work at ∞” rather than at the
origin. At the level of formal expansions, this simply means that we shall deal with expansions
involving non-positive integer powers of the indeterminate. We denote by

C[[z−1]] =

{
ϕ(z) =

∑
n≥0

anz
−n, with any a0, a1, . . . ∈ C

}
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the set of all these formal series. This is a complex vector space, and also an algebra when we
take into account the Cauchy product:(∑

n≥0

anz
−n
)(∑

n≥0

bnz
−n
)

=
∑
n≥0

cnz
−n, cn =

∑
p+q=n

apbq.

The natural derivation

∂ =
d

dz
(8)

makes it a differential algebra; this simply means that we have singled out a C-linear map which
satisfies the Leibniz rule

∂(ϕψ) = (∂ϕ)ψ + ϕ(∂ψ), ϕ, ψ ∈ C[[z−1]]. (9)

If we return to the variable t and define D = −t2 d

dt
, we obviously get an isomorphism of

differential algebras between
(
C[[z−1]], ∂

)
and

(
C[[t]], D

)
by mapping

∑
anz

−n to
∑
ant

n.

3.2 The standard valuation (or ‘order’) on C[[z−1]] is the map

val : C[[z−1]]→ N ∪ {∞} (10)

defined by val(0) =∞ and val(ϕ) = min{n ∈ N | an 6= 0} for ϕ =
∑
anz

−n 6= 0.
For ν ∈ N, we shall use the notation

z−νC[[z−1]] =

{∑
n≥ν

anz
−n, with any aν , aν+1, . . . ∈ C

}
. (11)

This is precisely the set of all ϕ ∈ C[[z−1]] such that val(ϕ) ≥ ν. In particular, from the
viewpoint of the ring structure, I = z−1C[[z−1]] is the maximal ideal of C[[z−1]]; its elements
will often be referred to as “formal series without constant term”.

Observe that
val(∂ϕ) ≥ val(ϕ) + 1, ϕ ∈ C[[z−1]], (12)

with equality if and only if ϕ ∈ z−1C[[z−1]].

3.3 It is an exercise to check that the formula

d(ϕ,ψ) = 2− val(ψ−ϕ), ϕ, ψ ∈ C[[z−1]], (13)

defines a distance and that C[[z−1]] then becomes a complete metric space. The topology
induced by this distance is called the Krull topology or the topology of the formal convergence
(or the I-adic topology). It provides a simple way of using the language of topology to describe
certain algebraic properties.

The Cauchy criterium for a sequence (ϕp) of formal series means that, for each n ∈ N, the
sequence of the nth coefficients is stationary: there exists an integer µn such that coeffn(ϕp) is
the same complex number αn for all p ≥ µn; the limit limϕp is then simply

∑
αnz

−n (observe
that this property of formal convergence of (ϕp) has no relation with any topology on the field
of coefficients, except with the discrete one).

In practice, we shall use the fact that a series of formal series
∑
ϕp is formally convergent

if there is a sequence of integers νp −−−→
p→∞

∞ such that ϕp ∈ z−νpC[[z−1]] for all p. Each

coefficient of the sum ϕ =
∑
ϕp is then given by a finite sum: the coefficient of z−n in ϕ is

coeffn(ϕ) =
∑
p∈Mn

coeffn(ϕp), where Mn = {p | νp ≤ n}.
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Exercise 3.1. Check that, as claimed above, (13) defines a distance which makes C[[z−1]] a
complete metric space; check that the subspace C[z−1] of polynomial formal series is dense.
Show that, for the Krull topology, C[[z−1]] is a topological ring (i.e. addition and multiplication
are continuous) but not a topological C-algebra (the scalar multiplication is not). Show that ∂
is a contraction for the distance (13).

3.4 As an illustration of the use of the Krull topology, let us define the composition operators
by means of formally convergent series.

Given ϕ, χ ∈ C[[z−1]], we observe that val(∂pϕ) ≥ val(ϕ)+p (by repeated use of (12)), hence
val(χp ∂pϕ) ≥ val(ϕ) + p and the series

ϕ ◦ (id +χ) :=
∑
p≥0

1

p!
χp ∂pϕ (14)

is formally convergent. Moreover

val
(
ϕ ◦ (id +χ)

)
= val(ϕ). (15)

We leave it as an exercise for the reader to check that, for fixed χ, the operator Θ: ϕ 7→
ϕ ◦ (id +χ) is a continuous automorphism of algebra (i.e. a C-linear invertible map, continuous
for the Krull topology, such that Θ(ϕψ) = (Θϕ)(Θψ)).

A particular case is the shift operator

Tc : C[[z−1]]→ C[[z−1]], ϕ(z) 7→ ϕ(z + c) (16)

with any c ∈ C (the operator Tc is even a differential algebra automorphism, i.e. an automor-
phism of algebra which commutes with the differential ∂).

The counterpart of these operators in C[[t]] via the change of indeterminate t = z−1 is
φ(t) 7→ φ( t

1+ct) for the shift operator and, more generally for the composition with id +χ,

φ 7→ φ ◦ F with F (t) = t
1+tG(t) , G(t) = χ(t−1). See Sections 14–16 for more on the composition

of formal series at ∞ (in particular for associativity).

Exercise 3.2 (Substitution into a power series). Check that, for any ϕ(z) ∈ z−1C[[z−1]],
the formula

H(t) =
∑
p≥0

hpt
p 7→ H ◦ ϕ(z) :=

∑
p≥0

hp
(
ϕ(z)

)p
defines a homomorphism of algebras from C[[t]] to C[[z−1]], i.e. a linear map Θ such that Θ1 = 1
and Θ(H1H2) = (ΘH1)(ΘH2) for all H1, H2.

Exercise 3.3. Put the Krull topology on C[[t]] and use it to define the composition operator
CF : φ 7→ φ ◦ F for any F ∈ tC[[t]]; check that CF is an algebra endomorphism of C[[t]]. Prove
that any algebra endomorphim Θ of C[[t]] is of this form. (Hint: justify that φ ∈ tC[[t]] ⇐⇒
∀α ∈ C∗, α + φ invertible =⇒ ∀α ∈ C∗, α + Θφ invertible; deduce that F := Θt ∈ tC[[t]];
then, for any φ ∈ C[[t]] and k ∈ N, show that val(Θφ− CFφ) ≥ k by writing φ = P + tkψ with
a polynomial P and conclude.)
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4 The formal Borel transform and the space of Gevrey-1 formal
series C[[z−1]]1

4.1 We now define a map on the space z−1C[[z−1]] of formal series without constant term
(recall the notation (11)):

Definition 4.1. The formal Borel transform is the linear map B : z−1C[[z−1]]→ C[[ζ]] defined
by

B : ϕ̃ =
∞∑
n=0

anz
−n−1 7→ ϕ̂ =

∞∑
n=0

an
ζn

n!
.

In other words, we simply shift the powers by one unit and divide the nth coefficient by n!.
Changing the name of the indeterminate from z (or z−1) into ζ is only a matter of convention,
however we strongly advise against keeping the same symbol.

The motivation for introducing B will appear in Sections 6 and 7 with the use of the Laplace
transform.

The map B is obviously a linear isomorphism between the spaces z−1C[[z−1]] and C[[ζ]].
Let us see what happens with the convergent formal series of the first of these spaces. We say
that ϕ̃(z) ∈ C[[z−1]] is convergent at ∞ (or simply ‘convergent’) if the associated formal series
φ̃(t) = ϕ̃(1/z) ∈ C[[t]] has positive radius of convergence. The set of convergent formal series
at ∞ is denoted C{z−1}; the ones without constant term form a subspace denoted z−1C{z−1}.

Lemma 4.2. Let ϕ̃ ∈ z−1C[[z−1]]. Then ϕ̃ ∈ z−1C{z−1} if and only if its formal Borel transfom
ϕ̂ = Bϕ̃ has infinite radius of convergence and defines an entire function of bounded exponential
type, i.e. there exist A, c > 0 such that |ϕ̂(ζ)| ≤ A ec|ζ| for all ζ ∈ C.

Proof. Let ϕ̃(z) =
∑

n≥0 anz
−n−1. This formal series is convergent if and only if there exist

A, c > 0 such that, for all n ∈ N, |an| ≤ Acn.
If it is so, then |anζn/n!| ≤ A|cζ|n n!, whence the conclusion follows.
Conversely, suppose ϕ̂ = Bϕ̃ sums to an entire function satisfying |ϕ̂(ζ)| ≤ A ec|ζ| for all

ζ ∈ C and fix n ∈ N. We have an = ϕ̂(n)(0) and, applying the Cauchy inequality with a circle
C(0, R) = { ζ ∈ C | |ζ| = R }, we get

|an| ≤
n!

Rn
max
C(0,R)

|ϕ̂| ≤ n!

Rn
A ecR.

Choosing R = n and using n! = 1× 2× · · · × n ≤ nn, we obtain |an| ≤ A(ec)n, which concludes
the proof.

The most basic example is the geometric series

χ̃c(z) = z−1(1− cz−1)−1 = T−c(z
−1) (17)

convergent for |z| > |c|, where c ∈ C is fixed. Its formal Borel transform is the exponential
series

χ̂c(ζ) = ecζ . (18)

4.2 In fact, we shall be more interested in formal series of C[[ζ]] having positive but not
necessarily infinite radius of convergence. They will correspond to power expansions in z−1

satisfying Gevrey estimates similar to the ones encountered in Remark 2.1:
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Definition 4.3. We call Gevrey-1 formal series any formal series ϕ̃(z) =
∑

n≥0 anz
−n ∈ C[[z−1]]

for which there exist A,B > 0 such that |an| ≤ ABnn! for all n ≥ 0. Gevrey-1 formal series
make up a vector space denoted by C[[z−1]]1.

Lemma 4.4. Let ϕ̃ ∈ z−1C[[z−1]] and ϕ̂ = Bϕ̃ ∈ C[[ζ]]. Then ϕ̂ ∈ C{ζ} (i.e. the formal series
ϕ̂(ζ) has positive radius of convergence) if and only if ϕ̃ ∈ C[[z−1]]1.

Proof. Obvious.

In other words, a formal series without constant term is Gevrey-1 if and only if its formal
Borel transform is convergent. The space of Gevrey-1 formal series without constant term will
be denoted z−1C[[z−1]]1 = B−1

(
C{ζ}

)
, thus

C[[z−1]]1 = C⊕ z−1C[[z−1]]1. (19)

4.3 We leave it to the reader to check the following elementary properties:

Lemma 4.5. If ϕ̃ ∈ z−1C[[z−1]] and ϕ̂ = Bϕ̃ ∈ C[[ζ]], then

• ∂ϕ̃ ∈ z−2C[[z−1]] and B(∂ϕ̃) = −ζϕ̂(ζ),

• Tcϕ̃ ∈ z−1C[[z−1]] and B(Tcϕ̃) = e−cζϕ̂(ζ) for any c ∈ C,

• B(z−1ϕ̃) =
∫ ζ

0 ϕ̂(ζ1) dζ1,

• if ϕ̃ ∈ z−2C[[z−1]] then B(zϕ̃) =
dϕ̂

dζ
.

In the third property, the integration in the right-hand side is to be interpreted termwise. The
second property can be used to deduce (18) from the fact that, according to (17), χ̃c = T−c(χ̃0)
and χ̃0 = z−1 has Borel tranform = 1.

Since e−ζ−1
ζ is invertible in C[[ζ]] and in C{ζ}, the second property implies

Corollary 4.6. Given ψ̃ ∈ z−2C[[z−1]], with Borel transform ψ̂(ζ) ∈ ζC[[ζ]], the equation

ϕ̃(z + 1)− ϕ̃(z) = ψ̃(z)

admits a unique solution ϕ̃ in z−1C[[z−1]], whose Borel transform is given by

ϕ̂(ζ) =
1

e−ζ − 1
ψ̂(ζ).

If ψ̃(z) is Gevrey-1, then so is the solution ϕ̃(z).

5 The convolution in C[[ζ]] and in C{ζ}

5.1 The convolution product, denoted by the symbol ∗, is defined as the push-forward by B of
the Cauchy product:

Definition 5.1. Given two formal series ϕ̂, ψ̂ ∈ C[[ζ]], their convolution product is ϕ̂ ∗ ψ̂ :=
B(ϕ̃ψ̃), where ϕ̃ = B−1ϕ̂, ψ̃ = B−1ψ̂.

10



At the level of coefficients, we thus have

ϕ̂ =
∑
n≥0

an
ζn

n!
, ψ̂ =

∑
n≥0

bn
ζn

n!
=⇒ ϕ̂ ∗ ψ̂ =

∑
n≥0

cn
ζn+1

(n+ 1)!
with cn =

∑
p+q=n

apbq. (20)

The convolution product is bilinear, commutative and associative in C[[ζ]] (because the
Cauchy product is bilinear, commutative and associative in z−1C[[z−1]]). It has no unit in
C[[ζ]] (since the Cauchy product, when restricted to z−1C[[z−1]], has no unit). One remedy
consists in adjoining a unit: consider the vector space C × C[[ζ]], in which we denote the
element (1, 0) by δ; we can write this space as Cδ⊕C[[ζ]] if we identify the subspace {0}×C[[ζ]]
with C[[ζ]]. Defining the product by

(aδ + ϕ̂) ∗ (bδ + ψ̂) := abδ + aψ̂ + bϕ̂+ ϕ̂ ∗ ψ̂,

we extend the convolution law of C[[ζ]] and get a unital algebra Cδ ⊕ C[[ζ]] in which C[[ζ]] is
embedded; by setting

B1 := δ,

we extend B as an algebra isomorphism between C[[z−1]] and Cδ ⊕ C[[ζ]]. The formula

∂̂ : aδ + ϕ̂(ζ) 7→ −ζϕ̂(ζ) (21)

defines a derivation of Cδ⊕C[[ζ]] and the extended B appears as an isomorphism of differential
algebras

B :
(
C[[z−1]], ∂

) ∼−→ (
Cδ ⊕ C[[ζ]], ∂̂

)
(simple consequence of the first property in Lemma 4.5). It induces an algebra isomorphism

B : C[[z−1]]1
∼−→ Cδ ⊕ C{ζ} (22)

in view of (19) and Lemma 4.4.

Remark 5.2. For c ∈ C, the formula

T̂c : aδ + ϕ̂(ζ) 7→ aδ + e−cζϕ̂(ζ) (23)

defines a differential algebra automorphism of
(
Cδ ⊕ C[[ζ]], ∂̂

)
, which is the counterpart of the

operator Tc via the extended Borel transform.

5.2 When particularized to convergent formal series of the indeterminate ζ, the convolution
can be given a more analytic description:

Lemma 5.3. Consider two convergent formal series ϕ̂, ψ̂ ∈ C{ζ}. Let R > 0 be smaller than
the radius of convergence of each of them and denote by Φ and Ψ the holomorphic functions
defined by ϕ̂ and ψ̂ in the disc D(0, R) = { ζ ∈ C | |ζ| < R }. Then the formula

Φ ∗Ψ(ζ) =

∫ ζ

0
Φ(ζ1)Ψ(ζ − ζ1) dζ1 (24)

defines a function Φ∗Ψ holomorphic in D(0, R) which is the sum of the formal series ϕ̂∗ ψ̂ (the
radius of convergence of which is thus at least R).

11



Proof. By assumption, the power series

ϕ̂(ζ) =
∑
n≥0

an
ζn

n!
and ψ̂(ζ) =

∑
n≥0

bn
ζn

n!

sum to Φ(ζ) and Ψ(ζ) for any ζ in D(0, R).
Formula (24) defines a function holomorphic in D(0, R), since Φ ∗Ψ(ζ) =

∫ 1
0 F (s, ζ) ds with

(s, ζ) 7→ F (s, ζ) = ζΦ(sζ)Ψ
(
(1− s)ζ

)
(25)

continuous in s, holomorphic in ζ and bounded in [0, 1]×D(0, R′) for any R′ < R.
Now, manipulating F (s, ζ) as a product of absolutely convergent series, we write

F (s, ζ) =
∑
p,q≥0

apbq
(sζ)p

p!

(
(1− s)ζ

)q
q!

ζ =
∑
n≥0

Fn(s)ζn+1

with Fn(s) =
∑

p+q=n apbq
sp

p!
(1−s)q
q! ; the elementary identity

∫ 1
0
sp

p!
(1−s)q
q! ds = 1

(p+q+1)! yields∫ 1
0 Fn(s) ds = cn

(n+1)! with cn =
∑

p+q=n apbq, hence

Φ ∗Ψ(ζ) =
∑
n≥0

cn
ζn+1

(n+ 1)!

for any ζ ∈ D(0, R); recognizing in the right-hand side the formal series ϕ̂ ∗ ψ̂ (cf. (20)), we
conclude that this formal series has radius of convergence ≥ R and sums to Φ ∗Ψ.

For instance, since Bz−1 = 1, the left-hand side in the third property of Lemma 4.5 can be
written (1 ∗ ϕ̂)(ζ) and, if ϕ̃(z) ∈ z−1C[[z−1]]1, the integral

∫ ζ
0 ϕ̂(ζ1) dζ1 in the right-hand side

can now be given its usual analytical meaning: it is the antiderivative of ϕ̂ which vanishes at 0.
We usually make no difference between a convergent formal series ϕ̂ and the holomorphic

function Φ that it defines in a neighbourhood of the origin; for instance we usually denote them
by the same symbol and consider that the convolution law defined by the integral (24) coincides
with the restriction to C{ζ} of the convolution law of C[[ζ]]. However, as we shall see from
Section 18 onward, things get more complicated when we consider the analytic continuation in
the large of such holomorphic functions. Think for instance of a convergent ϕ̂(ζ) which is the
Taylor expansion at 0 of a function holomorphic in C \ Ω, where Ω is a discrete subset of C∗
(e.g. a function which is meromorphic in C and regular at 0): in this case ϕ̂ has an analytic
continuation in C \ Ω whereas, as a rule, its antiderivative 1 ∗ ϕ̂ has only a multiple-valued
continuation there. . .

5.3 We end this section with an example which is simple (because it deals with explicit entire
functions of ζ) but useful:

Lemma 5.4. Let p, q ∈ N and c ∈ C. Then(ζp
p!

ecζ
)
∗
(ζq
q!

ecζ
)

=
ζp+q+1

(p+ q + 1)!
ecζ . (26)

Proof. One could compute the convolution integral e.g. by induction on q, but one can also
notice that ζp

p! ecζ is the formal Borel transform of T−cz
−p−1 (by virtue of the second property in

Lemma 4.5), therefore the left-hand side of (26) is the Borel transform of (T−cz
−p−1)(T−cz

−q−1) =
T−cz

−p−q−2.
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The Borel-Laplace summation along R+

6 The Laplace transform

The Laplace transform of a function ϕ̂ : R+ → C is the function L0ϕ̂ defined by the formula

(L0ϕ̂)(z) =

∫ +∞

0
e−zζϕ̂(ζ) dζ. (27)

Here we assume ϕ̂ continuous (or at least locally integrable on R∗+ and integrable on [0, 1]) and

|ϕ̂(ζ)| ≤ A ec0ζ , ζ ≥ 1, (28)

for some constants A > 0 and c0 ∈ R, so that the above integral makes sense for any complex
number z in the half-plane

Πc0 := { z ∈ C | <e z > c0 }.

Standard theorems ensure that L0ϕ̂ is holomorphic in Πc0 (because |e−zζ | = e−ζ <e z ≤ e−c1ζ for
any z ∈ Πc1 , hence, for any c1 > c0, we can find Φ: R+ → R+ integrable and independent of z
such that |e−zζϕ̂(ζ)| ≤ Φ(ζ) and deduce that L0ϕ̂ is holomorphic on Πc1).

Lemma 6.1. For any n ∈ N, L0
( ζn
n!

)
(z) = z−n−1 on Π0.

Proof. The function L0
( ζn
n!

)
is holomorphic in Πc0 for any c0 > 0, thus in Π0. The reader can

check by induction on n that
∫ +∞

0 e−ssn ds = n! and deduce the result for z > 0 by the change
of variable ζ = s/z, and then for z ∈ Π0 by analytic continuation.

In fact, for any complex number ν such that <e ν > 0, L0
( ζν−1

Γ(ν)

)
= z−ν for z ∈ Π0, where Γ

is Euler’s gamma function (see Section 11).
We leave it to the reader to check

Lemma 6.2. Let ϕ̂ as above, ϕ := L0ϕ̂ and c ∈ C. Then each of the functions −ζϕ̂(ζ), e−cζϕ̂(ζ)

or 1 ∗ ϕ̂(ζ) =
∫ ζ

0 ϕ̂(ζ1) dζ1 satisfies estimates of the form (28) and

• L0(−ζϕ̂) =
dϕ

dz
,

• L0(e−cζϕ̂) = ϕ(z + c),

• L0(1 ∗ ϕ̂) = z−1ϕ(z),

• if moreover ϕ̂ is continuously derivable on R+ with dϕ̂
dζ satisfying estimates of the form (28),

then L0

(
dϕ̂

dζ

)
= zϕ(z)− ϕ̂(0).

Remark 6.3. Assume that ϕ̂ : R+ → C is locally integrable and bounded. Then L0ϕ̂ is holo-
morphic in {<e z > 0}. If one assumes moreover that L0ϕ̂ extends holomorphically to a neigh-

bourhood of {<e z ≥ 0}, then the limit of
∫ T

0 ϕ̂(ζ) dζ as T → ∞ exists and equals (L0ϕ̂)(0);
see [Zag97] for a proof of this statement and its application to a remarkably short proof of the
Prime Number Theorem (less than three pages!).
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7 The fine Borel-Laplace summation

7.1 We shall be particularly interested in the Laplace transforms of functions that are analytic
in a neighbourhood of R+ and that we view as analytic continuations of holomorphic germs
at 0.

Definition 7.1. We call half-strip any set of the form Sδ = { ζ ∈ C | dist(ζ,R+) < δ } with a
δ > 0. For c0 ∈ R, we denote by Nc0(R+) the set consisting of all convergent formal series ϕ̂(ζ)
defining a holomorphic function near 0 which extends analytically to a half-strip Sδ with

|ϕ̂(ζ)| ≤ A ec0|ζ|, ζ ∈ Sδ,

where A is a positive constant (we use the same symbol ϕ̂ to denote the function in Sδ and the
power series which is its Taylor expansion at 0). We also set

N (R+) =
⋃
c0∈R
Nc0(R+)

(increasing union).

Theorem 7.2. Let ϕ̂ ∈ Nc0(R+), c0 ≥ 0. Set an := ϕ̂(n)(0) for every n ∈ N and ϕ = L0ϕ̂.
Then for any c1 > c0 there exist L,M > 0 such that

|ϕ(z)− a0z
−1 − a1z

−2 − · · · − aN−1z
−N | ≤ LMNN !|z|−N−1, z ∈ Πc1 , N ∈ N. (29)

Proof. Without loss of generality we can assume c0 > 0. Let δ > 0 be as in Definition 7.1. We
first apply the Cauchy inequalities in the discs D(ζ, δ) of radius δ centred on the points ζ ∈ R+:

|ϕ̂(n)(ζ)| ≤ n!

δn
sup
D(ζ,δ)

|ϕ̂| ≤ n!δ−nA′ec0ζ , ζ ∈ R+, n ∈ N, (30)

where A′ = A ec0δ. In particular, the coefficient aN = ϕ̂(N)(0) satisfies

|aN | ≤ N !δ−NA′ (31)

for any N ∈ N. Let us introduce the function

R(ζ) := ϕ̂(ζ)− a0 − a1ζ − · · · − aN
ζN

N !
,

which belongs to Nc0(R+) (because c0 > 0) and has Laplace transform

L0R(z) = ϕ(z)− a0z
−1 − a1z

−2 − · · · − aNz−N−1.

Since 0 = R(0) = R′(0) = · · · = R(N)(0), the last property in Lemma 6.2 implies L0R(z) =
z−1L0R′(z) = z−2L0R′′(z) = · · · = z−N−1L0R(N+1)(z) and, taking into account R(N+1) =
ϕ̂(N+1), we end up with

ϕ(z)− a0z
−1 − · · · − aN−1z

−N = aNz
−N−1 + z−N−1L0ϕ̂(N+1)(z).

For z ∈ Πc1 , |L0(ec0ζ)(z)| ≤ 1
<e z−c0 ≤

1
c1−c0 , thus inequality (30) implies that |L0ϕ̂(N+1)(z)| ≤

(N + 1)!δ−N−1 A′

c1−c0 ≤ N !(2/δ)−N A′

δ(c1−c0) . Together with (31), this yields the conclusion with

M = 2/δ and L = A′
(
1 + 1

δ(c1−c0)

)
.
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Here we see the link between the Laplace transform of analytic functions and the formal
Borel transform: the Taylor series at 0 of ϕ̂(ζ) is

∑
an

ζn

n! , thus the finite sum in the left-hand
side of (29) is nothing but a partial sum of the formal series ϕ̃(z) = B−1ϕ̂ =

∑
anz

−n−1 ∈
z−1C[[z−1]]1. The connection between the formal series ϕ̃ and the function ϕ which is expressed
by the existence of L,M > 0 for which (29) holds is called Gevrey-1 asymptotic expansion. We
use the notation

ϕ(z) ∼1 ϕ̃(z), z ∈ Πc1 (32)

for this relation between a function and a formal series.

7.2 Theorem 7.2 can be exploited as a tool for “resummation”: if it is the formal series
ϕ̃(z) ∈ z−1C[[z−1]]1 which is given in the first place, we may apply the formal Borel transform
to get ϕ̂(ζ) ∈ C{ζ}; if it turns out that ϕ̂ belongs to the subspace N (R+) of C{ζ}, then we
can apply the Laplace transform and get a holomorphic function ϕ(z) which admits ϕ̃(z) as
Gevrey-1 asymptotic expansion. This process, which allows us to go from the formal series ϕ̃(z)
to the function ϕ = L0Bϕ̃, is called fine Borel-Laplace summation (in the direction of R+).

The above proof of Theorem 7.2 is taken from [Mal95], in which the reader will also find a
converse statement: the mere existence of a holomorphic function which admits ϕ̃(z) as Gevrey-
1 asymptotic expansion in a half-plane implies the condition Bϕ̃ ∈ N (R+); moreover, when it
exists, such a holomorphic function is unique (we skip the proof of these facts). In this situation,
the holomorphic function ϕ(z) can be viewed as a kind of sum of ϕ̃(z), although this formal
series may be divergent, and the formal series ϕ̃ itself is said to be fine-summable in the direction
of R+.

If we start with a convergent formal series, say ϕ̃(z) ∈ z−1C{z−1} supposed to be convergent
for |z| > c0, then the reader can check that Bϕ̃ ∈ Nc1(R+) for any c1 > c0, thus ϕ̃(z) is fine-
summable and L0Bϕ̃ is holomorphic in the half-plane Πc0 . We shall see in Section 9 that L0Bϕ̃
is nothing but the restriction to Πc0 of the ordinary sum of ϕ̃(z).

7.3 The formal series without constant term which are fine-summable in the direction of R+

clearly form a linear subspace of z−1C[[z−1]]1. To cover the case where there is a non-zero
constant term, we make use of the convolution unit δ = B1 introduced in Section 5. We extend
the Laplace transform by setting L0δ := 1 and, more generally,

L0(a δ + ϕ̂) := a+ L0ϕ̂

for a complex number a and a function ϕ̂.

Definition 7.3. A formal series of C[[z−1]] is said to be fine-summable in the direction of R+

if it can be written in the form ϕ̃0(z) = a + ϕ̃(z) with a ∈ C and ϕ̃ ∈ B−1
(
N (R+)

)
, i.e. if its

formal Borel transform Bϕ̃0 = a δ+ϕ̂(ζ) belongs to the subspace C δ⊕N (R+) of C δ⊕C[[ζ]]. Its
Borel sum is then defined as the function L0(a δ+ ϕ̂), which is holomorphic in the half-plane Πc

and admits ϕ̃0(z) as Gevrey-1 asymptotic expansion there provided c ∈ R is large enough.
The operator of Borel-Laplace summation in the direction of R+ is defined as the composition

S 0 := L0 ◦ B acting on all such formal series ϕ̃0(z).

Remark 7.4. Beware that Πc is usually not the maximal domain of holomorphy of the Borel
sum S 0ϕ̃0: it often happens that this function admits analytic continuation in a much larger
domain and, in that case, Πc may or may not be the maximal domain of validity of the Gevrey-1
asymptotic expansion property.

7.4 We now indicate a simple result of stability under convolution:
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Theorem 7.5. The space N (R+) is a subspace of C{ζ} stable by convolution. Moreover, if
c0 ∈ R and ϕ̂, ψ̂ ∈ Nc0(R+), then ϕ̂ ∗ ψ̂ ∈ Nc1(R+) for every c1 > c0 and

L0(ϕ̂ ∗ ψ̂) = (L0ϕ̂)(L0ψ̂) (33)

in the half-plane Πc0.

Corollary 7.6. The space C⊕B−1
(
N (R+)

)
of all fine-summable formal series in the direction

of R+ is a subalgebra of C[[z−1]] which contains the convergent formal series. The operator of
Borel-Laplace summation S 0 satisfies

S 0

(
dϕ̃0

dz

)
=

d

dz

(
S 0ϕ̃0

)
, S 0

(
ϕ̃0(z + c)

)
= (S 0ϕ̃0)(z + c) (34)

S 0(ϕ̃0ψ̃0) = (S 0ϕ̃0)(S 0ψ̃0) (35)

for any c ∈ C and fine-summable formal series ϕ̃0, ψ̃0.

Later, we shall see that Borel-Laplace summation is also compatible with the non-linear
operation of composition of formal series.

Proof of Theorem 7.5. Suppose ϕ̂, ψ̂ ∈ N (R+), with ϕ̂ holomorphic in a half-strip Sδ′ in which
|ϕ̂(ζ)| ≤ A′ ec

′
0|ζ|, and ψ̂ holomorphic in a half-strip Sδ′′ in which |ψ̂(ζ)| ≤ A′′ ec

′′
0 |ζ|. Let δ =

min{δ′, δ′′} and c0 = max{c′0, c′′0}.
We write χ̂(ζ) =

∫ 1
0 F (s, ζ) ds with F (s, ζ) = ζϕ̂(sζ)ψ̂

(
(1 − s)ζ

)
and argue as in the proof

of Lemma 5.3: F is continuous in s and holomorphic in ζ for (s, ζ) ∈ [0, 1]× Sδ, with

|F (s, ζ)| ≤ |ζ|A′A′′ec′0s|ζ|+c′′0 (1−s)|ζ| ≤ A′A′′|ζ|ec0|ζ|. (36)

In particular F is bounded in [0, 1]× C for any compact subset C of Sδ, thus χ̂ is holomorphic
in Sδ. Inequality (36) implies |χ̂(ζ)| ≤ A′A′′|ζ|ec0|ζ| = O

(
ec1|ζ|

)
for any c1 > c0, hence χ̂ ∈

Nc1(R+). The identity (33) follows from Fubini’s theorem.

Proof of Corollary 7.6. Let ϕ̃0 = a δ + ϕ̃ and ψ̃0 = b+ ψ̃ with a, b ∈ C and ϕ̃, ψ̃ ∈ z−1C[[z−1]].
We already mentioned the fact that if ϕ̃ ∈ z−1C{z−1} then ϕ̃ is fine-summable, thus ϕ̃0 is
fine-summable in that case.

Suppose ϕ̃, ψ̃ ∈ B−1
(
N (R+)

)
. Property (34) follows from Lemmas 4.5 and 6.2, since the

constant a is killed by d
dz and left invariant by Tc. Since ϕ̃0ψ̃0 = ab+ aψ̃ + bϕ̃+ ϕ̃ψ̃ has formal

Borel transform ab δ+aψ̂+ bϕ̂+ ϕ̂ ∗ ψ̂, Theorem 7.5 implies that ϕ̃0ψ̃0 ∈ C⊕B−1
(
N (R+)

)
and,

since S 0(ab) = ab, property (35) follows by linearity from Lemma 5.3 and Theorem 7.5 applied
to Bϕ̃ ∗ Bψ̃.

8 The Euler series

The Euler series Φ̃E(t) =
∑

n≥0(−1)nn!tn+1 is a classical example of divergent formal series.
We write it “at ∞” as

ϕ̃E(z) =
∑
n≥0

(−1)nn!z−n−1. (37)
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Clearly, its Borel transform is the geometric series

ϕ̂E(ζ) =
∑
n≥0

(−1)nζn =
1

1 + ζ
, (38)

which is convergent in the unit disc and sums to a meromorphic function. The divergence
of ϕ̃E(z) is reflected in the non-entireness of ϕ̂E, which has a pole at −1 (cf. Lemma 9.8).

Observe that Φ̃E(t) can be obtained as the unique formal solution to a differential equation,
the so-called Euler equation:

t2
dΦ̃

dt
+ Φ̃ = t.

With our change of variable z = 1/t, the Euler equation becomes −∂ϕ̃+ ϕ̃ = z−1; applying the
formal Borel transform to the equation itself is an efficient way of checking the formula for ϕ̂E(ζ):
a formal series without constant term ϕ̃ is solution if and only if its Borel transform ϕ̂ satisfies
(ζ+1)ϕ̂(ζ) = 1 (cf. Lemma 4.5) and, since 1+ζ is invertible in the ring C[[ζ]], the only possibility
is ϕ̂E(ζ) = (1 + ζ)−1.

Formula (38) shows that ϕ̂E(ζ) is holomorphic and bounded in a neighbourhood of R+ in C,
hence ϕ̂E ∈ N0(R+). The Euler series is thus fine-summable in the direction of R+ and has a
Borel sum ϕE = L0Bϕ̃E holomorphic in the half-plane Π0 = {<e z > 0 }. The first part of (34)
shows that this function ϕE is a solution of the Euler equation in the variable z.

Remark 8.1. The series Φ̃E(t) appears in Euler’s famous 1760 article De seriebus divergen-
tibus, in which Euler introduces it as a tool in one of his methods to study the divergent numerical
series

1− 1! + 2!− 3! + · · · ,

which he calls Wallis’ series—see [Bar79] and [Ra12a]. Following Euler, we may adopt ϕE(1) '
0.59634736 . . . as the numerical value to be assigned this divergent series.

The discussion of this example continues in Section 10; in particular, we shall see how Borel
sums can be defined in other half-planes than the ones bisected by R+ and that ϕE admits an
analytic continuation outside Π0 (cf. Remark 7.4).

1-summable formal series in an arc of directions

9 Varying the direction of summation

9.1 Let θ ∈ R. By eiθR+ we mean the oriented half-line which can be parametrised as { ξ eiθ, ξ ∈
R+ }. Correspondingly, we define the Laplace transform of a function ϕ̂ : eiθR+ → C by the
formula

(Lθϕ̂)(z) =

∫ +∞

0
e−zξ eiθ

ϕ̂(ξ eiθ)eiθ dξ, (39)

with obvious adaptations of the assumptions we had at the beginning of Section 6, in particular
|ϕ̂(ζ)| ≤ A ec0|ζ| for ζ ∈ eiθ[1,+∞), so that Lθϕ̂ is a well-defined function holomorphic in a
half-plane

Πθ
c0

:= { z ∈ C | <e(z eiθ) > c0 }.
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Since 〈z, w〉 := <e(zw̄) defines the standard real scalar product on C ' R⊕ iR, we see that Πθ
c0

is the half-plane bisected by the half-line e−iθR+ obtained from Πc0 = Π0
c0 by the rotation of

angle −θ.
The operator Lθ is the Laplace transform in the direction θ; the reader can check that it

satisfies properties analogous to those explained in Sections 6 and 7 for L0.

Definition 9.1. A formal series ϕ̃0(z) ∈ C[[z−1]] is said to be fine-summable in the direction θ
if it can be written ϕ̃0 = a+ϕ̃ with a ∈ C and ϕ̃ ∈ B−1

(
N (eiθR+)

)
, where the space N (eiθR+) is

defined by replacing Sδ with Sθδ := { ζ ∈ C | dist(ζ, eiθ R+) < δ } in Definition 7.1 (see Figure 10
on p. 68).

The Laplace transform Lθ is well-defined in N (eiθR+); we extend it as a linear map on
C δ ⊕ N (eiθR+) by setting Lθδ := 1 and define the Borel-Laplace summation operator as the
composition

S θ := Lθ ◦ B (40)

acting on all fine-summable formal series in the direction θ. There is an analogue of Corollary 7.6:
the product of two fine-summable formal series is fine-summable and S θ satisfies properties
analogous to (34) and (35).

9.2 The case of a function ϕ̂ holomorphic in a sector is of particular interest, we thus give a
new definition in the spirit of Definitions 7.1 and 9.1, replacing half-strips by sectors:

Definition 9.2. Let I be an open interval of R and γ : I → R a locally bounded function.2

For any locally bounded function α : I → R+, we denote by N (I, γ, α) the set consisting of all
convergent formal series ϕ̂(ζ) defining a holomorphic function near 0 which extends analytically
to the open sector { ξ eiθ | ξ > 0, θ ∈ I } and satisfies

|ϕ̂(ξ eiθ)| ≤ α(θ) eγ(θ)ξ, ξ > 0, θ ∈ I.

We denote by N (I, γ) the set of all ϕ̂(ζ) for which there exists a locally bounded function α
such that ϕ̂ ∈ N (I, γ, α). We denote by N (I) the set of all ϕ̂(ζ) for which there exists a locally
bounded function γ such that ϕ̂ ∈ N (I, γ).

For example, in view of (38), the Borel transform ϕ̂E(ζ) of the Euler series belongs to
N (I, 0, α) with I = (−π, π) and

α(θ) =

{
1 if |θ| ≤ π/2,

1/| sin θ| else.

Clearly, if ϕ̂ ∈ N (I, γ) and θ ∈ I, then z 7→ (Lθϕ̂)(z) is defined and holomorphic in Πθ
γ(θ).

Lemma 9.3. Let γ and I be as in Definition 9.2. Then, for every θ ∈ I, there exists a number
c = c(θ) such that N (I, γ) ⊂ Nc(eiθ R+); one can choose c to be the supremum of γ on an
arbitrary neighbourhood of θ.

The proof is left as an exercise.

2A function γ : I → R is said to be locally bounded if any point θ of I admits a neighbourhood on which γ is
bounded. Equivalently, the function is bounded on any compact subinterval of I.
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Lemma 9.3 shows that a ϕ̂ belonging to N (I, γ) is the Borel transform of a formal series ϕ̃(z)
which is fine-summable in any direction θ ∈ I; for each θ ∈ I, we get a function Lθϕ̂ holomorphic
in the half-plane Πθ

γ(θ), with the property of Gevrey-1 asymptotic expansion

Lθϕ̂(z) ∼1 ϕ̃(z), z ∈ Πθ
γ′(θ),

where γ′(θ) > 0 is large enough to be larger than a local bound of γ. We now show that these
various functions match, at least if the length of I is less than π, so that we can glue them and
define a Borel sum of ϕ̃(z) holomorphic in the union of all the half-planes Πθ

γ(θ).

Lemma 9.4. Suppose ϕ̂ ∈ N (I, γ) with γ and I as in Definition 9.2 and suppose

θ1, θ2 ∈ I, 0 < θ2 − θ1 < π.

Then Πθ1
γ(θ1) ∩Πθ2

γ(θ2) is a non-empty sector in restriction to which the functions Lθ1ϕ̂ and Lθ2ϕ̂
coincide.

Proof. The non-emptiness of the intersection of the half-planes Πθ1
γ(θ1) and Πθ2

γ(θ2) is an elementary
geometric fact which follows from the assumption 0 < θ2 − θ1 < π: this set is the sector
D = { z∗ + r eiθ | r > 0, θ ∈ (−θ1 − π

2 ,−θ2 + π
2 ) }, where {z∗} is the intersection of the lines

e−iθ1
(
γ(θ1) + iR

)
and e−iθ2

(
γ(θ2) + iR

)
.

Let α : I → R+ be a locally bounded function such that ϕ̂ ∈ N (I, γ, α). Let c = sup[θ1,θ2] γ
and A = sup[θ1,θ2] α (both c and A are finite by the local boundedness assumption). By the

identity theorem for holomorphic functions, it is sufficient to check that Lθ1ϕ̂ and Lθ2ϕ̂ coincide
on the set D1 = Πθ1

c+1 ∩Πθ2
c+1, since D1 is a non-empty sector contained in D .

Let z ∈ D1. We have <e(z eiθ) > c + 1 for all θ ∈ [θ1, θ2] (simple geometric property, or
property of the superlevel sets of the cosine function) thus, for any ζ ∈ C∗,

arg ζ ∈ [θ1, θ2] =⇒ |e−zζϕ̂(ζ)| ≤ A e−|ζ|. (41)

The two Laplace transforms can be written

Lθj ϕ̂(z) =

∫ eiθj∞

0
e−zζϕ̂(ζ) dζ = lim

R→∞

∫ R eiθj

0
e−zζϕ̂(ζ) dζ, j = 1, 2,

but, for each R > 0, the Cauchy theorem implies(∫ R eiθ2

0
−
∫ R eiθ1

0

)
e−zζϕ̂(ζ) dζ =

∫
C

e−zζϕ̂(ζ) dζ, C = {R eiθ | θ ∈ [θ1, θ2] }

and, by (41), this difference has a modulus ≤ AR(θ2−θ1)e−R, hence it tends to 0 as R→∞.

9.3 Lemma 9.4 allows us to glue toghether the various Laplace transforms:

Definition 9.5. For I open interval of R of length |I| ≤ π and γ : I → R locally bounded, we
define

D(I, γ) =
⋃
θ∈I

Πθ
γ(θ),

which is an open subset of C (see Figure 1), and, for any ϕ̂ ∈ N (I, γ), we define a function LI ϕ̂
holomorphic in D(I, γ) by

LI ϕ̂(z) = Lθϕ̂(z) with θ ∈ I such that z ∈ Πθ
γ(θ)

for any z ∈ D(I, γ).
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Figure 1: 1-summability in an arc of directions. Right: ϕ̂(ζ) ∈ N (I, γ) is holomorphic in the
union of a disc and a sector. Left: the domain D(I, γ) where LI ϕ̂(z) is holomorphic.

Observe that, for a given z ∈ D(I, γ), there are infinitely many possible choices for θ, which
all give the same result by virtue of Lemma 9.4; D(I, γ) is a “sectorial neighbourhood of ∞”
centred on the ray arg z = −θ∗ with aperture π + |I|, where θ∗ denotes the midpoint of I, in
the sense that, for every ε > 0, it contains a sector bisected by the half-line of direction −θ∗
with opening π + |I| − ε (see [CNP93]).

We extend the definition of the linear map LI to C δ ⊕N (I, γ) by setting LIδ := 1.

Definition 9.6. Given an open interval I, we say that a formal series ϕ̃0(z) ∈ C[[z−1]] is 1-
summable in the directions of I if Bϕ̃0 ∈ C δ⊕N (I). The Borel-Laplace summation operator is
defined as the composition

S I := LI ◦ B (42)

acting on all such formal series, which produces functions holomorphic in sectorial neighbour-
hoods of ∞ of the form D(I, γ), with locally bounded functions γ : I → R.

There is an analogue of Corollary 7.6: the product of two formal series which are 1-summable
in the directions of I is itself 1-summable in these directions, as a consequence of Lemma 9.3 and
of the stability under multiplication of fine-summable series, and the properties (34) and (35)
hold for the summation operator S I too. As for the property of Gevrey-1 asymptotic expansion,
it takes the following form: if ϕ̃0(z) is 1-summable in the directions of I, then there exists a
locally bounded function γ : I → R such that

S I ϕ̃0(z) ∼1 ϕ̃0(z), z ∈ D(J, γ|J) (43)

for every relatively compact subinterval J of I (use Theorem 7.2 and Lemma 9.3).
The reader may check that the above definition of 1-summability in an arc of directions I

coincides with the definition of k-summability in the directions of I given in [Lod13] when k = 1.

Remark 9.7. Suppose that ϕ̃0(z) ∈ B−1
(
C δ⊕N (I, γ)

)
, so that the Borel sum ϕ0(z) = S I ϕ̃0(z)

is holomorphic in D(I, γ) with the aforementioned property of Gevrey-1 asymptotic expansion.
Of course it may happen that ϕ̃0 is 1-summable in the directions of an interval which is larger
than I, in which case there will be an analytic continuation for ϕ0 with Gevrey-1 asymptotic
expansion in a sectorial neighbourhood of ∞ of aperture larger than π + |I|. But even if it is
not so it may happen that ϕ0 admits analytic continuation outside D(I, γ).
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An interesting phenomenon which may occur in that case is the so-called Stokes phenomenon:
the asymptotic behaviour at∞ of the analytic continuation of ϕ0 may be totally different of what
it was in the directions of D(I, γ), typically one may encounter oscillatory behaviour along the
limiting directions −θ∗ ± 1

2

(
π + |I|

)
(where θ∗ is the midpoint of I) and exponential growth

beyond these directions. Examples can be found in Section 10 (Euler series: Remark 10.1 and
Exercise 10.1) and § 13.3 (exponential of the Stirling series).

9.4 What if |I| > π? First observe that, if |I| ≥ 2π, then N (I) coincides with the set of entire
functions of bounded exponential type and the corresponding formal series in z are precisely
the convergent ones by Lemma 9.8:

|I| ≥ 2π =⇒ B−1
(
C δ ⊕N (I)

)
= C{z−1}.

This case will be dealt with in § 9.5. We thus suppose π < |I| < 2π.
For ϕ̂ ∈ N (I, γ), we can still define a family of holomorphic functions ϕθ := Lθϕ̂ holomorphic

on πθ := Πθ
γ(θ) (θ ∈ I), with the property that 0 < θ2− θ1 < π =⇒ πθ1 ∩πθ2 6= ∅ and ϕθ1 ≡ ϕθ2

on πθ1 ∩ πθ2 , but the trouble is that also for π < θ2 − θ1 < 2π is the intersection of half-planes
πθ1 ∩ πθ2 non-empty and then nothing guarantees that ϕθ1 and ϕθ2 match on πθ1 ∩ πθ2 .

The remedy consists in lifting the half-planes πθ and their union D(I, γ) to the Riemann
surface of the logarithm C̃ = { r eit | r > 0, t ∈ R } (see Section 24 for the definition of C̃
and the notation eit which represents a point “above” the complex number eit). For this, we
suppose γ(θ) > 0, so that πθ is the set of all complex numbers z = r eit with r > γ(θ) and

t ∈
(
− θ − arccos γ(θ)

r ,−θ + arccos γ(θ)
r

)
(and adding any integer multiple of 2π to t yields the

same z). We set

π̃θ := { z = r eit ∈ C̃ | r > γ(θ), t ∈
(
− θ − arccos γ(θ)

r ,−θ + arccos γ(θ)
r

)
}, D̃(I, γ) :=

⋃
θ∈I

π̃θ

(this time r eit and r ei(t+2πm) are regarded as different points of C̃) and consider ϕθ = Lθϕ̂ as
holomorphic in π̃θ. By gluing the various ϕθ’s we now get a function which is holomorphic in
D̃(I, γ) ⊂ C̃ and which we denote by LI ϕ̂.

The overlap between the half-planes πθ1 and πθ2 for θ2− θ1 > π is no longer a problem since
their lifts π̃θ1 and π̃θ2 do not intersect (they do not lie in the same sheet of C̃) and LI ϕ̂ may
behave differently on them.3

Therefore, one can extend Definition 9.6 to the case of an interval I of length > π and define
1-summability in the directions of I and the summation operator S I the same way, except that
the Borel sum S I ϕ̃0 of a 1-summable formal series ϕ̃0 is now a function holomorphic in an
open subset of the Riemann surface of the logarithm C̃.

9.5 As already announced, the Borel sum of a convergent formal series coincides with its
ordinary sum:

Lemma 9.8. Suppose ϕ̃0 ∈ C{z−1} and call ϕ0(z) the holomorphic function it defines for |z|
large enough. Then ϕ̃0 is 1-summable in the directions of any interval I and S I ϕ̃0 coincides
with ϕ0.

3Notice that N (I, γ) = N (2π+ I, γ), but the functions Lθϕ̂ and Lθ+2πϕ̂ must now be considered as different:
they are a priori defined in domains π̃θ and π̃θ+2π which do not intersect in C̃. Besides, it may happen that Lθϕ̂
admit an analytic continuation in a part of π̃θ+2π which does not coincide with Lθ+2πϕ̂.
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Figure 2: Borel sums of the Euler series. Left and middle: ϕ± is holomorphic in the cut plane
D(J±, 0). Right: Analytic continuation of ϕ−∗ = ϕ−|{<e z<0} through iR−.

Proof. Let ϕ̃0 = a+ ϕ̃ with a ∈ C and ϕ̃(z) =
∑
anz

−n−1, so ϕ(z) = a+
∑
anz

−n−1 for |z| large
enough. By Lemma 9.8, ϕ̂ = Bϕ̃ is a convergent formal series summing to an entire function and
there exists c > 0 such that ϕ̂ ∈ Nc(eiθ R+) for all θ ∈ R. Lemma 9.4 allows us to glue together
the Laplace transforms Lθϕ̂: we get one function ϕ∗ holomorphic in

⋃
θ∈R Πθ

c = { |z| > c }, with
the asymptotic expansion property ϕ∗(z) ∼1 ϕ̃(z) in { |z| > c1 } for c1 > c.

The function Φ∗ : t 7→ ϕ∗(1/t) is thus holomorphic in the punctured disc { 0 < |t| < 1/c }.
Inequality (29) with N = 0 shows that Φ∗ is bounded, thus the origin is a removable singularity
and Φ∗ is holomorphic at t = 0. Now inequality (29) with N = 1, 2, . . . shows that

∑
ant

n+1 is
the Taylor expansion at 0 of Φ∗(t), hence a+ ϕ∗(1/t) ≡ ϕ0(1/t).

10 Return to the Euler series

As already mentioned (right after Definition 9.2), ϕ̂E ∈ N (I, 0) with I = (−π, π). We can thus
extend the domain of analyticity of ϕE = L0ϕ̂E, a priori holomorphic in π0 = {<e z > 0 }, by
gluing the Laplace transforms Lθϕ̂E, −π < θ < π, each of which is holomorphic in the open
half-plane πθ bisected by the ray of direction −θ and having the origin on its boundary. But if
we take no precaution this yields a multiple-valued function: there are two possible values for
<e z < 0, according as one uses θ close to π or to −π.

A first way of presenting the situation consists in considering the subinterval J+ = (0, π),
the Borel sum ϕ+ = S J+

ϕ̃E holomorphic in D(J+, 0) = C \ iR+ which extends analytically ϕE

there, and J− = (−π, 0), ϕ− = S J−ϕ̃E analytic continuation of ϕE in D(J−, 0) = C \ iR−. See
the first two parts of Figure 2.

The intersection of the domains C \ iR+ and C \ iR− has two connected components, the
half-planes {<e z > 0 } and {<e z < 0 }; both functions ϕ+ and ϕ− coincide with ϕE on the
former, whereas a simple adaptation of the proof of Lemma 9.4 involving Cauchy’s residue
theorem yields

<e z < 0 =⇒ ϕ+(z)− ϕ−(z) = 2πi ez. (44)

(This corresponds to the cohomological viewpoint presented in [Lod13]: (ϕ+, ϕ−) defines a
0-cochain.)
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Another way of putting it is to declare that ϕE = S I ϕ̃E is a holomorphic function on

D̃(I, 0) = { z ∈ C̃ | −3π
2 < arg z < 3π

2 }

(cf. Section 9.4) and to rewrite (44) as

π

2
< arg z <

3π

2
=⇒ ϕE(z e−2πi)− ϕE(z) = 2πi ez. (45)

Remark 10.1. [Stokes phenomenon for ϕE.] Let us consider the restriction ϕ−∗ of the above
function ϕ− to the left half-plane {<e z < 0 }. Using (44) we can write it as ϕ+(z) − 2πi ez,
where ϕ+ is holomorphic in an open sector bisected by iR−, namely the cut plane D+ = C\ iR+,
and the other term is an entire function: this provides the analytic continuation of ϕ−∗ through
the cut iR− to the whole of D+. See the third part of Figure 2.

Observe that ϕ+ ∼1 ϕ̃E in D+, in particular it tends to 0 at∞ along the directions contained
in D+, while the exponential ez oscillates along iR− and is exponentially growing in the right half-
plane: we see that, for ϕ−, the asymptotic behaviour encoded by ϕ̃E in the left half-plane breaks
when we cross the limiting direction iR−; the asymptotic behaviour of the analytic continuation is
oscillatory on iR− (up to a correction which tends to 0) and after the crossing we find exponential
growth.

A similar analysis can be performed with ϕ+
∗ = ϕ+

|{<e z<0} when one crosses iR+, writing it

as ϕ−(z) + 2πi ez. This is a manifestation of the Stokes phenomenon evoked in Remark 9.7.

Exercise 10.1. Use (45) to prove that ϕE is the restriction to D̃(I, 0) of a function which is
holomorphic in the whole of C̃. (Hint: Show that the formula z ∈ C̃ 7→ ϕ(z) := ϕE(z e−2πim)−
2πim ez if m ∈ Z and arg z ∈ (2πm− 3π

2 , 2πm+ 3π
2 ) makes sense.) In which sectors of C̃ is the

Euler series asymptotic to this function?

Exercise 10.2. What kind of singularity has ϕE(z) when |z| → 0? (Hint: Find an elementary
function L(z) such that L(z e−2πi)− L(z) = −2πi ez and consider ϕE + L.)

Observe that the Euler equation −dϕ
dz + ϕ = z−1 is a non-homogeneous linear differential

equation; the solutions of the associated homogeneous equation are the functions λ ez, λ ∈ C.
By virtue of the general properties of the summation operator S θ, any Borel sum of ϕ̃E is an
analytic solution of the Euler equation. In particular, the Borel sums ϕ+ and ϕ− are solutions
each in its own domain of definition; on formula (44) we can check that their restrictions to
{<e z < 0} differ by a solution of the homogeneous equation, as should be. In fact, any two
branches of the analytic continuation of ϕE differ by an integer multiple of 2πi ez. Among all
the solutions of the Euler equation, ϕE can be characterised as the only one which tends to 0
when z →∞ along a ray of direction ∈ (−π

2 ,
π
2 ) (whereas, in the directions of (π2 ,

3π
2 ), this is no

longer a distinctive property of ϕE: all the solutions tend to 0 in those directions!).

Exercise 10.3. How can one use variation of constants to find directly an integral formula for
the solution ϕE of the Euler equation?

11 The Stirling series

The Stirling series is a classical example of divergent formal series, which is connected to Euler’s
gamma function. The latter is the holomorphic function defined by the formula

Γ(z) =

∫ +∞

0
tz−1e−t dt (46)
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for any z ∈ C with <e z > 0 (so as to ensure the convergence of the integral). Integrating by
parts, one gets the functional equation

Γ(z + 1) = zΓ(z). (47)

This equation provides the analytic continuation of Γ for z ∈ C \ (−N) in the form

Γ(z) =
Γ(z + n)

z(z + 1) · · · (z + n− 1)
(48)

with any non-negative integer n > −<e z; thus Γ is meromorphic in C with simple poles at the
non-positive integers. Since Γ(1) = 1, the functional equation also shows that

Γ(n+ 1) = n!, n ∈ N. (49)

Our starting point will be Stirling’s formula for the restriction of Γ to the positive real axis:

Lemma 11.1. ( x
2π

) 1
2
x−xex Γ(x) −−−−→

x→+∞
1. (50)

Proof. This is an exercise in real analysis (and, as such, the following proof has nothing to do
with the rest of the text!). In view of the functional equation, it is sufficient to prove that the
function

f(x) :=
Γ(x+ 1)

xx+ 1
2 e−x

=

∫ +∞

0

txe−t

xxe−x
dt

x1/2

tends to
√

2π as x → +∞. The idea is that the main contribution in this integral arises for t
close to x and that, for t = x + s with s → 0, txe−t

xxe−x ∼ exp(− s2

2x) and
∫ +∞
−x exp(− s2

2x) ds
x1/2 =∫ +∞

−
√
x exp(− ξ2

2 ) dξ, which converges to∫ +∞

−∞
e−ξ

2/2 dξ =
√

2π (51)

as x→ +∞. We now provide estimates to convert this into rigorous arguments.
We shall always assume x ≥ 1. The change of variable t = x+ ξ

√
x yields

f(x) =

∫ +∞

−∞
eg(x,ξ) dξ, with g(x, ξ) :=

(
x log

(
1 +

ξ√
x

)
− ξ
√
x

)
1{ξ>−

√
x}. (52)

Integrating 1
1+σ = 1− σ

1+σ = 1− σ+ σ2

1+σ , we get log(1 + τ) = τ −
∫ τ

0
σ dσ
1+σ = τ − τ2/2 +

∫ τ
0
σ2 dσ
1+σ

for any τ > −1, whence

g(x, ξ) = −x
∫ ξ/

√
x

0

σ dσ

1 + σ
= −ξ

2

2
+ x

∫ ξ/
√
x

0

σ2 dσ

1 + σ
(53)

for any ξ > −
√
x. Since

∫ τ
0
σ2 dσ
1+σ = O(τ3) as τ → 0, the last part of (53) shows that

g(x, ξ) −−−−→
x→+∞

−ξ2/2 for each ξ ∈ R.

We shall use the first part of (53) to show that
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(i) for −
√
x < ξ ≤ 0, g(x, ξ) ≤ −ξ2/2, whence eg(x,ξ) ≤ G1(ξ) := e−ξ

2/2;

(ii) for 0 ≤ ξ ≤
√
x, g(x, ξ) ≤ −ξ2/4, whence eg(x,ξ) ≤ G2(ξ) := e−ξ

2/4;

(iii) for ξ ≥
√
x, g(x, ξ) ≤ −ξ/2, whence eg(x,ξ) ≤ G3(ξ) := e−|ξ|/2.

This is sufficient to conclude by means of Lebesgue’s dominated convergence theorem, since this
will yield eg(x,ξ) ≤ G1(ξ) +G2(ξ) +G3(ξ) for all x ≥ 1 and ξ ∈ R and the function G1 +G2 +G3

is independent of x and integrable on R, thus (52) implies f(x) −−−−→
x→+∞

∫ +∞

−∞
lim

x→+∞
eg(x,ξ) dξ

and (51) yields the final result.

– Proof of (i): Assume −
√
x < ξ ≤ 0. Changing σ into −σ and integrating the inequality

σ
1−σ ≥ σ over σ ∈

[
0, |ξ|/

√
x
]
, we get g(x, ξ) = −x

∫ |ξ|/√x
0

σ dσ
1−σ ≤ −|ξ|

2/2.

– Proof of (ii): Assume 0 ≤ ξ ≤
√
x, observe that σ

1+σ ≥
σ
2 for 0 ≤ σ ≤ ξ/

√
x and integrate.

– Proof of (iii): Assume ξ ≥
√
x ≥ 1. Noticing that σ

1+σ ≥
1
2 for σ ≥ 1, we get

∫ ξ/√x
0

σ dσ
1+σ ≥∫ ξ/√x

1
σ dσ
1+σ ≥

ξ
2
√
x
, hence g(x, ξ) ≤ −1

2ξ
√
x ≤ − ξ

2 .

Observe that the left-hand side of (50) extends to a holomorphic function in a cut plane:

λ(z) :=
1√
2π
z

1
2
−zez Γ(z), z ∈ C \ R− (54)

(using the principal branch of the logarithm (115) to define z
1
2
−z := e( 1

2
−z)Log z; in fact, λ has a

meromorphic continuation to the Riemann surface of the logarithm C̃ defined in Section 24).

Theorem 11.2. Let I = (−π
2 ,

π
2 ). The above function λ can be written eS I µ̃, where µ̃(z) ∈

z−1C[[z−1]] is a divergent odd formal series which is 1-summable in the directions of I, whose
formal Borel transform belongs to N (I, 0) and is explicitly given by

µ̂(ζ) = ζ−2

(
ζ

2
coth

ζ

2
− 1

)
, ζ ∈ C \ (∆+ ∪∆−) (55)

where ∆± is the half-line ±2πi[1,+∞), and whose Borel sum S I µ̃ is holomorphic in the cut
plane D(I, 0) = C \ R−.

It is the formal series µ̃(z), the asymptotic expansion of log λ(z), that is usually called the
Stirling series.

Exercise 11.1. Compute the Taylor expansion of the right-hand side of (55) in terms of the

Bernoulli numbers B2k defined by
ζ

eζ − 1
= 1 − 1

2
ζ +

∑
k≥1

B2k

(2k)!
ζ2k (so B2 = 1/6, B4 = −1/30,

B6 = 1/42, etc.). Deduce that

µ̃(z) =
∑
k≥1

B2k

2k(2k − 1)
z−2k+1 =

1

12
z−1 − 1

360
z−3 +

1

1260
z−5 + · · · . (56)

We shall see in § 13.3 that one can pass from µ̃ to its exponential and get an improvement
of (50) in the form of
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Corollary 11.3 (Refined Stirling formula). The formal series λ̃(z) := eµ̃(z) is 1-summable in
the directions of (−π

2 ,
π
2 ) and its Borel sum is the function λ, with

1√
2π
z

1
2
−zez Γ(z) ∼1 λ̃(z) = 1 +

∑
n≥0

gnz
−n−1, |z| > c, arg z ∈ (−β, β) (57)

for any c > 0 and β ∈ (0, π), with rationals g0, g1, g2, . . . computable in terms of the Bernoulli
numbers:

g0 = 1
2B2

g1 = 1
8B

2
2

g2 = 1
48B

3
2 + 1

12B4

g3 = 1
384B

4
2 + 1

24B2B4

g4 = 1
3840B

5
2 + 1

96B
2
2B4 + 1

30B6

...

Inserting the numerical values of the Bernoulli numbers,4 we get

Γ(z) ∼1 e−zzz−
1
2

√
2π
(

1 + 1
12z
−1 + 1

288z
−2 − 139

51840z
−3 − 571

2488320z
−4 + 163879

209018880z
−5 + · · ·

)
. (58)

Proof of Theorem 11.2. a) We first consider λ(x) = 1√
2π
x

1
2
−xex Γ(x) for x > 0. The functional

equation (47) yields

λ(x+ 1) = (1 + x−1)−
1
2
−xeλ(x).

Formula (46) shows that, for x > 0, Γ(x) > 0 thus also λ(x) > 0 and we can define

µ(x) := log λ(x), x > 0. (59)

This function is a particular solution of the linear difference equation

µ(x+ 1)− µ(x) = ψ(x), (60)

where ψ(x) := log
(
(1 + x−1)−

1
2
−xe
)

= 1− (1
2 + x) log(1 + x−1).

b) Using the principal branch of the logarithm (115), holomorphic in C \ R−, we see that ψ is
the restriction to (0,+∞) of a function which is holomorphic in C \ [−1, 0]:

ψ(z) = −1

2
Log (1 + z−1) + z

(
z−1 − Log (1 + z−1)

)
.

We observe that ψ is holomorphic at∞ (i.e. t 7→ ψ(1/t) is holomorphic at the origin); moreover
ψ(z) = O(z−2) and its Taylor series at ∞ is

ψ̃(z) =
1

2
L̃(z) + z

(
z−1 + L̃(z)

)
∈ z−2C{z−1}, L̃(z) := −

∑
n≥1

(−1)n−1

n
z−n.

4 and extending the notation “∼1” used in (32) or (43) by writing F (z) ∼1 G(z)ϕ̃0(z) whenever F (z)/G(z) ∼1

ϕ̃0(z)
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With a view to applying Corollary 4.6, we compute the Borel transform ψ̂ = Bψ̃: using L̂(ζ) =
−
∑

n≥1(−ζ)n−1/n! = ζ−1(e−ζ − 1) and the last property in Lemma 4.5, we get

ψ̂(ζ) =
1

2
L̂(ζ) +

d

dζ
(1 + L̂) =

1

2
ζ−1(e−ζ − 1)− ζ−2(e−ζ − 1)− ζ−1e−ζ .

c) Corollary 4.6 shows that the difference equation ϕ̃(z+1)− ϕ̃(z) = ψ̃(z) has a unique solution
in z−1C[[z−1]], whose Borel transform is

−ζ−2 +
1

2
ζ−1 − ζ−1 e−ζ

e−ζ − 1
= ζ−2

(
−1 + ζ

(
1

2
+

1

eζ − 1

))
= µ̂(ζ),

where µ̂(ζ) is defined by (55). The formal series µ̂(ζ) is convergent and defines an even holo-
morphic function which extends analytically to C \ (∆+ ∪∆−) (in fact, it even extends mero-
morphically to C, with simple poles on 2πiZ∗).

d) Let us check that µ̂ ∈ N (I, 0) with I = (−π
2 ,

π
2 ). For θ0 ∈ (0, π2 ), we shall bound |µ̂| in the

sector Σ = { ξ eiθ | ξ ≥ 0, θ ∈ [−θ0, θ0] }. Let ε := min{π, 2π cos θ0}, so that Σ does not intersect
the discs D(±2πi, ε). Since ε > 0, the number

A(ε) := sup
{∣∣∣ coth

ζ

2

∣∣∣, ζ ∈ C \
⋃
m∈Z

D(2πim, ε)
}

is finite, because ζ 7→ coth ζ
2 is 2πi-periodic, continuous in the closed set { |=mζ| ≤ π }\D(0, ε)

and tends to ±1 as <e ζ → ±∞; A is in fact a decreasing function of ε. For ζ ∈ Σ \D(0, 1), we
have |µ̂(ζ)| ≤ 1

2 |ζ|
−1A(ε) + |ζ|−2 ≤ A(ε) + 1. Since µ̂ is holomorphic in the disc D(0, 2π), the

number B := sup{|µ̂(ζ)|, ζ ∈ D(0, 1)} is finite too, and we end up with

|µ̂(ζ)| ≤ max{A(ε) + 1, B}, ζ ∈ Σ,

whence we can conclude µ̂ ∈ N (I, 0, α) with α(θ) = max
{
A
(
ε(θ)

)
+1, B

}
, ε(θ) = min{π, 2π| cos θ|}.

e) On the one hand, we have a solution x 7→ µ(x) of equation (60): µ(x + 1) − µ(x) = ψ(x);
this solution is defined for x > 0 and Stirling’s formula (50) implies that µ(x) tends to 0 as
x→ +∞.

On the other hand, we have a formal solution µ̃(z) to the equation µ̃(z + 1)− µ̃(z) = ψ̃(z),
which is 1-summable, with a Borel sum µ+(z) := S I µ̃(z) holomorphic in D(I, 0) = C \ R−.
The property (34) for the summation operator S I implies that

µ+(z + 1)− µ+(z) = S I ψ̃(z), z ∈ C \ R−.

But ψ̃ is the convergent Taylor expansion of ψ at ∞, S I ψ̃ is nothing but the analytic contin-
uation of ψ|(0,+∞). The restriction of µ+ to (0,+∞) is thus a solution to the same difference
equation (60). Moreover, the Gevrey-1 asymptotic property implies that µ+(x) tends to 0 as
x→ +∞.

The difference x 7→ ∆(x) := µ+(x) − µ(x) thus satisfies ∆(x + 1) −∆(x) = 0 and it tends
to 0 as x→ +∞, hence ∆ ≡ 0.
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Remark 11.4. Our chain of reasoning consisted in considering log λ|(0,+∞) and obtaining its

analytic continuation to C\R− in the form S I µ̃. As a by-product, we deduce that the holomor-
phic function λ does not vanish on C \ R− (being the exponential of a holomorphic function),
hence the function Γ itself does not vanish on C \ R−, nor does its meromorphic continuation
anywhere in the complex plane in view of (48).

The formal series µ̃(z) is odd because µ̂(ζ) is even and the Borel transform B shifts the powers
by one unit. This does not imply that S I µ̃ is odd! The direct consequence of the oddness of µ̃
is rather the following: µ̃ is 1-summable in the directions of J = (π2 ,

3π
2 ) and the Borel sums

µ+ = S I µ̃ and µ− = S J µ̃ are related by

µ−(z) = −µ+(−z), z ∈ C \ R+,

because a change of variable in the Laplace integral yields Lθµ̂(z) = −Lθ+πµ̂(−z). The func-
tion µ− is in fact another solution of the difference equation (60).

Exercise 11.2. − With the notations of Remark 11.4, prove that

µ+(z)− µ−(z) =
∑
m≥1

1

m
e−2πimz, =mz < 0

by means of a residue computation (taking advantage of the existence of a meromorphic
continuation to C for µ̂(ζ), with simple poles on 2πiZ∗, according to (55)).

− Deduce that, when we increase arg z above π or diminish it below −π, the function µ+(z) has
a multiple-valued analytic continuation with logarithmic singularities at negative integers.

− Deduce that λ(z) = 1
(1−e−2πiz)λ(−z) for =mz < 0, thus the restriction λ|{=mz<0} extends

meromorphically to C \ R+ with simple poles at the negative integers.

− Compute the residue of this meromorphic continuation at a negative integer −k and check
that the result is consistent with formula (54) and the fact that the residue of the simple

pole of Γ at −k is (−1)k/k!. (Answer: − ikk+ 1
2 e−k

k!
√

2π
.)

− Repeat the previous computations with =mz > 0. Does one obtain the same meromorphic
continuation to C \ R+ for λ|{=mz>0}? (Answer: no! But why?)

− Prove the reflection formula
Γ(z)Γ(1− z) =

π

sin(πz)
. (61)

Exercise 11.3. Using (47), write a functional equation for the logarithmic derivative ψ(z) :=
Γ′(z)/Γ(z). Is there any solution of this equation in C[[z−1]]? Using the principal branch of
the logarithm (115) and taking for granted that χ(z) := ψ(z) − Log z tends to 0 as z tends
to +∞ along the real axis, show that χ(z) is the Borel sum of a 1-summable formal series (to
be computed explicitly).

12 Return to Poincaré’s example

In Section 2, we saw Poincaré’s example of a meromorphic function φ(t) of C∗ giving rise to
a divergent formal series φ̃(t) (formulas (3) and (5)). There, w = es was a parameter, with
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|w| < 1, i.e. <e s < 0, and we had

φ(t) =
∑
k≥0

wk

1 + kt
, φ̃(t) =

∑
n≥0

ant
n

with well-defined coefficients an = (−1)nbn depending on s.
To investigate the relationship between φ(t) and φ̃(t), we now set

ϕP(z) = z−1φ(z−1) =
∑
k≥0

wk

z + k
, ϕ̃P(z) = z−1φ̃(z−1) =

∑
n≥0

anz
−n−1 (62)

(to place ourselves at∞ and get rid of the constant term) so that ϕP is a meromorphic function
of C with simple poles at non-positive integers and ϕ̃P(z) ∈ z−1C[[z−1]]. The formal Borel
transform ϕ̂P(ζ) of ϕ̃P(z) was already computed under the name F (ζ) (cf. formula (6) and the
paragraph which contains it):

ϕ̂P(ζ) =
1

1− es−ζ
. (63)

The natural questions are now: Is ϕ̃P 1-summable in any arc of directions and is ϕP its Borel
sum? We shall see that the answers are affirmative, with the help of a difference equation:

Lemma 12.1. The function ϕP of (62) satisfies the functional equation

ϕ(z)− wϕ(z + 1) = z−1. (64)

For any z0 ∈ C \R−, the restriction of ϕP to the half-line z0 + R+ is the only bounded solution
of (64) on this half-line.

Proof. We easily see that wϕP(z + 1) =
∑ wk+1

z+1+k = ϕP(z) − z−1 for any z ∈ C \ (−N). The
boundedness of ϕP on the half-lines stems from the fact that, for z ∈ z0 + R+ and k ∈ N,
|z + k| ≥ |=m(z + k)| = | =mz0| and, if =mz0 = 0, |z + k| ≥ z0 > 0, hence, in all cases,∣∣ wk
z+k

∣∣ ≤ A(z0)|w|k with A(z0) > 0 independent of z.
As for the uniqueness: suppose ϕ1 and ϕ2 are bounded functions on z0+R+ which solve (64),

then ψ := ϕ2 − ϕ1 is a bounded solution of the equation ψ(z) − wψ(z + 1) = 0, which implies
ψ(z) = wnψ(z + n) for any z ∈ z0 + R+ and n ∈ N; we get ψ(z) = 0 by taking the limit as
n→∞.

But equation (64), written in the form ϕ− wT1ϕ = z−1, can also be considered in C[[z−1]].

Lemma 12.2. The formal series ϕ̃P of (62) is the unique solution of (64) in C[[z−1]].

Proof. It is clear that the constant term of any formal solution of (64) must vanish. We thus
consider a formal series ϕ̃(z) ∈ z−1C[[z−1]]. Let us denote its formal Borel transform by ϕ̂(ζ) ∈
C[[ζ]]; in view of the second property of Lemma 4.5, ϕ̃ is solution of (64) if and only if (1 −
w e−ζ)ϕ̂(ζ) = 1. There is a unique solution because 1− w e−ζ is invertible in C[[ζ]] (recall that
w 6= 1 by assumption) and its Borel transform is (1−w e−ζ)−1, which according to (63) coincides
with ϕ̂P (ζ) (recall that w = es).
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Figure 3: Borel-Laplace summation for Poincaré’s example. Left: ζ-plane. Right: z-plane.

Theorem 12.3. The formal series ϕ̃P is 1-summable in the directions of I = (−π
2 ,

π
2 ) and

fine-summable in the directions ±π
2 , with ϕ̂P ∈ N (I, 0) ∩ N0(iR+) ∩ N0(−iR−). Its Borel sum

S I ϕ̃P coincides with the function ϕP in D(I, 0) = C \ R−.
Let ωk = s − 2πik for k ∈ Z. Then, for each k ∈ Z, the formal series ϕ̃P is 1-summable

in the directions of Jk = (argωk, argωk+1) ⊂ (π2 ,
3π
2 ), with ϕ̂P ∈ N (Jk, γ), γ(θ) := cos θ, thus

D(Jk, γ) is a sectorial neighbourhood of ∞ containing the real half-line (−∞, 1) (see Figure 3).
The Borel sum of ϕ̃P in the directions of Jk is a solution of equation (64) which differs from ϕP

by

ϕP(z)−S Jk ϕ̃P(z) = 2πi
e−ωkz

1− e−2πiz
= −2πi

e−ωk+1z

1− e2πiz
. (65)

Remark 12.4. As a consequence of (65), we rediscover the fact that ϕP not only is holomorphic
in C \ R− but also extends to a meromorphic function of C, with simple poles at non-positive

integers (because we can express it as the sum of 2πi e−sz

1−e−2πiz , meromorphic on C, and S J0ϕ̃P,

holomorphic in a sectorial neighbourhood of ∞ which contains R−). Similarly, each function
S Jk ϕ̃P is meromorphic in C, with simple poles at the positive integers.

In the course of the proof of formula (65), it will be clear that its right-hand side is ex-
ponentially flat at ∞ in the appropriate directions, as one might expect since it has Gevrey-1
asymptotic expansion reduced to 0. This right-hand side is of the form ψ(z) = e−szχ(z) with
a 1-periodic function χ; it is easy to check that this is the general form of the solution of the
homogeneous difference equation ψ(z)− wψ(z + 1) = 0.

The proof of Theorem 12.3 makes use of

Lemma 12.5. Let σ ∈ (0,−<e s) and δ > 0. Then there exist A = A(σ) > 0 and B = B(δ) > 0
such that, for any ζ ∈ C,

<e ζ ≥ −σ =⇒ |ϕ̂P(ζ)| ≤ A, (66)

dist(ζ, s+ 2πiZ) ≥ δ =⇒ |ϕ̂P(ζ)| ≤ B e<e ζ . (67)
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Lemma 12.5 implies Theorem 12.3. Inequality (66) implies that

ϕ̂P ∈ N (I, 0) ∩N0(iR+) ∩N0(−iR−),

whence the first summability statements follow. Lemma 12.2 and the property (34) for the
summation operator S I imply that S I ϕ̃P is a solution of (64); this solution is bounded on the
half-line [1,+∞), because of the property (43) (in fact it tends to 0 on any half-line of the form
z0 + R+), thus it coincides with ϕP by virtue of Lemma 12.1.

Since <e ζ = γ(arg ζ)|ζ|, inequality (67) implies that

ϕ̂P ∈ N (Jk, γ, αk)

with αk : θ ∈ Jk 7→ B
(
δk(θ)

)
, δk(θ) = min

{
dist(ωk, e

iθR+),dist(ωk+1, e
iθR+)

}
, whence the 1-

summability in the directions of Jk follows. Again, the Borel sum is a solution of the difference
equation (64), a priori defined and holomorphic in D(Jk, γ), which is the union of the half-planes
Πθ
γ(θ) for θ ∈ Jk; one can check that each of these half-planes has the point 1 on its boundary

and that the intersection D of D(Jk, γ) with C \ R− is connected. Thus, to conclude, it is

sufficient to prove (65) for z belonging to one of the open subdomains D+
1 := Πθ

γ(θ)+1 ∩Π
π/2
1 or

D−1 := Πθ
γ(θ)+1 ∩Π

−π/2
1 , with an arbitrary θ ∈ Jk (none of them is empty).

Without loss of generality we can suppose θ 6= π. If θ ∈ (π2 , π), we proceed as follows: for
any integer ` ≤ k, the horizontal line through the midpoint of (ω`, ω`−1) cuts the half-lines eiθR+

and iR+ in the points R` eiθ and iR` sin θ, where R` is a positive real number which tends to
+∞ as `→∞ (see Figure 3). Thus, for z ∈ D+

1 , we have

ϕP(z) = Lπ/2ϕ̂P(z) = lim
`→∞

∫ iR` sin θ

0
e−zζϕ̂P(ζ) dζ,

S Jk ϕ̃P(z) = Lθϕ̂P(z) = lim
`→∞

∫ R` eiθ

0
e−zζϕ̂P(ζ) dζ.

Formula (63) shows that ϕ̂P is meromorphic, with simple poles at the points ωm, m ∈ Z, and
residue = 1 at each of these poles. Cauchy’s Residue Theorem implies that, for each ` ≤ k,(∫ iR` sin θ

0
−
∫ R` eiθ

0

)
e−zζϕ̂P(ζ) dζ = 2πi

k∑
m=`

e−ωmz +

∫
L`

e−zζϕ̂P(ζ) dζ, (68)

where L` is the line segment [R` eiθ, iR` sin θ]. As in the proof of Lemma 9.4, we have

arg ζ ∈
[
π
2 , θ
]

=⇒ |e−zζ | ≤ e−|ζ|(γ(θ)+1) = e−<e ζ−|ζ|

(we have used 1 ≥ γ(θ) + 1), thus ζ ∈ L` =⇒ |e−zζϕ̂P(ζ)| ≤ B(π) e−|ζ| ≤ B(π) e−R` sin θ.
Hence the integral in the right-hand side of (68) tends to 0 and we are left with the geometric
series e−ωkz + e−ωk−1z + · · · = e−ωkz

∑
n≥0 e−2πinz (since −ωmz = −ωkz − 2πi(k −m)z), which

yields (65).
If θ ∈ (π, 3π

2 ), we rather take ` ≥ k + 1 and z ∈ D−1 and end up with

ϕP(z)−S Jk ϕ̃P(z) =

(∫ −i∞

0
−
∫ eiθ∞

0

)
e−zζϕ̂P(ζ) dζ =

− 2πi
∞∑

m=k+1

e−ωmz = −2πie−ωkz
∑
n≥1

e2πinz,

which yields the same formula.
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Proof of Lemma 12.5. In view of (63), for <e ζ ≥ −σ we have |es−ζ | ≤ eσ+<e s < 1 and inequal-
ity (66) thus holds with A = (1− eσ+<e s)−1.

Formula (63) can be rewritten as ϕ̂P(ζ) = eζ

eζ−es
. Let Cδ := { ζ ∈ C | dist(ζ, s+ 2πiZ) ≥ δ }

and F (ζ) := |eζ−es|. The function F is 2πi-periodic and does not vanish on Cδ; since F (ζ) tends
to +∞ as <e ζ → +∞ and to |w| as <e ζ → −∞, we can find R > 0 such that F (ζ) ≥ |w|/2 for
| <e ζ| ≥ R, while M := min{F (ζ) | ζ ∈ Cδ, | <e ζ| ≤ R, | =mζ| ≤ π } is a well-defined positive
number by compactness; (67) follows with B = max{2/|w|, 1/M}.

13 Non-linear operations with 1-summable formal series

13.1 The stability under multiplication of the space of 1-summable formal series associated with
an interval I was already mentioned (right after Definition 9.6), but it is often useful to have
more quantitative information on what happens in the variable ζ, which amounts to controlling
better the convolution products.

Lemma 13.1. Suppose that θ ∈ R and we are given locally integrable functions ϕ̂1, ϕ̂2 : eiθ R+ →
C and Φ1,Φ2 : eiθ R+ → R+ such that

|ϕ̂j(ζ)| ≤ Φj

(
|ζ|
)
, ζ ∈ eiθ R+

for j = 1, 2 and Φ1, Φ2 are integrable on [0, 1]. Then the convolution products ϕ̂3 = ϕ̂1 ∗ ϕ̂2 and
Φ3 = Φ1 ∗ Φ2 defined by formula (24) satisfy

|ϕ̂3(ζ)| ≤ Φ3

(
|ζ|
)
, ζ ∈ eiθ R+.

Proof. Write ϕ̂3(ζ) as
∫ 1

0 ϕ̂1(sζ)ϕ̂2

(
(1− s)ζ

)
ζ ds and Φ3(ξ) as

∫ 1
0 Φ1(sξ)Φ2

(
(1− s)ξ

)
ξ ds.

Lemma 13.2. Suppose ∆ is an open subset of C which is star-shaped with respect to 0 (i.e. it
is non-empty and, for every ζ ∈ ∆, the line segment [0, ζ] is included in ∆). Suppose ϕ̂1 and ϕ̂2

are holomorphic in ∆. Then their convolution product (which is well defined since 0 ∈ ∆) is
also holomorphic in ∆.

Proof. The function (s, ζ) 7→ ϕ̂1(sζ)ϕ̂2

(
(1 − s)ζ

)
is continuous in s, holomorphic in ζ and

bounded in [0, 1]×K for any compact subset K of ∆.

13.2 As an application, we show that 1-summability is compatible with the composition oper-
ator associated with a 1-summable formal series and with substitution into a convergent power
expansion:

Theorem 13.3. Suppose I is an open interval of R, ϕ̃0(z) = a+ϕ̃(z) and ψ̃0(z) are 1-summable
formal series in the directions of I, with a ∈ C and ϕ̃(z) ∈ z−1C[[z−1]], and H(t) ∈ C{t}. Then
the formal series ψ̃0 ◦ (id +ϕ̃0) and H ◦ ϕ̃ are 1-summable in the directions of I and

S I
(
ψ̃0 ◦ (id +ϕ̃0)

)
= (S I ψ̃0) ◦ (id +S I ϕ̃0), S I(H ◦ ϕ̃) = H ◦S I ϕ̃. (69)

More precisely, if Bϕ̃ ∈ N (I, γ, α) and Bψ̃0 ∈ C δ ⊕N (I, γ) with α, γ : I → R locally bounded,
α ≥ 0, and ρ is a positive number smaller than the radius of convergence of H, then

B
(
ψ̃0 ◦ (id +ϕ̃0)

)
∈ C δ ⊕N (I, γ1), γ1 := γ + |a|+

√
α, (70)

B(H ◦ ϕ̃) ∈ C δ ⊕N (I, γ2), γ2 := γ + ρ−1α, (71)
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z ∈ D(I, γ1) =⇒ z + S I ϕ̃0(z) ∈ D(I, γ), z ∈ D(I, γ2) =⇒ |S I ϕ̃(z)| ≤ ρ (72)

and the identities in (69) hold in D(γ1, I) and D(γ2, I) respectively.

Proof. By assumption, ϕ̂ = Bϕ̃ ∈ N (I, γ, α). The properties (72) are easily obtained as a
consequence of

z ∈ Πθ
γj(θ)

=⇒ S I ϕ̃(z) = Lθϕ̂(z) and |Lθϕ̂(z)| ≤ α(θ)

γj(θ)− γ(θ)
(73)

for any θ ∈ I and j = 1, 2.
Let ψ̃0(z) = b+ ψ̃(z) and H = c+ h(t) with b, c ∈ C and ψ̃(z) ∈ z−1C[[z−1]], h(t) ∈ tC{t},

so that

ψ̃0 ◦ (id +ϕ̃0) = b+ λ̃, λ̃ := ψ̃ ◦ (id +ϕ̃0), (74)

H ◦ ϕ̃ = c+ µ̃, µ̃ := h ◦ ϕ̃. (75)

We recall that λ̃ and µ̃ are defined by the formally convergent series of formal series

λ̃ =
∑
k≥0

1

k!
(∂kψ̃)(ϕ̃0)k, µ̃ =

∑
k≥1

hkϕ̃
k, (76)

where we use the notation h(t) =
∑

k≥1 hkt
k.

Correspondingly, in we have formally convergent series of formal series in C[[ζ]]: for instance,
the Borel transform of µ̃ is

µ̂ =
∑
k≥1

hkϕ̂
∗k, where ϕ̂∗k = ϕ̂ ∗ · · · ∗ ϕ̂︸ ︷︷ ︸

k factors

∈ ζk−1C[[ζ]]. (77)

But the series in the right-hand side of (77) can be viewed as a series of holomorphic functions,
since ϕ̂ is holomorphic in the union of a disc D(0, R) and of the sector Σ = { ξ eiθ | ξ > 0, θ ∈ I }:
the open set D(0, R)∪Σ is star-shaped with respect to 0, thus Lemma 13.2 applies and each ϕ̂∗k

is holomorphic in D(0, R)∪Σ. We shall prove the normal convergence of this series of functions
in each compact subset of D(0, R) ∪ Σ and provide appropriate bounds.

Choosing R > 0 smaller than the radius of convergence of ϕ̂, we have

|ϕ̂(ζ)| ≤ A, ζ ∈ D(0, R),

|ϕ̂(ζ)| ≤ Φθ(ξ) := α(θ) eγ(θ)ξ, ζ ∈ Σ,

with a positive number A, using the notations ξ = |ζ| and θ = arg ζ in the second case. The
computation of Φ∗kθ (ξ) is easy, since Φθ can be viewed as the restriction to R+ of the Borel
transform of α(θ)T−γ(θ)(z

−1); Lemma 13.1 thus yields

|ϕ̂∗k(ζ)| ≤ Ak ξk−1

(k − 1)!
, ζ ∈ D(0, R), (78)

|ϕ̂∗k(ζ)| ≤ Φ∗kθ (ξ) = α(θ)k
ξk−1

(k − 1)!
eγ(θ)ξ, ζ ∈ Σ. (79)

These inequalities, together with the fact that there exists B > 0 such that |hk| ≤ Bρ−k for
all k ≥ 1 (because ρ is smaller than the radius of convergence of H), imply that the series of
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functions
∑
hkϕ̂

∗k is uniformly convergent in every compact subset of D(0, R) ∪ Σ; the sum
of this series is a holomorphic function whose Taylor coefficients at 0 coincide with those of µ̂,
hence µ̂(ζ) ∈ C{ζ} and µ̂ extends analytically to D(0, R) ∪ Σ.

Inequalities (79) also show that, for ζ ∈ Σ,

|hkϕ̂∗k(ζ)| ≤ α(θ)Bρ−1

(
ρ−1α(θ)ξ

)k−1

(k − 1)!
eγ(θ)ξ,

hence |µ̂(ζ)| ≤ α(θ)Bρ−1 exp
(
(γ(θ) + ρ−1α(θ))ξ

)
, i.e. µ̂ ∈ N (I, γ + ρ−1α). The dominated

convergence theorem shows that, for each θ ∈ I and z ∈ Πθ
γ2(θ), L

θµ̂(z) coincides with the

convergent sum of the series
∑
hk(Lθϕ̂∗k)(z) =

∑
hk
(
Lθϕ̂(z)

)k
, which is h

(
Lθϕ̂(z)

)
, whence

S I µ̃(z) ≡ h
(
S I ϕ̃(z)

)
.

We now move on to the case of λ̃. Without loss of generality we can suppose that a = 0, i.e.
that there is no translation term in ϕ̃0, since λ̃ = (Taψ̃) ◦ (id +ϕ̃), thus it will be sufficient to
apply the translationless case of (69) and (70) to Taψ̃ ∈ B−1

(
N (I, γ + |a|)

)
: the identity (34)

for S I will yield S I
(

(Taψ̃)◦(id +ϕ̃)
)

= (S ITaψ̃)◦(id +S I ϕ̃) = (S I ψ̃)◦(id +a)◦(id +S I ϕ̃) =

(S I ψ̃) ◦ (id +a+ S I ϕ̃).
When a = 0, in view of (76) and the first property in Lemma 4.5, the formal series λ̂ :=

Bλ̃ ∈ C[[ζ]] is given by the formally convergent series of formal series

λ̂ =
∑
k≥0

χ̂k, χ̂k :=
1

k!

(
(−ζ)kψ̂

)
∗ ϕ̂∗k.

We now view the right-hand side as a series of holomorphic functions. Diminishing R if necessary
so as to make it smaller than the radius of convergence of ψ̂ and taking α′ : I → R+ locally
bounded such that ψ̂ ∈ N (I, γ, α′), we can find A′ > 0 such that

|ψ̂(ζ)| ≤ A′, ζ ∈ D(0, R),

|ψ̂(ζ)| ≤ Ψθ(ξ) := α′(θ) eγ(θ)ξ, ζ ∈ Σ.

Lemma 13.1 and 13.2 show that the χ̂k’s are holomorphic in D(0, R) ∪ Σ and satisfy

|χ̂k(ζ)| ≤ A′ ξ
k

k!
∗Ak ξk−1

(k − 1)!
= A′Ak

ξ2k

(2k)!
, ζ ∈ D(0, R), (80)

|χ̂k(ζ)| ≤
(ξk
k!

Ψθ

)
∗ Φ∗kθ (ξ) = α′(θ)αk(θ)

ξ2k

(2k)!
eγ(θ)ξ, ζ ∈ Σ (81)

(we used (78), (79) and (26)). The series
∑
χ̂k is thus uniformly convergent in the compact

subsets of D(0, R) ∪ Σ and sums to a holomorphic function, whose Taylor series at 0 is λ̂.
Hence we can view λ̂ as a holomorphic function and the last inequalities imply that |λ̂(ζ)| ≤
α′(θ) cosh

(√
α(θ)ξ

)
eγ(θ)ξ ≤ α′(θ)e(

√
α(θ)+γ(θ))ξ for ζ ∈ Σ. This yields λ̂ ∈ N (I, γ +

√
α) and,

since Lθχ̂k = 1
k!

((
d
dz

)kLθψ̂)(Lθϕ̂)k (use the first property in Lemma 6.2 and the identity (33)

for Lθ), the dominated convergence theorem yields S I λ̃ = (S I ψ̃) ◦ (id +S I ϕ̃).

Exercise 13.1. Prove the following multivariate version of the result on substitution in a
convergent series: suppose that r ≥ 1, H(t1, . . . , tr) ∈ C{t1, . . . , tr}, I is an open interval of R
and ϕ̃1(z), . . . , ϕ̃r(z) ∈ z−1C[[z−1]] are 1-summable in the directions of I; then the formal series

χ̃(z) := H
(
ϕ̃1(z), . . . , ϕ̃r(z)

)
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is 1-summable in the directions of I and S I χ̃ = H ◦ (S I ϕ̃1, . . . ,S I ϕ̃r).

13.3 Proof of Corollary 11.3. As a consequence of Theorem 13.3, using H(t) = et, we obtain
the 1-summability in the directions of I = (−π

2 ,
π
2 ) of the exponential λ̃ of the Stirling series µ̃,

whence the refined Stirling formula (57) for λ = eS I µ̃ = S I λ̃.

Exercise 13.2. We just obtained that

Γ(z) ∼1 e−zzz−
1
2

√
2π
(

1 +
∑
k≥0

gkz
−k−1

)
, |z| > c, arg z ∈ (−β, β)

for any c > 0 and β ∈ (0, π) (with the extended notation of footnote 4). Show that

1

Γ(z)
∼1

1√
2π

ezz−z+
1
2

(
1 +

∑
k≥0

(−1)k+1gkz
−k−1

)
, |z| > c, arg z ∈ (−β, β)

for the same values of c and β.

Remark 13.4. Since n! = nΓ(n) by (49) and (47), we get

n! ∼ nn
√

2πn

en

(
1 +

1

12n
+

1

288n2
− 139

51840n3
− 571

2488320n4
+

163879

209018880n5
+ · · ·

)
,

1

n!
∼ en

nn
√

2πn

(
1− 1

12n
+

1

288n2
+

139

51840n3
− 571

2488320n4
− 163879

209018880n5
+ · · ·

)
.

See [DeA09] for a direct proof.

Remark 13.5. In accordance with Remark 9.7, we observe a kind of Stokes phenomenon for
the function λ: it is a priori holomorphic in the cut plane C \ R−, or equivalently in the sector
{−π < arg z < π } of the Riemann surface of the logarithm C̃, but Exercise 11.2 gives the
‘reflection formula’ λ(z) = 1

(1−e−2πiz)λ(eiπz)
for −π < arg z < 0, which yields a meromorphic

continuation for λ in the larger sector {−2π < arg z < π } (with the points k e−iπ, k ∈ N∗, as
only poles); the asymptotic property λ(z) ∼1 λ̃(z) is valid in the directions of (−π, π) but not in
those of (−2π,−π]: the ray e−iπR+ is singular and the reflection formula implies that, in the
directions of (−2π,−π), λ(z) ∼ −e2πiz, which is exponentially small (and e−2πizλ(z) ∼1 −λ̃(z)
there).

In fact, iterating the reflection formula we find a meromorphic continuation to the whole
of C̃, with a ‘monodromy relation’ λ(z) = −e2πizλ(z e2πi) (with the notations of Section 24).
Outside the singular rays, the asymptotic behaviour is given by

λ(z) = (−1)ne−2πinz λ(z e−2πin) ∼1 (−1)ne−2πinz λ̃(z)

for |z| large enough and 2πn−β < arg z < 2πn+β, with arbitrary n ∈ Z and β ∈ (0, π). Except
in the initial sector of definition (n = 0), we thus find exponential decay and growth alternating
at each crossing of a singular ray e(2n−1)iπR+ or of a ray e2niπR+ on which the behaviour is
oscillatory, according to the sign of n=mz (since |e−2πinz| = e2πn=mz).

The last properties can also be deduced from formula (54).

13.4 We leave it to the reader to adapt the results of this section to fine-summable formal
series in a direction θ.
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Formal tangent-to-identity diffeomorphisms

14 Germs of holomorphic diffeomorphisms

A holomorphic local diffeomorphism around 0 is a holomorphic map F : U → C, where U is an
open neighbourhood of 0 in C, such that F (0) = 0 and F ′(0) 6= 0. The local inversion theorem
shows that there is an open neighbourhood V of 0 contained in U such that F (V ) is open and F
induces a biholomorphism from V to F (V ). When we are not too much interested in the precise
domains U or V but are ready to replace them by smaller neighrbouhoods of 0, we may consider
the germ of F at 0. This means that we consider the equivalence class of F for the following
equivalence relation: two holomorphic local diffeomorphisms are equivalent if and only if there
exists an open neighbourhood of 0 on which their restrictions coincide.

It is easy to see that a germ of holomorphic diffeomorphism at 0 can be identified with the
Taylor series at 0 of any of its representatives. Moreover, our equivalence relation is compatible
with the composition and the inversion of holomorphic local diffeomorphisms. Consequently,
the germs of holomorphic diffeomorphisms at 0 make up a (nonabelian) group, isomorphic to
{F (t) ∈ tC{t} | F ′(0) 6= 0 }.

Germs of holomorphic diffeomorphisms can also be considered at ∞: via the inversion t 7→
z = 1/t, a germ F (t) at 0 is conjugate to f(z) = 1/F (1/z). We focus on the tangent-to-identity
case

F (t) = t− σt2 − τt3 + · · · = t(1− σt− τt2 + · · · ) ∈ C{t} (σ, τ ∈ C). (82)

This amounts to considering germs of holomorphic diffeomorphisms at ∞ of the form

f(z) = z(1− σz−1 − τz−2 + · · · )−1 = z + σ + (τ + σ2)z−1 + · · · ∈ id +C{z−1}. (83)

For such a germ f , there exists c > 0 large enough and a representative which is an injective
holomorphic function in { |z| > c }. We use the notations

G := id +C{z−1}

for the group of holomorphic tangent-to-identity germs of diffeomorphisms at ∞, and

Gσ := id +σ + z−1C{z−1}

when we want to keep track of the coefficient σ in (83).

15 Formal diffeomorphisms

Even if we are interested in properties of the group G , or even of a single element of G , it is
useful (as we shall see in Sections 32–37.4) to drop the convergence requirement and consider
the larger set

G̃ = id +C[[z−1]].

This is the set of formal tangent-to-identity diffeomorphisms at ∞, which we view as a complete
metric space by means of the distance

d
(
f̃ , h̃

)
:= 2− val(χ̃−ϕ̃), f̃ = id +ϕ̃, h̃ = id +χ̃, ϕ̃, χ̃ ∈ C[[z−1]],
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as we did for C[[z−1]] in § 3.3. Notice that G appears as a dense subset of G̃ . We also use the
notation

G̃σ = id +σ + z−1C[[z−1]] =
{
f̃(z) = z + σ + ϕ̃(z) | ϕ̃ ∈ z−1C[[z−1]]

}
⊂ G̃

for any σ ∈ C. Via the inversion z 7→ 1/z, the elements of G̃ are conjugate to formal tangent-
to-identity diffeomorphisms at 0, i.e. formal series of the form (82) but without the convergence
condition (the corresponding F (t) is in C[[t]] but not necessarily in C{t}); the elements of G̃σ
are conjugate to formal series of the form F (t) = t− σt2 + · · · ∈ C[[t]], by the formal analogue
of (83).

Theorem 15.1. The set G̃ is a nonabelian topological group for the composition law

f̃ ◦ h̃ := id +χ̃+ ϕ̃ ◦ (id +χ̃), f̃ = id +ϕ̃, h̃ = id +χ̃, ϕ̃, χ̃ ∈ C[[z−1]], (84)

with ϕ̃ ◦ (id +χ̃) defined by (14). The subset

G̃0 = id +z−1C[[z−1]]

is a subgroup of G̃ .

Notice that the definition (84) of the composition law in G̃ can also be written

f̃ ◦ h̃ =
∑
k≥0

1

k!
χ̃k ∂kf̃ , h̃ = id +χ̃, (85)

with the convention ∂0f̃ = f̃ = id +ϕ̃, ∂f̃ = 1 + ∂ϕ̃ and ∂kf̃ = ∂kϕ̃ for k ≥ 2.

Proof of Theorem 15.1. The composition (84) is a continuous map G̃ × G̃ → G̃ because, for
f̃ , f̃∗, h̃, h̃∗ ∈ G̃ , formula (85) implies

f̃ ◦ h̃∗ − f̃ ◦ h̃ = (h̃∗ − h̃)

∫ 1

0
∂f̃ ◦

(
(1− t)h̃+ th̃∗

)
dt (86)

(where ∂f̃ ◦
(
(1− t)h̃+ th̃∗

)
is a formal series whose coefficients depend polynomially on t and

integration is meant coefficient-wise); this is a formal series of valuation ≥ val(h̃∗− h̃), by virtue
of (15), hence the difference

f̃∗ ◦ h̃∗ − f̃ ◦ h̃ = (f̃∗ − f̃) ◦ h̃∗ + f̃ ◦ h̃∗ − f̃ ◦ h̃

is a formal series of valuation ≥ min
{

val(f̃∗ − f̃), val(h̃∗ − h̃)
}

(using again (15)), i.e.

d(f̃ ◦ h̃, f̃∗ ◦ h̃∗) ≤ max
{
d(f̃ , f̃∗), d(h̃, h̃∗)

}
.

The subset G̃0 is clearly stable by composition.
The composition law of G̃ , when restricted to G , boils down to the composition of holomor-

phic germs which is associative (G is a group) and G is a dense subset of G̃ , thus composition
is associative in G̃ too. It is not commutative in G̃ since it is not commutative in G . The
element id is clearly a unit for composition in G̃ thus we only need to show that there is a
well-defined continuous inverse map h̃ ∈ G̃ 7→ h̃◦(−1) ∈ G̃ and that this map leaves G̃0 invariant.
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We first show that every element h̃ ∈ G̃ has a unique left inverse L (h̃). Given h̃ = id +χ̃,
the equation f̃ ◦ h̃ = id is equivalent to the fixed-point equation

f̃ = C (f̃), C (f̃) := id−(f̃ ◦ h̃− f̃) = id−χ̃
∫ 1

0
∂f̃ ◦ (id +tχ̃) dt (87)

(we have used (86) to get the last expression of C ). The map C : G̃ → G̃ is a contraction of
our complete metric space, because the difference

C (f̃∗)− C (f̃) = −χ̃
∫ 1

0
∂(f̃∗ − f̃) ◦ (id +tχ̃) dt (88)

has valuation ≥ val(f̃∗− f̃) + 1 (because of (15): val
(
∂(f̃∗− f̃) ◦ (id +tχ̃)

)
= val

(
∂(f̃∗− f̃)

)
≥

val(f̃∗− f̃) + 1 for each t), hence d
(
C (f̃),C (f̃∗)

)
≤ 1

2d(f̃ , f̃∗). The Banach fixed-point theorem

implies that there is a unique solution f̃ = L (h̃), obtained as the limit of the Cauchy sequence
Ln(h̃) := C ◦ · · · ◦ C︸ ︷︷ ︸

n times

(0) as n→∞.

We observe that, if h̃ ∈ G̃0, then C (G̃ ) ⊂ G̃0, thus Ln(h̃) ∈ G̃0 for each n ≥ 0 and clearly
L (h̃) ∈ G̃0 in that case.

The fact that each element has a unique left inverse implies that each element is invertible:
given h̃ ∈ G̃ , its left inverse f̃ := L (h̃) is also a right inverse because h̃∗ := L (f̃) satisfies
h̃∗ = h̃∗ ◦ (f̃ ◦ h̃) = (h̃∗ ◦ f̃) ◦ h̃ = h̃, i.e. h̃ ◦ f̃ = id.

Finally, we check that L is continuous. For h̃, h̃∗ ∈ G̃ , we denote by C ,C ∗ the corresponding
maps defined by (87). For any f̃ , f̃∗, the difference C ∗(f̃)−C (f̃) = f̃ ◦ h̃− f̃ ◦ h̃∗ has valuation
≥ val(h̃∗ − h̃) (as already deduced from (86)), while val

(
C ∗(f̃∗)−C ∗(f̃)

)
≥ val(f̃∗ − f̃) + 1 (as

already deduced from (88)), hence d
(
C (f̃),C ∗(f̃∗)

)
≤ max

{
d(h̃, h̃∗), 1

2d(f̃ , f̃∗)
}

. It follows by

induction that d
(
Ln(h̃),Ln(h̃∗)

)
= d

(
C (Ln−1(h̃)),C ∗(Ln−1(h̃∗))

)
≤ d(h̃, h̃∗) for every n ≥ 1,

hence d
(
L (h̃),L (h̃∗)

)
≤ d(h̃, h̃∗).

Notice that G̃0 = { f̃ ∈ G̃ | d(id, f̃) ≤ 1
2 } = { f̃ ∈ G̃ | d(id, f̃) < 1 } is a closed ball as well as

an open ball, thus it is both closed and open for the Krull topology of G̃ .

16 Inversion in the group G̃

There is an explicit formula for the inverse of an element of G̃ , which is a particular case of the
Lagrange reversion formula (adapted to our framework):

Theorem 16.1. For any χ̃ ∈ C[[z−1]], the inverse of h̃ = id +χ̃ can be written as the formally
convergent series of formal series

(id +χ̃)◦(−1) = id +
∑
k≥1

(−1)k

k!
∂k−1(χ̃k). (89)

The proof of Theorem 16.1 will make use of

Lemma 16.2. Let χ̃ ∈ C[[z−1]] and n ≥ 1. Then, for any ψ̃ ∈ C[[z−1]],

n∑
k=0

(−1)k
(
n

k

)
χ̃n−k ∂n−1(χ̃kψ̃) = 0. (90)
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Proof of Lemma 16.2. Let us call Hnψ̃ the left-hand side of (90). We have H1ψ̃ = χ̃ ∂0ψ̃ −
∂0(χ̃ψ̃) = 0. It is thus sufficient to prove the recursive formula

Hn+1ψ̃ = −∂Hn(χ̃ψ̃) + χ̃ ∂Hnψ̃ − n(∂χ̃)Hnψ̃.

To this end, we use the convention
(
n
−1

)
=
(
n
n+1

)
= 0 and compute

−∂Hn(χ̃ψ̃) =

n∑
k=−1

(−1)k+1

(
n

k

)
∂
[
χ̃n−k ∂n−1(χ̃k+1ψ̃)

]
=

n+1∑
k=0

(−1)k
(

n

k − 1

)
∂
[
χ̃n+1−k ∂n−1(χ̃kψ̃)

]
(shifting the summation index to get the last expression), while

χ̃ ∂Hnψ̃ =
n+1∑
k=0

(−1)k
(
n

k

)
χ̃ ∂
[
χ̃n−k ∂n−1(χ̃kψ̃)

]
.

The Leibniz rule yields

− ∂Hn(χ̃ψ̃) + χ̃ ∂Hnψ̃ =

n+1∑
k=0

(−1)k
[( n

k − 1

)
+

(
n

k

)]
χ̃n+1−k ∂n(χ̃kψ̃)

+
n+1∑
k=0

(−1)k
[
(n+ 1− k)

(
n

k − 1

)
+ (n− k)

(
n

k

)]
χ̃n−k(∂χ̃)∂n−1(χ̃kψ̃).

The expression in the former bracket is
(
n+1
k

)
, hence the first sum is nothing but Hn+1ψ̃;

the expression in the latter bracket is n times
(
n−1
k

)
+
(
n−1
k−1

)
=
(
n
k

)
, hence the second sum is

n(∂χ̃)Hnψ̃.

Proof of Theorem 16.1. Let h̃ = id +χ̃ ∈ G̃ . Lemma 16.2 shows that the right-hand side of (89)
defines a left inverse for h̃. Indeed, denoting by f̃ = id +ϕ̃ this right-hand side, we have

f̃ ◦ h̃− id = χ̃+ ϕ̃ ◦ (id +χ̃) = χ̃+
∑

`≥0, k≥1

(−1)k

k!`!
χ̃` ∂k+`−1(χ̃k) =

∑
n≥1

1

n!
H̃n

with H̃n =
∑

(−1)k
(
n
k

)
χ̃` ∂n−1(χ̃k), the last sum running over all pairs of non-negative integers

(k, `) such that k + ` = n (absorbing the first χ̃ in H̃1 and taking care of k = 0 according as
n = 1 or n ≥ 2; formal summability legitimates our Fubini-like manipulation), then Lemma 16.2
with ψ̃ = 1 says that H̃n = 0 for every n ≥ 1.

Exercise 16.1 (Lagrange reversion formula). Prove that, with the same convention as
in (85),

f̃ ◦ h̃◦(−1) = f̃ +
∑
k≥1

(−1)k

k!
∂k−1(χ̃k∂f̃), h̃ = id +χ̃.

(Hint: Use Lemma 16.2 with ψ̃ = ∂(f̃ − id) = −1 + ∂f̃ .)

Exercise 16.2. Let h = id +χ ∈ G , i.e. with χ ∈ C{z−1}. We can thus choose c0,M > 0 such
that |χ(z)| ≤M for |z| ≥ c0. Show that h◦(−1)(z) is convergent for |z| ≥ c0 +M . (Hint: Given
δ > M , use the Cauchy inequalities to bound |∂k−1(χk)(z)| for |z| > c0 + δ.)

39



17 The group of 1-summable formal diffeomorphisms in an arc
of directions

Among all formal tangent-to-identity diffeomorphisms, we now distinguish those which are 1-
summable in an arc of directions.

Definition 17.1. Let I be an open interval of R. Let γ, α : I → R be locally bounded functions
with α ≥ 0. For any σ ∈ C we define

G̃ (I, γ, α) :=
{
f̃ = id +ϕ̃0 | ϕ̃0 ∈ B−1

(
C δ ⊕N (I, γ, α)

) }
, G̃σ(I, γ, α) := G̃ (I, γ, α) ∩ G̃σ,

G̃ (I, γ) :=
{
f̃ = id +ϕ̃0 | ϕ̃0 ∈ B−1

(
C δ ⊕N (I, γ)

) }
, G̃σ(I, γ) := G̃ (I, γ) ∩ G̃σ,

G̃ (I) :=
{
f̃ = id +ϕ̃0 | ϕ̃0 ∈ B−1

(
C δ ⊕N (I)

) }
, G̃σ(I) := G̃ (I) ∩ G̃σ.

We extend the definition of the Borel summation operator S I to G̃ (I) by setting

f̃ = id +ϕ̃0 ∈ G̃ (I, γ) =⇒ S I f̃(z) = z + S I ϕ̃0(z), z ∈ D(I, γ).

For |I| ≥ 2π, G̃ (I) coincides with the group G of holomorphic tangent-to-identity diffeomor-
phisms and S I is the ordinary summation operator for Taylor series at ∞, but

|I| < 2π =⇒ G $ G̃ (I) $ G̃ .

For f̃ ∈ G̃ (I), the function S I f̃ is holomorphic in a sectorial neighbourhood of ∞ (but not in
a full neighbourhood of ∞ if f̃ /∈ G ); we shall see that it defines an injective transformation in
a domain of the form D(I, γ). We first study composition and inversion in G̃ (I).

Theorem 17.2. Let I be an open interval of R and γ, α : I → R be locally bounded functions
with α ≥ 0. Let σ, τ ∈ C and f̃ ∈ G̃σ(I, γ, α), g̃ ∈ G̃τ (I, γ). Then g̃ ◦ f̃ ∈ G̃σ+τ (I, γ1) with
γ1 = γ + |σ|+

√
α, the function S I f̃ maps D(I, γ1) in D(I, γ) and

S I(g̃ ◦ f̃) = (S I g̃) ◦ (S I f̃) on D(I, γ1).

Proof. Apply Theorem 13.3 to ϕ̃0 := f̃ − id and ψ̃0 := g̃ − id.

Theorem 17.3. Let f̃ ∈ G̃σ(I, γ, α). Then h̃ := f̃◦(−1) ∈ G̃−σ(I, γ∗, α) with γ∗ := γ+ |σ|+ 2
√
α

and

S I f̃
(
D(I, γ1)

)
⊂ D(I, γ∗), (S I h̃) ◦S I f̃ = id on D(I, γ1), (91)

S I h̃
(
D(I, γ2)

)
⊂ D(I, γ), (S I f̃) ◦S I h̃ = id on D(I, γ2), (92)

with γ1 := γ + 2|σ|+ (1 +
√

2)
√
α and γ2 := γ + |σ|+ (1 +

√
2)
√
α.

Moreover, S I f̃ is injective on D
(
I, γ + (1 +

√
2)
√
α
)
.

Proof. We first assume f̃ ∈ G̃0(I, γ, α). By (89), we have h̃ = id +χ̃ with χ̃ given by a formally
convergent series in z−1C[[z−1]]:

χ̃ =
∑
k≥1

χ̃k, χ̃k =
(−1)k

k!
∂k−1(ϕ̃k).
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Correspondingly, Bχ̃ is given by a formally convergent series in C[[ζ]]:

χ̂ =
∑
k≥1

χ̂k, χ̂k = −ζ
k−1

k!
ϕ̂∗k

(beware that the last expression involves multiplication by − ζk−1

k! , not convolution!). We argue
as in the proof of Theorem 13.3 and view χ̂ as a series of holomorphic functions in the union of
a disc D(0, R) and a sector Σ in which ϕ̂ itself is holomorphic; inequalities (78) and (79) yield

|χ̂k(ζ)| ≤ Ak ξ2(k−1)

k!(k − 1)!
, ζ ∈ D(0, R), (93)

|χ̂k(ζ)| ≤ α(θ)k
ξ2(k−1)

k!(k − 1)!
eγ(θ)ξ, ζ ∈ Σ, (94)

where ξ = |ζ| and θ = arg ζ. The series of holomorphic functions
∑
χ̂k is thus uniformly

convergent in every compact subset of D(0, R)∪Σ and its sum is a holomorphic function whose
Taylor series at 0 is χ̂. Therefore χ̂ ∈ C{ζ} extends analytically to D(0, R)∪Σ; moreover, since

1
k!(k−1)! ≤

1
k

22(k−1)

(2(k−1))! , (94) yields

|χ̂(ζ)| ≤
∑
k≥1

α(θ)k

k

(2ξ)2(k−1)(
2(k − 1)

)
!
eγ(θ)ξ ≤ α(θ) e(γ(θ)+2

√
α(θ))ξ

for ζ ∈ Σ. Hence h̃ ∈ G̃0(I, γ + 2
√
α, α) when σ = 0.

In the general case, we observe that f̃ = (id +σ) ◦ g̃ with g̃ := (id−σ) ◦ f̃ ∈ G̃0(I, γ, α), thus
g̃◦(−1) = id +χ̃ ∈ G̃0(I, γ + 2

√
α, α) and h̃ = f̃◦(−1) = g̃◦(−1) ◦ (id−σ) = id−σ + T−σχ̃, which

implies h̃ ∈ G̃ (I, γ + 2
√
α+ |σ|, α) by the third property in Lemma 4.5.

Since h̃ ◦ f̃ = f̃ ◦ h̃ = id, we can apply Theorem 17.2 and get (S I h̃) ◦ S I f̃ = id and
(S I f̃) ◦ S I h̃ = id in appropriate domains; in fact, by analytic continuation, these identities
will hold in any domain D(I, γ + δ1), resp. D(I, γ + δ2), such that

S I f̃
(
D(I, γ + δ1)

)
⊂ D(I, γ∗), S I h̃

(
D(I, γ + δ2)

)
⊂ D(I, γ).

Writing f̃ = id +σ + ϕ̃ with Bϕ̃ ∈ N (I, γ, α), with the help of (73) one can easily show that
δ1 = γ1 − γ and δ2 = γ2 − γ satisfy this.

For the injectivity statement, we write again f̃ = (id +σ)◦ g̃ and apply the previous result to
g̃ ∈ G0(I, γ, α). The function S I g̃ maps D := D

(
I, γ+(1+

√
2)
√
α
)

in the domain D
(
I, γ+2

√
α
)
,

on which S I(g̃◦(−1)) is well-defined, and S I(g̃◦(−1))◦S I g̃ = id on D , therefore S I g̃ is injective
on D , and so is the function S I f̃ = σ + S I g̃.

Corollary 17.4. For any open interval I, G̃ (I) and G̃0(I) are subgroups of G̃ .

Exercise 17.1. Consider the set id +C[[z−1]]1 of Gevrey-1 tangent-to-identity formal diffeo-
morphisms, so that

G̃ (I) $ id +C[[z−1]]1 $ G̃ .

Show that id +C[[z−1]]1 is a subgroup of G̃ . (Hint: View C[[z−1]]1 as B−1
(
C δ ⊕ C{ζ}

)
and

imitate the previous chain of reasoning.)
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We shall see in Section 34 how 1-summable formal diffeomorphisms occur in the study of a
holomorphic germ f ∈ G1.

The algebra of resurgent functions

18 Resurgent functions, resurgent formal series

Among Gevrey-1 formal series, we have distinguished the subspace of those which are 1-
summable in a given arc of directions and studied it in Sections 9–17. We shall now study
another subspace of C[[z−1]]1, which consists of “resurgent formal series”. As in the case of
1-summability, we make use of the algebra isomorphism (22)

B : C[[z−1]]1
∼−→ Cδ ⊕ C{ζ}

and give the definition not directly in terms of the formal series themselves, but rather in terms
of their formal Borel transforms, for which, beyond convergence near the origin, we shall require
a certain property of analytic continuation.

For any R > 0 and ζ0 ∈ C we use the notations

D(ζ0, R) := { ζ ∈ C | |ζ − ζ0| < R }, (95)

DR := D(0, R), D∗R := DR \ {0}. (96)

Definition 18.1. Let Ω be a non-empty closed discrete subset of C, let ϕ̂(ζ) ∈ C{ζ} be a
holomorphic germ at the origin. We say that ϕ̂ is an Ω-continuable germ if there exists R > 0
not larger than the radius of convergence of ϕ̂ such that D∗R ∩ Ω = ∅ and ϕ̂ admits analytic
continuation along any path of C \ Ω originating from any point of D∗R. See Figure 4. We use
the notation

R̂Ω := { all Ω-continuable germs } ⊂ C{ζ}.
We call Ω-resurgent function any element of C δ ⊕ R̂Ω, i.e. any element of C δ ⊕ C{ζ} of the
form a δ + ϕ̂ with a = a complex number and ϕ̂ = an Ω-continuable germ.

We call Ω-resurgent formal series any ϕ̃0(z) ∈ C[[z−1]]1 whose formal Borel transform is an
Ω-resurgent function, i.e. any ϕ̃0 belonging to

R̃Ω := B−1
(
C δ ⊕ R̂Ω

)
⊂ C[[z−1]]1.

Remark 18.2. In the above definition, “path” means a continuous function γ : J → C \ Ω,
where J is a compact interval of R; without loss of generality, all our paths will be assumed
piecewise continuously differentiable. As is often the case with analytic continuation and Cauchy
integrals, the precise parametrisation of γ will usually not matter, in the sense that we shall
get the same result from two paths γ : [a, b] → C \ Ω and γ′ : [a′, b′] → C \ Ω which only
differ by a change of parametrisation (γ = γ′ ◦ σ with σ : [a, b]→ [a′, b′] piecewise continuously
differentiable, increasing and mapping a to a′ and b to b′).

Our definitions are particular cases of Écalle’s definition of “continuability without a cut” (or
“endless continuability”) for germs, and “resurgence” for formal series (we prescribe in advance
the possible location of the singularities of the analytic continuation of ϕ̂, whereas the theory
is developed in Vol. 3 of [Eca81] without this restriction). Here we stick to the simplest cases;
typical examples with which we shall work are Ω = Z or 2πiZ.
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Figure 4: Ω-continuability. Any path γ starting in D∗R and contained in C \ Ω must be a path

of analytic continuation for ϕ̂ ∈ R̂Ω.

Remark 18.3. Let ρ(Ω) := min
{
|ω|, ω ∈ Ω \ {0}

}
. Any ϕ̂ ∈ R̂Ω is a holomorphic germ at 0

with radius of convergence ≥ ρ(Ω) and one can always take R = ρ(Ω) in Definition 18.1. In
fact, given an arbitrary ζ0 ∈ Dρ(Ω), we have

ϕ̂ ∈ R̂Ω ⇐⇒

∣∣∣∣∣ ϕ̂ germ of holomorphic function of Dρ(Ω) admitting analytic continuation

along any path γ : [0, 1]→ C such that γ(0) = ζ0 and γ
(
(0, 1]

)
⊂ C \ Ω

(even if ζ0 = 0 and 0 ∈ Ω: there is no need to avoid 0 at the beginning of the path, when we still
are in the disc of convergence of ϕ̂).

Example 18.1. Trivially, any entire function of C defines an Ω-continuable germ; as a conse-
quence,

C{z−1} ⊂ R̃Ω.

Other elementary examples of Ω-continuable germs are the functions which are holomorphic in
C \ Ω and regular at 0, like 1

(ζ−ω)m with m ∈ N∗ and ω ∈ Ω \ {0}.

Lemma 18.4. – The Euler series ϕ̃E(z) defined by (37) belongs to R̃{−1}.

– Given w = es with <e s < 0, the series ϕ̃P(z) of Poincaré’s example (62) belongs to R̃Ω with
Ω := s+ 2πiZ.

– The Stirling series µ̃(z) of Theorem 11.2 (explicitly given by (56)) belongs to R̃2πiZ.

Proof. The Borel transforms of all these series have a meromorphic continuation:

– Euler: ϕ̂E(ζ) = (1 + ζ)−1 by (38).

– Poincaré: ϕ̂P(ζ) = 1
1−es−ζ

by (63).

– Stirling: µ̂(ζ) = ζ−2
(
ζ
2 coth ζ

2 − 1
)

by (55).
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Exercise 18.2. Any {0}-continuable germ defines an entire function of C. (Hint: view C as
the union of a disc and two cut planes.)

Exercise 18.3. Give an example of a holomorphic germ at 0 which is not Ω-continuable for
any non-empty closed discrete subset Ω of C.

But in all the previous examples the Borel transform was single-valued, whereas the interest
of Definition 18.1 is to authorize multiple-valuedness when following the analytic continuation.
For instance, the exponential of the Stirling series λ̃ = eµ̃, which gives rise to the refined Stirling
formula (57), has a Borel transform with a multiple-valued analytic continuation and belongs
to R̃2πiZ, although this is more difficult to check (see Sections 22 and 30.1). We now give
elementary examples which illustrate multiple-valued analytic continuation.

Notation 18.5. If ϕ̂ is a holomorphic germ at γ(a) which admits an analytic continuation
along γ, we denote by contγ ϕ̂ the resulting holomorphic germ at the endpoint γ(b).

Example 18.4. Consider ϕ̂(ζ) =
∑

n≥1
ζn

n : this is a holomorphic germ belonging to R̂{1} but
its analytic continuation is not single-valued. Indeed, the disc of convergence of ϕ̂ is D1 and, for
any ζ ∈ D1, ϕ̂(ζ) =

∫ ζ
0

dξ
1−ξ = −Log (1 − ζ) with the notation (115) for the principal branch of

the logarithm, hence the analytic continuation of ϕ̂ along a path γ originating from 0, avoiding 1
and ending at a point ζ1 is the holomorphic germ at ζ1 explicitly given by

contγ ϕ̂(ζ) =

∫
γ

dξ

1− ξ
+

∫ ζ

ζ1

dξ

1− ξ
(ζ close enough to ζ1),

which yields a multiple-valued function in C \ {1} (two paths from 0 to ζ1 do not give rise to
the same analytic continuation near ζ1 unless they are homotopic in C \ {1}). The germ ϕ̂ is
Ω-continuable if and only if 1 ∈ Ω.

Example 18.5. A related example of {0, 1}-continuable germ with mutivalued analytic contin-
uation is given by

∑
n≥0

ζn

n+1 = −1
ζLog (1−ζ), for which there is a principal branch holomorphic

in the cut plane C \ [1,+∞) and all the other branches have a simple pole at 0. This germ is
Ω-continuable if and only if {0, 1} ⊂ Ω.

Example 18.6. If ω ∈ Ω\{0} and ψ̂ ∈ C{ζ} extends analytically to C\Ω, then, for any branch
of the logarithm Log , the formula ϕ̂(ζ) = ψ̂(ζ)Log (ζ − ω) defines a germ of R̂Ω with non-
trivial monodromy around ω: the branches of the analytic continuation of ϕ̂ differ by integer
multiples of 2πi ψ̂.

Example 18.7. If ω ∈ C∗ and m ∈ N∗, then
(
Log (ζ − ω)

)m ∈ R̂{ω} for any branch of the

logarithm; if moreover ω 6= −1, then
(
Log (ζ − ω)

)−m ∈ R̂{ω,ω+1}.

Example 18.8. Given α ∈ C, the incomplete Gamma function is defined for z > 0 by

Γ(α, z) :=

∫ +∞

z
e−ttα−1 dt

and it extends to a holomorphic function in C \R− (notice that Γ(α, z) −−−→
z→0

Γ(α) if <e α > 0).

The change of variable t = z(ζ + 1) in the integral yields the formula

Γ(α, z) = e−zzα(S I ϕ̂α)(z), ϕ̂α(ζ) := (1 + ζ)α−1, (97)
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where I = (−π
2 ,

π
2 ) and we use the principal branch of the logarithm (115) to define the holo-

morphic function (1 + ζ)α−1 as e(α−1)Log (1+ζ). The germ ϕ̂α is always {−1}-resurgent; it has
multiple-valued analytic continuation if α 6∈ Z. Hence

z−αezΓ(α, z) ∼1 ϕ̃α(z) =
∑
n≥0

(α− 1)(α− 2) · · · (α− n)z−n−1, (98)

which is always a 1-summable and {−1}-resurgent formal series (a polynomial in z−1 if α ∈ N∗,
a divergent formal series otherwise).

R̂Ω and R̃Ω clearly are linear subspaces of C{ζ} and C[[z−1]]1. We end this section with
elementary stability properties:

Lemma 18.6. Let Ω be any non-empty closed discrete subset of C. Let B̂ ∈ R̂Ω. Then
multiplication by B̂ leaves R̂Ω invariant. In particular, for any c ∈ C,

ϕ̂(ζ) ∈ R̂Ω =⇒ −ζϕ̂(ζ) ∈ R̂Ω and e−cζϕ̂(ζ) ∈ R̂Ω.

The operator d
dζ too leaves R̂Ω invariant.

As a consequence, R̃Ω is stable by ∂ = d
dz and Tc. Moreover, if ψ̃ ∈ R̃Ω ∩ z−2C[[z−1]], then

zψ̃ ∈ R̃Ω and the solution in z−1C[[z−1]] of the difference equation

ϕ̃(z + 1)− ϕ̃(z) = ψ̃(z)

belongs to R̃Ω∪2πiZ∗.

Proof. Exercise (use the fact that multiplication by B̂ commutes with analytic continuation:
the analytic continuation of B̂ϕ̂ along a path γ of C \ Ω starting in D∗ρ(Ω) exists and equals

B̂(ζ) contγ ϕ̂(ζ); then use Lemma 4.5, (21), (23) and Corollary 4.6).

19 Analytic continuation of a convolution product: the easy
case

Lemma 18.6 was dealing with the multiplication of two germs of C{ζ}, however we saw in
Section 5 that the natural product in this space is convolution. The question of the stability
of R̂Ω under convolution is much subtler. Let us begin with an easy case, which is already of
interest:

Lemma 19.1. Let Ω be any non-empty closed discrete subset of C and suppose B̂ is an entire
function of C. Then, for any ϕ̂ ∈ R̂Ω, the convolution product B̂ ∗ ϕ̂ belongs to R̂Ω; its analytic
continuation along a path γ of C \ Ω starting from a point ζ0 ∈ Dρ(Ω) and ending at a point ζ1

is the holomorphic germ at ζ1 explicitly given by

contγ(B̂ ∗ ϕ̂)(ζ) =

∫ ζ0

0
B̂(ζ − ξ)ϕ̂(ξ) dξ +

∫
γ
B̂(ζ − ξ)ϕ̂(ξ) dξ +

∫ ζ

ζ1

B̂(ζ − ξ)ϕ̂(ξ) dξ (99)

for ζ close enough to ζ1. As a consequence,

B̃0 ∈ C{z−1}, ϕ̃0 ∈ R̃Ω =⇒ B̃0ϕ̃0 ∈ R̃Ω. (100)
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Remark 19.2. Formulas such as (99) require a word of caution: the value of B̂(ζ − ξ) is
unambiguously defined whatever ζ and ξ are, but in the notation “ϕ̂(ξ)” it is understood that we
are using the appropriate branch of the possibily multiple-valued function ϕ̂; in such a formula,
what branch we are using is clear from the context:

− ϕ̂ is unambiguously defined in its disc of convergence D0 (centred at 0) and the first integral
thus makes sense for ζ0 ∈ D0;

− in the second integral ξ is moving along γ which is a path of analytic continuation for ϕ̂, we
thus consider the analytic continuation of ϕ̂ along the piece of γ between its origin and ξ;

− in the third integral, “ϕ̂” is to be understood as contγ ϕ̂, the germ at ζ1 resulting form the
analytic continuation of ϕ̂ along γ, this integral then makes sense for any ζ at a distance
from ζ1 less than the radius of convergence of contγ ϕ̂.

Using a parametrisation γ : [0, 1]→ C\Ω, with γ(0) = ζ0 and γ(1) = ζ1, and introducing the
truncated paths γs := γ|[0,s] for any s ∈ [0, 1], the interpretation of the last two integrals in (99)
is ∫

γ
B̂(ζ − ξ)ϕ̂(ξ) dξ :=

∫ 1

0
B̂(ζ − γ(s))(contγs ϕ̂)(γ(s))γ′(s) ds, (101)

∫ ζ

ζ1

B̂(ζ − ξ)ϕ̂(ξ) dξ :=

∫ ζ

ζ1

B̂(ζ − ξ)(contγ ϕ̂)(ξ) dξ. (102)

Proof of Lemma 19.1. The property (100) directly follows from the first statement: write B̃0 =
a+ B̃ and ϕ̃0 = b+ ϕ̃ with a, b ∈ C and Ã, ϕ̃ ∈ z−1C[[z−1]] and apply Lemma 9.8 to B̃.

To prove the first statement, we use a parametrisation γ : [0, 1]→ C \ Ω and the truncated
paths γs := γ|[0,s]: we shall check that, for each t ∈ [0, 1], the formula

χ̂t(ζ) :=

∫ ζ0

0
B̂(ζ − ξ)ϕ̂(ξ) dξ +

∫
γt

B̂(ζ − ξ)ϕ̂(ξ) dξ +

∫ ζ

γ(t)
B̂(ζ − ξ)ϕ̂(ξ) dξ (103)

(with the above conventions for the interpretation of “ϕ̂(ξ)” in the integrals) defines a holomor-
phic germ at γ(t) which is the analytic continuation of B̂ ∗ ϕ̂ along γt.

The holomorphic dependence of the integrals upon the parameter ζ is such that ζ 7→∫ ζ0
0 B̂(ζ− ξ)ϕ̂(ξ) dξ+

∫
γt
B̂(ζ− ξ)ϕ̂(ξ) dξ is an entire function of ζ and ζ 7→

∫ ζ
γ(t) B̂(ζ− ξ)ϕ̂(ξ) dξ

is holomorphic for ζ in the disc of convergence Dt of contγt ϕ̂ (centred at γ(t)), we thus have a
family of analytic elements (χ̂t, Dt), t ∈ [0, 1], along the path γ.

For t small enough, the truncated path γt is contained in D0; then, for ζ ∈ D0, the Cauchy
theorem implies that χ̂t(ζ) coincides with Â ∗ ϕ̂(ζ) =

∫ ζ
0 B̂(ζ − ξ)ϕ̂(ξ) dξ (since the rectilinear

path [0, ζ] is homotopic in D0 to the concatenation of [0, ζ0], γt and [γ(t), ζ]).
For every t ∈ [0, 1], there exists ε > 0 such that γ

(
(t−ε, t+ε)∩ [0, 1]

)
⊂ Dt; by compactness,

we can thus find N ∈ N∗ and 0 = t0 < t1 < · · · < tN = 1 so that γ
(
[tj , tj+1]

)
⊂ Dtj for every j.

The proof will thus be complete if we check that, for any t < t′ in [0, 1],

γ
(
[t, t′]

)
⊂ Dt =⇒ χ̂t ≡ χ̂t′ in Dt ∩Dt′ .

This follows from the observation that, under the hypothesis γ
(
[t, t′]

)
⊂ Dt,

s ∈ [t, t′] and ξ ∈ Dt ∩Ds =⇒ contγs ϕ̂(ξ) = contγt ϕ̂(ξ),
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Figure 5: Integration paths for the convolution in the easy case.

thus, when computing χ̂t′(ζ) with ζ ∈ Dt ∩Dt′ , the third integral in (103) is∫ ζ

γ(t′)
B̂(ζ − ξ) contγt′ ϕ̂(ξ) dξ =

∫ ζ

γ(t′)
B̂(ζ − ξ) contγt ϕ̂(ξ) dξ

and, interpreting the second integral of (103) as in (101), we get

χ̂t′(ζ)− χ̂t(ζ) =

∫ t′

t
B̂(ζ − γ(s))

(
contγs ϕ̂

)
(γ(s))γ′(s) ds+

∫ γ(t)

γ(t′)
B̂(ζ − ξ)

(
contγt ϕ̂

)
(ξ) dξ

=

∫ t′

t
B̂(ζ − γ(s))

(
contγt ϕ̂

)
(γ(s))γ′(s) ds+

∫ γ(t)

γ(t′)
B̂(ζ − ξ)

(
contγt ϕ̂

)
(ξ) dξ = 0

(see Figure 5).

Remark 19.3. Lemma 19.1 can be used to prove the Ω-resurgence of certain formal series
solutions of non-linear functional equations—see Section 34 (with Ω = 2πiZ) and [Sau10, §8]
(with Ω = Z).

20 Analytic continuation of a convolution product: an example

We now wish to consider the convolution of two Ω-continuable holomorphic germs at 0 without
assuming that any of them extends to an entire function. A first example will convince us that
there is no hope to get stability under convolution if we do not impose that Ω be stable under
addition.

Let ω1, ω2 ∈ C∗ and

ϕ̂(ζ) :=
1

ζ − ω1
, ψ̂(ζ) :=

1

ζ − ω2
.

Their convolution product is

χ̂(ζ) := ϕ̂ ∗ ψ̂(ζ) =

∫ ζ

0

1

(ξ − ω1)(ζ − ξ − ω2)
dξ, |ζ| < min

{
|ω1|, |ω2|

}
.

The formula
1

(ξ − ω1)(ζ − ξ − ω2)
=

1

ζ − ω1 − ω2

(
1

ξ − ω1
+

1

ζ − ξ − ω2

)
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shows that, for any ζ 6= ω1 + ω2 of modulus < min
{
|ω1|, |ω2|

}
, one can write

χ̂(ζ) =
1

ζ − ω1 − ω2

(
L1(ζ) + L2(ζ)

)
, Lj(ζ) :=

∫ ζ

0

dξ

ξ − ωj
(104)

(with the help of the change of variable ξ 7→ ζ − ξ in the case of L2).
Removing the half-lines ωj [1,+∞) from C, we obtain a cut plane ∆ in which χ̂ has a

meromorphic continuation (since [0, ζ] avoids the points ω1 and ω2 for all ζ ∈ ∆). We can in
fact follow the meromorphic continuation of χ̂ along any path which avoids ω1 and ω2, because

Lj(ζ) = −
∫ ζ/ωj

0

dξ

1− ξ
= Log

(
1− ζ

ωj

)
∈ R̂{ωj}

(cf. example 18.4). We used the words “meromorphic continuation” and not “analytic con-
tinuation” because of the factor 1

ζ−ω1−ω2
. The conclusion is thus only χ̂ ∈ R̂Ω, with Ω :=

{ω1, ω2, ω1 + ω2}.
– If ω := ω1 +ω2 ∈ ∆, the principal branch of χ̂ (i.e. its meromorphic continuation to ∆) has

a removable singularity at ω, because (L1 +L2)(ω) =
∫ ω

0
dξ

ξ−ω1
+
∫ ω

0
dξ

ξ−ω2
= 0 in that case (by the

change of variable ξ 7→ ω − ξ in one of the integrals). This is consistent with Lemma 13.2 (the
set ∆ is clearly star-shaped with respect to 0). But it is easy to see that this does not happen
for all the branches of χ̂: when considering all the paths γ going from 0 to ω and avoiding ω1

and ω2, we have

contγ Lj(ω) =

∫
γ

dξ

ξ − ωj
, j = 1, 2,

hence 1
2πi

(
contγ L1(ω) + contγ L2(ω)

)
is the sum of the winding numbers around ω1 and ω2 of

the loop obtained by concatenating γ and the line segment [ω, 0]; elementary geometry shows
that this sum of winding numbers can take any integer value, but whenever this value is non-zero
the corresponding branch of χ̂ does have a pole at ω.

– The case ω /∈ ∆ is slightly different. Then we can write ωj = rj eiθ with r1, r2 > 0 and
consider the path γ0 which follows the segment [0, ω] except that it circumvents ω1 and ω2 by
small half-circles travelled anti-clockwise (notice that ω1 and ω2 may coincide)—see the left part
of Figure 6; an easy computation yields

contγ0 L1(ω) =

∫ −1

−r1

dξ

ξ
+

∫
Γ0

dξ

ξ
+

∫ r2

1

dξ

ξ
,

where Γ0 is the half-circle from −1 to 1 with radius 1 travelled anti-clockwise (see the right
part of Figure 6), hence contγ0 L1(ω) = ln r2

r1
+ iπ, similarly contγ0 L2(ω) = ln r1

r2
+ iπ, therefore

contγ0 L1(ω) + contγ0 L2(ω) = 2πi is non-zero and this again yields a branch of χ̂ with a pole
at ω (and infinitely many others by using other paths than γ0).

In all cases, there are paths from 0 to ω1 + ω2 which avoid ω1 and ω2 and which are not
paths of analytic continuation for χ̂. This example thus shows that R̂{ω1,ω2} is not stable under

convolution: it contains ϕ̂ and ψ̂ but not ϕ̂ ∗ ψ̂.
Now, whenever Ω is not stable under addition, one can find ω1, ω2 ∈ Ω such that ω1 +ω2 /∈ Ω

and the previous example then yields ϕ̂, ψ̂ ∈ R̂Ω with ϕ̂ ∗ ψ̂ /∈ R̂Ω.
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Figure 6: Convolution of aligned poles.

21 Analytic continuation of a convolution product: the general
case

21.1 The main result of this section is

Theorem 21.1. Let Ω be a non-empty closed discrete subset of C. Then the space R̂Ω is stable
under convolution if and only if Ω is stable under addition.

The necessary and sufficient condition on Ω is satisfied by the typical examples Z or 2πiZ,
but also by N∗, Z+iZ, N∗+iN or {m+n

√
2 | m,n ∈ N∗} for instance. An immediate consequence

of Theorem 21.1 is

Corollary 21.2. Let Ω be a non-empty closed discrete subset of C. Then the space R̃Ω of
Ω-resurgent formal series is a subalgebra of C[[z−1]] if and only if Ω is stable under addition.

The necessity of the condition on Ω was proved in Section 20. In the rest of this section we
shall prove that the condition is sufficient. However we shall restrict ourselves to the case where
0 ∈ Ω, because this will allow us to give a simpler proof. The reader is referred to [Sau13a] for
the proof in the general case.

21.2 We thus fix Ω closed, discrete, containing 0 and stable under addition. We begin with a
new definition (see Figure 7):

Definition 21.3. A continuous map H : I×J → C, where I = [0, 1] and J is a compact interval
of R, is called a symmetric Ω-homotopy if, for each t ∈ J ,

s ∈ I 7→ Ht(s) := H(s, t)

defines a path which satisfies

i) Ht(0) = 0,

ii) Ht

(
(0, 1]

)
⊂ C \ Ω,

iii) Ht(1)−Ht(s) = Ht(1− s) for every s ∈ I.

We then call endpoint path of H the path

ΓH : t ∈ J 7→ Ht(1).

Writing J = [a, b], we call Ha (resp. Hb) the initial path of H (resp. its final path).
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Figure 7: Symmetric Ω-homotopy (Ha = initial path, Hb = final path, γ = endpoint path ΓH).

The first two conditions imply that each path Ht is a path of analytic continuation for any
ϕ̂ ∈ R̂Ω, in view of Remark 18.3.

We shall use the notation Ht|s for the truncated paths (Ht)|[0,s], s ∈ I, t ∈ J (analogously
to what we did when commenting Lemma 19.1). Here is a technical statement we shall use:

Lemma 21.4. For a symmetric Ω-homotopy H defined on I × J , there exists δ > 0 such that,
for any ϕ̂ ∈ R̂Ω and (s, t) ∈ I×J , the radius of convergence of the holomorphic germ contHt|s ϕ̂
at Ht(s) is at least δ.

Proof. Let ρ = ρ(Ω) (cf. Remark 18.3). Consider

U :=
{

(s, t) ∈ I × J | H
(
[0, s]× {t}

)
⊂ Dρ/2 }, K := I × J \ U.

Writing K =
{

(s, t) ∈ I × J | ∃s′ ∈ [0, s] s.t. H(s′, t) ∈ C \ Dρ/2 }, we see that K is a compact
subset of I × J which is contained in (0, 1]× J . Thus H(K) is a compact subset of C \ Ω, and
δ := min

{
dist

(
H(K),Ω

)
, ρ/2

}
> 0. Now, for any s and t,

– either (s, t) ∈ U , then the truncated path Ht|s lies in Dρ/2, hence contHt|s ϕ̂ is a holomorphic
germ at Ht(s) with radius of convergence ≥ δ;

– or (s, t) ∈ K, and then dist(Ht(s),Ω) ≥ δ, which yields the same conclusion for the germ
contHt|s ϕ̂.

The third condition in Definition 21.3 means that each path Ht is symmetric with respect
to its midpoint 1

2Ht(1). Here is the motivation behind this requirement:

Lemma 21.5. Let γ : [0, 1] → C \ Ω be a path such that γ(0) ∈ Dρ(Ω) (cf. Remark 18.3). If
there exists a symmetric Ω-homotopy whose endpoint path coincides with γ and whose initial
path is contained in Dρ(Ω), then any convolution product ϕ̂∗ψ̂ with ϕ̂, ψ̂ ∈ R̂Ω can be analytically
continued along γ.

Proof. We assume that γ = ΓH with a symmetric Ω-homotopy H defined on I × J . Let
ϕ̂, ψ̂ ∈ R̂Ω and, for t ∈ J , consider the formula

χ̂t(ζ) =

∫
Ht

ϕ̂(ξ)ψ̂(ζ − ξ) dξ +

∫ ζ

γ(t)
ϕ̂(ξ)ψ̂(ζ − ξ) dξ (105)
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(recall that γ(t) = Ht(1)). We shall check that χ̂t is a well-defined holomorphic germ at γ(t)
and that it provides the analytic continuation of ϕ̂ ∗ ψ̂ along γ.

a) The idea is that when ξ moves along Ht, ξ = Ht(s) with s ∈ I, we can use for “ϕ̂(ξ)” the
analytic continuation of ϕ̂ along the truncated path Ht|s; correspondingly, if ζ is close to γ(t),

then ζ − ξ is close to γ(t) − ξ = Ht(1) − Ht(s) = Ht(1 − s), thus for “ψ̂(ζ − ξ)” we can use
the analytic continuation of ψ̂ along Ht|1−s. In other words, setting ζ = γ(t) + σ, we wish to
interpret (105) as

χ̂t(γ(t) + σ) :=

∫ 1

0
(contHt|s ϕ̂)(Ht(s))(contHt|1−s ψ̂)(Ht(1− s) + σ)H ′t(s) ds

+

∫ 1

0
(contHt ϕ̂)(γ(t) + uσ)ψ̂((1− u)σ)σ du (106)

(in the last integral, we have performed the change variable ξ = γ(t) + uσ; it is the germ of ψ̂
at the origin that we use there).

Lemma 21.4 provides δ > 0 such that, by regular dependence of the integrals upon the
parameter σ, the right-hand side of (106) is holomorphic for |σ| < δ. We thus have a family of
analytic elements (χ̂t, Dt), t ∈ J , with Dt := { ζ ∈ C | |ζ − γ(t)| < δ }.

b) For t small enough, the path Ht is contained in Dρ(Ω) which is open and simply connected;
then, for |ζ| small enough, the line segment [0, ζ] and the concatenation of Ht and [γ(t), ζ] are
homotopic in Dρ(Ω), hence the Cauchy theorem implies χ̂t(ζ) = ϕ̂ ∗ ψ̂(ζ).

c) By uniform continuity, there exists ε > 0 such that, for any t0, t ∈ J ,

|t− t0| ≤ ε =⇒ |Ht(s)−Ht0(s)| < δ/2 for all s ∈ I. (107)

To complete the proof, we check that, for any t0, t in J such that t0 ≤ t ≤ t0 + ε, we have
χ̂t0 ≡ χ̂t in D

(
γ(t0), δ/2) (which is contained in Dt0 ∩Dt).

Let t0, t ∈ J be such that t0 ≤ t ≤ t0 + ε and let ζ ∈ D
(
γ(t0), δ/2). By Lemma 21.4

and (107), we have for every s ∈ I

contHt|s ϕ̂
(
Ht(s)

)
= contHt0|s ϕ̂

(
Ht(s)

)
,

contHt|1−s ψ̂
(
ζ −Ht(s)

)
= contHt0|1−s ψ̂

(
ζ −Ht(s)

)
(for the latter identity, write ζ−Ht(s) = Ht(1−s)+ζ−γ(t) = Ht0(1−s)+ζ−γ(t0)+Ht0(s)−Ht(s),
thus this point belongs to D

(
Ht(1−s), δ)∩D

(
Ht0(1−s), δ)). Moreover, [γ(t), ζ] ⊂ D

(
γ(t0), δ/2)

by convexity, hence contHt ϕ̂ ≡ contHt0 ϕ̂ on this line segment, and we can write

χ̂t(ζ) =

∫ 1

0
(contHt0|s ϕ̂)(Ht(s))(contHt0|1−s ψ̂)(ζ −Ht(s))H

′
t(s) ds

+

∫ ζ

γ(t)
(contHt0 ϕ̂)(ξ)ψ̂(ζ − ξ) dξ.

We then get χ̂t0(ζ) = χ̂t(ζ) from the Cauchy theorem by means of the homotopy induced by H
between the concatenation of Ht0 and [γ(t0), ζ] and the concatenation of Ht and [γ(t), ζ].
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Remark 21.6. With the notation of Definition 21.3, when the initial path Ha is a line segment
contained in Dρ(Ω), the final path Hb is what Écalle calls a “symmetrically contractible path”

in [Eca81]. The proof of Lemma 21.5 shows that the analytic continuation of ϕ̂ ∗ ψ̂ until the
endpoint Hb(1) = ΓH(b) can be computed by the usual integral taken over Hb:

contγ(ϕ̂ ∗ ψ̂)(ζ) =

∫
Hb

ϕ̂(ξ)ψ̂(ζ − ξ) dξ, γ = ΓH , ζ = γ(b) (108)

(with appropriate interpretation, as in (106)). However, it usually cannot be computed as the
same integral over γ = ΓH itself, even when the latter integral is well-defined).

21.3 In view of Lemma 21.5, the proof of Theorem 21.1 will be complete if we prove the
following purely geometric result:

Lemma 21.7. For any path γ : I = [0, 1] → C \ Ω such that γ(0) ∈ D∗ρ(Ω), there exists a
symmetric Ω-homotopy H on I × I whose endpoint path is γ and whose initial path is a line
segment, i.e. ΓH = γ and H0(s) ≡ sγ(0).

Proof. Assume that γ is given as in the hypothesis of Lemma 21.7. We are looking for a
symmetric Ω-homotopy whose initial path is imposed: it must be

s ∈ I 7→ H0(s) := sγ(0),

which satisfies the three requirements of Definition 21.3 at t = 0:

(i) H0(0) = 0,

(ii) H0

(
(0, 1]

)
⊂ C \ Ω,

(iii) H0(1)−H0(s) = H0(1− s) for every s ∈ I.

The idea is to define a family of maps (Ψt)t∈[0,1] so that

Ht(s) := Ψt

(
H0(s)

)
, s ∈ I, (109)

yield the desired homotopy. For that, it is sufficient that (t, ζ) ∈ [0, 1]×C 7→ Ψt(ζ) be continu-
ously differentiable (for the structure of real two-dimensional vector space of C), Ψ0 = id and,
for each t ∈ [0, 1],

(i’) Ψt(0) = 0,

(ii’) Ψt(C \ Ω) ⊂ C \ Ω,

(iii’) Ψt

(
γ(0)− ζ

)
= Ψt

(
γ(0)

)
−Ψt(ζ) for all ζ ∈ C,

(iv’) Ψt

(
γ(0)

)
= γ(t).

In fact, the properties (i’)–(iv’) ensure that any initial path H0 satisfying (i)–(iii) and ending
at γ(0) produces through (109) a symmetric Ω-homotopy whose endpoint path is γ. Conse-
quently, we may assume without loss of generality that γ is C1 on [0, 1] (then, if γ is only
piecewise C1, we just need to concatenate the symmetric Ω-homotopies associated with the
various pieces).
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The maps Ψt will be generated by the flow of a non-autonomous vector fieldX(ζ, t) associated
with γ that we now define. We view (C, | · |) as a real 2-dimensional Banach space and pick5 a
C1 function η : C→ [0, 1] such that

{ ζ ∈ C | η(ζ) = 0 } = Ω.

Observe that D(ζ, t) := η(ζ) + η
(
γ(t)− ζ

)
defines a C1 function of (ζ, t) which satisfies

D(ζ, t) > 0 for all ζ ∈ C and t ∈ [0, 1]

because Ω is stable under addition; indeed, D(ζ, t) = 0 would imply ζ ∈ Ω and γ(t) − ζ ∈ Ω,
hence γ(t) ∈ Ω, which would contradict our assumptions. Therefore, the formula

X(ζ, t) :=
η(ζ)

η(ζ) + η
(
γ(t)− ζ

)γ′(t) (110)

defines a non-autonomous vector field, which is continuous in (ζ, t) on C × [0, 1], C1 in ζ and
has its partial derivatives continuous in (ζ, t). The Cauchy-Lipschitz theorem on the existence
and uniqueness of solutions to differential equations applies to dζ

dt = X(ζ, t): for every ζ ∈ C
and t0 ∈ [0, 1] there is a unique solution t 7→ Φt0,t(ζ) such that Φt0,t0(ζ) = ζ. The fact that the
vector field X is bounded implies that Φt0,t(ζ) is defined for all t ∈ [0, 1] and the classical theory
guarantees that (t0, t, ζ) 7→ Φt0,t(ζ) is C1 on [0, 1]× [0, 1]× C.

Let us set Ψt := Φ0,t for t ∈ [0, 1] and check that this family of maps satisfies (i’)–(iv’). We
have

X(ω, t) = 0 for all ω ∈ Ω, (111)

X
(
γ(t)− ζ, t

)
= γ′(t)−X(ζ, t) for all ζ ∈ C (112)

for all t ∈ [0, 1] (by the very definition of X). Therefore

• (i’) and (ii’) follow from (111) which yields Φt0,t(ω) = ω for every t0 and t, whence
Ψt(0) = 0 since 0 ∈ Ω, and from the non-autonomous flow property Φt,0 ◦Φ0,t = id (hence
Ψt(ζ) = ω implies ζ = Φt,0(ω) = ω);

• (iv’) follows from the fact that X
(
γ(t), t

)
= γ′(t), by (111) and (112) with ζ = 0, using

again that 0 ∈ Ω, hence t 7→ γ(t) is a solution of X;

• (iii’) follows from (112): for any solution t 7→ ζ(t), the curve t 7→ ξ(t) := γ(t) − ζ(t)
satisfies ξ(0) = γ(0) − ζ(0) and ξ′(t) = γ′(t) − X

(
ζ(t), t

)
= X

(
ξ(t), t

)
, hence it is a

solution: ξ(t) = Ψt

(
γ(0)− ζ(0)

)
.

As explained above, formula (109) thus produces the desired symmetric Ω-homotopy.

21.4 Note on this section: The presentation we adopted is influenced by [CNP93] (the example
of Section 20 is taken from this book). Lemma 21.7, which is the key to the proof of Theorem 21.1

5 For instance pick a C1 function ϕ0 : R → [0, 1] such that {x ∈ R | ϕ0(x) = 1 } = {0} and ϕ0(x) = 0 for

|x| ≥ 1, and a bijection ω : N→ Ω; then set δk := dist
(
ω(k),Ω \ {ω(k)}

)
> 0 and σ(ζ) :=

∑
k ϕ0

( 4|ζ−ω(k)|2

δ2
k

)
: for

each ζ ∈ C there is at most one non-zero term in this series (because k 6= `, |ζ−ω(k)| < δk/2 and |ζ−ω(`)| < δ`/2
would imply |ω(k)− ω(`)| < (δk + δ`)/2, which would contradict |ω(k)− ω(`)| ≥ δk and δ`), thus σ is C1, takes
its values in [0, 1] and satisfies { ζ ∈ C | σ(ζ) = 1 } = Ω, therefore η := 1− σ will do.
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Figure 8: From γ to the integration path H1 used for contγ(ϕ̂ ∗ ψ̂)(γ(1)).

and which essentially relies on the use of the flow of the non-autonomous vector field (113), arose
as an attempt to understand a related but more complicated (somewhat obscure!) construction
which can be found in an appendix of [CNP93]. See [Eca81] and [Ou10] for other approaches
to the stability under convolution of the space of resurgent functions.

For the proof of Lemma 21.7, according to [Eca81] and [CNP93], one can visualize the
realization of a given path γ as the enpoint path ΓH of a symmetric Ω-homotopy as follows:
Let a point ζ = γ(t) move along γ (as t varies from 0 to 1) and remain connected to 0 by an
extensible thread, with moving nails pointing downwards at each point of ζ − Ω, while fixed
nails point upwards at each point of Ω (imagine for instance that the first nails are fastened
to a moving rule and the last ones to a fixed rule). As t varies, the thread is progressively
stretched but it has to meander between the nails. The path H1 used as integration path for
contγ(ϕ̂ ∗ ψ̂)(γ(1)) in formula (108) is given by the thread in its final form, when ζ has reached
the extremity of γ; the paths Ht correspond to the thread at intermediary stages. See Figure 8
(or Figure 5 of [Sau06]). The point is that none of the moving nails ζ − ω′ ∈ ζ − Ω will ever
collide with a fixed nail ω′′ ∈ Ω because we assumed that γ avoids {ω′ + ω′′} ⊂ Ω.

21.5 Asymmetric version of the result. Theorem 21.1 admits a useful generalization, concerning
the convolution product of two resurgent germs which do not belong to the same space of Ω-
continuable germs:

Theorem 21.8. Let Ω1 and Ω2 be non-empty closed discrete subsets of C. Let

Ω := Ω1 ∪ Ω2 ∪ (Ω1 + Ω2),

where Ω1 + Ω2 := {ω1 + ω2 | ω1 ∈ Ω1, ω2 ∈ Ω2 }. If Ω is closed and discrete, then

ϕ̂ ∈ R̂Ω1 and ψ̂ ∈ R̂Ω2 =⇒ ϕ̂ ∗ ψ̂ ∈ R̂Ω.

We shall content ourselves with giving hints about the proof when both Ω1 and Ω2 are
assumed to contain 0, in which case

Ω = Ω1 + Ω2

since both Ω1 and Ω2 are contained in Ω1 + Ω2 (the general case is obtained by adapting the
arguments of [Sau13a]). Assuming this, we generalize Definition 21.3 and Lemma 21.5:
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Definition 21.9. A continuous map H : I×J → C, where I = [0, 1] and J is a compact interval
of R, is called an (Ω1,Ω2)-homotopy if, for each t ∈ J , the paths s ∈ I 7→ Ht(s) := H(s, t) and
s ∈ I 7→ H∗t (s) := Ht(1)−Ht(1− s) satisfy

i) Ht(0) = 0,

ii) Ht

(
(0, 1]

)
⊂ C \ Ω1,

iii) H∗t
(
(0, 1]

)
⊂ C \ Ω2.

We then call t ∈ J 7→ Ht(1) the endpoint path of H.

Lemma 21.10. Let γ : [0, 1] → C \ Ω be a path such that γ(0) ∈ Dρ(Ω1) ∩ Dρ(Ω2). Suppose
that there exists an (Ω1,Ω2)-homotopy whose endpoint path coincides with γ and such that
H0(I) ⊂ Dρ(Ω1) and H∗0 (I) ⊂ Dρ(Ω2). Then any convolution product ϕ̂ ∗ ψ̂ with ϕ̂ ∈ R̂Ω1 and

ψ̂ ∈ R̂Ω2 can be analytically continued along γ.

Idea of the proof of Lemma 21.10. Mimick the proof of Lemma 21.5, replacing the right-hand
side of (106) with∫ 1

0
(contHt|s ϕ̂)(Ht(s))(contH∗

t|1−s
ψ̂)(H∗t (1− s) + σ)H ′t(s) ds

+

∫ 1

0
(contHt ϕ̂)(γ(t) + uσ)ψ̂((1− u)σ)σ du

and showing that this expression is the value at γ(t) + σ of a holomorphic germ, which is
contγ|t(ϕ̂ ∗ ψ̂).

To conclude the proof of Theorem 21.8, it is thus sufficient to show

Lemma 21.11. For any path γ : [0, 1] → C such that γ(0) ∈ D∗ρ(Ω1) ∩ D∗ρ(Ω2) and γ
(
(0, 1]

)
⊂

C \Ω, there exists an (Ω1,Ω2)-homotopy H on I × [0, 1] whose endpoint path is γ and such that
H0(s) ≡ sγ(0).

Indeed, if this lemma holds true, then all such paths γ will be, by virtue of Lemma 21.10,
paths of analytic continuation for our convolution products ϕ̂ ∗ ψ̂, which is the content of
Theorem 21.8.

Idea of the proof of Lemma 21.11. It is sufficient to construct a family of maps (Ψt)t∈[0,1] such
that (t, ζ) ∈ [0, 1] × C 7→ Ψt(ζ) ∈ C be continuously differentiable (for the structure of real
two-dimensional vector space of C), Ψ0 = id and, for each t ∈ [0, 1],

(i’) Ψt(0) = 0,

(ii’) Ψt(C \ Ω1) ⊂ C \ Ω1,

(iii’) the map ζ ∈ C 7→ Ψ∗t (ζ) := γ(t)−Ψt(ζ) satisfies Ψ∗t (C \ Ω2) ⊂ C \ Ω2,

(iv’) Ψt

(
γ(0)

)
= γ(t).
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Indeed, the formula Ht(s) := Ψt

(
sγ(0)

)
then yields the desired homotopy, with H∗t (s) = Ψ∗t

(
(1−

s)γ(0)
)
.

As in the proof of Lemma 21.7, the maps Ψt will be generated by the flow of a non-
autonomous vector field associated with γ. We view (C, | · |) as a real 2-dimensional Banach
space and pick C1 functions η1, η2 : C→ [0, 1] such that

{ ζ ∈ C | ηj(ζ) = 0 } = Ωj , j = 1, 2.

Observe that D(ζ, t) := η1(ζ) + η2

(
γ(t)− ζ

)
defines a C1 function of (ζ, t) which satisfies

D(ζ, t) > 0 for all ζ ∈ C and t ∈ [0, 1],

since D(ζ, t) = 0 would imply ζ ∈ Ω1 and γ(t) − ζ ∈ Ω2, hence γ(t) ∈ Ω1 + Ω2, which would
contradict our assumptions. Therefore, the formula

X(ζ, t) :=
η1(ζ)

η1(ζ) + η2

(
γ(t)− ζ

)γ′(t) (113)

defines a non-autonomous vector field and the Cauchy-Lipschitz theorem applies to dζ
dt = X(ζ, t):

for every ζ ∈ C and t0 ∈ [0, 1] there is a unique solution t ∈ [0, 1] 7→ Φt0,t
X (ζ) such that

Φt0,t0
X (ζ) = ζ; the flow map (t0, t, ζ) 7→ Φt0,t

X (ζ) is C1 on [0, 1]× [0, 1]× C.

Setting Ψt := Φ0,t
X for t ∈ [0, 1], one can check that this family of maps satisfies (i’)–(iv’) by

mimicking the arguments in the proof of Lemma 21.7 and using the fact that the corresponding
family of maps (Ψ∗t ) in (iii’) can be obtained from the identity

γ(t)− Φ0,t
X (ζ) = Φ0,t

X∗
(
γ(0)− ζ

)
,

where we denote by (t0, t, ζ) 7→ Φt0,t
X∗ (ζ) the flow map of the non-autonomous vector field

X∗(ζ, t) := γ′(t)−X
(
γ(t)− ζ, t

)
=

η2(ζ)

η1

(
γ(t)− ζ

)
+ η2(ζ)

γ′(t).

22 Non-linear operations with resurgent formal series

From now on, we give ourselves a non-empty closed discrete subset Ω of C which is stable under
addition.

We already mentioned the stability of R̃Ω under certain linear difference/differential opera-
tors in Lemma 18.6. Now, with our assumption that Ω is stable under addition, we can obtain
the stability of Ω-resurgent formal series under the non-linear operations which were studied
in Sections 13 and 17. However this requires quantitative estimates for iterated convolutions
whose proof is beyond the scope of the present text, we thus quote without proof the following

Lemma 22.1. Let γ be a path of C\Ω starting from a point ζ0 ∈ Dρ(Ω) and ending at a point ζ1.

Let R > 0 be such that D(ζ1, R) ⊂ C \ Ω. Then there exist a positive number L and a set C of
paths parametrized by [0, 1] and contained in DL \ Ω such that, for every ϕ̂ ∈ R̂Ω, the number

‖ϕ̂‖C := sup
γ̃∈C

∣∣contγ̃ ϕ̂
(
γ̃(1)

)∣∣
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is finite, and there exist A,B > 0 such that, for every k ≥ 1 and ϕ̂, ψ̂ ∈ R̂Ω, the iterated
convolution products

ϕ̂∗k := ϕ̂ ∗ · · · ∗ ϕ̂︸ ︷︷ ︸
k factors

and ψ̂ ∗ ϕ̂∗k (which admit analytic continuation along γ, according to Theorem 21.1) satisfy

|contγ ϕ̂
∗k(ζ)| ≤ AB

k

k!

(
‖ϕ̂‖C

)k
,

|contγ(ψ̂ ∗ ϕ̂∗k)(ζ)| ≤ AB
k

k!
‖ψ̂‖C

(
‖ϕ̂‖C

)k
,

for every ζ ∈ D(ζ1, R).

The proof can be found in [Sau13b]. Taking this result for granted, we can show

Theorem 22.2. Suppose that ϕ̃(z), ψ̃(z), χ̃(z) ∈ R̃Ω and that χ̃(z) has no constant term. Let
H(t) ∈ C{t}. Then

ψ̃ ◦ (id +ϕ̃) ∈ R̃Ω, H ◦ χ̃ ∈ R̃Ω. (114)

Proof. We can write ϕ̃ = a+ϕ̃1, ψ̃ = b+ψ̃1, where a, b ∈ C and ϕ̃1 and ψ̃1 have no constant term.
With notations similar to those of the proof of Theorem 13.3, we write the first formal series
in (186) as b+ λ̃(z) and the second one as c+ µ̃(z), where c = H(0). Since λ̃ = (Taψ̃1)◦(id +ϕ̃1),
where Taψ̃1 is Ω-resurgent (by Lemma 18.6) and has no constant term, we see that it is sufficient
to deal with the case a = b = 0; from now on we thus suppose ϕ̃ = ϕ̃1 and ψ̃ = ψ̃1. Then

λ̃ = ψ̃ ◦ (id +ϕ̃) =
∑
k≥0

1

k!
(∂kψ̃)ϕ̃k, µ̃ =

∑
k≥1

hkχ̃
k

where H(t) = c +
∑

k≥1 hkt
k with |hk| ≤ CDk for some C,D > 0 independent of k, and the

corresponding formal Borel transforms are

λ̂ =
∑
k≥0

1

k!

(
(−ζ)kψ̂

)
∗ ϕ̂∗k, µ̂ =

∑
k≥1

hkχ̂
∗k.

These can be viewed as formally convergent series of elements of C[[ζ]], in which each term
belongs to R̂Ω (by virtue of Theorem 21.1). They define holomorphic germs in Dρ(Ω) because
they can also be seen as normally convergent series of holomorphic functions in any compact
disc contained in Dρ(Ω) (by virtue of inequalities (78) and (80)).

To conclude, it is sufficient to check that, given a path γ : [0, 1] → C \ Ω starting in Dρ(Ω),

for every t ∈ [0, 1] and Rt > 0 such that D
(
γ(t), Rt

)
⊂ C \Ω the series of holomorphic functions∑ 1

k!
contγ|[0,t]

((
(−ζ)kψ̂

)
∗ ϕ̂∗k

)
and

∑
hk contγ|[0,t]

(
χ̂∗k
)

are normally convergent on D
(
γ(t), Rt

)
(indeed, this will provide families of analytic elements

which analytically continue λ̂ and µ̂). This follows from Lemma 22.1.

Example 22.1. In view of Lemma 18.4, since 2πiZ is stable under addition, this implies that
the exponential of the Stirling series λ̃ = eµ̃ is 2πiZ-resurgent.
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Recall that G̃ = id +C[[z−1]] is the topological group of formal tangent-to-identity diffeo-
morphisms at ∞ studied in Section 15.

Definition 22.3. We call Ω-resurgent tangent-to-identity diffeomorphism any f̃ = id +ϕ̃ ∈ G̃
where ϕ̃ is an Ω-resurgent formal series. We use the notations

G̃ RES(Ω) := { f̃ = id +ϕ̃ | ϕ̃ ∈ R̃Ω }, G̃ RES
σ (Ω) := G̃ RES(Ω) ∩ G̃σ for σ ∈ C.

Observe that G̃ RES(Ω) is not a closed subset of G̃ for the topology which was introduced in
Section 15; in fact it is dense, since it contains the subset G of holomorphic tangent-to-identity
germs of diffeomorphisms at ∞, which itself is dense in G̃ .

Theorem 22.4. The set G̃ RES(Ω) is a subgroup of G̃ , the set G̃ RES
0 (Ω) is a subgroup of G̃0.

Proof. The stability under group composition stems from Theorem 22.2, since (id +ψ̃)◦(id +ϕ̃) =
id +ϕ̃+ ψ̃ ◦ (id +ϕ̃).

For the stability under group inversion, we only need to prove

h̃ = id +χ̃ ∈ G̃ RES(Ω) =⇒ h̃◦(−1) ∈ G̃ RES(Ω).

It is sufficient to prove this when χ̃ has no constant term, i.e. when h̃ ∈ G̃ RES
0 (Ω), since

we can always write h̃ = (id +χ̃1) ◦ (id +a) with a formal series χ̃1 = T−a(−a + χ̃) ∈ R̃Ω

which has no constant term (taking a = constant term of χ̃ and using Lemma 18.6) and then
h̃◦(−1) = (id +χ̃1)◦(−1) − a.

We thus assume that χ̃ = χ̃1 ∈ R̃Ω has no constant term and apply the Lagrange reversion
formula (89) to h̃ = id +χ̃. We get h̃◦(−1) = id−ϕ̃ with the Borel transform of ϕ̃ given by

ϕ̂ =
∑
k≥1

ζk−1

k!
χ̂∗k,

formally convergent series in C[[ζ]], in which each term belongs to R̂Ω. The holomorphy of ϕ̂ in
Dρ(Ω) and its analytic continuation along the paths of C \ Ω are obtained by invoking inequali-
ties (93) and Lemma 22.1, similarly to what we did at the end of the proof of Theorem 22.2.

Simple singularities

23 Singular points

When the analytic continuation of a holomorphic germ
∧
ϕ(ζ) has singularities (i.e.

∧
ϕ does not

extend to an entire function), its inverse formal Borel transform ϕ̃ = B−1 ∧ϕ is a divergent formal
series, and the location and the nature of the singularities in the ζ-plane influence the growth
of the coefficients of ϕ̃. By analysing carefully the singularities of

∧
ϕ, one may hope to be able

to deduce subtler information on ϕ̃ and, if Borel-Laplace summation is possible, on its Borel
sums.

Therefore, we shall now develop a theory which allows one to study and manipulate singu-
larities (in the case of isolated singular points).
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First, recall the definition of a singular point in complex analysis: given f holomorphic in
an open subset U of C, a boundary point ω of U is said to be a singular point of f if one cannot
find an open neighbourhood V of ω, a function g holomorphic in V , and an open subset U ′ of U
such that ω ∈ ∂U ′ and f|U ′∩V = g|U ′∩V .

Thus this notion refers to the imposssibility of extending locally the function: even when
restricting to a smaller domain U ′ to which ω is adherent, we cannot find an analytic continuation
in a full neighbourhood of ω. Think of the example of the principal branch of logarithm: it can
be defined as the holomorphic function

Log ζ :=

∫ ζ

1

dξ

ξ
for ζ ∈ U = C \ R−. (115)

Then, for ω < 0, one cannot find a holomorphic extension of f = Log from U to any larger open
set containing ω (not even a continuous extension!), however such a point ω is not singular: if
we first restrict, say, to the upper half-plane U ′ := {=mζ > 0}, then we can easily find an
analytic continuation of Log |U ′ to U ′ ∪ V , where V is the disc D(ω, |ω|): define g by

g(ζ) =

(∫
γ

+

∫ ζ

ω

)
dξ

ξ

with any path γ : [0, 1] → C such that γ(0) = 1, γ
(
(0, 1)

)
⊂ U ′ and γ(1) = ω. In fact, for

the function f = Log , the only singular point is 0, there is no other local obstacle to analytic
continuation, even though there is no holomorphic extension of this function to C∗.

If ω is an isolated6 singular point for a holomorphic function f , we can wonder what kind
of singularity occurs at this point. There are certainly many ways for a point to be singular:
maybe the function near ω looks like log(ζ − ω) (for an appropriate branch of the logarithm),
or like a pole C

(ζ−ω)m , and the reader can imagine many other singular behaviours (square-root

branching (ζ − ω)1/2, powers of logarithm
(

log(ζ − ω)
)m

, iterated logarithms log
(

log(ζ − ω)
)
,

etc.). The singularity of f at ω will be defined as an equivalence class modulo regular functions
in Section 25. Of course, by translating the variable, we can always assume ω = 0. Observe
that, in this text, we make a distinction between singular points and singularities (the former
being the locations of the latter).

As a preliminary, we need to introduce a few notations in relation with the Riemann surface
of the logarithm.

24 The Riemann surface of the logarithm

The Riemann surface of the logarithm C̃ can be defined topologically (without any reference to
the logarithm!) as the universal cover of C∗ with base point at 1. This means that we consider
the set P of all paths7 γ : [0, 1] → C∗ with γ(0) = 1, we put on P the equivalence relation ∼

6 As a rule, all the singular points that we shall encounter in resurgence theory will be isolated even when the
same holomorphic function f is considered in various domains U (i.e. no “natural boundary” will show up). This
does not mean that our functions will extend in punctured dics centred on the singular points, because there may
be “monodromy”: leaving the original domain of definition U ′ on one side of ω or the other may lead to different
analytic continuations.

7In this section, “path” means any continuous C-valued map defined on a real interval.
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of “homotopy with fixed endpoints”, i.e.

γ ∼ γ0 ⇐⇒ ∃H : [0, 1]× [0, 1]→ C∗ continuous, such that H(0, · ) = γ0, H(1, · ) = γ,

H(s, 0) = γ0(0) and H(s, 1) = γ0(1) for each s ∈ [0, 1],

and we define C̃ as the set of all equivalence classes,

C̃ := P/ ∼ .

Observe that, if γ ∼ γ0, then γ(1) = γ0(1): the endpoint γ(1) does not depend on γ but
only on its equivalence class [γ]. We thus get a map

π : C̃→ C∗, π(ζ) = γ(1) for any γ ∈P such that [γ] = ζ

(recall that the other endpoint is the same for all paths γ ∈P: γ(0) = 1).
Among all the representatives of an equivalence class ζ ∈ C̃, there is a canonical one: there

exists a unique pair (r, θ) ∈ (0,+∞)×R such that ζ is represented by the concatenation of the
paths t ∈ [0, 1] 7→ eitθ and t ∈ [0, 1] 7→

(
1 + t(r − 1)

)
eiθ. In that situation, we use the notations

ζ = r eiθ, r = |ζ|, θ = arg ζ,

so that we can write π(r eiθ) = r eiθ. Heuristically, one may think of θ 7→ eiθ as of a non-periodic
exponential: it keeps track of the number of turns around the origin, not only of the angle θ
modulo 2π.

There is a simple way of defining a Riemann surface structure on C̃. One first defines a
Hausdorff topology on C̃ by taking as a basis

{
D̃(ζ,R) | ζ ∈ C̃, 0 < R < |π(ζ)|

}
, where D̃(ζ,R)

is the set of the equivalence classes of all paths γ obtained as concatenation of a representative
of ζ and a line segment starting from π(ζ) and contained in D(π(ζ), R) (cf. notation (95)).
(Exercise: check that this is legitimate, i.e. that

{
D̃(ζ,R)

}
is a collection of subsets of C̃ which

meets the necessary conditions for being the basis of a topology, and check that the resulting
topology satisfies the Hausdorff separation axiom.) It is easy to check that, for each basis
element, the projection π induces a homeomorphism πζ,R : D̃(ζ,R)→ D(π(ζ), R) and that, for
each pair of basis elements with non-empty intersection, the transition map πζ′,R′ ◦ π−1

ζ,R is the
identity map on D(π(ζ), R) ∩ D(π(ζ ′), R′) ⊂ C, hence we get an atlas {πζ,R} which defines a
Riemann surface structure on C̃, i.e. a 1-dimensional complex manifold structure (because the
identity map is holomorphic!).

Now, why do we call C̃ the Riemann surface of the logarithm? This is not so apparent
in the presentation that was adopted here, but in fact the above construction is related to a
more general one, in which one starts with an arbitrary open connected subset U of C and
a holomorphic function f on U , and one constructs (by quotienting a certain set of paths) a
Riemann surface in which U is embedded and on which f has a holomorphic extension. We
shall not give the details, but content ourselves with checking the last property for U = C \R−
and f = Log defined by (115), defining a holomorphic function L : C̃→ C and explaining why
it deserves to be considered as a holomorphic extension of the logarithm.

We first observe that Ũ := π−1(U) is an open subset of C̃ with infinitely many connected
components,

Ũm := { r eiθ ∈ C̃ | r > 0, 2πm− π < θ < 2πm+ π }, m ∈ Z.
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By restriction, the projection π induces a biholomorphism

π0 : Ũ0
∼−→ U

(it does so for any m ∈ Z but, quite arbitrarily, we choose m = 0 here). The principal sheet of
the Riemann surface of the logarithm is defined to be the set Ũ0 ⊂ C̃, which is identified to the
cut plane U ⊂ C by means of π0.

On the other hand, since the function ξ 7→ 1/ξ is holomorphic on C∗, the Cauchy theorem
guarantees that, for any γ ∈P, the integral

∫
γ

dξ
ξ depends only on the equivalence class [γ], we

thus get a function

L : C̃→ C, L
(
[γ]
)

:=

∫
γ

dξ

ξ
.

This function is holomorphic on the whole of C̃, because its expression in any chart domain
D̃(ζ0, R) is

L (ζ) = L (ζ0) +

∫ π(ζ)

π(ζ0)

dξ

ξ
,

which is a holomorphic function of π(ζ).
Now, since any ζ ∈ Ũ0 can be represented by a line segment starting from 1, we have

L|Ũ0
= Log ◦ π0.

In other words, if we identify U and Ũ0 by means of π0, we can view L as a holomorphic
extension of Log to the whole of C̃.

The function L is usually denoted log. Notice that L (r eiθ) = ln r + iθ for all r > 0 and
θ ∈ R, and that L = log is a biholomorphism C̃→ C (with our notations: L −1(x+iy) = ex eiy).
Notice also that there is a natural multiplication (r1 eiθ1 , r2 eiθ2) 7→ r1r2 ei(θ1+θ2) in C̃, inherited
from the addition in C.

25 The formalism of singularities

We are interested in holomorphic functions f for which the origin is locally the only singular
point in the following sense:

Definition 25.1. We say that a function f has spiral continuation around 0 if it is holomorphic
in an open disc D to which 0 is adherent and, for every L > 0, there exists ρ > 0 such that f
can be analytically continued along any path of length ≤ L starting from D ∩ D∗ρ and staying
in D∗ρ (recall the notation (96)). See Figure 9.

In the following we shall need to single out one of the connected components of π−1(D) in C̃,
but there is no canonical choice in general. (If one of the connected components is contained in
the principal sheet of C̃, we may be tempted to choose this one, but this does not happen when
the centre of D has negative real part and we do not want to eliminate a priori this case.) We
thus choose ζ0 ∈ C̃ such that π(ζ0) is the centre of D, then the connected component of π−1(D)
which contains ζ0 is a domain D̃ of the form D̃(ζ0, R0) (notation of the previous section) and
this will be the connected component that we single out.
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Figure 9: The function f is holomorphic in D and has spiral continuation around 0.

Since π induces a biholomorphism D̃
∼−→ D, we can identify f with

∨
f := f ◦ π viewed as

a holomorphic function on D̃. Now, the spiral continuation property implies that
∨
f extends

analytically to a domain of the form

V(h) := { ζ = r eiθ | 0 < r < h(θ), θ ∈ R } ⊂ C̃,

with a continuous function h : R→ (0,+∞), but in fact the precise function h is of no interest
to us.8 We are thus led to

Definition 25.2. We define the space ANA of all singular germs as follows: on the set of all

pairs (
∨
f, h), where h : R→ (0,+∞) is continuous and

∨
f : V(h)→ C is holomorphic, we put the

equivalence relation

(
∨
f1, h1) ∼ (

∨
f2, h2)

def⇐=⇒
∨
f1 ≡

∨
f2 on V(h1) ∩ V(h2),

and we define ANA as the quotient set.

Heuristically, one may think of a singular germ as of a “germ of holomorphic function at
the origin of C̃” (except that C̃ has no origin!). We shall usually make no notational difference
between an element of ANA and any of its representatives. As explained above, the formula

f =
∨
f ◦π allows one to identify a singular germ

∨
f with a function f which has spiral continuation

around 0; however, one must be aware that this presupposes an identification, by means of π,
between a simply connected domain D of C∗ (e.g. an open disc) and a subset D̃ of a domain of
the form V(h) (and, given D, there are countably many choices for D̃).

Example 25.1. Suppose that f is holomorphic in the punctured disc D∗ρ, for some ρ > 0; in
particular, it is holomorphic in D = D(ρ2 ,

ρ
2) and we can apply the above construction. Then,

for whatever choice of a connected component of π−1(D) in C̃, we obtain the same
∨
f := f ◦ π

8 Observe that there is a countable infinity of choices for ζ0 (all the possible “lifts” of the centre of D in C̃)

thus, a priori, infinitely many different functions
∨
f associated with the same function f ; they are all of the form

∨
f(ζ e2πim), m ∈ Z, where

∨
f(ζ) is one of them, so that if

∨
f is holomorphic in a domain of the form V(h) then each

of them is holomorphic in a domain of this form.
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holomorphic in V(h) with a constant function h(θ) ≡ ρ. The corresponding element of ANA
identifies itself with the Laurent series of f at 0, which is of the form∑

n∈Z
anζ

n = S(1/ζ) +R(ζ), (116)

with R(ζ) :=
∑

n≥0 anζ
n of radius of convergence ≥ ρ and S(ξ) :=

∑
n>0 a−nξ

n of infinite
radius of convergence. Heuristically, the “singularity of f” is encoded by the sole term S(1/ζ);
Definition 25.3 will formalize the idea of discarding the regular term R(ζ).

Example 25.2. Suppose that f is of the form f(ζ) =
∧
ϕ(ζ)Log ζ, where

∧
ϕ is holomorphic in the

disc Dρ, for some ρ > 0, and we are using the principal branch of the logarithm. Then we may

define
∨
f(ζ) :=

∧
ϕ
(
π(ζ)

)
log ζ for ζ ∈ V(h) with a constant function h(θ) ≡ ρ; this corresponds to

the situation described above with D = D(ρ2 ,
ρ
2) and D̃ = the connected component of π−1(D)

which is contained in the principal sheet of C̃ (choosing some other connected component for D̃

would have resulted in adding to the above
∨
f an integer multiple of 2πi

∧
ϕ◦π). The corresponding

element of ANA identifies itself with (∑
n≥0

anζ
n

)
log ζ,

where
∑

n≥0 anζ
n is the Taylor series of

∧
ϕ at 0 (which has radius of convergence ≥ ρ).

Example 25.3. For α ∈ C∗ we define “the principal branch of ζα” as eαLog ζ for ζ ∈ C \R−. If
we choose D and D̃ as in Example 25.2, then the corresponding singular germ is

ζα := eα log ζ ,

which extends holomorphically to the whole of C̃. One can easily check that 0 is a singular
point for ζα if and only if α 6∈ N.

Exercise 25.4. Consider a power series
∑

n≥0 anξ
n with finite radius of convergence R > 0

and denote by Φ(ξ) its sum for ξ ∈ DR. Prove that there exists ρ > 0 such that

f(ζ) := Φ(ζ Log ζ)

is holomorphic in the half-disc Dρ ∩ {<e ζ > 0} and that 0 is a singular point. Prove that f has

spiral continuation around 0. Consider any function
∨
f associated with f as above; prove that

one cannot find a constant function h such that
∨
f is holomorphic in V(h).

Exercise 25.5. Let α ∈ C∗ and

fα(ζ) :=
1

ζα − ζ−α

(notation of Example 25.3). Prove that fα has spiral continuation around 0 if and only if α 6∈ iR.

Suppose that α is not real nor pure imaginary and consider any function
∨
fα associated with fα

as above; prove that one cannot find a constant function h such that
∨
fα is holomorphic in V(h).

The set ANA is clearly a linear space which contains C{ζ}, in the sense that there is a
natural injective linear map C{ζ} ↪→ ANA (particular case of Example 25.1 with f holomorphic
in a disc Dρ). We can thus form the quotient space:
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Definition 25.3. We call singularities the elements of the space SING := ANA /C{ζ}. The
canonical projection is denoted by sing0 and we use the notation

sing0 :

ANA→ SING

∨
f 7→

O

f = sing0

(∨
f(ζ)

)
.

Any representative
∨
f of a singularity

O

f is called a major of
O

f .

The idea is that singular germs like log ζ and log ζ + 1
1−ζ have the same singular behaviour

near 0: they are different majors for the same singularity (at the origin). Similarly, in Exam-

ple 25.1, the singularity sing0

(∨
f(ζ)

)
coincides with sing0

(
S(1/ζ)

)
. The simplest case is that of

a simple pole or a pole of higher order, for which we introduce the notation

δ := sing0

( 1

2πiζ

)
, δ(k) := sing0

((−1)kk!

2πiζk+1

)
for k ≥ 0. (117)

The singularity of Example 25.1 can thus be written 2πi
∞∑
k=0

(−1)k

k! a−k−1δ
(k).

Remark 25.4. In Example 25.2, a singular germ
∨
f was defined from f(ζ) =

∧
ϕ(ζ)Log ζ, with

∧
ϕ(ζ) ∈ C{ζ}, by identifying the cut plane U = C \ R− with the principal sheet Ũ0 of C̃, and we

can now regard
∨
f as a major. Choosing some other branch of the logarithm or identiying U with

some other sheet Ũm would yield another major for the same singularity, because this modifies
the major by an integer multiple of 2πi

∧
ϕ(ζ) which is regular at 0. The notation

[∧ϕ := sing0

(
∧
ϕ(ζ)

log ζ

2πi

)
(118)

is sometimes used in this situation. Things are different if we replace
∧
ϕ by the Laurent series

of a function which is holomorphic in a punctured disc D∗ρ and not regular at 0; for instance, if
we denote by Log ζ a branch of the logarithm in the half-plane V := {<e ζ < 0}, the function

1

2πiζ
Log ζ defines a singular germ, hence a singularity, for any choice of a connected com-

ponent Ṽ of π−1(V ) in C̃, but we change the singularity by an integer multiple of 2πi δ if we
change the branch of the logarithm or the connected component Ṽ .

Example 25.6. Let us define

O

Iσ := sing0

(∨
Iσ
)
,

∨
Iσ(ζ) :=

ζσ−1

(1− e−2πiσ)Γ(σ)
for σ ∈ C \ Z (119)

(notation of Example 25.3). For k ∈ N, in view of the poles of the Gamma function (cf. (48)),
we have (1− e−2πiσ)Γ(σ) −−−−→

σ→−k
2πi(−1)k/k!, which suggests to extend the definition by setting

∨
I−k(ζ) :=

(−1)kk!

2πiζk+1
,

O

I−k := δ(k)
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(we could have noticed as well that the reflection formula (61) yields
∨
Iσ(ζ) = 1

2πie
πiσΓ(1−σ)ζσ−1,

which yields the same
∨
I−k when σ = −k). If n ∈ N∗, there is no limit for

∨
Iσ as σ → n, however

O

Iσ can also be represented by the equivalent major
ζσ−1 − ζn−1

(1− e−2πiσ)Γ(σ)
which tends to the limit

∨
In(ζ) :=

ζn−1

(n− 1)!

log ζ

2πi
,

therefore we set
O

In := sing0

( ζn−1

(n− 1)!

log ζ

2πi

)
. We thus get a family of singularities

(O

Iσ
)
σ∈C.

Observe that
sing0(ζσ−1) = (1− e−2πiσ)Γ(σ)

O

Iσ, σ ∈ C, (120)

with the convention (1 − e−2πiσ)Γ(σ) = 2πi(−1)k/k! if σ = −k ∈ −N (and this singularity is 0
if and only if σ = n ∈ N∗).

We shall not investigate deeply the structure of the space SING, but let us mention that
there is a natural algebra structure on it: one can define a commutative associative product

O∗ on
SING, for which δ is a unit, and which is compatible with the convolution law of C{ζ} defined
by Lemma 5.3 in the sense that

sing0

(
∧
ϕ(ζ)

log ζ

2πi

)
O∗ sing0

(∧
ψ(ζ)

log ζ

2πi

)
= sing0

((∧
ϕ ∗

∧
ψ
)
(ζ)

log ζ

2πi

)
(121)

for any
∧
ϕ,
∧
ψ ∈ C{ζ}. See [Eca81], [Sau06, §3.1–3.2] for the details. The differentiation operator

d
dζ passes to the quotient and the notation (117) is motivated by the relation δ(k) =

(
d
dζ

)k
δ.

Let us also mention that δ(k) can be considered as the Borel transform of zk for k ∈ N, and

more generally
O

Iσ as the Borel transform of z−σ for any σ ∈ C: there is in fact a version of
the formal Borel transform operator with values in SING, which is defined on a class of formal
objects much broader than formal expansions involving only integer powers of z.

There is a well-defined monodromy9 operator
∨
f(ζ) ∈ ANA 7→

∨
f(ζ e−2πi) ∈ ANA (recall that

multiplication is well-defined in C̃), and the variation map
∨
f(ζ) 7→

∨
f(ζ) −

∨
f(ζ e−2πi) obviously

passes to the quotient:

Definition 25.5. The linear map induced by the variation map
∨
f(ζ) 7→

∨
f(ζ) −

∨
f(ζ e−2πi) is

denoted by

var :

 SING → ANA

O

f = sing0

(∨
f
)
7→

∧
f(ζ) =

∨
f(ζ)−

∨
f(ζ e−2πi).

The germ
∧
f = var

O

f is called the minor of the singularity
O

f .

A simple but important example is

var

(
sing0

(
∧
ϕ(ζ)

log ζ

2πi

))
=
∧
ϕ(ζ), (122)

9The operator
∨
f(ζ) ∈ ANA 7→

∨
f(ζ e−2πi) ∈ ANA reflects analytic continuation along a clockwise loop around

the origin for any function f holomorphic in a disc D ⊂ C∗ and such that f̃ = f ◦ π on one of the connected
components of π−1(D).
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for any
∧
ϕ holomorphic in a punctured disc D∗ρ. Another example is provided by the singular

germ of ζα (notation of Example 25.3): we get var
(

sing0(ζα)
)

= (1− e−2πiα) sing0(ζα), hence

var
O

Iσ =
ζσ−1

Γ(σ)
for all σ ∈ C \ (−N),

but var
O

I−k = var δ(k) = 0 for k ∈ N. Clearly, the kernel of the linear map var consists of the
singularities defined by the convergent Laurent series

∑
n∈Z anζ

n of Example 25.1.

26 Simple singularities at the origin

26.1 We retain from the previous section that, starting with a function f that admits spiral
continuation around 0, by identifying a part of the domain of f with a subset of C̃, we get

a function
∨
f holomorphic in a domain of C̃ of the form V(h) and then a singular germ, still

denoted by
∨
f (by forgetting about the precise function h); we then capture the singularity of f

at 0 by modding out by the regular germs.
The space SING of all singularities is huge. In this text, we shall almost exclusively deal

with singularities of a special kind:

Definition 26.1. We call simple singularity any singularity of the form

O
ϕ = a δ + sing0

(
∧
ϕ(ζ)

log ζ

2πi

)
with a ∈ C and

∧
ϕ(ζ) ∈ C{ζ}. The subspace of all simple singularities is denoted by SINGsimp.

We say that a function f has a simple singularity at 0 if it has spiral continuation around 0 and,
for any choice of a domain D̃ ⊂ C̃ which projects injectively onto a part of the domain of f , the

formula
∨
f := f ◦ π|D̃ defines the major of a simple singularity.

In other words, SINGsimp is the range of the C-linear map

a δ +
∧
ϕ(ζ) ∈ C δ ⊕ C{ζ} 7→ a δ + sing0

(
∧
ϕ(ζ)

log ζ

2πi

)
∈ SING, (123)

and a function f defined in an open disc D to which 0 is adherent has a simple singularity at 0
if and only if it can be written in the form

f(ζ) =
a

2πiζ
+
∧
ϕ(ζ)

Log ζ

2πi
+R(ζ), ζ ∈ D, (124)

where a ∈ C,
∧
ϕ(ζ) ∈ C{ζ}, Log ζ is any branch of the logarithm in D, and R(ζ) ∈ C{ζ}. Notice

that we need not worry about the choice of the connected component D̃ of π−1(D) in this case:
the various singular germs defined from f differ from one another by an integer multiple of

∧
ϕ

and thus define the same singularity (cf. Remark 25.4).
The map (123) is injective (exercise10); it thus induces a C-linear isomorphism

C δ ⊕ C{ζ} ∼−→ SINGsimp, (125)

10Use (122).
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which is also an algebra isomorphism if one takes into account the algebra structure on the space
of singularities which was alluded to earlier (in view of (121)). This is why we shall identify
sing0

(∧
ϕ(ζ) log ζ

2πi

)
with

∧
ϕ and use the notation

sing0

(
f(ζ)

)
=

O
ϕ = a δ +

∧
ϕ(ζ) ∈ C δ ⊕ C{ζ} ' SINGsimp (126)

in the situation described by (124), instead of the notation a δ + [∧ϕ which is sometimes used in
other texts. (Observe that there is an abuse of notation in the left-hand side of (126): we should

have specified a major
∨
f holomorphic in a subset of C̃ and written sing0

(∨
f(ζ)

)
, but there is no

ambiguity here, as explained above.) The germ
∧
ϕ is the minor of the singularity (

∧
ϕ = var

O
ϕ)

and the complex number a is called the constant term of
O
ϕ.

26.2 The convolution algebra C δ ⊕ C{ζ} was studied in Section 5 as the Borel image of the
algebra C[[z−1]]1 of Gevrey-1 formal series. Then, in Section 9, we defined its subalgebras C δ⊕
N (eiθR+) and C δ⊕N (I), Borel images of the subalgebras consisting of formal series 1-summable
in a direction θ or in the directions of an open interval I, and studied the corresponding Laplace
operators.

It is interesting to notice that the Laplace transform of a simple singularity
O
ϕ = a δ+

∧
ϕ(ζ) ∈

C δ ⊕N (eiθR+) can be defined in terms of a major of
O
ϕ: we choose

∨
ϕ(ζ) = the right-hand side

of (124) with R(ζ) = 0, or any major
∨
ϕ of

O
ϕ for which there exist δ, γ > 0 such that this major

extends analytically to{
ζ ∈ C̃ | θ − 5π

2 < arg ζ < θ + π
2 and |ζ| < δ

}
∪ S̃δ ∪ S̃′δ,

where S̃δ and S̃′δ are the connected components of π−1(Sθδ \Dδ) ⊂ C̃ which contain eiθ and ei(θ−2π)

(see Figure 10), and satisfies

|∨ϕ(ζ)| ≤ A eγ|ζ|, ζ ∈ S̃δ ∪ S̃′δ

for some positive constant A; then, for 0 < ε < δ and

z ∈ e−iθ
{
z0 ∈ C̃ | <e z0 > γ and arg z0 ∈ (−π

2 ,
π
2 )
}
,

we have

(S θB−1 O
ϕ)(z) = a+ (Lθ ∧ϕ)(z) =

∫
Γθ,ε

e−zζ
∨
ϕ(ζ) dζ, (127)

with an integration contour Γθ,ε which comes from infinity along ei(θ−2π)[ε,+∞), encircles the
origin by following counterclokwise the circle of radius ε, and go back to infinity along eiθ[ε,+∞)
(a kind of “Hankel contour”—see Figure 10). The proof is left as an exercise.11

The right-hand side of (127) is the “Laplace transform of majors”. It shows why the notation
O
ϕ = c δ +

∧
ϕ is consistent with the notations used in the context of 1-summability and suggests

far-reaching extensions of 1-summability theory, which however we shall not pursue in this text
(the interested reader may consult [Eca81] or [Sau06, §3.2]).

11Use (122) for ζ ∈ eiθ[ε,+∞) and then the dominated convergence theorem for ε→ 0.
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Figure 10: Laplace transform of a major. Left: the domain of C̃ where
∨
ϕ must be holomorphic

and its projection Sθδ in C. Right: the contour Γθ,ε for ζ (above) and the domain where z
belongs (below).
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Figure 11: The alien operator Aγ,ξω measures the singularity at ω for the analytic continuation
along γ of an Ω-continuable germ.

Alien calculus for simple resurgent functions

27 Simple Ω-resurgent functions and alien operators

We now leave aside the summability issues and come back to resurgent functions. Let Ω be a
non-empty closed discrete subset of C (for the moment we do not require it to be stable under
addition). From now on, we shall always consider Ω-resurgent functions as simple singularities
(taking advantage of (125) and (126)):

C δ ⊕ R̂Ω ⊂ C δ ⊕ C{ζ} ' SINGsimp,

where the germs of R̂Ω are characterized by Ω-continuability.
More generally, at least when 0 ∈ Ω, we define the space SINGΩ of Ω-resurgent singularities

as the space of all
O
ϕ ∈ SING whose minors

∧
ϕ = var

O
ϕ ∈ ANA are Ω-continuable in the following

sense: denoting by V(h) ⊂ C̃ a domain where
∧
ϕ defines a holomorphic function,

∧
ϕ admits

analytic continuation along any path γ̃ of C̃ starting in V(h) such that π ◦ γ̃ is contained
in C \ Ω. We then have the following diagram:

C δ ⊕ R̂Ω = SINGsimp ∩SINGΩ
� � // C δ ⊕ C{ζ} = SINGsimp � � // SING

C{z−1} �
� // R̃Ω

� � //

∼ B
OO

C[[z−1]]1

∼ B
OO
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Definition 27.1. Suppose that ω ∈ Ω, γ is a path of C \ Ω starting at a point ζ0 ∈ D∗ρ(Ω) and

ending at a point ζ1 such that there exists an open disc D ⊂ C \ Ω centred at ζ1 to which ω
is adherent, and ξ ∈ C̃ satisfies π(ξ) = −ω + ζ1. We then define a linear map, called the alien
operator associated with (ω, γ, ξ),

Aγ,ξω : C δ ⊕ R̂Ω → SING

by the formula

Aγ,ξω (a δ +
∧
ϕ) := sing0

(∨
f(ζ)

)
,

∨
f(ζ) = contγ

∧
ϕ
(
ω + π(ζ)

)
for ζ ∈ D̃(ξ), (128)

where D̃(ξ) ⊂ C̃ is the connected component of π−1(−ω +D) which contains ξ. See Figure 11.

This means that we follow the analytic continuation of
∧
ϕ along γ and get a function contγ

∧
ϕ

which is holomorphic in the disc D centred at ζ1, of which ω ∈ ∂D is possibly a singular point;
we then translate this picture and get a function

ζ 7→ f(ζ) := contγ
∧
ϕ(ω + ζ)

which is holomorphic in the disc −ω + D centred at −ω + ζ1 = π(ξ), of which 0 ∈ ∂(−ω + D)
is possibly a singular point; the function f has spiral continuation around 0 because

∧
ϕ is Ω-

continuable: choosing ε > 0 small enough so that D(ω, ε) ∩ Ω = {ω} (which is possible since Ω
is discrete), we see that contγ

∧
ϕ can be continued analytically along any path starting from ζ1

and staying in D(ω, ε)∪D, hence
∨
f is holomorphic in V(h)∪ D̃ with h(θ) ≡ ε and formula (128)

makes sense.

Remark 27.2. It is clear that the operator Aγ,ξω does not change if γ is replaced with a path
which is homotopic (in C \Ω, with fixed endpoints) to γ, nor if the endpoints of γ are modified
in a continuous way (keeping satisfied the assumptions of Definition 27.1) provided that ξ is
modified accordingly. On the other hand, modifying ξ while keeping γ unchanged results in an
elementary modification of the result, in line with footnote 8 on p. 62.

In a nutshell, the idea is to measure the singularity at ω for the analytic continuation along γ
of the minor

∧
ϕ. Of course, if ω is not a singular point for contγ

∧
ϕ, then Aγ,ξω

O
ϕ = 0. In fact, the

intersection of the kernels of all the operators Aγ,ξω is C δ ⊕ O(C), where O(C) is the set of all
entire functions. In particular,

B−1 O
ϕ ∈ C{z−1} =⇒ Aγ,ξω

O
ϕ = 0.

Example 27.1. We had
∧
ϕα(ζ) := (1+ζ)α−1 with α ∈ C in Example 18.8, in connection with the

incomplete Gamma function. Here we can take any Ω containing −1 and we have Aγ,ξω
∧
ϕα = 0

whenever ω 6= −1, since −1 is the only possible singular point of a branch of the analytic
continuation of

∧
ϕ. For ω = −1, the value of Aγ,ξ−1

∧
ϕα depends on γ and ξ. If γ is contained in

the interval (−1, 0), then we find f(ζ) =
∧
ϕα(−1 + ζ) = the principal branch of ζα−1 and, if we

choose ξ in the principal sheet of C̃, then

Aγ,ξ−1
∧
ϕα = (1− e−2πiα)Γ(α)

O

Iα,

which is 0 if and only if α ∈ N∗ (cf. (120)). If γ turns N times around −1, keeping the same
endpoints for γ and the same ξ, then this result is multiplied by e2πiNα; if we multiply ξ by e2πim,
then the result is multiplied by e−2πimα. (In both cases the result is unchanged if α ∈ Z.)
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Example 27.2. Let
∧
ϕ(ζ) = 1

ζLog (1 + ζ) (variant of Example 18.5) and Ω = {−1, 0}; we shall
describe the logarithmic singularity which arises at −1 and the simple pole at 0 for every branch
of the analytic continuation of

∧
ϕ. Consider first a path γ contained in the interval (−1, 0) and

ending at ζ1 = −1
2 . For any ξ projecting onto 0 + ζ1 = −1

2 , we find Aγ,ξ0
∧
ϕ = 0 (no singularity

at the origin for the principal branch), while for ξ projecting onto 1 + ζ1 = 1
2 ,

ξ = 1
2 e2πim =⇒ Aγ,ξ−1

∧
ϕ = sing0

( 1

−1 + ζ
(−2πim+ log ζ)

)
= − 2πi

1− ζ

(using the notation (126)). If γ turns N times around −1, then the analytic continuation of
∧
ϕ

is augmented by 2πiN
ζ , which is regular at −1 but singular at 0, hence Aγ,ξ−1

∧
ϕ still coincides with

− 2πi
1−ζ (the logarithmic singularity at −1 is the same for every branch) but

ξ = −1
2 e2πim =⇒ Aγ,ξ0

∧
ϕ = sing0

(2πiN

ζ

)
= (2πi)2Nδ.

Exercise 27.3. Consider
∧
ϕ(ζ) = −1

ζLog (1 − ζ) as in Example 18.5, with Ω = {0, 1}, and a

path γ contained in (0, 1) and ending at ζ1 = 1
2 . Prove that Aγ,ξ1

∧
ϕ = − 2πi

1+ζ for any ξ projecting

onto −1 + ζ1 = −1
2 . Compute Aγ,ξ0

∧
ϕ for γ turning N times around 1 and ξ projecting onto

0 + ζ1 = 1
2 .

Examples 18.5 and 27.2 (but not Example 18.8 if α /∈ N) are particular cases of

Definition 27.3. We call simple Ω-resurgent function any Ω-resurgent function
O
ϕ such that, for

all (ω, γ, ξ) as in Definition 27.1, Aγ,ξω
O
ϕ is a simple singularity. The set of all simple Ω-resurgent

functions is denoted by
C δ ⊕ R̂simp

Ω ,

where R̂simp
Ω is the set of all simple Ω-resurgent functions without constant term. We call simple

Ω-resurgent series any element of

R̃simp
Ω := B−1

(
C δ ⊕ R̂simp

Ω

)
⊂ R̃Ω.

Lemma 27.4. Let ω, γ, ξ be as in Definition 27.1. Then

O
ϕ ∈ C δ ⊕ R̂Ω =⇒ Aγ,ξω

O
ϕ ∈ SING−ω+Ω

O
ϕ ∈ C δ ⊕ R̂simp

Ω =⇒ Aγ,ξω
O
ϕ ∈ C δ ⊕ R̂simp

−ω+Ω.

Moreover, in the last case, Aγ,ξω
O
ϕ does not depend on the choice of ξ in π−1(−ω+ ζ1); denoting

it by Aγω
O
ϕ, we thus define an operator Aγω : C δ ⊕ R̂simp

Ω → C δ ⊕ R̂simp
−ω+Ω.

Proof of Lemma 27.4. Let
O
ϕ ∈ C δ⊕ R̂Ω and

O

ψ := Aγ,ξω
O
ϕ ∈ SING,

∧
ψ := var

O

ψ ∈ ANA. With the
notations of Definition 27.1 and ε as in the paragraph which follows it, we consider the path γ′

obtained by concatenating γ and a loop of D(ω, ε)∪D that starts and ends at ζ1 and encircles ω

clockwise. We then have
∧
ψ =

∨
f − ∨g, with

∨
f(ζ) := contγ

∧
ϕ
(
ω + π(ζ)

)
and

∨
g(ζ) := contγ′

∧
ϕ
(
ω + π(ζ)

)
for ζ ∈ D̃,

where D̃ is the connected component of π−1(D) which contains ξ.
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For any path λ̃ of C̃ which starts at ξ and whose projection λ := π ◦ λ̃ is contained in

C \ (−ω + Ω), the analytic continuation of
∨
f and

∨
g along λ̃ exists and is given by

contλ̃
∨
f(ζ) = contΓ

∧
ϕ
(
ω + π(ζ)

)
, contλ̃

∨
g(ζ) = contΓ′

∧
ϕ
(
ω + π(ζ)

)
,

where Γ is obtained by concatenating γ and ω+λ, and Γ′ by concatenating γ′ and ω+λ. Hence

the analytic continuation of
∧
ψ along any such path λ̃ exists, and this is sufficient to ensure that

O

ψ ∈ SINGΩ, which was the first statement to be proved.

If we suppose
O
ϕ ∈ C δ⊕R̂simp

Ω , then
O

ψ ∈ SINGsimp, and the second statement follows from Ex-

ample 25.1 and Remark 25.4: changing ξ amounts to adding to
∨
f an integer multiple of

∧
ψ which

is now assumed to be regular at the origin, and hence does not modify sing0

(∨
f(ζ)

)
. Putting

these facts together, we obtain Aγ,ξω
O
ϕ ∈ SING−ω+Ω ∩SINGsimp = C δ ⊕ R̂simp

−ω+Ω independent
of ξ.

In other words, an Ω-resurgent function
O
ϕ is simple if and only if all the branches of the

analytic continuation of the minor
∧
ϕ = var

O
ϕ have only simple singularities; the relation Aγω

O
ϕ =

a δ +
∧
ψ(ζ) then means

contγ
∧
ϕ(ω + ζ) =

a

2πiζ
+
∧
ψ(ζ)

Log ζ

2πi
+R(ζ) (129)

for ζ close enough to 0, where Log ζ is any branch of the logarithm and R(ζ) ∈ C{ζ}.

Notation 27.5. We just defined an operator Aγω : C δ⊕R̂simp
Ω → C δ⊕R̂simp

−ω+Ω. We shall denote
by the same symbol the counterpart of this operator in spaces of formal series:

C δ ⊕ R̂simp
Ω

Aγω
// C δ ⊕ R̂simp

−ω+Ω

R̃simp
Ω

Aγω
//

∼ B
OO

R̃simp
−ω+Ω

∼ B
OO

Definition 27.6. Let ω ∈ Ω. We call alien operator at ω any linear combination of composite
operators of the form

Aγrω−ωr−1
◦ · · · ◦ Aγ2

ω2−ω1
◦Aγ1

ω1

(viewed as operators C δ ⊕ R̂simp
Ω → C δ ⊕ R̂simp

−ω+Ω or, equivalently, R̃simp
Ω → R̃simp

−ω+Ω) with any
r ≥ 1, ω1, . . . , ωr−1 ∈ Ω, γj being any path of C \ (−ωj−1 + Ω) starting in D∗ρ(−ωj−1+Ω) and

ending in a disc Dj ⊂ D \ (−ωj−1 + Ω) to which ωj − ωj−1 is adherent, with the conventions

ω0 = 0 and ωr = ω, so that Aγjωj−ωj−1
: R̃simp

−ωj−1+Ω → R̃simp
−ωj+Ω is well defined.

Clearly C δ⊕O(C) ⊂ C δ⊕ R̂simp
Ω (since an entire function has no singularity at all!), hence

C{z−1} ⊂ R̃simp
Ω ,

and of course all alien operators act trivially on such resurgent functions. Another easy example
of simple Ω-resurgent function is provided by any meromorphic function

∧
ϕ of ζ which is regular

at 0 and whose poles are all simple and located in Ω. In this case Aγω
∧
ϕ does not depend on γ:

its value is 2πicωδ, where cω is the residuum of
∧
ϕ at ω.
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Example 27.4. By looking at the proof of Lemma 18.4, we see that we have meromorphic
Borel transforms for the formal series associated with the names of Euler, Poincaré and Stirling,
hence

ϕ̃E ∈ R̃simp
{−1}, ϕ̃P ∈ R̃simp

s+2πiZ, µ̃ ∈ R̃simp
2πiZ∗ ,

and we can compute

Aγ−1
∧
ϕE = 2πiδ, Aγs+2πik

∧
ϕP = 2πiδ, Aγ2πim

∧
µ =

1

m
δ,

for k ∈ Z, m ∈ Z∗ with any γ (and correspondingly Aγ−1 ϕ̃
E = Aγs+2πik ϕ̃

P = 2πi, Aγ2πim µ̃ = 1
m).

A less elementary example is λ̃ = eµ̃; we saw that λ̃ ∈ R̃2πiZ in Example 22.1, we shall see in
Section 30.1 that it belongs to R̃simp

2πiZ and that any alien operator maps λ̃ to a multiple of λ̃.

Here is a variant of Lemma 18.6 adapted to the case of simple resurgent functions:

Lemma 27.7. Let Ω be any non-empty closed discrete subset of C.

– If
∧
B is an entire function, then multiplication by

∧
B leaves R̂simp

Ω invariant, with

Aγω
∧
ϕ = a δ +

∧
ψ(ζ) =⇒ Aγω(

∧
B
∧
ϕ) =

∧
B(ω)a δ +

∧
B(ω + ζ)

∧
ψ(ζ). (130)

– As a consequence, for any c ∈ C, the operators ∂̂ and T̂c (defined by (21) and (23)) leave
C δ ⊕ R̂simp

Ω invariant or, equivalently, R̃simp
Ω is stable by ∂ = d

dz and Tc; one has

ϕ̃0 ∈ R̃simp
Ω =⇒ Aγω(∂ϕ̃0) = (−ω + ∂)Aγωϕ̃0 and Aγω(Tcϕ̃0) = e−cωTc(Aγωϕ̃0). (131)

– If ψ̃ ∈ z−2C{z−1}, then the solution in z−1C[[z−1]] of the difference equation

ϕ̃(z + 1)− ϕ̃(z) = ψ̃(z)

belongs to R̃simp
2πiZ∗, with Aγω

∧
ϕ = −2πi

∧
ψ(ω) δ for all (ω, γ) with ω ∈ 2πiZ∗.

Proof. Suppose that Aγω
∧
ϕ = a δ +

∧
ψ(ζ). Since multiplication by

∧
B commutes with analytic

continuation, the relation (129) implies

contγ
( ∧
B
∧
ϕ
)
(ω + ζ) =

∧
B(ω + ζ) contγ

∧
ϕ(ω + ζ) =

∧
B(ω)a

2πiζ
+
∧
B(ω + ζ)

∧
ψ(ζ)

Log ζ

2πi
+R∗(ζ)

with R∗(ζ) = R(ζ) + a

∧
B(ω + ζ)−

∧
B(ω)

2πiζ
∈ C{ζ}, hence Aγω(

∧
B
∧
ϕ) =

∧
B(ω)a δ +

∧
B(ω + ζ)

∧
ψ(ζ).

Suppose now that ϕ̃0 ∈ R̃simp
Ω has Borel transform

O
ϕ0 = α δ+

∧
ϕ with α ∈ C and

∧
ϕ as above.

According to (21) and (23), we have ∂̂
O
ϕ0 = −ζ ∧ϕ(ζ) and T̂c

O
ϕ0 = α δ+e−cζ

∧
ϕ(ζ); we see that both

of them belong to C δ ⊕ R̂simp
Ω by applying the first statement with

∧
B(ζ) = −ζ or e−cζ , and

Aγω(∂̂
O
ϕ0) = −ωaδ + (−ω − ζ)

∧
ψ(ζ) = (−ω + ∂̂)Aγω

O
ϕ0

Aγω(T̂c
O
ϕ0) = e−cωaδ + e−c(ω+ζ)

∧
ψ(ζ) = e−cωT̂c(Aγω

O
ϕ0),
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which is equivalent to (131).

For the last statement, we use Corollary 4.6, according to which
∧
ϕ =

∧
B
∧
ψ with

∧
B(ζ) = 1

e−ζ−1

and
∧
ψ(ζ) ∈ ζO(C): the function

∧
ϕ is meromorphic on C and all its poles are simple and located

in Ω = 2πiZ∗, therefore it is a simple Ω-resurgent function and we get the values of Aγω
O
ϕ by

computing the residues of
∧
ϕ (cf. the paragraph just before Example 27.4).

Exercise 27.5. Given s ∈ C with <e s > 1, the Hurwitz zeta function12 is defined as

ζ(s, z) =
∞∑
k=0

1

(z + k)s
, z ∈ C \ R−

(using the principal branch of (z + k)s for each k). Show that, for s ∈ N with s ≥ 2,

ϕ̃H
s (z) :=

1

(s− 1)zs−1
+

1

2zs
+
∞∑
k=1

(
s+ 2k − 1

s− 1

)
B2k

(s+ 2k − 1)zs+2k−1

(where the Bernoulli numbers B2k are defined in Exercise 11.1) is a simple 2πiZ∗-resurgent
formal series which is 1-summable in the directions of I = (−π

2 ,
π
2 ), with

ζ(s, z) = (S I ϕ̃H
s )(z) ∼1 ϕ̃H

s (z).

Hint: Use Lemma 27.7 and prove that ζ(s, z) coincides with the Laplace transform of

∧
ϕH
s (ζ) =

ζs−1

Γ(s)(1− e−ζ)
. (132)

Remark 27.8. If s ∈ C\N has <e s > 1, then (132) is not regular at the origin but still provides
an example of 2πiZ-continuable minor (in the sense of the definition given in the paragraph just
before Definition 27.1). In fact, there is an extension of 1-summability theory in which the
Laplace transform of

∧
ϕH
s in the directions of (−π

2 ,
π
2 ) is still defined and coincides with ζ(s, z)

(see [Eca81], [Sau06, §3.2]).

We end this section with a look at the action of alien operators on convolution products in
the “easy case” considered in Section 19.

Theorem 27.9. Suppose that
O

B0 ∈ C δ⊕ R̂simp
Ω with

∧
B := var

O

B0 entire. Then, for any ω ∈ Ω,

all the alien operators C δ ⊕ R̂simp
Ω → C δ ⊕ R̂simp

−ω+Ω commute with the operator of convolution

with
O

B0.

Proof. It suffices to show that, for any γ ⊂ C \ Ω starting at a point ζ0 ∈ D∗ρ(Ω) and ending at

the centre ζ1 of a disc D ⊂ C \ Ω to which ω is adherent, and for any
O
ϕ0 ∈ C δ ⊕ R̂simp

Ω ,

Aγω(
O

B0 ∗
O
ϕ0) =

O

B0 ∗ (Aγω
O
ϕ0).

We can write
O

B0 = bδ +
∧
B,

O
ϕ0 = cδ +

∧
ϕ, Aγω

O
ϕ0 = aδ +

∧
ψ.

12 Notice that ζ(s, 1) is the Riemann zeta value ζ(s).
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Then
O

B0 ∗
O
ϕ0 = b

O
ϕ0 + c

∧
B +

∧
B ∗ ∧ϕ and Aγω(

O

B0 ∗
O
ϕ0) = bAγω

O
ϕ0 +Aγω(

∧
B ∗ ∧ϕ), hence we just need

to prove that Aγω(
∧
B ∗ ∧ϕ) =

∧
B ∗ Aγω

∧
ϕ, i.e. that

Aγω(
∧
B ∗ ∧ϕ) = a

∧
B +

∧
B ∗

∧
ψ.

According to Lemma 19.1, we have

contγ(
∧
B∗ ∧ϕ)(ω+ζ) =

∫ ζ0

0

∧
B(ω+ζ−ξ)∧ϕ(ξ) dξ+

∫
γ

∧
B(ω+ζ−ξ)∧ϕ(ξ) dξ+

∫ ω+ζ

ζ1

∧
B(ω+ζ−ξ)∧ϕ(ξ) dξ

for ζ ∈ −ω + D, where it is understood that
∧
ϕ(ξ) represents the value at ξ of the appropriate

branch of the analytic continuation of
∧
ϕ (which is contγ

∧
ϕ for the third integral). The standard

theorem about an integral depending holomorphically on a parameter ensures that the sum
R1(ζ) of the first two integrals extends to an entire function of ζ. Let ∆ := −ω +D (a disc to
which 0 is adherent). Performing the change of variable ξ → ω + ξ in the third integral, we get

contγ(
∧
B ∗ ∧ϕ)(ω + ζ) = R1(ζ) +

∫ ζ

−ω+ζ1

∧
B(ζ − ξ) contγ

∧
ϕ(ω + ξ) dξ, ζ ∈ ∆.

Now, according to (129), we can write

contγ
∧
ϕ(ω + ξ) = S(ξ) +R2(ξ), ξ ∈ ∆ ∩ D∗ρ,

where S(ξ) =
a

2πiξ
+
∧
ψ(ξ)

Log ξ

2πi
, Log ξ being a branch of the logarithm holomorphic in ∆,

R2(ξ) ∈ C{ξ}, and ρ > 0 is smaller than the radii of convergence of
∧
ψ and R2. Let us pick

σ ∈ ∆ ∩ D∗ρ and set

R(ζ) := R1(ζ) +

∫ σ

−ω+ζ1

∧
B(ζ − ξ) contγ

∧
ϕ(ω + ξ) dξ,

so that

contγ(
∧
B ∗ ∧ϕ)(ω + ζ) = R(ζ) +

∫ ζ

σ

∧
B(ζ − ξ) contγ

∧
ϕ(ω + ξ) dξ, ζ ∈ ∆.

We see that R(ζ) extends to an entire function of ζ and, for ζ ∈ ∆ ∩ D∗ρ, the last integral can
be written∫ ζ

σ

∧
B(ζ − ξ) contγ

∧
ϕ(ω + ξ) dξ = f(ζ) +R3(ζ), f(ζ) :=

∫ ζ

σ

∧
B(ζ − ξ)S(ξ) dξ,

with R3(ζ) defined by an integral involving R2(ξ) and thus extending holomorphically for ζ ∈ Dρ.
The only possibly singular term in contγ(

∧
B∗∧ϕ)(ω+ζ) is thus f(ζ), which is seen to admit analytic

continuation along every path Γ starting from σ and contained in D∗ρ; indeed,

contΓ f(ζ) =

∫
Γ

∧
B(ζ − ξ)S(ξ) dξ. (133)

In particular, f has spiral continuation around 0. We now show that it defines a simple singu-

larity, which is none other than a
∧
B +

∧
B ∗

∧
ψ.
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Let us first compute the difference g := f+ − f , where we denote by f+ the branch of the
analytic continuation of f obtained by starting from ∆ ∩ D∗ρ, turning anticlockwise around 0
and coming back to ∆ ∩ D∗ρ. We have

g(ζ) =

∫
Cζ

∧
B(ζ − ξ)S(ξ) dξ, ζ ∈ ∆ ∩ D∗ρ,

where Cζ is the circular path t ∈ [0, 2π] 7→ ζ eit. For any ε ∈ (0, 1), by the Cauchy theorem,

g(ζ) =

∫ ζ

εζ

∧
B(ζ − ξ)

∧
ψ(ξ) dξ +

∫
Cεζ

∧
B(ζ − ξ)S(ξ) dξ,

because S+ − S =
∧
ψ. Keeping ζ fixed, we let ε tend to 0: the first integral clearly tends to

∧
B ∗

∧
ψ(ζ) and the second one can be written

a

∫
Cεζ

∧
B(ζ − ξ)

2πiξ
dξ +

∫
Cεζ

∧
B(ζ − ξ)

∧
ψ(ξ)

Log ξ

2πi
dξ =

a
∧
B(ζ) +

∫ 2π

0

∧
B(ζ − εζ eit)

∧
ψ(εζ eit)

ln ε+ Log ζ + it

2πi
iεζ eit dt

(because the analytic continuation of Log is explicitly known), which tends to a
∧
B(ζ) since the

last integral is bounded in modulus by Cε
(
C ′ + |ln ε|

)
with appropriate constants C,C ′. We

thus obtain
g(ζ) = a

∧
B(ζ) +

∧
B ∗

∧
ψ(ζ).

Since this function is regular at the origin and holomorphic in Dρ, we can reformulate this result
on f+ − f by saying that the function

ζ ∈ ∆ ∩ D∗ρ 7→ h(ζ) := f(ζ)− g(ζ)
Log ζ

2πi

extends analytically to a (single-valued) function holomorphic in D∗ρ, i.e. it can be represented
by a Laurent series (116).

We conclude by showing that the above function h is in fact regular at the origin. For
that, it is sufficient to check that, in D∗|σ|, it is bounded by C

(
C ′ + ln 1

|ζ|
)

with appropriate

constants C,C ′ (indeed, this will imply ζh(ζ) −−−→
ζ→0

0, thus the origin will be a removable

singularity for h). Observe that every point of D∗|σ| can be written in the form ζ = σu eiv with

0 < u := |ζ|/|σ| < 1 and 0 ≤ v < 2π, hence it can be reached by starting from σ and following the
concatenation Γζ of the circular path t ∈ [0, v] 7→ σeit and the line segment t ∈ [0, 1] 7→ σeivx(t)
with x(t) := 1− t(1− u) > 0, hence

(contΓζ h)(ζ) = (contΓζ f)(ζ)− 1

2πi
g(ζ)(contΓζ Log )(ζ)

=

∫
Γζ

∧
B(ζ − ξ)S(ξ) dξ − 1

2πi
g(ζ)(Logσ + lnu+ iv)
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Figure 12: An example of path γ used in the definition of AΩ
ω,ε, here with ε = (−,+,−).

(using (133) for the first term). The result follows from the existence of a constant M > 0 such

that |
∧
B| ≤ M on D2ρ, |g| ≤ M on Dρ and |S(ξ)| ≤ M/|ξ| for ξ ∈ Dρ, because the first term in

the above representation of h(ζ) has modulus ≤∣∣∣∣∫ v

0

∧
B(ζ − σeit)S(σeit)σieit dt+

∫ 1

0

∧
B
(
ζ − σeivx(t)

)
S
(
σeivx(t)

)
σeivx′(t) dt

∣∣∣∣ ≤M2v +M2 ln
1

u
.

28 The alien operators ∆+
ω and ∆ω

We still denote by Ω a non-empty closed discrete subset of C. We now define various families of
alien operators acting on simple Ω-resurgent functions, among which the most important will
be (∆+

ω )ω∈Ω\{0} and (∆ω)ω∈Ω\{0}.

28.1 Definition of AΩ
ω,ε, ∆+

ω and ∆ω

Definition 28.1. Let ω ∈ Ω \ {0}. We denote by ≺ the total order on [0, ω] induced by
t ∈ [0, 1] 7→ t ω ∈ [0, ω] and write

[0, ω] ∩ Ω = {ω0, ω1, . . . , ωr−1, ωr}, 0 = ω0 ≺ ω1 ≺ · · · ≺ ωr−1 ≺ ωr = ω (134)

(with r ∈ N∗ depending on ω and Ω). With any ε = (ε1, . . . , εr−1) ∈ {+,−}r−1 we associate an
alien operator at ω

AΩ
ω,ε : R̃simp

Ω → R̃simp
−ω+Ω (135)

defined as AΩ
ω,ε = Aγω for any path γ chosen as follows: we pick δ > 0 small enough so that the

closed discs Dj := D(ωj , δ), j = 0, 1, . . . r, are pairwise disjoint and satisfy Dj ∩ Ω = {ωj}, and
we take a path γ connecting ]0, ω[∩D0 and ]0, ω[∩Dr by following the line segment ]0, ω[ except
that, for 1 ≤ j ≤ r − 1, the subsegment ]0, ω[ ∩ Dj is replaced by one of the two half-circles
which are the connected components of ]0, ω[∩∂Dj : the path γ must circumvent ωj to the right
if εj = +, to the left if εj = −. See Figure 12.

Observe that the notation (135) is justified by the fact that, in view of Remark 27.2, the
operator AΩ

ω,ε does not depend on δ nor on the endpoints of γ.
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Definition 28.2. For any ω ∈ Ω \ {0}, we define two particular alien operators at ω

∆+
ω , ∆ω : R̃simp

Ω → R̃simp
−ω+Ω

by the formulas

∆+
ω := AΩ

ω,(+,...,+), ∆ω :=
∑

ε∈{+,−}r−1

p(ε)!q(ε)!

r!
AΩ
ω,ε, (136)

where r = r(ω,Ω) is defined by (134) and p(ε) and q(ε) represent the number of symbols ‘+’
and ‘−’ in the tuple ε (so that p(ε) + q(ε) = r − 1).

We thus have (still with notation (134)), for r = 1, 2, 3:

∆+
ω1

= AΩ
ω1,()

, ∆ω1 = AΩ
ω1,()

,

∆+
ω2

= AΩ
ω2,(+), ∆ω2 =

1

2
AΩ
ω2,(+) +

1

2
AΩ
ω2,(−),

∆+
ω3

= AΩ
ω3,(+,+), ∆ω3 =

1

3
AΩ
ω3,(+,+) +

1

6
AΩ
ω3,(+,−) +

1

6
AΩ
ω3,(−,+) +

1

3
AΩ
ω3,(−,−) .

Of course, the operators ∆+
ω ,∆ω,AΩ

ω,ε can all be considered as operators C δ ⊕ R̂simp
Ω → C δ ⊕

R̂simp
−ω+Ω as well.

Remark 28.3. Later on, in Sections 34–37.4, we shall assume that Ω is an additive subgroup
of C, so −ω + Ω = Ω and ∆+

ω ,∆ω,AΩ
ω,ε are operators from R̃simp

Ω to itself; we shall see in

Section 30.4 that, in that case, R̃simp
Ω is a subalgebra of R̃Ω (which is itself a subalgebra of

C[[z−1]] by Corollary 21.2) of which each ∆ω is a derivation (i.e. it satisfies the Leibniz rule).
For that reason the operators ∆ω are called “alien derivations”.

Observe that, given r ≥ 1, there are r possibilities for the value of p = p(ε) and, for each p,
there are

(
r−1
p

)
tuples ε such that p(ε) = p; since in the definition of ∆ω the coefficient in front

of AΩ
ω,ε is the inverse of r

(
r − 1

p(ε)

)
, it follows that the sum of all these 2r−1 coefficients is 1. The

resurgent function ∆ω(c δ+
∧
ϕ) can thus be viewed as an average of the singularities at ω of the

branches of the minor
∧
ϕ obtained by following the 2r−1 “most direct” paths from 0 to ω. The

reason for this precise choice of coefficients will appear later (Theorem 29.1).
As a consequence, when the minor

∧
ϕ is meromorphic, both ∆ω(c δ+

∧
ϕ) and ∆+

ω (c δ+
∧
ϕ) coin-

cide with 2πicωδ, where cω is the residuum of
∧
ϕ at ω (cf. the remark just before Example 27.4).

For instance, for the resurgent series associated with the names of Euler, Poincaré, Stirling and
Hurwitz,

∆−1ϕ̃E = 2πi, ∆s+2πikϕ̃P = 2πi, ∆2πimµ̃ =
1

m
, ∆2πimϕ̃H = 2πi

(2πim)s−1

Γ(s)
, (137)

for k ∈ Z and <e s < 0 in the case of Poincaré, m ∈ Z∗ for Stirling, and s ∈ N with s ≥ 2 for
Hurwitz, in view of Example 27.4 and Exercise 27.5.

We note for later use an immediate consequence of formula (131) of Lemma 27.7:

Lemma 28.4. Let ϕ̃ ∈ R̃simp
Ω and c ∈ C. Then

∆+
ω ∂ϕ̃ = (−ω + ∂)∆+

ω ϕ̃, ∆ω∂ϕ̃ = (−ω + ∂)∆ωϕ̃, (138)

∆+
ωTcϕ̃ = e−cωTc∆

+
ω ϕ̃, ∆ωTcϕ̃ = e−cωTc∆ωϕ̃, (139)

where ∂ = d
dz and Tc is defined by (16).
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28.2 Dependence upon Ω

Lemma 28.5. Suppose that we are given ω ∈ C∗ and Ω1,Ω2 closed discrete such that ω ∈
Ω1 ∩ Ω2. Then there are two operators “∆+

ω ” defined by (136), an operator R̃simp
Ω1

→ R̃simp
−ω+Ω1

and an operator R̃simp
Ω2

→ R̃simp
−ω+Ω2

, but they act the same way on R̃simp
Ω1
∩ R̃simp

Ω2
. The same is

true of “∆ω”.

The point is that the sets ]0, ω[ ∩ Ω1 and ]0, ω[ ∩ Ω2 may differ, but their difference is
constituted of points which are artificial singularities for the minor of any ϕ̃ ∈ R̃simp

Ω1
∩ R̃simp

Ω2
,

in the sense that no branch of its analytic continuation is singular at any of these points. So
Lemma 28.5 claims that, in the above situation, we get the same resurgent series for ∆+

ω ϕ̃
whether computing it in R̃simp

−ω+Ω1
or in R̃simp

−ω+Ω2
.

Proof. Let Ω := Ω1, Ω∗ := Ω1 ∪ Ω2 and ϕ̃ ∈ R̃simp
Ω1
∩ R̃simp

Ω2
. As in (134), we write

]0, ω[ ∩ Ω = {ω1 ≺ · · · ≺ ωr−1}, ]0, ω[ ∩ Ω∗ = {ω∗1 ≺ · · · ≺ ω∗s−1},

with 1 ≤ r ≤ s. Given ε∗ ∈ {+,−}s−1, we have AΩ∗
ω,ε∗ ϕ̃ = AΩ

ω,ε ϕ̃ with ε := ε∗|Ω, i.e. the tuple

ε ∈ {+,−}r−1 is obtained from ε∗ by deleting the symbols ε∗j corresponding to the fictitious
singular points ω∗j ∈ Ω∗ \ Ω.

In view of formula (136a), when ε∗ = (+, . . . ,+) we get the same resurgent series for ∆+
ω ϕ̃

whether computing it in R̃simp
−ω+Ω∗ or in R̃simp

−ω+Ω, which yields the desired conclusion by exchanging
the roles of Ω1 and Ω2.

We now compute ∆ωϕ̃ in R̃simp
−ω+Ω∗ by applying formula (136b) and grouping together the

tuples ε∗ that have the same restriction ε: with the notation c := s− r, we get

∑
ε∈{+,−}r−1

∑
ε∗∈{+,−}r+c−1

with ε∗|Ω=ε

p(ε∗)!q(ε∗)!

(r + c)!
AΩ
ω,ε ϕ̃ =

∑
ε∈{+,−}r−1

∑
c=a+b

(
c

a

)(
p(ε) + a

)
!
(
q(ε) + b

)
!

(r + c)!
AΩ
ω,ε ϕ̃,

which yields the desired result because∑
c=a+b

(
c

a

)
(p+ a)!(q + b)!

(r + c)!
=
p!q!

r!

for any non-negative integers p, q, r with r = p + q + 1, as is easily checked by rewriting this
identity as ∑

c=a+b

(p+ a)!

a!p!

(q + b)!

b!q!
=

(r + c)!

c!r!

and observing that the generating series
∑

a∈N
(p+a)!
a!p! X

a = (1−X)−p−1 satisfies (1−X)−p−1(1−
X)−q−1 = (1−X)−r−1.

Remark 28.6. Given ω ∈ C∗, we thus can compute ∆+
ω ϕ̃ or ∆ωϕ̃ as soon as there exists Ω so

that ω ∈ Ω and ϕ̃ ∈ R̃simp
Ω , and the result does not depend on Ω. We thus have in fact a family

of operators ∆+
ω , ∆ω : R̃simp

Ω → R̃simp
−ω+Ω, indexed by the closed discrete sets Ω which contain ω,

and there is no need that the notation for these operators depend explicitly on Ω.
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28.3 The operators ∆+
ω as a system of generators

Theorem 28.7. Let Ω be a non-empty closed discrete subset of C and let ω ∈ Ω. Any alien
operator at ω can be expressed as a linear combination of composite operators of the form

∆+
η1,...,ηs

:= ∆+
ηs−ηs−1

◦ · · · ◦∆+
η2−η1

◦∆+
η1

(140)

with s ≥ 1, η1, . . . , ηs−1 ∈ Ω, ηs = ω, η1 6= 0 and ηj 6= ηj+1 for 1 ≤ j < s, with the conven-

tion ∆+
ω := ∆+

ω for s = 1 (viewing ∆+
η1,...,ηs as an operator C δ ⊕ R̂simp

Ω → C δ ⊕ R̂simp
−ω+Ω or,

equivalently, R̃simp
Ω → R̃simp

−ω+Ω).

Observe that the composition (140) is well defined because, with the convention η0 = 0, the
operator ∆+

ηj−ηj−1
maps R̃simp

−ηj−1+Ω into R̃simp
−ηj+Ω. We shall not give the proof of this theorem,

but let us indicate a few examples: with the notation (134),

AΩ
ω2,(+) = ∆+

ω2
, AΩ

ω2,(−) = ∆+
ω2
−∆+

ω2−ω1
◦∆+

ω1

AΩ
ω3,(+,+) = ∆+

ω3
, AΩ

ω3,(−,+) = ∆+
ω3
−∆+

ω3−ω1
◦∆+

ω1
, AΩ

ω3,(+,−) = ∆+
ω3
−∆+

ω3−ω2
◦∆+

ω2
,

AΩ
ω3,(−,−) = ∆+

ω3
−∆+

ω3−ω1
◦∆+

ω1
−∆+

ω3−ω2
◦∆+

ω2
+ ∆+

ω3−ω2
◦∆+

ω2−ω1
◦∆+

ω1
.

Remark 28.8. One can omit the ‘+’ in Theorem 28.7, i.e. the family {∆η} is a system of
generators as well. This will follow from the relation (142) of next section.

Exercise 28.1. Suppose that 1 ≤ s ≤ r − 1 and ε, ε∗ ∈ {+,−}r−1 assume the form

ε = a(−)b, ε∗ = a(+)b, with a ∈ {+,−}s−1,

i.e. (ε1, . . . , εs−1) = (ε∗1, . . . , ε
∗
s−1) = a, εs = −, ε∗s = +, (εs+1, . . . , εr−1) = (ε∗s+1, . . . , ε

∗
r−1) = b.

Prove that
AΩ
ωr,ε = AΩ

ωr,ε∗ −A
Ω
ωr−ωs,b ◦A

Ω
ωs,a

with the notation (134). Deduce the formulas given in example just above.

Remark 28.9. There is also a strong “freeness” statement for the operators ∆+
η : consider an

arbitrary finite set F of finite sequences η of elements of Ω, so that each η ∈ F is of the form
(η1, . . . , ηs) for some s ∈ N, with η1 6= 0 and ηj 6= ηj+1 for 1 ≤ j < s, with the convention η = ∅
and ∆+

∅ = Id for s = 0; then, for any non-trivial family
(
ψ̃η
)
η∈F of simple Ω-resurgent series,

ϕ̃ ∈ Rsimp
Ω 7→

∑
η∈F

ψ̃η ·∆+
η ϕ̃

is a non-trivial linear map: one can construct a simple Ω-resurgent series which is not annihi-
lated by this operator. There is a similar statement for the family {∆η}. See [Eca81, Vol. 3] or
adapt [Sau10, §12].

29 The symbolic Stokes automorphism for a direction d

29.1 Exponential-logarithm correspondence between {∆+
ω } and {∆ω}

For any ω ∈ C∗, we denote by ≺ the total order on [0, ω] induced by t ∈ [0, 1] 7→ t ω ∈ [0, ω].
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Theorem 29.1. Let Ω be a non-empty closed discrete subset of C. Then, for any ω ∈ Ω \ {0},

∆ω =
∑
s∈N∗

(−1)s−1

s

∑
(η1,...,ηs−1)∈Σ(s,ω,Ω)

∆+
ω−ηs−1

◦ · · · ◦∆+
η2−η1

◦∆+
η1

(141)

∆+
ω =

∑
s∈N∗

1
s!

∑
(η1,...,ηs−1)∈Σ(s,ω,Ω)

∆ω−ηs−1 ◦ · · · ◦∆η2−η1 ◦∆η1 (142)

where Σ(s, ω,Ω) is the set of all increasing sequences (η1, . . . , ηs−1) of ]0, ω[ ∩ Ω,

0 ≺ η1 ≺ · · · ≺ ηs−1 ≺ ω,

with the convention that the composite operator ∆+
ω−ηs−1

◦ · · · ◦∆+
η2−η1

◦∆+
η1

is reduced to ∆+
ω

when s = 1 (in which case Σ(1, ω,Ω) is reduced to the empty sequence) and similarly for the
composite operator appearing in (142).

With the notation (134), this means

∆ω1 = ∆+
ω1

∆ω2 = ∆+
ω2
− 1

2∆+
ω2−ω1

◦∆+
ω1

∆ω3 = ∆+
ω3
− 1

2

(
∆+
ω3−ω1

◦∆+
ω1

+ ∆+
ω3−ω2

◦∆+
ω2

)
+ 1

3∆+
ω3−ω2

◦∆+
ω2−ω1

◦∆+
ω1

...

∆+
ω1

= ∆ω1

∆+
ω2

= ∆ω2 + 1
2!∆ω2−ω1 ◦∆ω1

∆+
ω3

= ∆ω3 + 1
2! (∆ω3−ω1 ◦∆ω1 + ∆ω3−ω2 ◦∆ω2) + 1

3!∆ω3−ω2 ◦∆ω2−ω1 ◦∆ω1

...

We shall obtain Theorem 29.1 in next section as a consequence of Theorem 29.2, which is in
fact an equivalent formulation in term of series of homogeneous operators in a graded vector
space.

29.2 The symbolic Stokes automorphism and the symbolic Stokes infinitesi-
mal generator

From now on, we fix Ω and a ray d = {t eiθ | t ≥ 0}, with some θ ∈ R, and denote by ≺ the total
order on d induced by t 7→ t eiθ. We shall be interested in the operators ∆+

ω and ∆ω with ω ∈ d.
Without loss of generality we can suppose that the set Ω∩d is infinite and contains 0; indeed, if
it is not the case, then we can enrich Ω and replace it say with Ω∗ := Ω ∪ {N eiθ | N ∈ N}, and
avail ourselves of Remark 28.6, observing that R̂simp

Ω ↪→ R̂simp
Ω∗ and that any relation proved

for the alien operators in the larger space induces a relation in the smaller, with ∆+
ω∗ and ∆ω∗

annihilating the smaller space when ω∗ ∈ Ω∗ \ Ω.
We can thus write Ω ∩ d as an increasing sequence

Ω ∩ d = {ωm}m∈N, ω0 = 0 ≺ ω1 ≺ ω2 ≺ · · · (143)

For each ω = ωm ∈ Ω ∩ d, we define
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•
∧
Eω(Ω) as the space of all functions φ̂ which are holomorphic at ω, which can be analyt-
ically continued along any path of C \ Ω starting close enough to ω, and whose analytic
continuation has at worse simple singularities;

•
O

Eω(Ω) as the vector space C δω ⊕
∧
Eω(Ω), where each δω is a distinct symbol13 analogous

to the convolution unit δ;

•
∨
Eω(Ω, d) as the space of all functions

∨
f holomorphic on the line segment ]ωm, ωm+1[ which

can be analytically continued along any path of C \ Ω starting from this segment and
whose analytic continuation has at worse simple singularities.

We shall often use abridged notations
O

Eω or
∨
Eω. Observe that there is a linear isomorphism

τω :

∣∣∣∣∣ C δ ⊕ R̂simp
−ω+Ω

∼−→
O

Eω

a δ + ϕ̂ 7→ a δω + ϕ̂ω, ϕ̂ω(ζ) := ϕ̂(ζ − ω),
(144)

and a linear map

•
σ :

∣∣∣∣∣∣
∨
Eωm →

O

Eωm+1

∨
f 7→ τωm+1

O
ϕ,

O
ϕ := sing0

(∨
f(ωm+1 + ζ)

)
.

The idea is that an element of
O

Eω(Ω) is nothing but a simple Ω-resurgent singularity “based

at ω” and that any element of
∨
Eω(Ω, d) has a well-defined simple singularity “at ωm+1”, i.e. we

could have written
•
σ
∨
f = singωm+1

(∨
f(ζ)

)
with an obvious extension of Definition 25.3.

We also define a “minor” operator µ and two “lateral continuation” operators
•
`+ and

•
`−

by the formulas

µ :

∣∣∣∣∣∣
O

Eω →
∨
Eω

a δω + φ̂ 7→ φ̂| ]ωm,ωm+1[

•
`± :

∣∣∣∣∣∣
∨
Eω →

∨
Eωm+1

∨
f 7→ contγ±

∨
f

where γ+, resp. γ−, is any path which connects ]ωm, ωm+1[ and ]ωm+1, ωm+2[ staying in a neigh-
bourhood of ]ωm, ωm+2[ whose intersection with Ω is reduced to {ωm+1} and circumventing ωm+1

to the right, resp. to the left.

Having done so for every ω ∈ Ω ∩ d, we now “gather” the vector spaces
O

Eω or
∨
Eω and

consider the completed graded vector spaces

O

E(Ω, d) :=
∧⊕

ω∈Ω∩d

O

Eω(Ω),
∨
E(Ω, d) :=

∧⊕
ω∈Ω∩d

∨
Eω(Ω, d)

(we shall often use the abridged notations
O

E or
∨
E). This means that, for instance,

∨
E is the

cartesian product of all spaces
∨
Eω, but with additive notation for its elements: they are infinite

series
∨
ϕ =

∑
ω∈Ω∩d

∨
ϕω ∈

∨
E,

∨
ϕω ∈

∨
Eω for each ω ∈ Ω ∩ d. (145)

13to be understood as a “the translate of δ from 0 to ω”, or “the simple singularity at ω represented by 1
2πi(ζ−ω)

”
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This way
∨
Eωm ↪→

∨
E can be considered as the subspace of homogeneous elements of degree m for

each m. Beware that
∨
ϕ ∈

∨
E may have infinitely many non-zero homogeneous components

∨
ϕω—

this is the difference with the direct sum14
⊕
ω∈Ω∩d

∨
Eω.

We get homogeneous maps

µ :
O

E →
∨
E,

•
σ :

∨
E →

O

E,
•
`± :

∨
E →

∨
E

by setting, for instance,
•
`+

( ∑
ω∈Ω∩d

∨
ϕω
)

:=
∑

ω∈Ω∩d

•
`+
∨
ϕω.

The maps
•
`+,

•
`− and

•
σ are 1-homogeneous, in the sense that for each m they map homoge-

neous elements of degree m to homogeneous elements of degree m+1, while µ is 0-homogeneous.
Notice that

µ ◦ •
σ =

•
`+ −

•
`−. (146)

For each r ∈ N∗, let us define two r-homogeneous operators
•
∆

+
r ,

•
∆r :

O

E →
O

E by the formulas

•
∆

+
r :=

•
σ ◦

•
`
r−1
+ ◦ µ,

•
∆r :=

∑
ε∈{+,−}r−1

p(ε)!q(ε)!

r!

•
σ ◦

•
`εr−1 ◦ · · · ◦

•
`ε1 ◦ µ, (147)

with notations similar to those of (136).

Theorem 29.2. (i) For each m ∈ N and r ∈ N∗, the diagrams

C δ ⊕ R̂simp
−ωm+Ω

∆+
ωm+r−ωm

//

τωm
��

C δ ⊕ R̂simp
−ωm+r+Ω

τωm+r
��

O

Eωm(Ω, d)

•
∆

+
r

// O

Eωm+r(Ω, d)

C δ ⊕ R̂simp
−ωm+Ω

∆ωm+r−ωm
//

τωm
��

C δ ⊕ R̂simp
−ωm+r+Ω

τωm+r
��

O

Eωm(Ω, d)

•
∆r // O

Eωm+r(Ω, d)

commute.

(ii) The formulas ∆/ +
d := Id +

∑
r∈N∗

•
∆

+
r and ∆/ d :=

∑
r∈N∗

•
∆r define two operators

∆/ +
d , ∆/ d :

O

E(Ω, d)→
O

E(Ω, d),

the first of which has a well-defined logarithm which coincides with the second, i.e.∑
r∈N∗

•
∆r =

∑
s∈N∗

(−1)s−1

s

( ∑
r∈N∗

•
∆

+
r

)s
. (148)

14 One can define translation-invariant distances which make
∨
E and

O

E complete metric spaces as follows: let

ord:
∨
E → N ∪ {∞} be the “order function” associated with the decomposition in homogeneous components,

i.e. ord
∨
ϕ := min{m ∈ N | ∨

ϕωm 6= 0 } if
∨
ϕ 6= 0 and ord 0 = ∞, and let dist(

∨
ϕ1,

∨
ϕ2) := 2− ord(

∨
ϕ2−

∨
ϕ1), and

similarly for
O

E. This allows one to consider a series of homogeneous components as the limit of the sequence of
its partial sums; we thus can say that a series like (145) is convergent for the topology of the formal convergence
(or “formally convergent”). Compare with Section 3.3.
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(iii) The operator ∆/ d has a well-defined exponential which coincides with ∆/ +
d , i.e.

Id +
∑
r∈N∗

•
∆

+
r =

∑
s∈N

1

s!

( ∑
r∈N∗

•
∆r

)s
. (149)

Proof of Theorem 29.2. (i) Put together (136), (144) and (147).

(ii) The fact that ∆/ +
d :

O

E →
O

E and its logarithm are well-defined series of operators stems

from the r-homogeneity of
•
∆

+
r for every r ≥ 1, which ensures formal convergence.

The right-hand side of (148) can be written∑
r1,...,rs≥1

s≥1

(−1)s−1

s

•
∆

+
r1 · · ·

•
∆

+
rs =

∑
m1,...,ms≥0

s≥1

(−1)s−1

s

•
σ
•
`
m1

+ µ
•
σ
•
`
m2

+ · · ·µ •
σ
•
`
ms
+ µ =

∑
r≥1

•
σBrµ,

where we have omitted the composition symbol “◦” to lighten notations, made use of (147),
and availed ourselves of (146) to introduce the (r − 1)-homogeneous operators

Br :=
∑

m1+···+ms+s=r
m1,...,ms≥0, s≥1

(−1)s−1

s

•
`
m1

+ (
•
`+ −

•
`−)

•
`
m2

+ · · · (
•
`+ −

•
`−)

•
`
ms
+ ,

with the convention B1 = Id. It is an exercise in non-commutative algebra to check that

Br =
∑

ε∈{+,−}r−1

p(ε)!q(ε)!

r!

•
`εr−1 · · ·

•
`ε1

(viewed as an identity between polynomials in two non-commutative variables
•
`+ and

•
`−),

hence (147) shows that
•
σBrµ =

•
∆r and we are done.

(iii) Clearly equivalent to (ii).

Definition 29.3. – The elements of
O

E(Ω, d) are called Ω-resurgent symbols with support in d.

– The operator ∆/ +
d is called the symbolic Stokes automorphism for the direction d.

– The operator ∆/ d is called the symbolic Stokes infinitesimal generator for the direction d.

The connection between ∆/ +
d and the Stokes phenomenon will be explained in next section.

This operator is clearly a linear invertible map, but there is a further reason why it deserves
the name “automorphism”: we shall see in Section 30.2 that, when Ω is stable under addition,
there is a natural algebra structure for which ∆/ +

d is an algebra automorphism.

Theorem 29.2 implies Theorem 29.1. Given Ω and a ray d, Theorem 29.2(i) says that

•
∆r|

O
Eωm

= τωm+r ◦∆ωm+r−ωm ◦ τ−1
ωm ,

•
∆

+
r|

O
Eωm

= τωm+r ◦∆+
ωm+r−ωm ◦ τ

−1
ωm (150)

for every m and r. By restricting the identity (148) to
O

E0 and extracting homogeneous compo-
nents we get the identity

•
∆r|

O
E0

=
∑
s∈N∗

(−1)s−1

s

∑
r1+···+rs=r

•
∆

+
rs|

O
Eωr1+···+rs−1

◦ · · · ◦
•
∆

+
r2|

O
Eωr1

◦
•
∆

+
r1|

O
E0
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for each r ∈ N∗, which is equivalent, by (150), to

∆ωr =
∑
s∈N∗

(−1)s−1

s

∑
r1+···+rs=r

∆+
ωr−ωr1+···+rs−1

◦ · · · ◦∆+
ωr1+r2−ωr1

◦∆+
ωr1
. (151)

Given ω ∈ Ω \ {0}, we can apply this with the ray {tω | t ≥ 0}: the notations (134) and (143)
agree for 1 ≤ m < r, with r ∈ N∗ defined by ω = ωr; the identity (151) is then seen to be
equivalent to (141) by the change of indices

η1 = ωr1 , η2 = ωr1+r2 , . . . , ηs−1 = ωr1+···+rs−1 .

The identity (142) is obtained the same way from (149).

Exercise 29.1. Show that, for each r ∈ N∗, the r-homogeneous component of

∆/ −d := exp(−∆/ d) =
(
∆/ +
d

)−1

is
•
∆
−
r := − •

σ ◦
•
`
r−1
− ◦µ, giving rise to the family of operators ∆−ω := −AΩ

ω,(−,...,−), ω ∈ Ω \ {0}.

29.3 Relation with the Laplace transform and the Stokes phenomenon

We keep the notations of the previous section, in particular d = {t eiθ | t ≥ 0} with θ ∈ R
fixed. With a view to use Borel-Laplace summation, we suppose that I is an open interval of
length < π which contains θ, such that the sector { ξ eiθ′ | ξ > 0, θ′ ∈ I } intersects Ω only
along d:

Ω ∩ { ξ eiθ′ | ξ ≥ 0, θ′ ∈ I } = {ωm}m∈N ⊂ d, ω0 = 0 ≺ ω1 ≺ ω2 ≺ · · ·

We then set
I+ := { θ+ ∈ I | θ+ < θ }, I− := { θ− ∈ I | θ− > θ }

(mark the somewhat odd convention: the idea is that the directions of I+ are to the right of d,
and those of I− to the left).

Let us give ourselves a locally bounded function γ : I+ ∪ I− → R. Recall that in Section 9.2
we have defined the spaces N (I±, γ), consisting of holomorphic germs at 0 which extend ana-
lytically to the sector { ξ eiθ± | ξ > 0, θ± ∈ I }, with at most exponential growth along each ray
R+eiθ± as prescribed by γ(θ±), and that according to Section 9.3, the Laplace transform gives
rise to two operators LI+

and LI− defined on C δ ⊕ N (I+, γ) and C δ ⊕ N (I−, γ), producing
functions holomorphic in the domains D(I+, γ) or D(I−, γ).

The domains D(I+, γ) and D(I−, γ) are sectorial neighbourhoods of∞ which overlap: their
intersection is a sectorial neighbourhood of ∞ centred on the ray arg z = −θ, with aper-
ture π. For a formal series ϕ̃ such that Bϕ̃ ∈ C δ ⊕

(
N (I+, γ) ∩ N (I−, γ)

)
, the Borel sums

S I+
ϕ̃ = LI+Bϕ̃ and S I−ϕ̃ = LI−Bϕ̃ may differ, but their difference is exponentially small

on D(I+, γ) ∩ D(I−, γ). We shall investigate more precisely this difference when Bϕ̃ satisfies
further assumptions.

Notation 29.4. For each m ∈ N, we set
O

E(Ω, d,m) :=

m⊕
j=0

O

Eωj (Ω) and denote by [ · ]m the

canonical projection

Φ =
∑

ω∈Ω∩d
Φω ∈

O

E(Ω, d) 7→ [Φ]m :=

m∑
j=0

Φωj ∈
O

E(Ω, d,m).
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Figure 13: From the Stokes phenomenon to the symbolic Stokes automorphism.

For each ω ∈ Ω ∩ d, we set

O

E
I,γ
ω (Ω) := τω

(
C δ ⊕

(
R̂simp
−ω+Ω ∩N (I+, γ) ∩N (I−, γ)

))
⊂

O

Eω(Ω).

We also define
O

E
I,γ

(Ω, d,m) :=
m⊕
j=0

O

E
I,γ
ωj (Ω) ⊂

O

E(Ω, d,m), on which we define the “Laplace

operators” L+ and L− by

Φ =

m∑
j=0

Φωj 7→ L±Φ holomorphic in D(I±, γ), L±Φ(z) :=

m∑
j=0

e−ωjzLI±(τ−1
ωj Φωj )(z).

Theorem 29.5. Let m ∈ N and Φ ∈
O

E
I,γ

(Ω, d,m). Suppose that [∆/ +
d Φ]m ∈

O

E
I,γ

(Ω, d,m).
Then, for every real constant ρ such that |ωm| < ρ < |ωm+1|, one has

L+Φ(z) = L−[∆/ +
d Φ]m(z) +O(e−ρ<e(e

iθz)) (152)

for z ∈ D(I+, γ) ∩D(I−, γ).

Proof. It is sufficient to prove it for each homogeneous component of Φ, so we can assume
Φ = a δωj + ϕ̂ ∈

O

E
I,γ
ωj (Ω), with 0 ≤ j ≤ m. Given z ∈ D(I+, γ) ∩ D(I−, γ), we choose θ+ ∈ I+

and θ− ∈ I− so that ζ 7→ e−zζ is exponentially decreasing on the rays R+eiθ± . Then L±Φ(z)

can be written a e−ωjz +
∫ eiθ±∞
ωj

e−zζϕ̂(ζ) dζ (by the very definition of τωj ). Decomposing the

integration path as indicated on Figure 13, we get

L+Φ(z) = a e−ωjz +
(∫ eiθ−∞

ωj

+

∫
γ1

+ · · ·+
∫
γm−j

+

∫
Cρ

)
e−zζϕ̂(ζ) dζ

= L−Φ(z) +

m−j∑
r=1

∫
γr

e−zζ
•
`
r−1
+ µΦ(ζ) dζ +

∫
Cρ

e−zζ
•
`
m−j−1
+ µΦ(ζ) dζ,
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where the contour Cρ consists of the negatively oriented half-line [ρ eiθ, eiθ−∞) followed by the

positively oriented half-line [ρ eiθ, eiθ+∞). We recognize in the m − j terms of the sum in the
right-hand side the Laplace integral of majors (cf. Section 26.2) applied to the homogeneous
components of [∆/ +

d Φ]m; all these integrals are convergent by virtue of our hypothesis that

[∆/ +
d Φ]m ∈

O

E
I,γ

(Ω, d,m), and also the last term in the right-hand side is seen to be a convergent

integral which yields an O(e−ρ<e(e
iθz)) error term.

Observe that the meaning of (152) for Φ = ϕ̂ ∈
O

E
I,γ
0 (Ω), i.e. ϕ̂ ∈ R̂simp

Ω ∩N (I+, γ)∩N (I−, γ),
is

Lθ+
ϕ̂ = Lθ−ϕ̂+ e−ω1zLθ−∆+

ω1
ϕ̂(z) + · · ·+ e−ωmzLθ−∆+

ωmϕ̂(z) +O(e−ρ<e(e
iθz)).

The idea is that the action of the symbolic Stokes automorphism yields the exponentially small
corrections needed to pass from the Borel sum Lθ+

ϕ̂ to the Borel sum Lθ−ϕ̂. It is sometimes
possible to pass to the limit m → ∞ and to get rid of any error term, in which case one could
be tempted to write

“L+ = L− ◦∆/ +
d ”. (153)

Example 29.2. The simplest example of all is again provided by the Euler series, for which
there is only one singular ray, d = R−. Taking any Ω ⊂ R− containing −1, we have

∆/ +
R−ϕ̂

E = ϕ̂E + 2πi δ−1 (154)

(in view of (137)). If we set I+ := (π2 , π) and I− := (π, 3π
2 ), then the functions ϕ+ = L+ϕ̂E and

ϕ− = L−ϕ̂E coincide with those of Section 10. Recall that one can take γ = 0 in this case, so ϕ±

is holomorphic in D(I±, 0) (at least) and the intersection D(I+, 0) ∩D(I−, 0) is the half-plane
{<e z < 0}, on which Theorem 29.5 implies

ϕ+ = ϕ− + 2πi ez,

which is consistent with formula (44).

Example 29.3. Similarly, for Poincaré’s example with parameter s ∈ C of negative real part,
according to Section 12, the singular rays are dk := R+eiθk , k ∈ Z, with ωk = s + 2πik and
θk := argωk ∈ (π2 ,

3π
2 ). We take any Ω contained the union of these rays and containing

s+ 2πiZ. For fixed k, we can set I+ := Jk−1 = (argωk−1, argωk), I
− := Jk = (argωk, argωk+1),

and γ(θ) ≡ cos θ. Then, according to Theorem 12.3, the Borel sums L+ϕ̂P = S Jk−1ϕ̃P and
L−ϕ̂P = S Jk ϕ̃P are well defined. In view of (137), we have

∆/ +
dk
ϕ̂P = ϕ̂P + 2πi δωk , hence L+ϕ̂P = L−ϕ̂P + 2πi e−ωkz

by Theorem 29.5, which is consistent with (65).

Example 29.4. The asymptotic expansion ϕ̃H
s (z) of the Hurwitz zeta function was studied in

Exercise 27.5. For s ≥ 2 integer, with I = (−π
2 ,

π
2 ), we have

ϕ+(z) :=
∑
k∈N

(z + k)−s = S I ϕ̃H
s (z)

for z ∈ D(I, 0) = C \ R−. With the help of the difference equation ϕ(z)− ϕ(z + 1) = z−s, it is
an exercise to check that

ϕ−(z) := −
∑
k∈N∗

(z − k)−s

87



coincides with the Borel sum S J ϕ̃H
s defined on D(J, 0) = C\R+, with J = (π2 ,

3π
2 ) or (−3π

2 ,−
π
2 ).

In this case, we can take Ω = 2πiZ∗ and we have two singular rays, iR+ and iR−, for each of which
the symbolic Stokes automorphism yields infinitely many non-trivial homogeneous components:
indeed, according to (137),

∆/ +
iR+ϕ̂H

s = ϕ̂H
s +

2πi

Γ(s)

∞∑
m=1

(2πim)s−1δ2πim, ∆/ +
iR−ϕ̂

H
s = ϕ̂H

s +
2πi

Γ(s)

∞∑
m=1

(−2πim)s−1δ−2πim.

Applying Theorem 29.5 with I+ = (0, π2 ) and I− = (π2 , π), or with I+ = (−π,−π
2 ) and I− =

(−π
2 , 0), for each m ∈ N we get

=mz < 0 =⇒ ϕ+(z) = ϕ−(z) +
2πi

Γ(s)

m∑
j=1

(2πij)s−1e−2πijz +O(e−2π(m+ 1
2

)|=mz|), (155)

=mz > 0 =⇒ ϕ−(z) = ϕ+(z) +
2πi

Γ(s)

m∑
j=1

(−2πij)s−1e2πijz +O(e−2π(m+ 1
2

)|=mz|). (156)

In this case we see that we can pass to the limit m → ∞ because the finite sums involved in
(155)–(156) are the partial sums of convergent series. In fact this could be guessed in advance:
since ϕ+ and ϕ− satisfy the same difference equation ϕ(z) − ϕ(z + 1) = z−s, their difference
yields 1-periodic functions holomorphic in the half-planes {=mz < 0} and {=mz > 0}, which
thus have convergent Fourier series of the form15

(ϕ+ − ϕ−)|{=mz<0} =
∑
m≥0

Ame−2πimz, (ϕ+ − ϕ−)|{=mz>0} =
∑
m≥0

Bme2πimz,

but the finite sums in (155)–(156) are nothing but the partial sums of these series (up to sign for
the second). So, in this case, the symbolic Stokes automorphism delivers the Fourier coefficients
of the diffence between the two Borel sums:

∑
k∈Z

(z + k)−s =


2πi
Γ(s)

∞∑
m=1

(2πim)s−1e−2πimz for =mz < 0,

2πi
Γ(s)

∞∑
m=1

(−1)s(2πim)s−1e2πimz for =mz > 0.

Example 29.5. The case of the Stirling series µ̃ studied in Section 11 is somewhat similar,
with (137) yielding

∆/ +
iR+ µ̂ = µ̂+

∑
m∈N∗

1

m
δ2πim, ∆/ +

iR− µ̂ = µ̂−
∑
m∈N∗

1

m
δ−2πim. (157)

Here we get

=mz < 0 =⇒ µ+(z) = µ−(z) +

∞∑
m=1

1
me−2πimz = µ−(z)− log(1− e−2πiz), (158)

=mz > 0 =⇒ µ−(z) = µ+(z)−
∞∑
m=1

1
me2πimz = µ+(z) + log(1− e2πiz) (159)

(compare with Exercise 11.2).

15 See Section 36.
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29.4 Extension of the inverse Borel transform to Ω-resurgent symbols

In the previous section, we have defined the Laplace operators L+ and L− on

O

E
I,γ

(Ω, d,m) ⊂
O

E(Ω, d,m) ⊂
O

E(Ω, d),

i.e. the Ω-resurgent symbols to which they can be applied are subjected to two constraints:
finitely many non-trivial homogeneous components, with at most exponential growth at infinity

for their minors. There is a natural way to define on the whole of
O

E(Ω, d) a formal Laplace
operator, which is an extension of the inverse Borel transform B−1 on C δ ⊕ R̂simp

Ω . Indeed,
replacing the function e−ωz = L±δω by a symbol e−ωz, we define

Ẽω(Ω) := e−ωzR̃simp
−ω+Ω for ω ∈ Ω ∩ d, Ẽ(Ω, d) :=

∧⊕
ω∈Ω∩d

Ẽω(Ω), (160)

i.e. we take the completed graded vector space obtained as cartesian product of the spaces
R̃simp
−ω+Ω, representing its elements by formal expressions of the form Φ̃ =

∑
ω∈Ω∩d e−ωzΦ̃ω(z),

where each Φ̃ω(z) is a formal series and e−ωz is just a symbol meant to distinguish the various
homogeneous components. We thus have for each ω ∈ Ω ∩ d a linear isomorphism

τ̃ω : ϕ̃(z) ∈ R̃simp
−ω+Ω 7→ e−ωzϕ̃(z) ∈ Ẽω(Ω),

which allow us to define

Bω := τω ◦ B ◦ τ̃−1
ω : Ẽω(Ω)

∼−→
O

Eω(Ω).

The map B0 can be identified with the Borel transform B acting on simple Ω-resurgent series;
putting together the maps Bω, ω ∈ Ω ∩ d, we get a linear isomorphism

B : Ẽ(Ω, d)
∼−→

O

E(Ω, d),

which we can consider as the Borel transform acting on “Ω-resurgent transseries in the di-
rection d”, and whose inverse can be considered as the formal Laplace transform acting on
Ω-resurgent symbols in the direction d.

Observe that, if e−ωzϕ̃(z) ∈ Ẽω(Ω) is such that ϕ̃(z) is 1-summable in the directions of

I+ ∪ I−, then B(e−ωzϕ̃) ∈
O

E
I,γ
ω (Ω) and

L±B(e−ωzϕ̃) = e−ωzS I±ϕ̃.

Beware that in the above identity, e−ωz is a symbol in the left-hand side, whereas it is a function
in the right-hand side.

Via B, the operators ∆/ +
d and ∆/ d give rise to operators which we denote with the same

symbols:
∆/ +
d ,∆/ d : Ẽ(Ω, d)→ Ẽ(Ω, d),

so that we can e.g. rephrase (154) as

∆/ +
R−ϕ̃

E = ϕ̃E + 2πi ez (161)

or (157) as

∆/ +
iR+ µ̃ = µ̃+

∑
m∈N∗

1

m
e−2πimz, ∆/ +

iR− µ̃ = µ̃−
∑
m∈N∗

1

m
e2πimz. (162)
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In Section 30.2, we shall see that, if Ω is stable under addition, then
O

E(Ω, d) and thus also
Ẽ(Ω, d) have algebra structures, for which it is legitimate to write

− log(1− e−2πiz) =
∑
m∈N∗

1

m
e−2πimz, log(1− e2πiz) = −

∑
m∈N∗

1

m
e2πimz. (163)

Remark 29.6. One can always extend the definition of ∂ = d
dz to Ẽ(Ω, d) by setting

ϕ̃ ∈ R̃simp
−ω+Ω =⇒ ∂(e−ωzϕ̃) := e−ωz(−ω + ∂)ϕ̃.

(When Ω is stable under addition ∂ will be a derivation of the algebra Ẽ(Ω, d), which will thus
be a differential algebra.)

On the other hand, writing as usual Ω ∩ d = {0 = ω0 ≺ ω1 ≺ ω2 ≺ · · · }, we see that the
homogeneous components of ∆/ +

d and ∆/ d acting on Ẽ(Ω, d) (Borel counterparts of the opera-

tors
•
∆

+
r ,

•
∆r :

O

E →
O

E defined by (147)) act as follows on Ẽω(Ω) for each ω = ωm ∈ Ω ∩ d:

ϕ̃ ∈ R̃simp
−ωm+Ω =⇒


•
∆

+
r (e−ωmzϕ̃) = e−ωm+rz∆+

ωm+r−ωmϕ̃,

•
∆r(e

−ωmzϕ̃) = e−ωm+rz∆ωm+r−ωmϕ̃.

(164)

Formula (138) then says
•
∆

+
r ∂φ = ∂

•
∆

+
r φ,

•
∆r∂φ = ∂

•
∆rφ

for every φ ∈ Ẽ(Ω, d), whence ∆/ +
d ◦ ∂ = ∂ ◦∆/ +

d and ∆/ d ◦ ∂ = ∂ ◦∆/ d.

30 The operators ∆ω are derivations

We now investigate the way the operators ∆ω and ∆+
ω act on a product of two terms (convolution

product or Cauchy product, according as one works with formal series or their Borel transforms).
Let Ω′ and Ω′′ be non-empty closed discrete subsets of C such that

Ω := Ω′ ∪ Ω′′ ∪ (Ω′ + Ω′′) (165)

is also closed and discrete. Recall that, according to Theorem 21.8,

ϕ̃ ∈ R̃Ω′ and ψ̃ ∈ R̃Ω′′ =⇒ ϕ̃ψ̃ ∈ R̃Ω.

30.1 Generalized Leibniz rule for the operators ∆+
ω

We begin with the operators ∆+
ω .

Theorem 30.1. Let ϕ̃ ∈ R̃simp
Ω′ and ψ̃ ∈ R̃simp

Ω′′ . Then ϕ̃ψ̃ ∈ R̃simp
Ω and, for every ω ∈ Ω \ {0},

∆+
ω (ϕ̃ψ̃) = (∆+

ω ϕ̃)ψ̃ +
∑

ω=ω′+ω′′

ω′∈Ω′∩]0,ω[, ω′′∈Ω′′∩]0,ω[

(∆+
ω′ϕ̃)(∆+

ω′′ψ̃) + ϕ̃(∆+
ω ψ̃). (166)
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Proof. a) The fact that ϕ̃ψ̃ ∈ R̃simp
Ω follows from the proof of formula (166) and Theorem 28.7,

we omit the details.

b) To prove formula (166), we define

Σω := { η ∈ ]0, ω[ | η ∈ Ω′ ∪ Ω′′ or ω − η ∈ Ω′ ∪ Ω′′ }

and write Bϕ̃ = a δ + ϕ̂, Bψ̃ = b δ + ψ̂, with a, b ∈ C, ϕ̂ ∈ R̂simp
Ω′ , ψ̂ ∈ R̂simp

Ω′′ ,

B∆+
η ϕ̃ = aη δ + ϕ̂η, aη ∈ C, ϕ̂η ∈ R̂simp

−η+Ω′ , η ∈ Σω ∪ {ω} (167)

B∆+
ω−ηψ̃ = bω−η δ + ψ̂ω−η, bω−η ∈ C, ψ̂ω−η ∈ R̂simp

−(ω−η)+Ω′′ , η ∈ {0} ∪ Σω. (168)

Since B∆+
ω (ϕ̃ψ̃) = b∆+

ω ϕ̂+ a∆+
ω ψ̂ + ∆+

ω (ϕ̂ ∗ ψ̂), formula (166) is equivalent to

∆+
ω (ϕ̂ ∗ ψ̂) =

∑
η∈{0,ω}∪Σω

(aη δ + ϕ̂η) ∗ (bω−η δ + ψ̂ω−η), (169)

with the convention a0 = 0, ϕ̂0 = ϕ̂ and b0 = 0, ψ̂0 = ψ̂.
Consider a neighbourhood of [0, ω] of the form Uδ = { ζ ∈ C | dist

(
ζ, [0, ω]

)
< δ } with δ > 0

small enough so that Uδ \ [0, ω] does not meet Ω. Let u := ω e−iα with 0 < α < π
2 , α small

enough so that u ∈ Uδ and the line segment ` := [0, u] can be considered as a path issuing from 0
circumventing to the right all the points of ]0, ω[ ∪ Ω. We must show that cont`(ϕ̂ ∗ ψ̂)(ω + ζ)
has a simple singularity at 0 and compute this singularity.

c) We shall show that, when all the numbers aη and bω−η vanish,

f(ζ) := cont`(ϕ̂ ∗ ψ̂)(ω + ζ) =

( ∑
η∈{0,ω}∪Σω

ϕ̂η ∗ ψ̂ω−η

)
Log ζ

2πi
+R(ζ), (170)

where Log ζ is a branch of the logarithm and R(ζ) ∈ C{ζ}. This is sufficient to conclude,
because in the general case we can write

ϕ̂ ∗ ψ̂ =
(

d
dζ

)2
(ϕ̂∗ ∗ ψ̂∗), ϕ̂∗ := 1 ∗ ϕ̂, ψ̂∗ := 1 ∗ ψ̂,

and, by Theorem 27.9, the anti-derivatives ϕ̂∗ and ψ̂∗ satisfy

∆+
η ϕ̂
∗ = aη + 1 ∗ ϕ̂η, ∆+

ω−ηψ̂
∗ = bω−η + 1 ∗ ψ̂ω−η

instead of (167)–(168), thus we can apply (170) to them and get

cont`(ϕ̂
∗∗ ψ̂∗)(ω+ζ) =

( ∑
η∈{0,ω}∪Σω

aηbω−η ζ+aη ζ ∗ ψ̂ω−η+bω−η ζ ∗ ϕ̂η+ζ ∗ ϕ̂η ∗ ψ̂ω−η

)
Log ζ

2πi

+R(ζ),

whence, by differentiating twice, a formula whose interpretation is precisely (169) (because
( d

dζ (ζ ∗A))/ζ and (ζ ∗A)/ζ2 are regular at 0 for whatever regular germ A).

d) From ow on, we thus suppose that all the numbers aη and bω−η vanish. Our aim is to
prove (170). We observe thatD+ := { ζ ∈ D(ω, δ) | =m(ζ/ω) < 0 } is a half-disc such that, for all
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Figure 14: Integration paths for ϕ̂ ∗ ψ̂. Left: Lπ(ζ) for argω − 2π < arg ζ ≤ argω − π. Right:
`π(ζ) and Lπ(ζ) for argω − 3π < arg ζ ≤ argω − 2π. (Case when Σω has two elements.)

ζ ∈ D+, the line segment [0, ζ] does not meet Ω\{0}, hence cont`(ϕ̂∗ ψ̂)(ζ) =
∫ ζ

0 ϕ̂(ξ)ψ̂(ζ−ξ) dξ
for such points. We know by Section 21 that f has spiral continuation around 0. Following the
ideas of Section 25, we choose a determination of argω and lift the half-disc −ω + D+ to the
Riemann surface of logarithm by setting D̃+ := { ζ = r eiθ ∈ C̃ | r < δ, argω − π < θ < argω }.
This way we can write f =

∨
f ◦ π, where

∨
f is a representative of a singular germ, explicitly

defined on D̃+ by

ζ ∈ D̃+ =⇒
∨
f(ζ) =

∫
`π(ζ)

ϕ̂(ξ)ψ̂(ω + π(ζ)− ξ) dξ with `π(ζ) := [0, ω + π(ζ)]. (171)

The analytic continuation of
∨
f in

D̃− := { ζ = r eiθ ∈ C̃ | r < δ, argω − 3π < θ ≤ argω − π }

is given by

ζ ∈ D̃− =⇒
∨
f(ζ) =

∫
Lπ(ζ)

ϕ̂(ξ)ψ̂(ω + π(ζ)− ξ) dξ, (172)

where the symmetrically contractible path Lπ(ζ) is obtained by following the principles ex-
pounded in Section 21 (cf. particularly (108)); this is illustrated in Figure 14.

We first show that

ζ ∈ D̃+ =⇒
∨
f(ζ)−

∨
f(ζ e−2πi) =

∑
η∈{0,ω}∪Σω

ϕ̂η ∗ ψ̂ω−η. (173)

The point is that Σω is symmetric with respect to its midpoint ω
2 , thus of the form {η1 ≺ · · · ηr−1}

with ηr−j = ω − ηj for each j, and when ζ travels along a small circle around ω, the “moving
nail” ζ − ηj turns around the “fixed nail” ηr−j , to use the language of Section 21.4. Thus, for
ζ ∈ D̃+, we can decompose the difference of paths `π(ζ) − Lπ(ζ) as on Figure 15 and get

∨
f(ζ)−

∨
f(ζ e−2πi) =

(∫
π(ζ)−γ

+

∫
ω+γ

+
∑
η∈Σω

∫
η+Γ

)
ϕ̂(ξ)ψ̂(ω + π(ζ)− ξ) dξ,
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Figure 15: Computation of the variation of the singluarity at ω of ϕ̂ ∗ ψ̂.

where γ goes from ζ e−2πi to ζ by turning anticlockwise around 0, whereas Γ goes from ζ e−2πi

to ζ the same way but then comes back to ζ e−2πi (see Figure 15). With an appropriate change
of variable in each of these integrals, this can be rewritten as

∨
f(ζ)−

∨
f(ζ e−2πi) =

∫
γ
ϕ̂(π(ζ)− ξ)ψ̂(ω + ξ) dξ +

∫
γ
ϕ̂(ω + ξ)ψ̂(π(ζ)− ξ) dξ

+
∑
η∈Σω

∫
Γ
ϕ̂(η + ξ)ψ̂(ω − η + π(ζ)− ξ) dξ.

In the first two integrals, since

ψ̂(ω + ξ) =
1

2πi
ψ̂ω(ξ)Log ξ +R′(ξ), ϕ̂(ω + ξ) =

1

2πi
ϕ̂ω(ξ)Log ξ +R′′(ξ),

with R′ and R′′ regular at 0, and we can diminish δ so that ξ and π(ζ) − ξ stay in a neigh-
bourhood of 0 where ϕ̂, ψ̂ω, R′, ϕ̂ω, R′′ and ψ̂ are holomorphic, the Cauchy theorem cancels
the contribution of R′ and R′′, while the contribution of the logarithms can be computed by
collapsing γ onto the line segment [ζ e−2πi, 0] followed by [0, ζ], hence the sum of the first two
integrals is ϕ̂ ∗ ψ̂ω + ϕ̂ω ∗ ψ̂. Similarly, by collapsing Γ as indicated on Figure 15,∫

Γ
ϕ̂(η + ξ)ψ̂(ω − η + π(ζ)− ξ) dξ =

1

2πi

∫
Γ
ϕ̂(η + ξ)

(
ψ̂ω−η(π(ζ)− ξ)Log ξ +Rω−η(ξ)

)
dξ

(with some regular germ Rω−η) is seen to coincide with
∫
γ ϕ̂(η + ξ)ψ̂ω−η(π(ζ)− ξ) dξ, which is

itself seen to coincide with ϕ̂η ∗ ψ̂ω−η(ζ) by arguing as above. So (173) is proved.

e) We now observe that, since g(ζ) :=
∨
f(ζ)−

∨
f(ζ e−2πi) is a regular germ at 0,

R(ζ) := f(ζ)− g(ζ)
Log ζ

2πi

extends analytically to a (single-valued) function holomorphic in a punctured disc, i.e. it can
be represented by a Laurent series (116). But R(ζ) can be bounded by C

(
C ′ + ln 1

|ζ|
)

with

appropriate constants C,C ′ (using (171)–(172) to bound the analytic continuation of f), thus
the origin is a removable singularity for R, which is thus regular at 0. The proof of (170) is now
complete.
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30.2 Action of the symbolic Stokes automorphism on a product

Theorem 30.1 can be rephrased in terms of the symbolic Stokes automorphism ∆/ +
d of Sec-

tion 29.2. Let us fix a ray d = {t eiθ | t ≥ 0}, with total order ≺ defined as previously. Without
loss of generality we can assume that both Ω′ ∩ d and Ω′′ ∩ d are infinite and contain 0. With
the convention ∆+

0 := Id, formula (166) can be rewritten

∆+
σ (ϕ̃ψ̃) =

∑
σ=σ′+σ′′

σ′∈Ω′∩d, σ′′∈Ω′′∩d

(∆+
σ′ϕ̃)(∆+

σ′′ψ̃), σ ∈ Ω ∩ d. (174)

For every ω′ ∈ Ω′ ∩ d and ω′′ ∈ Ω′′ ∩ d we have commutative diagrams

C δ ⊕ R̂simp
−ω′+Ω′

� � //

τω′
��

C δ ⊕ R̂simp
−ω′+Ω

τω′
��

O

Eω′(Ω
′, d)

� � // O

Eω′(Ω, d)

C δ ⊕ R̂simp
−ω′′+Ω′′

� � //

τω′′
��

C δ ⊕ R̂simp
−ω′′+Ω

τω′′
��

O

Eω′′(Ω
′′, d)

� � // O

Eω′′(Ω, d)

hence
O

E(Ω′, d) =
∧⊕

ω′∈Ω′∩d

O

Eω′(Ω
′) and

O

E(Ω′′, d) =
∧⊕

ω′′∈Ω′′∩d

O

Eω′′(Ω
′′) can be viewed as subspaces

of
O

E(Ω, d) :=
∧⊕

ω∈Ω∩d

O

Eω(Ω). We shall often abbreviate the notations, writing for instance

O

E′ ↪→
O

E,
O

E′′ ↪→
O

E.

The convolution law
(
C δ⊕R̂simp

−ω′+Ω′
)
×
(
C δ⊕R̂simp

−ω′′+Ω′′
)
→ C δ⊕R̂simp

−(ω′+ω′′)+Ω induces a bilinear
map ∗ defined by

(Φ,Ψ) =
( ∑
ω′∈Ω′∩d

ϕω
′
,
∑

ω′′∈Ω′′∩d
ψω
′′
)
∈

O

E′ ×
O

E′′ 7→
∑

ω′∈Ω′∩d, ω′′∈Ω′′∩d
ϕω
′ ∗ ψω′′ ∈

O

E, (175)

where
(ϕ,ψ) ∈

O

E′ω′ ×
O

E′′ω′′ =⇒ ϕ ∗ ψ := τω′+ω′′
(
τ−1
ω′ ϕ ∗ τ

−1
ω′′ ψ

)
∈

O

Eω′+ω′′ . (176)

Theorem 30.2. With the above notations and definitions,

(Φ,Ψ) ∈
O

E′(Ω′, d)×
O

E′′(Ω′′, d) =⇒ ∆/ +
d (Φ ∗Ψ) = (∆/ +

d Φ) ∗ (∆/ +
d Ψ). (177)

Proof. It is sufficient to prove (177) for (Φ,Ψ) = (ϕ,ψ) ∈
O

E′ω′ ×
O

E′′ω′′ , with (ω′, ω′′) ∈ Ω′ × Ω′′.
Recall that

∆/ +
d ϕ =

∑
η′�ω′, η′∈Ω′∩d

τη′∆
+
η′−ω′τ

−1
ω′ ϕ, ∆/ +

d ψ =
∑

η′′�ω′′, η′′∈Ω′′∩d
τη′′∆

+
η′′−ω′′τ

−1
ω′′ ψ. (178)

Let ω := ω′ + ω′′, so that ϕ ∗ ψ ∈
O

Eω. We have

∆/ +
d (ϕ ∗ ψ) =

∑
η�ω, η∈Ω∩d

τη∆
+
η−ωτ

−1
ω (ϕ ∗ ψ) =

∑
η�ω, η∈Ω∩d

τη∆
+
η−ω
(
(τ−1
ω′ ϕ) ∗ (τ−1

ω′′ ψ)
)
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by definition of ∆/ +
d and ∗. For each η, applying (174) to σ = η − ω, τ−1

ω′ ϕ ∈ C δ ⊕ R̂simp
−ω′+Ω′ ,

τ−1
ω′′ ψ ∈ C δ ⊕ R̂simp

−ω′′+Ω′′ , we get

∆+
η−ω
(
(τ−1
ω′ ϕ) ∗ (τ−1

ω′′ ψ)
)

=
∑

η−ω=σ′+σ′′

σ′∈(−ω′+Ω′)∩d, σ′′∈(−ω′′+Ω′′)∩d

(
∆+
σ′τ
−1
ω′ ϕ

)
∗
(
∆+
σ′′τ
−1
ω′′ ψ

)
.

With the change of indices (σ′, σ′′) 7→ (η′, η′′) = (ω′ + σ′, ω′′ + σ′′), this yields

∆/ +
d (ϕ ∗ ψ) =

∑
η∈Ω∩d
η�ω

∑
η=η′+η′′

η′∈Ω′∩d, η′′∈Ω′′∩d
ω′�η′, ω′′�η′′

τη
(
(∆+

η′−ω′τ
−1
ω′ ϕ) ∗ (∆+

η′′−ω′′τ
−1
ω′′ ψ)

)
.

By Fubini, this is

∆/ +
d (ϕ ∗ ψ) =

∑
η′∈Ω′∩d, η′′∈Ω′′∩d
ω′�η′, ω′′�η′′

τη′+η′′
(
(∆+

η′−ω′τ
−1
ω′ ϕ) ∗ (∆+

η′′−ω′′τ
−1
ω′′ ψ)

)
= (∆/ +

d ϕ) ∗ (∆/ +
d ψ)

by definition of ∗ and (178). Hence (177) is proved.

Remark 30.3. When Ω is stable under addition, one can take Ω′ = Ω′′ = Ω. In that case,

the operation ∗ makes
O

E(Ω, d) an algebra and Theorem 30.2 implies that ∆/ +
d is an algebra

automorphism. At a heuristical level, this could be guessed from (153), since both L+ and L−
take convolution products to pointwise products.

Remark 30.4. Via the linear isomorphism B : Ẽ(Ω, d)
∼−→

O

E(Ω, d) of Section 29.4, the bilinear
map ∗ gives rise to a bilinear map � : Ẽ(Ω′, d) × Ẽ(Ω′′, d) → Ẽ(Ω, d) which, for homogeneous
components, is simply e−ω

′zϕ̃(z)� e−ω
′′zψ̃(z) = e−(ω′+ω′′)zϕ̃(z)ψ̃(z). This justifies (163).

30.3 Leibniz rule for the symbolic Stokes infinitesimal generator and the
operators ∆ω

From ∆/ +
d we now wish to move on to its logarithm ∆/ d, which will give us access to the way

the operators ∆ω act on products. We begin with a purely algebraic result, according to which,
roughly speaking, “the logarithm of an automorphism is a derivation”.

Lemma 30.5. Suppose that E is a vector space over Q, on which we have a translation-invariant
distance d which makes it a complete metric space, and that T : E → E is a Q-linear contraction,

so that D := log(Id +T ) =
∑

s≥1
(−1)s−1

s T s is well defined.
Suppose that E′ and E′′ are T -invariant closed subspaces and that ∗ : E′ × E′′ → E is

Q-bilinear, with d(Φ ∗Ψ, 0) ≤ Cd(Φ, 0)d(Ψ, 0) for some C > 0, and

(Φ,Ψ) ∈ E′ × E′′ =⇒ (Id +T )(Φ ∗Ψ) =
(
(Id +T )Φ

)
∗
(
(Id +T )Ψ

)
. (179)

Then
(Φ,Ψ) ∈ E′ × E′′ =⇒ D(Φ ∗Ψ) = (DΦ) ∗Ψ + Φ ∗ (DΨ). (180)
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Proof. By (179), T (Φ ∗ Ψ) = (TΦ) ∗ Ψ + Φ ∗ (TΨ) + (TΦ) ∗ (TΨ). Denoting by N(s′, s′′, s)
the coefficient of Xs′Y s′′ in the polynomial (X + Y +XY )s ∈ Z[X,Y ] for any s′, s′′, s ∈ N, we
obtain by induction

T s(Φ ∗Ψ) =
∑

s′,s′′∈N
N(s′, s′′, s)(T s

′
Φ) ∗ (T s

′′
Ψ)

for every s ∈ N, whence

D(Φ ∗Ψ) =
∑

s′,s′′∈N

∑
s∈N

(−1)s−1

s N(s′, s′′, s)(T s
′
Φ) ∗ (T s

′′
Ψ).

The result follows from the fact that, for every s′, s′′ ∈ N, the number
∑ (−1)s−1

s N(s′, s′′, s) is

the coefficient of Xs′Y s′′ in the formal series
∑ (−1)s−1

s (X+Y +XY )s = log(1+X+Y +XY ) =
log(1 +X) + log(1 + Y ) ∈ Q[[X,Y ]].

The main result of this section follows easily:

Theorem 30.6. Under the assumption (165), one has for every direction d

(Φ,Ψ) ∈
O

E′(Ω′, d)×
O

E′′(Ω′′, d) =⇒ ∆/ d(Φ ∗Ψ) = (∆/ dΦ) ∗Ψ + Φ ∗ (∆/ dΨ) (181)

and, for every ω ∈ Ω \ {0},

(ϕ̃, ψ̃) ∈ R̃simp
Ω′ × R̃simp

Ω′′ =⇒ ∆ω(ϕ̃ψ̃) = (∆ωϕ̃)ψ̃ + ϕ̃(∆ωψ̃). (182)

Proof. The requirements of Lemma 30.5 are satisfied by T := ∆/ +
d − Id and the distance on

O

E
indicated in footnote 14; since log ∆/ +

d = ∆/ d, this yields (181).

One gets (182) by evaluating (180) with Φ = τ0Bϕ̃ ∈
O

E′0 and Ψ = τ0Bψ̃ ∈
O

E′′0, and extracting

the homogeneous component τω∆ω(Bϕ̃ ∗ Bψ̃) ∈
O

Eω.

30.4 The subalgebra of simple Ω-resurgent functions

We now suppose that Ω is stable under addition, so that, by Corollary 21.2, R̃Ω is a subalgebra
of C[[z−1]]1 and C δ ⊕ R̂Ω is a subalgebra of the convolution algebra C δ ⊕ C{ζ}. Taking
Ω′ = Ω′′ = Ω in Theorem 30.1, we get

Corollary 30.7. If Ω is stable under addition, then R̃simp
Ω is a subalgebra of R̃Ω and C δ⊕R̂simp

Ω

is a subalgebra of C δ ⊕ R̂Ω.

As anticipated in Remark 30.3, there is also for each ray d an algebra structure on
O

E(Ω, d)
given by the operation ∗ defined in (175), for which the symbolic Stokes automorphism ∆/ +

d

is an algebra automorphism; the symbolic Stokes infinitesimal generator ∆/ d now appears as a
derivation, in view of formula (181) of Theorem 30.6 (for that reason ∆/ d is sometimes called
“directional alien derivation”).

Remark 30.8. In particular, for each ω ∈ Ω and Φ ∈ Ẽ(Ω, d), we have e−ωzΦ ∈ Ẽ(Ω, d),

∆/ +
d (e−ωzΦ) = e−ωz∆/ +

d Φ, ∆/ d(e
−ωzΦ) = e−ωz∆/ dΦ (183)

(because e−ωz is fixed by ∆/ +
d and annihilated by ∆/ d).
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As indicated in formula (182) of Theorem 30.6, the homogeneous components ∆ω of ∆/ d
inherit the Leibniz rule, however it is only if −ω + Ω ⊂ Ω that ∆ω : R̃simp

Ω → R̃simp
Ω is a

derivation of the algebra R̃simp
Ω , and this is the case for all ω ∈ Ω \ {0} when Ω is an additive

subgroup of C. As anticipated in Remark 28.3, the operators ∆ω are called “alien derivations”
for that reason.

Let us investigate farther the rules of “alien calculus” for non-linear operations.

Theorem 30.9. Suppose that Ω is stable under addition. Suppose that ϕ̃(z), ψ̃(z), χ̃(z) ∈ R̃simp
Ω

and that χ̃(z) has no constant term. Let H(t) ∈ C{t}. Then

ψ̃ ◦ (id +ϕ̃) ∈ R̃simp
Ω , H ◦ χ̃ ∈ R̃simp

Ω

and, for any ω ∈ Ω \ {0}, (∆ωψ̃) ◦ (id +ϕ̃) ∈ R̃simp
−ω+Ω and

∆ω

(
ψ̃ ◦ (id +ϕ̃)

)
= (∂ψ̃) ◦ (id +ϕ̃) ·∆ωϕ̃+ e−ωϕ̃ · (∆ωψ̃) ◦ (id +ϕ̃), (184)

∆ω(H ◦ χ̃) = (dH
dt ◦ χ̃) ·∆ωχ̃. (185)

The proof requires the following technical statement.

Lemma 30.10. Let U := { r eiθ ∈ C̃ | 0 < r < R, θ ∈ I }, where I is an open interval of R
of length > 4π and R > 0. Suppose that, for each k ∈ N, we are given a function

∨
ϕk which is

holomorphic in U and is the major of a simple singularity ak δ +
∧
ϕk, and that the series

∑ ∨
ϕk

converges normally on every compact subset of U .
Then the numerical series

∑
ak is absolutely convergent, the series of functions

∑ ∧
ϕk con-

verges normally on every compact subset of DR, and the function
∨
ϕ :=

∑
k∈N

∨
ϕk, which is

holomorphic in U , is the major of the simple singularity
(∑

k∈N ak
)
δ +

∑
k∈N

∧
ϕk.

Proof of Lemma 30.10. Pick θ0 such that [θ0, θ0 + 4π] ⊂ I and let J := [θ0 + 2π, θ0 + 4π]. For
any R′ < R, writing

∧
ϕk
(
π(ζ)

)
=
∨
ϕk(ζ)− ∨

ϕk(ζ e−2πi) for ζ ∈ U with arg ζ ∈ J and |ζ| ≤ R′, we

get the normal convergence of
∑ ∧
ϕk on DR′ .

Now, for each k,
∨
Lk(ζ) :=

∨
ϕk(ζ)− ∧ϕk

(
π(ζ)

) log ζ
2πi is a major of ak δ and is holomorphic in U ; its

monodromy is trivial, thus
∨
Lk = Lk◦π with Lk holomorphic in D∗R. For any circle C centred at 0,

contained in DR and positively oriented, we have ak =
∫
C Lk(ζ) dζ. The normal convergence

of
∑ ∨
ϕk and

∑ ∧
ϕk implies that of

∑
Lk, hence the absolute convergence of

∑
ak. Moreover,

for every n ∈ N∗,
∫
C Lk(ζ)ζ−n dζ = 0, hence L :=

∑
k∈N Lk satisfies

∫
C L(ζ)ζ−n dζ = 0, whence

sing0

(
L(ζ)

)
=
(∑

k∈N ak
)
δ.

We conclude by observing that
∨
ϕ(ζ) = L

(
π(ζ)

)
+
(∑

k∈N
∧
ϕk(π(ζ))

) log ζ
2πi .

Proof of Theorem 30.9. We proceed as in the proof of Theorem 22.2, writing ϕ̃ = a + ϕ̃1,
ψ̃ = b+ ψ̃1, where a, b ∈ C and ϕ̃1 and ψ̃1 have no constant term, and H(t) =

∑
k≥0 hkt

k. Thus

ψ̃ ◦ (id +ϕ̃) = b+ λ̃ with λ̃ := Taψ̃1 ◦ (id +ϕ̃1), H ◦ χ̃ = h0 + µ̃ with µ̃ :=
∑
k≥1

hkχ̃
k. (186)

Both λ̃ and µ̃ are naturally defined as formally convergent series of formal series without constant
term:

λ̃ =
∑
k≥0

λ̃k with λ̃k :=
1

k!
(∂kTaψ̃1)ϕ̃k1, µ̃ =

∑
k≥1

µ̃k with µ̃k := hkχ̃
k.
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By Lemma 28.4 and Theorem 30.1, each Borel transform

λ̂k =
1

k!

(
(−ζ)ke−aζψ̂1

)
∗ ϕ̂∗k1 , µ̂k = hkχ̂

∗k

belongs to R̂simp
Ω , and we have checked in the proof of Theorem 22.2 that their sums λ̂ and µ̂

belong to R̂Ω, with their analytic continuations along the paths of C \ Ω given by the sums of
the analytic continuations of the functions λ̂k or µ̂k. The argument was based on Lemma 22.1;
we use it again to control the behaviour of contγ λ̂ and contγ µ̂ near an arbitrary ω ∈ Ω, for a
path γ : [0, 1] → C \ Ω starting close to 0 and ending close to ω. Choosing a lift ξ of γ(1) − ω
in C̃, we shall then apply Lemma 30.10 to the functions

∨
ϕk(ζ) defined by contγ λ̂k

(
ω+ π(ζ)

)
or

contγ µ̂k
(
ω + π(ζ)

)
for ζ ∈ C̃ close to ξ.

Without loss of generality, we can suppose that |γ(1)−ω| = R/2 with R > 0 small enough so
that D(ω,R)∩Ω = {0}. Let us extend γ by a circle travelled twice, setting γ(t) := ω+

(
γ(1)−

ω
)
e2πi(t−1) for t ∈ [1, 3]. For every t ∈ [1, 3] and Rt < R/2, we can apply Lemma 22.1 and get

the normal convergence of
∑

contγ|[0,t] λ̂k and
∑

contγ|[0,t] µ̂k on D
(
γ(t), Rt

)
. Now Lemma 30.10

shows that contγ λ̂ and contγ µ̂ have simple singularities at ω. Hence λ̂, µ̂ ∈ R̂simp
Ω .

A similar argument shows that (∆ωψ̃) ◦ (id +ϕ̃) ∈ R̃simp
−ω+Ω.

Lemma 30.10 also shows that ∆ωλ̂ =
∑

k≥0 ∆ωλ̂k and ∆ωµ̂ =
∑

k≥1 ∆ωµ̂k. By means

of (182), we compute easily ∆ωµ̃k = khkχ̃
k−1∆ωχ̃, whence ∆ωµ̃ = (dH

dt ◦ χ̃) · ∆ωχ̃, which
yields (185) since (186) shows that ∆ωµ̃ = ∆ω(H ◦ χ̃). By means of (138)–(139) and (182), we
compute

∆ωλ̃k = Ak +Bk, Ak :=
k

k!
(∂kTaψ̃1)ϕ̃k−1

1 ∆ωϕ̃1, Bk :=
e−aω

k!

(
(−ω + ∂)kTa∆ωψ̃1

)
ϕ̃k1,∑

k≥0Ak = (∂Taψ̃1) ◦ (id +ϕ̃1) ·∆ωϕ̃1 = (∂ψ̃1) ◦ (id +ϕ̃) ·∆ωϕ̃1 = (∂ψ̃) ◦ (id +ϕ̃) ·∆ωϕ̃, and

∑
k≥0

Bk = e−aω
∑

k′,k′′≥0

(−ω)k
′

k′!k′′!
(∂k

′′
Ta∆ωψ̃1)ϕ̃k

′+k′′

1

= e−aω
∑
k′≥0

(−ω)k
′

k′!
ϕ̃k
′

1

∑
k′′≥0

1

k′′!
(∂k

′′
Ta∆ωψ̃1)ϕ̃k

′′
1 = exp(−aω − ωϕ̃1) · (Ta∆ωψ̃1) ◦ (id +ϕ̃1)

= e−ωϕ̃ · (∆ωψ̃1) ◦ (id +ϕ̃) = e−ωϕ̃ · (∆ωψ̃) ◦ (id +ϕ̃),

which yields (184) since (186) shows that ∆ωλ̃ = ∆ω

(
ψ̃ ◦ (id +ϕ̃)

)
.

Example 30.1. As promised in Example 27.4, we can now study the exponential of the Stirling
series µ̃ ∈ R̃2πZ∗ . Since 2πiZ∗ is not stable under addition, we need to take at least Ω = 2πiZ
to ensure λ̃ = exp µ̃ ∈ R̃simp

Ω . Formulas (137) and (185) yield

∆2πimλ̃ =
1

m
λ̃, m ∈ Z∗. (187)

In view of Remark 28.8, this implies that any alien operator maps λ̃ to a multiple of λ̃. This
clearly shows that the analytic continuation of the Borel transform B(λ̃− 1) is multiple-valued,
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since e.g. (187) with m = ±1 says that the singularity at ±2πi of the principal branch has a
non-trivial minor. Let us show that

∆+
2πimλ̃ =

{
λ̃ for m = −1,+1,+2,+3, . . .

0 for m = −2,−3, . . .
(188)

(notice that the last formula implies that the analytic continuation of B(λ̃ − 1) from the line
segment (−2πi, 2πi) to (−2πi,−4πi) obtained by circumventing −2πi to the right is free of
singularity in the rest of iR−: it extends analytically to C \ [−2πi,+i∞), but that this is not
the case of the analytic continuation to the left!)

Formula (188) could probably be obtained from the relation ∆+
2πimµ̃ = 1

m by repeated use
of (166), but it is simpler to use (142) and (187), and even better to perform the computation
at the level of the symbolic Stokes automorphism and its infinitesimal generator. This time, we
manipulate the multiplicative counterpart of ∆/ +

iR± and ∆/ iR± obtained through B as indicated
in Section 29.4 and Remark 30.4, writing for instance

∆/ iR+ λ̃ =
∑
m∈N∗

1

m
e−2πimzλ̃ = − log(1−e−2πiz)λ̃, ∆/ iR− λ̃ = −

∑
m∈N∗

1

m
e2πimzλ̃ = log(1−e2πiz)λ̃.

By exponentiating in Ẽ(Ω, iR+) or Ẽ(Ω, iR−), with the help of (183), we get

∆/ +
iR+ λ̃ = (1− e−2πiz)−1λ̃ =

∑
m∈N

e−2πimzλ̃, ∆/ +
iR− λ̃ = (1− e2πiz)λ̃ = λ̃− e2πizλ̃. (189)

One gets (188) by extracting the homogeneous components of these identities.
The Stokes phenomenon for the two Borel sums λ̃(z) can be described as follows: with

I := (−π
2 ,

π
2 ), we have λ+ := λ = S I λ̃ holomorphic in C \ R−, and with J := (π2 ,

3π
2 ), we have

λ− := S J λ̃ holomorphic in C \ R+; by adapting the chain of reasoning of Example 29.5, one
can deduce from (189) that

=mz < 0 =⇒ λ+(z) = (1− e−2πiz)−1λ−(z), =mz > 0 =⇒ λ−(z) = (1− e2πiz)λ+(z)

(one can also content oneself with exponentiating (158)–(159)), getting thus access to the ex-
ponentially small discrepancies between both Borel sums.

Observe that it follows that λ± admits a multiple-valued meromorphic continuation which
gives rise to a function meromorphic in the whole of C̃: for instance, since λ+

|{=mz>0} coincides

with (1 − e2πiz)−1λ−, it can be meromorphically continued to C \ R− and its anticlockwise
continuation to {=mz < 0} is given by (1 − e2πiz)−1λ−|{=mz<0}, which coincides with (1 −
e2πiz)−1(1− e−2πiz)λ+

|{=mz<0}, and can thus be anticlockwise continued to {=mz > 0}: we find

λ+(e2πiz) = (1− e2πiz)−1(1− e−2πiz)λ+(z) = −e−2πizλ+(z)

(compare with Remark 13.5). Since z−
1
2

+z = e(− 1
2

+z) log z gets multiplied by −e2πiz after one

anticlockwise turn around 0, we can deduce that the product
√

2π e−zz−
1
2

+zλ+(z) is single-
valued, not a surprise in view of (54): this product function is none other than Euler’s gamma
function, which is known to be meromorphic in the whole complex plane!
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31 A glance at a class of non-linear differential equations

We give here a brief account of some results based on Écalle’s works that one can find in [Sau10].
Our purpose is to illustrate alien calculus on the example of the simple Z-resurgent series which
appear when dealing with a non-linear generalization of the Euler equation. In this section, we
omit most of the proofs but try to acquaint the reader with concrete computations with alien
operators.

31.1 Let us give ourselves

B(z, y) =
∑
n∈N

bn(z)yn ∈ C{z−1, y}, with b1(z) = 1 +O(z−2) and bn(z) = O(z−1) if n 6= 1,

and consider the differential equation

dφ̃

dz
= B(z, φ̃) = b0(z) + b1(z)φ̃+ b2(z)φ̃2 + · · · (190)

(one recovers the Euler equation for B(z, y) = −z−1 + y). Observe that if φ̃(z) ∈ z−1C[[z−1]]
then B(z, φ̃(z)) is given by a formally convergent series, so (190) makes sense.

Theorem 31.1. Equation (190) admits a unique formal solution φ̃0 ∈ z−1C[[z−1]]. This formal
series is 1-summable in the directions of (−π, π) and

φ̃0(z) ∈ R̃simp
Z∗−

, where Z∗− := {−1,−2,−3, . . .}.

The Borel sum of φ̃0 is a particular solution of Equation (190).

We omit the proof, which can be found in [Sau10]. Let us only give a hint on why one must
take Ω = Z∗−. Writing B(z, y) − y =

∑
an(z)yn, we have an(z) ∈ z−1C{z−1} for all n ∈ N,

thus (190) can be rewritten dφ̃
dz − φ̃ =

∑
anφ̃

n, which via B is equivalent to

φ̂0(ζ) =
−1

1 + ζ
(â0 + â1 ∗ φ̂+ â2 ∗ φ̂∗2 + · · · ).

The Borel transforms ân are entire functions, thus it is only the division by 1 + ζ which is
responsible for the appearance of singularities in the Borel plane: a pole at −1 in the first place,
but also, because of repeated convolutions, a simple singularity at −1 rather than only a simple
pole and other simple singularities at all points of the additive semigroup generated by −1.

31.2 The next question is: what about the Stokes phenomenon for φ̃0 and the action of the alien
operators? Let us first show how, taking for granted that φ̃0 ∈ R̃simp

Z∗−
, one can by elementary

alien calculus see that ∆ωφ̃0 = 0 for ω 6= −1 and compute ∆−1φ̃0 up to a multiplicative factor.
We just need to enrich our “alien toolbox” with two lemmas.

Notation 31.2. Since ∂ = d
dz increases the standard valuation by at least one unit (cf. (12)),

the operator µ+ ∂ : C[[z−1]]→ C[[z−1]] is invertible for any µ ∈ C∗ and its inverse (µ+ ∂)−1 is
given by the formally convergent series of operators

∑
p≥0 µ

−p−1(−∂)p (and its Borel counterpart

is just division by µ− ζ). For µ = 0, we define ∂−1 as the unique operator ∂−1 : z−2C[[z−1]]→
z−1C[[z−1]] such that ∂ ◦ ∂−1 on z−2C[[z−1]] (its Borel counterpart is division by −ζ).
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Lemma 31.3. Let Ω be any non-empty closed discrete subset of C. Let ϕ̃ ∈ R̃simp
Ω and µ ∈ Ω.

If µ = 0 we assume ϕ̃ ∈ z−2C[[z−1]]; if µ 6= 0 we assume ∆µϕ̃ ∈ z−2C[[z−1]]. Then (µ+∂)−1ϕ̃ ∈
R̃simp

Ω and
ω ∈ Ω \ {0, µ} =⇒ ∆ω(µ+ ∂)−1ϕ̃ = (µ− ω + ∂)−1∆ωϕ̃,

while, if µ 6= 0, there exists C ∈ C such that

∆µ(µ+ ∂)−1ϕ̃ = C + ∂−1∆µϕ̃.

Lemma 31.4. Let B(z, y) ∈ C{z−1, y}. Suppose that Ω is stable under addition and ϕ̃(z) ∈
R̃simp

Ω has no constant term. Then B
(
z, ϕ̃(z)

)
∈ R̃simp

Ω and, for every ω ∈ Ω \ {0},

∆ωB
(
z, ϕ̃(z)

)
= ∂yB

(
z, ϕ̃(z)

)
·∆ωϕ̃.

The proof of Lemmas 31.3 and 31.4 is left to the reader.
Let us come back to the solution φ̃0 of (190). For ω ∈ Z∗−, we derive a differential equation

for ψ̃ = ∆ωφ̃0 by writing on the one hand ∆ω∂zφ̃0 = ∂zψ̃ − ωψ̃ (by (138)) and, on the other
hand, ∆ω

(
B(z, φ̃0)

)
= ∂yB(z, φ̃0) · ψ̃ by Lemma (31.4), thus alien differentiating Equation (190)

yields
dψ̃

dz
=
(
ω + ∂yB(z, φ̃0)

)
· ψ̃. (191)

Since ω + ∂yB(z, φ̃0) = ω + 1 +O(z−2), it is immediate that the only solution of this equation
in z−1C[[z−1]] is 0 when ω 6= −1. This proves

ω 6= −1 =⇒ ∆ωφ̃0 = 0.

For ω = −1, Equation (191) reads

dψ̃

dz
= β̃1ψ̃ (192)

with β̃1(z) := −1 + ∂yB(z, φ̃0(z)) ∈ R̃simp
Z∗−

(still by Lemma 31.4). Since β̃1(z) = O(z−2),

Lemma 31.3 implies α̃ := ∂−1β̃1 ∈ R̃simp
Z− (beware that we must replace Z∗− with Z− = {0} ∪Z∗−

because a priori only the principal branch of α̂ := −1
ζ β̂1(ζ) is regular at 0). Then

φ̃1 := e∂
−1β̃1 = 1 +O(z−1) ∈ R̃simp

Z−

is a non-trivial solution of (192). This implies that

∆−1φ̃0 = Cφ̃1,

with a certain C ∈ C.

31.3 We go on with the computation of the alien derivatives of φ̃1. Let

β̃2(z) := ∂2
yB
(
z, φ̃0(z)

)
∈ R̃simp

Z∗−
,

so that ∆−1β̃1 = Cβ̃2φ̃1(z) and ∆ωβ̃1 = 0 for ω 6= −1 (by Lemma 31.4). Computing ∆ω(∂−1β̃1)
by Lemma 31.3 and then ∆ωφ̃1 by (185), we get

∆−1φ̃1 = 2Cφ̃2, φ̃2 :=
1

2
φ̃1 · (1 + ∂)−1(β̃2φ̃1) ∈ R̃simp

Z−∪{1} (193)
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and ∆ωφ̃1 = 0 for ω 6= −1.
By the same kind of computation, we get at the next step ∆ωφ̃2 = 0 for ω /∈ {−1, 1},

∆−1φ̃2 = 3Cφ̃3, φ̃3 :=
1

3
φ̃2 · (1 + ∂)−1(β̃2φ̃1) +

1

6
φ̃1 · (2 + ∂)−1(β̃3φ̃

2
1 + 2β̃2φ̃2) ∈ R̃simp

Z−∪{1,2}

with β̃3 := ∂3
yB
(
z, φ̃0(z)

)
. A new undetermined constant appears for ω = 1: Lemma 31.3 yields

a C ′ ∈ C such that ∆1(1 + ∂)−1(β̃2φ̃1) = C ′ + ∂−1∆1(β̃2φ̃1) = C ′, hence (193) implies

∆1φ̃2 = C ′φ̃3.

We see that Equation (190) generates not only the formal solution φ̃0 but also a sequence
of resurgent series (φ̃n)n≥1, in which φ̃1 was constructed as the unique solution of the lin-
ear homogeneous differential equation (192) whose constant term is 1; the other series in
the sequence can be characterized by linear non-homogeneous equations: alien differentiat-
ing (192), we get (1 + ∂)∆−1ψ̃ = ∆−1∂ψ̃ = ∆−1(β̃1ψ̃) = β̃1∆−1ψ̃ + Cβ̃2φ̃1ψ̃, thus ∂(∆−1φ̃1) =
(−1 + β̃1)∆−1φ̃1 + Cβ̃2φ̃

2
1, and it is not a surprise that φ̃2 is the unique formal solution of

∂φ̃2 = (−1 + β̃1)φ̃2 +
1

2
β̃2φ̃

2
1. (194)

Similarly, φ̃3 is the unique formal solution of

∂φ̃3 = (−2 + β̃1)φ̃3 + β̃2φ̃1φ̃2 +
1

6
β̃3φ̃

3
1. (195)

31.4 The previous calculations can be put into perspective with the notion of formal integral,
i.e. a formal object which solves Equation (190) and is more general than a formal series like φ̃0.
Indeed, both sides of (190) can be evaluated on an expression of the form

φ̃(z, u) =
∑
n∈N

un enzφ̃n(z) = φ̃0(z) + u ezφ̃1(z) + u2 e2zφ̃1(z) + . . . (196)

if (φ̃n)n∈N is any sequence of formal series such that φ̃0 has no constant term, simply by treat-
ing φ̃(z, u) as a formal series in u whose coefficients are transseries of a particular form and
writing

∂φ̃

∂z
(z, u) =

∑
n∈N

un enz(n+ ∂)φ̃n

B
(
z, φ̃(z, u)

)
= B

(
z, φ̃0(z)

)
+
∑
r≥1

1

r!
∂ryB

(
z, φ̃0(z)

) ∑
n1,...,nr≥1

un1+···+nre(n1+···+nr)zφ̃n1 · · · φ̃nr .

This is equivalent to setting Ỹ (z, y) =
∑

n∈N y
nφ̃n(z), so that φ̃(z, u) = Ỹ (z, u ez), and to

considering the equation
∂zỸ + y∂yỸ = B

(
z, Ỹ (z, y)

)
. (197)

for an unknown double series Ỹ ∈ C[[z−1, y]] without constant term.
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For an expression (196), Equation (190) is thus equivalent to the sequence of equations

∂φ̃0 = B(z, φ̃0) (E0)

(1 + ∂)φ̃1 − ∂yB(z, φ̃0) · φ̃1 = 0 (E1)

(n+ ∂)φ̃n − ∂yB(z, φ̃0) · φ̃n =
∑
r≥2

1

r!
∂ryB(z, φ̃0)

∑
n1,...,nr≥1
n1+···+nr=n

φ̃n1 · · · φ̃nr for n ≥ 2. (En)

Of course (E0) is identical to Equation (190) for a formal series without constant term. The
reader may check that Equation (E1) coincides with (192), (E2) with (194) and (E3) with (195).

Theorem 31.5. Equation (190) admits a unique solution of the form (196) for which the
constant term of φ̃0 is 0 and the constant term of φ̃1 is 1, called “Formal Integral”. The
coefficients φ̃n of the formal integral are 1-summable in the directions of (−π, 0) and (0, π), and

φ̃n(z) ∈ R̃simp
Z∗−∪{0,1,...,n−1}, n ∈ N. (198)

The dependence on n in the exponential bounds for the Borel transforms φ̂n is controlled well
enough to ensure the existence of locally bounded functions γ and R > 0 on (−π, 0)∪ (0, π) such
that, for I = (−π, 0) or (0, π), Y I(z, y) :=

∑
n∈N y

nS I φ̃n(z) is holomorphic in D(I, γ) × DR;

correspondingly, the function φI(z, u) :=
∑

n∈N(u ez)nS I φ̃n(z) is holomorphic in { (z, u) ∈
D(I, γ)× C | |u| e<e z < R }.

The Borel sums φ(−π,0)
|u=0 and φ(0,π)

|u=0 both coincide with the particular solution of Equa-
tion (190) mentioned in Theorem 31.1. For I = (−π, 0) or (0, π) and for each u ∈ C∗, the
function φI( . , u) is a solution of (190) holomorphic in { z ∈ D(I, γ) | <e z < ln R

|u| }.

The reader is once more referred to [Sau10] for the proof.
Observe that when we see the formal integral Ỹ (z, u) as a solution of (190), we must think

of u as of an indeterminate, the same way as z (or rather z−1) is an indeterminate when we
manipulate ordinary formal series; after Borel-Laplace summation of each φ̃n, we get holomor-
phic functions of the variable z ∈ D(I, γ), coefficients of a formal expression

∑
unenzS I φ̃n(z);

Theorem 31.5 says that, for each z ∈ D(I, γ), this expression is a convergent formal series,
Taylor expansion of the function obtained by substituting the indeterminate u with a variable
u ∈ DR e−<e z .

If we think of z as of the main variable, the interpretation of the indeterminate/variable u is
that of a free parameter in the solution of a first-order differential equation: φ̃(z, u) appears as
a formal 1-parameter family of formal solutions, φ(−π,0) and φ(0,π) as two 1-parameter families
of analytic solutions.

As for the Borel sum Y I(z, y), it is an analytic solution of Equation (197) in its domain
D(I, γ) × DR; this means that the vector field16 XB := ∂

∂z + B(z, Y ) ∂
∂Y is the direct image of

N := ∂
∂z + y ∂∂y by the diffeormophism ΘI : (z, y) 7→ (z, Y ) =

(
z, Y I(z, y)

)
. We may consider N

as a normal form for XB and Θ(−π,0) and Θ(0,π) as two sectorial normalizations.
The results of the alien calculations of Sections 31.2–31.3 are contained in following statement

(extracted from Section 10 of [Sau10]):

16 If we change the variable z into x := −z−1, the vector field XB becomes x2 ∂
∂x

+ B(z, Y ) ∂
∂Y

, which has a
saddle-node singularity at (0, 0).
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Theorem 31.6. There are uniquely determined complex numbers C−1, C1, C2, . . . such that, for
each n ∈ N,

∆−mφ̃n = 0 for m ≥ 2, (199)

∆−1φ̃n = (n+ 1)C−1φ̃n+1, (200)

∆mφ̃n = (n−m)Cmφ̃n−m for 1 ≤ m ≤ n− 1. (201)

Equivalently, letting act the alien derivation ∆ω on an expression like φ̃(z, u) or Ỹ (z, y) by
declaring that it commutes with multiplication by u, ez or y, on has

∆mφ̃ = Cmu
m+1 emz

∂φ̃

∂u
or ∆mỸ = Cmy

m+1∂Ỹ

∂y
, for m = −1 or m ≥ 2. (202)

Equation (202) (either for φ̃ or for Ỹ ) was baptized “Bridge Equation” by Écalle, in view
of the bridge it establishes between ordinary differential calculus (involving ∂u or ∂y) and alien
calculus (when dealing with the solution of an analytic equation like φ̃ or Ỹ ).

Proof of Theorem 31.6. Differentiating (197) with respect to y, we get

(∂z + y∂y)∂yỸ =
(
− 1 + ∂yB(z, Ỹ )

)
∂yỸ .

Alien differentiating (197), we get (in view of (138))

(∂z + y∂y)∆mỸ =
(
m+ ∂yB(z, Ỹ )

)
∆mỸ .

Now ∂yỸ = 1 +O(z−1, y) is invertible and we can consider χ̃ := (∂yỸ )−1∆mỸ ∈ C[[z−1, y]], for
which we get (∂z + y∂y)χ̃ = (m+ 1)χ̃, and this implies the existence of a unique Cm ∈ C such
that χ̃ = Cmy

m+1. This yields the second part of (202), from which the first part follows, and
also (199)–(201) by expanding the formula.

31.5 The Stokes phenomenon for φ̃(z, u) takes the form of two connection formulas, one for
<e z < 0, the other for <e z > 0, between the two families of solutions φ(−π,0) and φ(0,π). For
<e z < 0, it is obtained by analyzing the action of ∆/ +

R− , the symbolic Stokes automorphism for
the direction R−.

Let Ω := Z∗−. Since φ̃n ∈ R̃simp
n+Ω (by (198)), the formal integral φ̃ can be considered as an

Ω-resurgent symbol with support in R− at the price of a slight extension of the definition: we
must allow our resurgent symbols to depend on the indeterminate u, so we replace (160) with

Ẽ(Ω, d) :=

{ ∑
ω∈(Ω∪{0})∩d

e−ωzϕ̃ω(z, u) | ϕ̃ω(z, u) ∈ R̃−ω+Ω[u]

}

(thus restricting ourselves to a polynomial dependence on u for each homogeneous component).
Then φ̃(z, u) =

∑
n∈N u

n enzφ̃n(z) ∈ Ẽ(Ω,R−). According to (199), only one homogeneous

component of ∆/ R− needs to be taken into account, and (230) yields ∆/ R− φ̃(z, u) = ez∆−1φ̃(z, u),
whence, by (200),

∆/ R− φ̃(z, u) =
∑
n≥0

(n+ 1)C−1u
ne(n+1)zφ̃n+1(z) = C−1

∂φ̃

∂u
(z, u).
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It follows that
∆/ +

R− φ̃(z, u) = φ̃(z, u+ C−1) =
∑
n≥0

(u+ C−1)nenzφ̃n(z)

and one ends up with

Theorem 31.7. For z ∈ D
(
(−π, 0), γ

)
∩D

(
(0, π), γ

)
with <e z < 0,

φ(0,π)(z, u) ≡ φ(−π,0)(z, u+ C−1), Y (0,π)(z, y) ≡ Y (−π,0)(z, y + C−1 ez).

31.6 For <e z > 0, we need to inquire about the action of ∆/ +
R+ , however the action of this

operator is not defined on the space of resurgent symbols with support in R−. Luckily, we can
view φ̃(z, u) as a member of the space F̃ (Z,R−) = F̃0 ⊃ F̃1 ⊃ F̃2 ⊃ · · · , where

F̃p :=

{ ∑
n∈N

un+penzϕ̃n(z, u) | ϕ̃n(z, u) ∈ R̃Z[[u]] and

∆mr · · ·∆m1ϕ̃n = 0 for m1, . . . ,mr ≥ 1 with m1 + · · ·+mr > n

}
for each p ∈ N. One can check that the operator ∆/ R+ =

∑
m≥1 e−mz∆m is well defined on

F̃ (Z,R+) and maps F̃p in F̃p+1, with

∆/ R+

(∑
n≥0

un+penzϕ̃n(z, u)
)

=
∑
n≥0

un+p+1enzψ̃n(z, u), ψ̃n(z, u) :=
∑
m≥1

um−1∆mϕ̃m+n(z, u),

therefore its exponential is well defined and coincides with ∆/ +
R+ .

In the case of the formal integral φ̃(z, u), thanks to (201), we find

∆/ R+ φ̃(z, u) =
∑

n≥0,m≥1

nCmu
n+menzφ̃n = C φ̃(z, u)

with a new operator C :=
∑
m≥1

Cmu
m+1 ∂

∂u
.

One can check that F̃ (Z,R−) is an algebra and its multiplication maps F̃p × F̃q to F̃p+q.
Since C is a derivation which maps F̃p to F̃p+1, its exponential exp C is well defined and is
an automorphism (same argument as for Lemma 30.5). Reasoning as in Exercise 3.3, one can
see that there exists ξ(u) ∈ uC[[u]] such that exp C coincides with the composition operator
associated with (z, u) 7→

(
z, ξ(u)

)
:

ϕ̃(z, u) ∈ F̃ (Z,R−) =⇒ (exp C )ϕ̃(z, u) = ϕ̃
(
z, ξ(u)

)
.

In fact, there is an explicit formula

ξ(u) = u+
∑
m≥1

(∑
r≥1

∑
m1,...,mr≥1

m1+···+mr=m

1

r!
βm1,...,mrCm1 · · ·Cmr

)
um+1

with the notations βm1 = 1 and βm1,...,mr = (m1 + 1)(m1 + m2 + 1) · · · (m1 + · · · + mr−1 + 1).
We thus obtain

∆/ +
R+ φ̃(z, u) = φ̃

(
z, ξ(u)

)
. (203)
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Theorem 31.8. The series ξ(u) has positive radius of convergence and, for z ∈ D
(
(−π, 0), γ

)
∩

D
(
(0, π), γ

)
with <e z > 0,

φ(−π,0)(z, u) ≡ φ(0,π)
(
z, ξ(u)

)
, Y (−π,0)(z, y) ≡ Y (0,π)

(
z, ξ(y e−z) ez

)
.

Sketch of proof. Let I := [ε, π − ε], J := [−π + ε,−ε], and consider the diffeomorphism θ :=[
Θ(0,π)

]−1 ◦ Θ(−π,0) in { z ∈ D(I, γ) ∩ D(J, γ) | <e z > 0 } × DR′ with R′ > 0 small enough.

It is of the form θ(z, y) =
(
z, χ+(z, y)

)
with χ+(z, 0) ≡ 0. The direct image of N = ∂

∂z + y ∂∂y
by θ is N , this implies that χ+ = Nχ+, whence 1

u ezχ
+(z, u ez) is independent of z and can be

written ξ+(u)
u with ξ+(u) ∈ C{u}. Thus χ+(z, y) = ξ+(y e−z) ez, i.e.

Y J(z, y) ≡ Y I
(
z, ξ+(y e−z) ez

)
.

To conclude, it is thus sufficient to prove that the Taylor series of ξ+(u) is ξ(u). This can be
done using (203), by arguing as in the proof of Theorem 29.5.

Exercise 31.1 (Analytic invariants). Assume we are given two equations of the form (190)
and, correspondingly, two vector fields XB1 = ∂

∂z + B1(z, Y ) ∂
∂Y and XB2 = ∂

∂z + B2(z, Y ) ∂
∂Y

with the same assumptions as previously on B1, B2 ∈ C{z−1, y}. Prove that there exists a
formal series χ̃(z, y) ∈ C[[z−1, y]] such that the formula θ(z, y) :=

(
z, χ̃(z, y)

)
defines a formal

diffeomorphism which conjugates XB1 and XB2 . Prove that XB1 and XB2 are analytically
conjugate, i.e. χ̃(z, y) ∈ C{z−1, y}, if and only both equations give rise to the same sequence
(C−1, C1, C2, . . .), or, equivalently, to the same pair

(
C−1, ξ(u)

)
(the latter pair is called the

“Martinet-Ramis modulus”).

Exercise 31.2. Study the particular case where B is of the form B(z, y) = b0(z)+
(
1+b1(z)

)
y,

with b0 ∈ z−1C{z−1}, b1 ∈ z−2C{z−1}. Prove in particular that the Borel transform of b0 e−∂
−1b1

is an entire function whose value at −1 is − 1
2πiC−1 and that Cm = 0 for m 6= −1 in that case.

Remark 31.9. The numbers Cm, m ∈ {−1} ∪ N∗, which encode such a subtle analytic in-
formation, are usually impossible to compute in closed form. An exception is the case of the
“canonical Riccati equations”, for which B(z, y) = y − 1

2πi(B− + B+y
2)z−1, with B−, B+ ∈ C.

One finds Cm = 0 for m /∈ {−1, 1} and

C−1 = B−σ(B−B
+), C1 = −B+σ(B−B

+)

with σ(b) := 2
b1/2

sin b
1/2

2 . See [Sau10] for the references.
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The resurgent viewpoint on holomorphic

tangent-to-identity germs

The last part of this text is concerned with germs of holomorphic tangent-to-identity dif-
feomorphisms. The main topics are the description of the local dynamics (describing the local
structure of the orbits of the discrete dynamical system induced by a given germ) and the de-
scription of the conjugacy classes (attaching to a given germ quantities which characterize its
analytic conjugacy class). We shall give a fairly complete account of the results in the simplest
case, limiting ourselves to germs at ∞ of the form

f(z) = z + 1 +O(z−2) (204)

(corresponding to germs at 0 of the form F (t) = t− t2 + t3 +O(t4) by (82)–(83)). The reader is
referred to [Eca81, Vol. 2], [Mil99], [Lor05], [Sau06], [DS13a], [DS13b] for more general studies.

It turns out that formal tangent-to-identity diffeomorphisms play a prominent role, particu-
larly those which are 1-summable and 2πiZ-resurgent. So the ground was prepared in Sections
14–17 and in Theorem 22.4. In fact, because of the restriction (204), all the resurgent functions
which will appear will be simple; we thus begin with a preliminary section.

32 Simple Ω-resurgent tangent-to-identity diffeomorphisms

Let us give ourselves a non-empty closed discrete subset Ω of C which is stable under addition.
Recall that, according to Section 22, Ω-resurgent tangent-to-identity diffeomorphisms form a
group G̃ RES(Ω) for composition (subgroup of the group G̃ = id +C[[z−1]] of all formal tangent-
to-identity diffeomorphisms at ∞).

Definition 32.1. We call simple Ω-resurgent tangent-to-identity diffeomorphism any f̃ = id +ϕ̃ ∈
G̃ RES where ϕ̃ is a simple Ω-resurgent series. We use the notations

G̃ simp(Ω) := { f̃ = id +ϕ̃ | ϕ̃ ∈ R̃simp
Ω }, G̃ simp

σ (Ω) := G̃ simp(Ω) ∩ G̃σ for σ ∈ C.

We define ∆ω : G̃ simp(Ω)→ R̃simp
−ω+Ω for any ω ∈ Ω by setting

∆ω(id +ϕ̃) := ∆ωϕ̃.

Recall that, in Section 15, ∂f̃ was defined as the invertible formal series 1 + ∂ϕ̃ for any
f̃ = id +ϕ̃ ∈ G̃ . Clearly f̃ ∈ G̃ simp(Ω) =⇒ ∂f̃ ∈ G̃ simp(Ω).

Theorem 32.2. The set G̃ simp(Ω) is a subgroup of G̃ RES(Ω), the set G̃ simp
0 (Ω) is a subgroup

of G̃ RES
0 (Ω). For any f̃ , g̃ ∈ G̃ simp(Ω) and ω ∈ Ω, we have

∆ω(g̃ ◦ f̃) = (∂g̃) ◦ f̃ ·∆ωf̃ + e−ω(f̃−id) · (∆ωg) ◦ f̃ , (205)

h̃ = f̃◦(−1) =⇒ ∆ωh̃ = −e−ω(h̃−id) · (∆ωf̃) ◦ h̃ · ∂h̃. (206)

Proof. The stability under group composition stems from Theorem 30.9, since (id +ψ̃)◦(id +ϕ̃) =
id +ϕ̃+ ψ̃ ◦ (id +ϕ̃). The stability under group inversion is proved from Lagrange reversion for-
mula as in the proof of Theorem 22.4, adapting the arguments of the proof of Theorem 30.9.

Formula (205) results from (184), and formula (206) follows by choosing g = f◦(−1).
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33 Simple parabolic germs with vanishing resiter

We now come to the heart of the matter, giving ourselves a germ F (t) ∈ C{t} of holomorphic
tangent-to-identity diffeomorphism at 0 and the corresponding germ f(z) := 1/F (1/z) ∈ G
at ∞.

The germ F gives rise to a discrete dynamical system F : U → C, where U is an open
neighbourhood of 0 on which a representative of F is holomorphic. This means that for any
t0 ∈ U we can define a finite or infinite forward orbit { tn = F ◦n(t0) | 0 ≤ n < N }, where
N ∈ N∗ ∪ {∞} is characterized by t1 = F (t0) ∈ U , . . . , tN−1 = F (tN−2) ∈ U and tN =
F (tN−1) /∈ U (so that apriori tN+1 cannot be defined), and similarly a finite or infinite backward
orbit { t−n = F ◦(−n)(t0) | 0 ≤ n < M } with M ∈ N∗ ∪ {∞}.

We are interested in the local structure of the orbits starting close to 0, so the domain U
does not matter. Moreover, the qualitative study of a such a dynamical system is insensitive to
analytic changes of coordinate: we say that G is analytically conjugate to F if there exists an
invertible H ∈ tC{t} such that G = H◦(−1) ◦F ◦H; the germ G is then itself tangent-to-identity
and it should be considered as equivalent to F from the dynamical point of view (because H
maps the orbits of F to those of G). The description of the analytic conjugacy classes is thus
dynamically relevant.

We suppose that F is non-degenerate in the sense that F ′′(0) 6= 0. Observe that G =
H◦(−1) ◦ F ◦ H =⇒ G′′(0) = H ′(0)F ′′(0), thus we can rescale the variable w so as to make
the second derivative equal to −2, i.e. we assume from now on F (t) = t− t2 + (ρ+ 1)t3 +O(t4)
with a certain ρ ∈ C, and correspondingly

f(z) = z + 1− ρz−1 +O(z−2) ∈ G1. (207)

Such a germ F or f is called a simple parabolic germ.
Once we have done that, we should only consider tangent-to-identity changes of coordinateG,

so as to maintain the condition F ′′(0) = −2. In the variable z, this means that we shall study
the G -conjugacy class {h◦(−1) ◦ f ◦ h | h ∈ G } ⊂ G1.

As already alluded to, the G̃ -conjugacy class of f in G̃1 plays a role in the problem, i.e.
we must also consider the formal conjugacy equivalence relation. The point is that it may
happen that two holomorphic germs f and g are formally conjugate (there exists h̃ ∈ G̃ such
that f ◦ h̃ = h̃ ◦ g) without being analytically conjugate (there exists no h ∈ G with the same
property): the G -conjugacy classes we are interested in form a finer partition of G1 than the
G̃ -conjugacy classes.

It turns out that the number ρ in (207) is invariant by formal conjugacy and that two germs
with the same ρ are always formally conjugate (we omit the proof). This number is called
“resiter”.

We suppose further that the resiter ρ is 0, i.e. we limit ourselves to the most elementary
formal conjugacy class. This implies that our f is of the form (204) and formally conjugate to
f0(z) := z + 1, the most elementary simple parabolic germ with vanishing resiter, which may
be considered as a formal normal form for all simple parabolic germs with vanishing resiter.
The corresponding normal form at 0 is F0(t) := t

1+t . The orbits of the normal form are easily

computed: we have f◦n0 = id +n and F ◦n0 (t) = t
1+nt for all n ∈ Z, thus the backward and

forward orbits of a point t0 6= 0 are infinite and contained either in R (if t0 ∈ R) or in a circle
passing through 0 centred at a point of iR∗.

In particular, all the forward orbits of F0 converge to 0 and all its backward orbits converge
in negative time to 0. If the formal conjugacy between F and F0 happens to be convergent,
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then such qualitative properties of the dynamics automatically hold for the orbits of F itself (at
least for those which start close enough to 0). We shall see that in general the picture is more
complex. . .

34 Resurgence and summability of the iterators

Notation 34.1. Given g̃ ∈ G̃ , the operator of composition with g̃ is denoted by

Cg̃ : ϕ̃ ∈ C[[z−1]] 7→ ϕ̃ ◦ g̃ ∈ C[[z−1]].

The operator Cid−1− Id induces an invertible map z−1C[[z−1]]→ z−2C[[z−1]] with Borel coun-
terpart ϕ̂(ζ) ∈ C[[ζ]] 7→ (eζ − 1)ϕ̂(ζ) ∈ ζC[[ζ]]; we denote by

E : z−2C[[z−1]]→ z−1C[[z−1]], Ê : ζC[[ζ]]→ C[[ζ]]

its inverse and the Borel counterpart of its inverse, hence (Êϕ̂)(ζ) = 1
eζ−1

ϕ̂(ζ) (cf. Corollary 4.6).
We also set

f0 := id +1 ∈ G1. (208)

The operator E will allow us to give a very explicit proof of the existence of a formal
conjugacy between a diffeomorphism with vanishing resiter and the normal form (208).

Lemma 34.2. Given a simple parabolic germ with vanishing resiter f ∈ G1, there is a unique
ṽ∗ ∈ G̃0 such that

ṽ∗ ◦ f = f0 ◦ ṽ∗. (209)

It can be written as a formally convergent series

ṽ∗ = id +
∑
k∈N

ϕ̃k, ϕ̃k := (EB)kEb ∈ z−2k−1C[[z−1]] for each k ∈ N, (210)

with a holomorphic germ b := f ◦ f◦(−1)
0 − id ∈ z−2C{z−1} and an operator B := Cid +b − Id.

The solutions in G̃ of the conjugacy equation ṽ ◦ f = f0 ◦ ṽ are the formal diffeomorphisms
ṽ = ṽ∗ + c with arbitrary c ∈ C.

Proof. The conjugacy equation can be written ṽ ◦ f = ṽ + 1 or, equivalently (composing with

f
◦(−1)
0 = id−1), ṽ ◦ (id +b) = ṽ ◦ (id−1) + 1. Searching for a formal solution in the form
ṽ = id +ϕ̃ with ϕ̃ ∈ C[[z−1]], we get b+ ϕ̃ ◦ (id +b) = ϕ̃ ◦ (id−1), i.e.

(Cid−1 − Id)ϕ̃ = Bϕ̃+ b. (211)

We have val
(
(Cid−1 − Id)ϕ̃

)
≥ val(ϕ̃) + 1 for the standard valuation (10), and val(Bϕ̃) ≥

val(ϕ̃) + 3 (because B can be written as the formally convergent series if operators
∑

r≥1
1
r!b

r∂r

with val(b) ≥ 2 and val(∂ϕ̃) ≥ val(ϕ̃) + 1), thus the difference between any two formal solutions
of (211) is a constant. If we specify ϕ̃ ∈ z−1C[[z−1]], then (211) is equivalent to

ϕ̃ = EBϕ̃+ Eb,

where val(EBϕ̃) ≥ val(ϕ̃) + 2, thus the formal series ϕ̃k of (210) have valuation at least 2k + 1
and yield the unique formal solution without constant term in the form ϕ̃ =

∑
k∈N ϕ̃k.
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Definition 34.3. The unique formal diffeomorphism ṽ∗ ∈ G̃0 such that ṽ∗ ◦ f = f0 ◦ ṽ∗ is called

the “iterator” of f . Its inverse ũ∗ := ṽ
◦(−1)
∗ ∈ G̃0 is called the “inverse iterator” of f .

We illustrate this in the following commutative diagram, including the parabolic germ at 0
defined by F (t) := 1/f(1/t):

z

ũ∗
��

// z + 1

ũ∗
��

z

ṽ∗

OO

z = 1/t

]]
// f(z)

cc

ṽ∗

OO

t // F (t)

Observe that
f ◦ ũ∗ = ũ∗ ◦ f0, (212)

which can be viewed as a difference equation: ũ∗(z + 1) = f
(
ũ∗(z)

)
.

Theorem 34.4. Suppose that f ∈ G1 has vanishing resiter. Then its iterator ṽ∗ and its inverse
interator ũ∗ belong to G̃ simp

0 (2πiZ) ∩ G̃0(I+) ∩ G̃0(I−) with I+ := (−π
2 ,

π
2 ) and I− := (π2 ,

3π
2 )

(notations of Definitions 17.1 and 32.1).
Moreover, the iterator can be written ṽ∗ = id +ϕ̃ with a simple 2πiZ-resurgent series ϕ̃ whose

Borel transform satifies the following: for any path γ issuing from 0 and then avoiding 2πiZ
and ending at a point ζ∗ ∈ iR, or for γ = {0} and ζ∗ = 0, there exist locally bounded functions
α, β : I+ ∪ I− → R+ such that∣∣∣contγ ϕ̂

(
ζ∗ + t eiθ

)∣∣∣ ≤ α(θ) eβ(θ)t for all t ≥ 0 and θ ∈ I+ ∪ I− (213)

(see Figure 16a).

Since ϕ̃ := ṽ∗ − id is given by Lemma 34.2 in the form of the formally convergent series∑
k≥0 ϕ̃k, the statement can be proved by controlling the formal Borel transforms ϕ̂k.

Lemma 34.5. For each k ∈ N we have ϕ̂k := B(ϕ̃k) ∈ R̂simp
2πiZ .

Lemma 34.6. Suppose that 0 < ε < π < τ , 0 < κ ≤ 1 and D is a closed disc of radius ε centred
at 2πim with m ∈ Z∗, and let

Ω+
ε,τ,D := { ζ ∈ C | <e ζ > −τ, dist

(
ζ, 2πiZ∗

)
> ε } \ {uζ ∈ C | u ∈ [1,+∞), ±ζ ∈ D } (214)

(see Figure 16b). Then there exist A,M,R > 0 such that, for any naturally parametrised path
γ : [0, `]→ Ω+

ε,τ,D with

s ∈ [0, ε] =⇒ |γ(s)| = s, s > ε =⇒ |γ(s)| > ε, s ∈ [0, `] =⇒ |γ(s)| > κs, (215)

one has ∣∣contγ ϕ̂k
(
γ(`)

)∣∣ ≤ A(M`)k

k!
eR` for every k ≥ 0. (216)
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Figure 16: Resurgence of the iterator (Theorem 34.4). Left: A path of analytic continuation
for ϕ̂. Right: The domain Ω+

ε,τ,D of Lemma 34.6.

Lemmas 34.5 and 34.6 imply Theorem 34.4. Lemma 34.6 implies that the series of holomorphic
functions

∑
ϕ̂k converges normally in any compact subset of D2π (using paths γ of the form

[0, ζ]) and that its sum, which is ϕ̂, extends analytically along any naturally parametrised path
γ which starts as the line segment [0, 1] and then stays in C \ 2πiZ: indeed, taking ε, κ small
enough and τ,m large enough, we see that Lemma 34.6 applies to γ and the neighbouring paths,
so that (216) yields the normal convergence of

∑
k≥0 contγ ϕ̂k(γ(t) + ζ) = contγ ϕ̂(γ(t) + ζ) for

all t and ζ with |ζ| small enough. Therefore ϕ̂ is 2πiZ-resurgent and, combining Lemma 34.5
with the estimates (216), we also get ϕ̂ ∈ R̂simp

2πiZ by Lemma 30.10.

This establishes ṽ∗ ∈ G̃ simp
0 (2πiZ), whence ũ∗ ∈ G̃ simp

0 (2πiZ) by Theorem 32.2.
For the part of (213) relative to I+, we give ourselves an arbitrary n > 1 and set δn := π

2n ,
I+
n := [−π

2 + δn,
π
2 − δn]. Given γ with endpoint ζ∗ ∈ iR, we first replace an initial portion of γ

with a line segment of length 1 (unless γ stays in D1, in which case the modification of the
arguments which follow is trivial) and switch to its natural parametrisation γ : [0, `] → C. We
then choose εn and κn small enough:

εn < min
{

1, min
[1,`]
|γ|, dist

(
γ
(
[0, `]

)
, 2πiZ∗

)
, dist

(
ζ∗, 2πiZ

)
cos δn

}
,

κn < min
{

min
[0,`]

|γ(s)|
s , min

t≥0

|ζ∗+t e±iδn |
`+t

}
,

and τ and mn large enough:

τ > −min<e γ, mn >
1

2π

(
εn + max|=mγ|

)
,

so that Lemma 34.6 applies to the concatenation of paths Γ := γ + [ζ∗, ζ∗ + t eiθ] for each t ≥ 0
and θ ∈ I+

n ; since Γ has length `+ t, (216) yields

t ≥ 0 and θ ∈ I+
n =⇒

∣∣∣contγ ϕ̂
(
ζ∗ + t eiθ

)∣∣∣ =
∣∣contΓ ϕ̂

(
Γ(`+ t)

)∣∣ ≤ An e(Mn+Rn)(`+t),
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where An, Mn and Rn depend on n and γ but not on t or θ. We thus take

α+(θ) := e`β
+(θ) max

{
An | n ≥ 1 s.t. θ ∈ I+

n

}
, β+(θ) := max

{
Mn +Rn | n ≥ 1 s.t. θ ∈ I+

n

}
for any θ ∈ I+, and get

t ≥ 0 and θ ∈ I+ =⇒
∣∣∣contγ ϕ̂

(
ζ∗ + t eiθ

)∣∣∣ ≤ α+(θ) eβ
+(θ)t.

The part of (213) relative to I− follows from the fact that ϕ̂−(ζ) := ϕ̂(−ζ) satisfies all the
properties we just obtained for ϕ̂(ζ), since it is the formal Borel transform of ϕ̃−(z) := −ϕ̃(−z)
which solves the equation Cid−1ϕ̃

− = Cid +b−ϕ̃
−+ b−∗ associated with the simple parabolic germ

f−(z) := −f−1(−z) = z + 1 + b−(z + 1).
This establishes (213), which yields (in the particular case γ = {0}) ṽ∗ ∈ G̃0(I+) ∩ G̃0(I−),

whence ũ∗ ∈ G̃0(I+) ∩ G̃0(I−) by Theorem 17.3.

Proof of Lemma 34.5. Since b(z) ∈ z−2C{ζ}, its formal Borel transform is an entire func-
tion b̂(ζ) vanishing at 0, hence

ϕ̂0(ζ) =
b̂(ζ)

eζ − 1
∈ R̂simp

2πiZ

(cf. Lemma 27.7).
We proceed by induction on k and assume k ≥ 1 and ϕ̃k−1 ∈ R̃simp

2πiZ . By Theorem 30.9 we

get Cid +bϕ̃k−1 ∈ R̃simp
2πiZ , thus Bϕ̃k−1 ∈ R̃simp

2πiZ , thus (since B(Bϕ̃k−1)(ζ) ∈ ζC{ζ})

ϕ̂k(ζ) =
1

eζ − 1
B(Bϕ̃k−1)(ζ) ∈ R̂2πiZ,

but is it true that all the singularities of all the branches of the analytic continuation of ϕ̂k are
simple?

By repeated use of (184), we get

∆ωs · · ·∆ω1Cid +bϕ̃k−1 = e−(ω1+···+ωs)bCid +b∆ωs · · ·∆ω1ϕ̃k−1

for every s ≥ 1 and ω1, . . . , ωs ∈ 2πiZ∗, hence

∆ωs · · ·∆ω1Bϕ̃k−1 = Bω1,...,ωs∆ωs · · ·∆ω1ϕ̃k−1 with Bω1,...,ωs := e−(ω1+···+ωs)bCid +b − Id .

Now, for any ψ̃ ∈ C[[z−1]], we have Bω1,...,ωsψ̃ = e−(ω1+···+ωs)bBψ̃ + (e−(ω1+···+ωs)b − 1)ψ̃ ∈
z−2C[[z−1]], thus each of the simple 2πiZ-resurgent series ∆ωs · · ·∆ω1Bϕ̃k−1 has valuation ≥ 2.
By Remark 28.8, the same is true of Aγω Bϕ̃k−1 for every ω ∈ 2πiZ and every γ starting close
to 0 and ending close to ω: we have

contγ B(Bϕ̃k−1)(ω + ζ) = ψ̂(ζ)
Log ζ

2π
+R(ζ)

with ψ̂ ∈ ζC{ζ} and R ∈ C{ζ} depending on k, ω, γ, hence χ̂(ζ) := ψ̂(ζ)
eζ−1

∈ C{ζ} and (since

eω+ζ ≡ eζ)

contγ ϕ̂k(ω + ζ) =
c

2πiζ
+ χ̂(ζ)

Log ζ

2π
+R∗(ζ), with c := 2πiR(0) and R∗(ζ) ∈ C{ζ}.

Therefore ϕ̂k has only simple singularities.
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Proof of Lemma 34.6. The set Ω+
ε,τ,D is such that we can find M0, L > 0 so that

ζ ∈ Ω+
ε,τ,D =⇒

∣∣∣∣ ζ

eζ − 1

∣∣∣∣ ≤M0 e−L|ζ|. (217)

On the other hand, we can find C > L and R0 > 0 such that the entire function b̂ satisfies

|b̂(ζ)| ≤ C|ζ| eR0|ζ| for all ζ ∈ C, hence |b̂∗k(ζ)| ≤ Ck |ζ|
2k−1

(2k − 1)!
eR0|ζ| for all ζ ∈ C and k ∈ N∗

by Lemma 13.1.
Let us give ourselves a naturally parametrised path γ : [0, `] → Ω+

ε,τ,D satisfying (215).

For any 2πiZ-resurgent series ψ̃ with formal Borel transform ψ̂, we have Bψ̃ ∈ R̃2πiZ by Theo-
rem 22.2, the proof of which shows that B̂ψ̂ := B(Bψ̃) can be expressed as an integral transform

B̂ψ̂(ζ) =
∫ ζ

0 K(ξ, ζ)ψ̂(ξ) dξ for ζ close to 0, with kernel function

K(ξ, ζ) =
∑
k≥1

(−ξ)k

k!
b̂∗k(ζ − ξ).

The estimates available for b̂∗k show that K is holomorphic in C × C, we can thus adapt the
arguments of the “easy” Lemma 19.1 and get

contγ B̂ψ̂
(
γ(s)

)
=

∫ s

0
K
(
γ(σ), γ(s)

)
contγ ψ̂

(
γ(σ)

)
γ′(σ) dσ for all s ∈ [0, `].

The crude estimate

|K(ξ, ζ)| ≤ C|ξ| e
C
µ
|ξ|+(R0+µ)|ζ−ξ|

for all (ξ, ζ) ∈ C× C,

with arbitrary µ > 1, will allow us to bound inductively contγ ϕ̂k = contγ ÊB̂ϕ̂k−1.

Indeed, the meromorphic function ϕ̂0 = b̂
eζ−1

satisfies (216) with A := M0C and any R ≥ R0.

Suppose now that a 2πiZ-resurgent function ψ̂ satisfies∣∣∣contγ ψ̂
(
γ(s)

)∣∣∣ ≤ eRsΨ(s) for all s ∈ [0, `], with R := R0 + µ, µ :=
C

κL
,

and a certain positive continuous function Ψ. Since |γ(σ)| ≤ σ and |γ(s) − γ(σ)| ≤ s − σ, we
obtain ∣∣∣contγ B̂ψ̂

(
γ(s)

)∣∣∣ ≤ Cs e
(C
µ

+R)s
∫ s

0
Ψ(σ) dσ for all s ∈ [0, `],

whence
∣∣∣contγ ÊB̂ψ̂

(
γ(s)

)∣∣∣ ≤ M eRs
∫ s

0 Ψ(σ) dσ with M := CM0
κ by (217), using |γ(s)| ≥ κs.

We thus get
∣∣contγ ϕ̂k

(
γ(s)

)∣∣ ≤ A eRs (Ms)k

k! by induction on k.

35 Fatou coordinates of a simple parabolic germ

35.1 For every R > 0 and δ ∈ (0, π/2), we define

Σ+
R,δ := { r eiθ ∈ C | r > R, |θ| < π − δ }, Σ−R,δ := { r eiθ ∈ C | r > R, |θ − π| < π − δ }.
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Definition 35.1. A pair of Fatou coordinates at ∞ is a pair (v+, v−) of injective holomorphic
maps

v+ : Σ+
R,δ → C, v− : Σ−R,δ → C,

with some R > 0 and δ ∈ (0, π/2), such that

v+ ◦ f = f0 ◦ v+, v− ◦ f = f0 ◦ v−.

Theorem 35.2. There exists locally bounded functions β, β1 : I+ ∪ I− → (0,+∞) such that
β < β1 and

• ṽ∗ ∈ G̃0(I+, β) ∩ G̃0(I−, β) and v±∗ := S I± ṽ∗ is injective on D(I±, β) (notation of Defini-
tion 9.5);

• ũ∗ ∈ G̃0(I+, β1) ∩ G̃0(I−, β1) and u±∗ := S I± ũ∗ is injective on D(I±, β1), with

u±∗
(
D(I±, β1)

)
⊂ D(I±, β) and v±∗ ◦ u±∗ = id on D(I±, β1).

Moreover, the pairs of Fatou coordinates at ∞ are the pairs (v+
∗ + c+, v−∗ + c−) with arbitrary

c+, c− ∈ C.

Remark 35.3. We may consider (v+
∗ , v

−
∗ ) as a normalized pair of Fatou coordinates. Being

obtained as Borel sums of a 1-summable formal diffeomorphism, they admit a Gevrey-1 asymp-
totic expansion, and the same is true of the inverse Fatou coordinates u+

∗ and u−∗ . The first
use of Borel-Laplace summation for obtaining Fatou coordinates is in [Eca81]. The asymptotic
property without the Gevrey qualification can be found in earlier works by G. Birkhoff, G. Szek-
eres, T. Kimura and J. Écalle—see [Lor05] and [Lod13] for the references; see [LY12] for a
recent independent proof and an application to numerical computations.

Proof of Theorem 35.2. The case γ = {0} of Theorem 34.4 yields locally bounded functions
α, β : I+ ∪ I− → R+ such that ṽ∗ ∈ G̃0(I±, β, α) (notation of Definition 17.1). In view of
Theorem 17.3, we can replace β by a larger function so that v±∗ is injective on D(I±, β). We
apply again Theorem 17.3: setting

β < β∗ := β + 2
√
α < β1 := β + (1 +

√
2)
√
α,

we get ũ∗ ∈ G̃0(I±, β∗), hence ũ∗ ∈ G̃0(I±, β1), and all the desired properties follow.
By Lemma 9.8, we have f = S I±f ; replacing the above function β by a larger one if

necessary so as to take into account the domain of definition of f , Theorem 17.2 shows that
S I±(ṽ∗ ◦ f) = v±∗ ◦ f and S I±(f ◦ ũ∗) = f ◦ u±∗ . In view of (209) and (212), this yields

v±∗ ◦ f = f0 ◦ v±∗ , f ◦ u±∗ = u±∗ ◦ f0. (218)

We see that for any δ ∈ (0, π/2) there exists R > 0 such that Σ±R,δ ⊂ D(I±, β), therefore (v+
∗ , v

−
∗ )

is a pair of Fatou coordinates.
Suppose now that v± is holomorphic and injective on Σ±R,δ. Replacing the above function β

by a larger one if necessary, we may suppose β ≥ R, then D(J±, β) ⊂ Σ±R,δ with J+ :=

(−π
2 + δ, π2 − δ), J

− := (π2 + δ, 3π
2 − δ). By Theorem 17.3, we have u±∗

(
D(J±, β1)

)
⊂ D(J±, β),

thus Φ± := v± ◦ u±∗ is holomorphic and injective on D(J±, β1). In view of (218), the equation
v± ◦ f = f0 ◦ v± is equivalent to f0 ◦ Φ± = Φ± ◦ f0, i.e. Φ± = id +Ψ± with Ψ± 1-periodic.
If Ψ± is a constant c±, then we find v± = v±∗ + c±. In general, the periodicity of Ψ± allows
one to extend analytically Φ± to the whole of C and we get an injective entire function; the
Casorati-Weierstrass theorem shows that such a function must be of the form az+ c, hence Ψ±

is constant.
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Figure 17: The dynamics in the attracting petal viewed in three coordinates.

35.2 Here are a few dynamical consequences of Theorem 35.2. The domain D+ := D(I+, β1)
is invariant by the normal form f0 = id +1, while D− := D(I−, β1) is invariant by the backward

dynamics f
◦(−1)
0 = id−1, hence

P+ := u+
∗ (D+) is invariant by f , P− := u−∗ (D−) is invariant by f◦(−1), (219)

and the conjugacy relations f = u+
∗ ◦ f0 ◦ v+

∗ , f◦(−1) = u−∗ ◦ f
◦(−1)
0 ◦ v−∗ yield

z ∈P+ =⇒ f◦n(z) = u+
∗
(
v+
∗ (z) + n

)
, z ∈P− =⇒ f◦(−n)(z) = u−∗

(
v−∗ (z)− n

)
for every n ∈ N. We thus see that all the forward orbits of f which start in P+ and all the
backward orbits of f which start in P− are infinite and converge to the fixed point at ∞ (we
could even describe the asymptotics with respect to the discrete time n)—see Figure 17.

All this can be transferred to the variable t = 1/z and we get for the dynamics of F a
version of what is usually called the “Leau-Fatou flower theorem”: we define the attracting and
repelling “petals” by

P+ := { t ∈ C∗ | 1/t ∈P+ }, P− := { t ∈ C∗ | 1/t ∈P− },

whose union is a punctured neighbourhood of 0, and we see that all the forward orbits of F
which start in P+ and all the backward orbits of F which start in P− are infinite and converge
to 0 (see Figure 17). Notice that P+ and P− overlap, giving rise to two families of bi-infinite
orbits which are positively and negatively asymptotic to the fixed point.
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We can also define Fatou coordinates and inverse Fatou coordinates at 0 as well as their
formal counterparts by

V ±∗ (t) := v±∗ (1/t), U±∗ (z) := 1/u±∗ (z), Ṽ∗(t) := ṽ∗(1/t), Ũ∗(z) := 1/ũ∗(z),

so that

t ∈ P+ ⇒ V +
∗
(
F (t)

)
= V +

∗ (t) + 1, z ∈ D+ ⇒ F
(
U+
∗ (z)

)
= U+

∗ (z + 1), (220)

t ∈ P− ⇒ V −∗
(
F ◦(−1)(t)

)
= V −∗ (t)− 1, z ∈ D− ⇒ F ◦(−1)

(
U−∗ (z)

)
= U−∗ (z − 1). (221)

Observe that, with the notation ṽ∗(z) = z +
∑

k≥1 akz
−k, we have

V ±∗ (t) ∼ Ṽ∗(t) =
1

t
+
∑
k≥1

akt
k,

whereas ũ∗(z) = z + ψ̃(z) with ψ̃(z) =
∑

k≥1 bkz
−k ∈ z−1C[[z−1]] implies

Ũ∗(z) = z−1
(
1 + z−1ψ̃(z)

)−1 ∈ z−1C[[z−1]].

By Theorems 13.3 and 30.9, we see that Ũ∗ is a simple 2πiZ-resurgent series, which is 1-summable
in the directions of I+ and I−, with

U±∗ = S I±Ũ∗.

35.3 Of course it may happen that one of the formal series ṽ∗, ũ∗, Ṽ∗, Ũ∗ and thus all of them
be convergent. But this is the exception rather than the rule.

There is a case in which one easily proves that all of them are divergent.

Lemma 35.4. If F (t) or F ◦(−1)(t) extends to an entire function, then the formal series ṽ∗, ũ∗,
Ṽ∗, Ũ∗ are divergent.

Proof. Suppose that F is entire. The function U−∗ (z), intially defined and holomorphic in D−,
which contains a left half-plane {<e z < −c}, can be analytically continued by repeated use
of (221): for any n ∈ N∗, the formula

U−∗ (z) = F
(
U−∗ (z − 1)

)
= · · · = F ◦n

(
U−∗ (z − n)

)
yields its analytic continuation in {<e(z) < −c + n}, hence U−∗ extends to an entire function.
If Ũ∗ had positive radius of convergence, then we would get U−∗ ∼1 Ũ∗ in a full neighbourhood
of ∞ by Lemma 9.8, in particular U−∗ (z) would tend to 0 as |z| → ∞ and thus be uniformly
bounded; then the entire function U−∗ would be constant by Liouville’s theorem, which is im-
possible because Ũ∗(z) = z−1 +O(z−2).

If it is F ◦(−1) that extends to an entire function, then U+
∗ extends to an entire function by

virtue of (220) and one can argue similarly to prove that Ũ∗ is divergent.

116



36 The horn maps and the analytic classification

In (219) we have defined P+ and P− so that v+
∗ induces a biholomorphism P+ ∼−→ D+ and u−∗

induces a biholomorphism D−
∼−→P−. We can thus define a holomorphic function

h := v+
∗ ◦ u−∗ : D− ∩ (u−∗ )−1(P+)→ D+ ∩ v+

∗ (P−), such that h ◦ f0 = f0 ◦ h (222)

(the fact that h conjugates f0 with itself stems from (218)).
Let us define, for any R > 0 and δ ∈ (0, π/2),

V up
R,δ := { r eiθ | r > R, δ < θ < π − δ }, V low

R,δ := { r eiθ | r > R, π + δ < θ < 2π − δ }.

Since v+
∗ and u−∗ are close to identity near ∞, there exists R > 0 such that the domain of

definition of h has a connected component which contains V up
R,π/4 and a connected component

which contains V low
R,π/4, so that in fact formula (222) defines a function hup and a function hlow.

Lemma 36.1. There exists σ > 0 such that the function hup extends analytically to the upper
half-plane {=mz > σ} and the function hlow extends analytically to the lower half-plane {=mz <
−σ}. The functions hup−id and hlow−id are 1-periodic and admit convergent Fourier expansions

hup
∗ (z)− z =

+∞∑
m=1

A−me2πimz, hlow
∗ (z)− z =

+∞∑
m=1

Ame−2πimz, (223)

with Am = O(eλ|m|) for every λ > 2πσ.

Proof. The conjugacy relation hup/low ◦ f0 = f0 ◦ hup/low implies that hup/low is of the form

id +P up/low with a 1-periodic holomorphic function P up/low : V
up/low
R,π/4 → C. By 1-periodicity,

P up/low extends analytically to an upper/lower half-plane and can be written as χ(e±2πiz),
with χ holomorphic in the punctured disc D∗2πσ. The asymptotic behaviour of v+

∗ and u−∗ at ∞
in D

(
(−π

4 ,
π
4 ), β1

)
shows that hup/low(z) = z+ o(1), hence χ(Z) −−−→

Z→0
0. Thus χ is holomorphic

in D2πσ and vanishes at 0; its Taylor expansions yields the Fourier series of P up/low.

Definition 36.2. We call (hup, hlow) the pair of lifted horn maps of f . We call the coefficients
of the sequence (Am)m∈Z∗ the Écalle-Voronin invariants of f .

Theorem 36.3. Two simple parabolic germs at ∞ with vanishing resiter, f and g, are ana-
lytically conjugate if and only if there exists c ∈ C such that their pairs of lifted horn maps
(hup
f , h

low
f ) and (hup

g , hlow
g ) are related by

hup
g (z) ≡ hup

f (z + c)− c, hlow
g (z) ≡ hlow

f (z + c)− c, (224)

or, equivalently,

Am(g) = e−2πimcAm(f) for every m ∈ Z∗. (225)

Proof. We denote by ṽf , v±f , ũf , u±f the iterator of f , its Borel sums and their inverses, and

similarly ṽg, v
±
g , ũg, u

±
g for g.

Suppose that f and g are analytically conjugate, so there exists h ∈ G (convergent!) such
that g ◦ h = h ◦ f . It follows that ṽf ◦ h◦(−1) ◦ g = f0 ◦ ṽf ◦ h◦(−1), hence there exists c ∈ C
such that ṽf ◦ h◦(−1) = ṽg + c by Lemma 34.2. Let τ := id +c. We have ṽg = τ−1 ◦ ṽf ◦ h◦(−1)

117



and ũg = h ◦ ũf ◦ τ , whence v+
g = τ−1 ◦ v+

f ◦ h
◦(−1) and u−g = h ◦ u−f ◦ τ by Theorem 17.2 and

Lemma 9.8. This implies v+
g ◦ u−g = τ−1 ◦ v+

f ◦ u
−
f ◦ τ , i.e. h

up/low
g = τ−1 ◦ hup/low

f ◦ τ , as desired.
Suppose now that there exists c ∈ C satisfying (224). We rewrite this relation as

hup
g = τ−1 ◦ hup

f ◦ τ, hlow
g = τ−1 ◦ hlow

f ◦ τ,

with τ = id +c. This implies

τ ◦ v+
g ◦ u−g = v+

f ◦ u
−
f ◦ τ on V up

R,δ ∪ V low
R,δ

with, say, δ = 3π/4 and R large enough. Therefore

u+
f ◦ τ ◦ v

+
g = u−f ◦ τ ◦ v

−
g on V up

R′,π/4 ∪ V low
R′,π/4.

This indicates that the functions u+
f ◦ τ ◦ v

+
g and u−f ◦ τ ◦ v

−
g can be glued to form a function h

holomorphic in punctured neighbourhood of ∞; the asymptotic behaviour then shows that h is

holomorphic at ∞, with Taylor series ũf ◦ τ ◦ ṽg. The conjugacy relations ũg = g ◦ ũg ◦ f◦(−1)
0

and τ ◦ ṽf ◦ f = f0 ◦ τ ◦ ṽf imply ũg ◦ τ ◦ ṽf ◦ f = g ◦ ũg ◦ τ ◦ ṽf , hence f and g are analytically
conjugate by h.

Theorem 36.3 is just one part of Écalle-Voronin’s classification result in the case of simple
parabolic germs with vanishing resiter. The other part of the result (more difficult) says that
any pair of Fourier series of the form

(∑
m≥1A−me2πimz,

∑
m≥1Ame−2πimz

)
, where the first

(resp. second) one is holomorphic in an upper (resp. lower) half-plane, can be obtained as
(hup
∗ − id, hlow

∗ − id) for a simple parabolic germ f with vanishing resiter.

37 The Bridge Equation and the action of the symbolic Stokes
automorphism

37.1 Let us give ourselves a simple parabolic germ at ∞ with vanishing resiter, f . So far, we
have only exploited the summability statement contained in Theorem 35.2 and we have see that
a deep information on the analytic conjugacy class of f is encoded by the discrepancy between
the Borel sums v+

∗ and v−∗ , i.e. by the lifted horn maps. Let us now see how the analysis of this
discrepancy lends itself to alien calculus, i.e. to the study of the singularities in the Borel plane.

We first use the operators ∆ω of Sections 28–30 with ω ∈ 2πiZ∗. They are derivations of the
algebra R̃simp

2πiZ , and they induce operators ∆ω : G̃ simp
2πiZ → R̃simp

2πiZ defined by ∆ω(id +ϕ̃) ≡ ∆ωϕ̃.

Theorem 37.1. There exists a sequence of complex numbers (Cω)ω∈2πiZ∗ such that

∆ωũ∗ = Cω∂ũ∗, ∆ωṽ∗ = −Cω e−ω(ṽ∗−id) (226)

for each ω ∈ 2πiZ∗.

Proof. Let us apply ∆ω to both sides of the conjugacy equation (212): by Theorem 32.2, since
∆ωf and ∆ωf0 vanish, we get

(∂f) ◦ ũ∗ ·∆ωũ∗ = (∆ωũ∗) ◦ f0
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(we also used the fact that e−ω(f0−id) = 1, since ω ∈ 2πiZ∗). By applying ∂ to (212), we also
get

(∂f) ◦ ũ∗ · ∂ũ∗ = (∂ũ∗) ◦ f0.

Since ∂ũ∗ = 1 + O(z−2), this implies that the formal series C̃ := ∆ωũ∗
∂ũ∗

∈ C[[z−1]] satisfies

C̃ = C̃ ◦ f0. Writing C̃ ◦ f0 − C̃ = ∂C̃ + 1
2!∂

2C̃ + · · · and reasoning on the valuation of ∂C̃, we

see that C̃ must be constant.
We have (∆ωũ∗)◦ ṽ∗ ·∂ṽ∗ = C̃(∂ũ∗)◦ ṽ∗ ·∂ṽ∗ = C̃ ∂(ũ∗ ◦ ṽ∗) = C̃, hence Formula (206) yields

∆ωṽ = −C̃ e−ω(ṽ∗−id).

The first equation in (226) is called “the Bridge Equation for simple parabolic germs”: like
Equation (202), it yields a bridge between ordinary differential calculus (here involving ∂) and
alien calculus (when dealing with the solution ũ of the conjugacy equation (212)).

37.2 From the operators ∆ω we can go the operators ∆+
ω by means of formula (141) of Theo-

rem 29.1, according to which, if one sets Ω := 2πiN∗ or Ω := −2πiN∗, then

∆+
ω =

∑
s≥1

1
s!

∑
ω1,...,ωs∈Ω
ω1+···+ωs=ω

∆ωs ◦ · · · ◦∆ω2 ◦∆ω1 for ω ∈ Ω. (227)

We also define

∆−ω :=
∑
s≥1

(−1)s

s!

∑
ω1,...,ωs∈Ω
ω1+···+ωs=ω

∆ωs ◦ · · · ◦∆ω2 ◦∆ω1 for ω ∈ Ω. (228)

The latter family of operators is related to Exercise 29.1: they correspond to the homogeneous
components of exp(−∆/ iR±) the same way the operators ∆+

ω correspond to the homogeneous
components of exp(∆/ iR±)—see formulas (230)–(231).

Corollary 37.2. Let Ω := 2πiN∗ or Ω := −2πiN∗. For each ω ∈ Ω, define

S+
ω := −

∑
s≥1

1
s!

∑
ω1,...,ωs∈Ω
ω1+···+ωs=ω

Γω1,...,ωsCω1 · · ·Cωs , S−ω :=
∑
s≥1

(−1)s−1

s!

∑
ω1,...,ωs∈Ω
ω1+···+ωs=ω

Γω1,...,ωsCω1 · · ·Cωs

with Γω1
:= 1 and Γω1,...,ωs := ω1(ω1 + ω2) · · · (ω1 + · · ·+ ωs−1). Then

∆+
ω ṽ∗ = S+

ω e−ω(ṽ∗−id), ∆−ω ṽ∗ = S−ω e−ω(ṽ∗−id). (229)

Proof. Let ϕ̃ := ṽ∗ − id, so that the second equation in (226) reads ∆ωϕ̃ = −Cω e−ωϕ̃. By
repeated use of formula (185) of Theorem 30.9, we get ∆ω2∆ω1ϕ̃ = ω1Cω1 e−ω1ϕ̃∆ω2ϕ̃ =
−ω1Cω1Cω2 e−(ω1+ω2)ϕ̃, ∆ω3∆ω2∆ω1ϕ̃ = . . . , etc. The general formula is

∆ωs · · ·∆ω1ϕ̃ = −Γω1,...,ωsCω1 · · ·Cωs e−(ω1+···+ωs)ϕ̃,

whence the conclusion follows with the help of (227)–(228).

In fact, in view of Remark 28.8, the above proof shows that, for every ω ∈ 2πiZ and
for every path γ which starts close to 0 and ends close to ω, there exists Sγω ∈ C such that
Aγω ṽ∗ = Sγω e−ω(ṽ∗−id).
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37.3 We now wish to compute the action of the symbolic Stokes automorphism ∆/ +
iR± on ṽ∗

and to describe the Stokes phenomenon in the spirit of Section 29.3, so as to recover the horn
maps of Section 36. We shall make use of the spaces

Ẽ± := Ẽ(2πiZ, iR±) =
∧⊕

ω∈±2πiN
e−ωzR̃simp

2πiZ

introduced in Section 29.4; since 2πiZ is an additive subgroup of C, these spaces are differential
algebras,

Ẽ+ = R̃simp
2πiZ [[e−2πiz]], Ẽ− = R̃simp

2πiZ [[e2πiz]], ∂ =
d

dz
,

on which are defined the directional alien derivation ∆/ iR± and the symbolic Stokes automorphism
∆/ +

iR± = exp(∆/ iR±). According to Remark 29.6, both operators commute with the differential ∂.
So does the “inverse symbolic Stokes automorphism” ∆/ −

iR± := exp(−∆/ iR±).
We find it convenient to modify slightly the notation for their homogeneous components:

from now on, we set

ω ∈ 2πiZ, m ∈ Z, ϕ̃ ∈ R̃simp
2πiZ =⇒


•
∆ω(e−2πimzϕ̃) := e−(2πim+ω)z∆ωϕ̃,

•
∆
±
ω (e−2πimzϕ̃) := e−(2πim+ω)z∆±ω ϕ̃,

(230)

so that

∆/ iR+ =
∑

ω∈2πiN∗

•
∆ω on Ẽ+, ∆/ iR− =

∑
ω∈−2πiN∗

•
∆ω on Ẽ−,

∆/ ±
iR+ = exp(±∆/ iR+) = Id +

∑
ω∈2πiN∗

•
∆
±
ω , ∆/ ±

iR− = exp(±∆/ iR−) = Id +
∑

ω∈−2πiN∗

•
∆
±
ω . (231)

We may consider ṽ∗ as an element of id +R̃simp
2πiZ ⊂ id +Ẽ±. We thus set

•
∆ω id := 0 and

•
∆
±
ω id := 0 so that the previous operators induce

∆/ iR+ ,∆/
+
iR+ ,∆/

−
iR+ : id +Ẽ+ → Ẽ+, ∆/ iR− ,∆/

+
iR− ,∆

/ −
iR− : id +Ẽ− → Ẽ−.

This way (226) yields
•
∆ωṽ∗ = −Cω e−ωṽ∗ and (229) yields

•
∆
±
ω ṽ∗ = S±ω e−ωṽ∗ , and we can write

∆/ ±
iR+ ṽ∗ = ṽ∗ +

∑
ω∈2πiN∗

S±ω e−ωṽ∗ , ∆/ ±
iR− ṽ∗ = ṽ∗ +

∑
ω∈−2πiN∗

S±ω e−ωṽ∗ .

Theorem 37.3. We have

z +
∑

ω∈2πiN∗
S+
ω e−ωz ≡ hlow

∗ (z), ∆/ +
iR+ ṽ∗ = hlow

∗ ◦ ṽ∗, (232)

z +
∑

ω∈2πiN∗
S−ω e−ωz ≡ (hlow

∗ )◦(−1)(z), ∆/ −
iR+ ṽ∗ = (hlow

∗ )◦(−1) ◦ ṽ∗, (233)

z +
∑

ω∈−2πiN∗
S+
ω e−ωz ≡ (hup

∗ )◦(−1)(z), ∆/ +
iR− ṽ∗ = (hup

∗ )◦(−1) ◦ ṽ∗, (234)

z +
∑

ω∈−2πiN∗
S−ω e−ωz ≡ hup

∗ (z), ∆/ −
iR− ṽ∗ = hup

∗ ◦ ṽ∗. (235)
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In particular the Écalle-Voronin invariants (Am)m∈Z∗ of Lemma 36.1 are given by

A−m = S−−2πim, Am = S+
2πim, m ∈ N∗. (236)

Remark 37.4. The “exponential-like” formulas which define (S±ω )ω∈2πiN∗ from (Cω)ω∈2πiN∗ in
Corollary 37.2 are clearly invertible, and similarly (Cω)ω∈−2πiN∗ 7→ (S±ω )ω∈2πiN∗ is invertible. It
follows that the coefficients Cω of the Bridge Equation (226) are analytic conjugacy invariants
too. However there is an important difference between the C’s and the S’s: Theorem 37.3 implies
that there exists λ > 0 such that S±2πim = O(eλ|m|), but there are in general no estimates of the
same kind for the coefficients C2πim of the Bridge Equation.

Proof. Let I := (0, π) and θ := π
2 , so that I+ = (0, π2 ) and I− = (π2 , π) with the notations of

Section 29.3. Let us pick R > 0 large enough so that hlow is defined by v+
∗ ◦ (v−∗ )◦(−1) in V low

R,π/4

(cf. (222)).
For any m ∈ N, we deduce from the relation ∆/ +

iR+ ṽ∗ = ṽ∗ +
∑

ω∈2πiN∗ S
+
ω e−ωṽ∗ that

[∆/ +
iR+ ṽ∗]m = ṽ∗ +

m∑
j=0

S+
2πij e−2πijṽ∗

with notation 29.4. Each term e−2πijṽ∗ is 2πiZ-resurgent and 1-summable in the directions
of I±, with Borel sums S I±(e−2πijṽ∗) = e−2πijv±∗ , hence Theorem 29.5 implies that

z ∈ V low
R,π/4 =⇒ v+

∗ (z) = v−∗ (z) +
m∑
j=0

S+
2πij e−2πijv−∗ (z) +O(e−ρ|=mz|)

for any ρ ∈ (2πm, 2π(m+ 1)). It follows that

z ∈ V low
R,π/4 =⇒ hlow

∗ (z) = z +
m∑
j=0

S+
2πij e−2πijz +O(e−ρ|=mz|)

for any ρ ∈ (2πm, 2π(m+ 1)), whence (232) follows.
Formula (233) is obtained by the same chain of reasoning, using a variant of Theorem 29.5

relating S −ṽ∗ and S +[∆/ +
iR+ ṽ∗]m.

Formulas (234) and (235) are obtained the same way, using I+ := (−π,−π
2 ) and I− :=

(−π
2 , 0), but this time S I+

ṽ∗ = v−∗ and S I− ṽ∗ = v+
∗ .

37.4 We conclude by computing the action of the symbolic Stokes automorphism ∆/ +
iR± on ũ∗.

Definition 37.5. The derivation of Ẽ±

DiR± := CiR±(z)∂, where CiR±(z) =
∑

ω∈±2πiN∗
Cωe−ωz,

is called the “formal Stokes vector field” of f .

Such a derivation DiR± has a well-defined exponential, for the same reason by which ∆/ d had
one according to Theorem 29.2(iii): it increases homogeneity by at least one unit.
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Lemma 37.6. For any φ̃ ∈ R̃simp
2πiZ ,

exp
(
CiR±(z)∂

)
φ̃ = φ̃ ◦ PiR± with PiR±(z) := z +

∑
ω∈±2πiN∗

S−ω e−ωz

exp
(
− CiR±(z)∂

)
φ̃ = φ̃ ◦QiR± with QiR±(z) := z +

∑
ω∈±2πiN∗

S+
ω e−ωz.

Proof. Let Ω = 2πiN∗ or Ω = −2πiN∗ and, accordingly, C = CiR+ or C = CiR− , D = DiR+ or
D = DiR− . We have C =

∑
Cω1 e−ω1z, DC =

∑
(−ω1)Cω1Cω2 e−(ω1+ω2)z, D2C = . . . , etc. The

general formula is

Ds−1C = (−1)s−1
∑

ω1,...,ωs∈Ω

Γω1,...,ωsCω1 · · ·Cωs e−(ω1+···+ωs)z, s ≥ 1.

We thus set, for every ω ∈ Ω,

Sω(t) :=
∑
s≥1

(−1)s−1ts

s!

∑
ω1,...,ωs∈Ω
ω1+···+ωs=ω

Γω1,...,ωsCω1 · · ·Cωs ∈ C[t]

(observe that Sω(t) is a polynomial of degree ≤ m if ω = ±2πim), so that Sω(1) = S−ω and
Sω(−1) = S+

ω , and

Gt(z) :=
∑
s≥1

ts

s!
Ds−1C =

∑
ω∈Ω

Sω(t) e−ωz ∈ C[t][[e∓2πiz]].

We leave it to the reader to check by induction the combinatorial identity

Dsφ̃ =
∑

n≥1, s1,...,sn≥1
s1+···+sn=s

s!

s1! · · · sn!n!
(Ds1−1C) · · · (Dsn−1C)∂nφ̃, s ≥ 1

for any φ̃ ∈ R̃simp
2πiZ , whence exp(tD)φ̃ = φ̃+

∑
n≥1

1
n!(Gt)

n∂φ̃ = φ̃ ◦ (id +Gt).

In view of Theorem 37.3, we get

Corollary 37.7.

exp
(
CiR−(z)∂

)
φ̃ = φ̃ ◦ hup

∗ , exp
(
− CiR+(z)∂

)
φ̃ = φ̃ ◦ hlow

∗

for every φ̃ ∈ R̃simp
2πiZ .

Since the Bridge Equation can be rephrased as

∆/ iR± ũ∗ = CiR±∂ũ∗

and the operators ∆/ iR± and DiR± commute, we obtain

Corollary 37.8.
exp(t∆/ iR±)ũ∗ = exp(tCiR±∂)ũ∗, t ∈ C.

In particular

∆/ +
iR− ũ∗ = ũ∗ ◦ hup

∗ , ∆/ −
iR− ũ∗ = ũ∗ ◦ (hup

∗ )◦(−1),

∆/ +
iR+ ũ∗ = ũ∗ ◦ (hlow

∗ )◦(−1), ∆/ −
iR+ ũ∗ = ũ∗ ◦ hlow

∗ .
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Expanding the last equation, we get

ω ∈ 2πiN∗ =⇒ ∆+
ω ũ∗ =

∑
n≥1, ω1,...,ωn≥1
ω1+···+ωn=ω

1
n!S

+
ω1
· · ·S+

ωn∂
nũ∗.

We leave it to the reader to compute the formula for ∆+
ω ũ∗ when ω ∈ 2πiN∗, and the formulas

for ∆±ωu∗ when ω ∈ −2πiN∗.

123



Acknowledgements. The research leading to these results has received funding from the Eu-
ropean Comunity’s Seventh Framework Program (FP7/2007–2013) under Grant Agreement
n. 236346 and from the French National Research Agency under the reference ANR-12-BS01-
0017.

References

[Bar79] E. J. Barbeau. Euler Subdues a Very Obstreperous Series. Amer. Math. Monthly 86,
5 (1979), 356–372.

[CNP93] B. Candelpergher, J.-C. Nosmas and F. Pham. Approche de la résurgence. Actualités
Math., Hermann, Paris, 1993.

[DeA09] V. De Angelis, Stirling’s series revisited. Amer. Math. Monthly 116, 9 (2009), 839–843.

[DS13a] A. Dudko, D. Sauzin. The resurgent character of the Fatou coordinates of a simple
parabolic germ. Preprint oai:hal.archives-ouvertes.fr:hal-00849398, 2013.

[DS13b] A. Dudko, D. Sauzin. On the resurgent approach to Écalle-Voronin’s invariants.
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Society, 2009.

[Sau13a] D. Sauzin, On the stability under convolution of resurgent functions. To appear in
Funkcialaj Ekvacioj, 18 pages. http://hal.archives-ouvertes.fr/hal-00656739

[Sau13b] D. Sauzin, Nonlinear analysis with resurgent functions. Preprint 2013, 30 pages.
http://hal.archives-ouvertes.fr/hal-00766749

[Zag97] D. Zagier, Newman’s short proof of the Prime Number Theorem. The Amer. Math.
Monthly 104, 8 (Oct. 1997), 705–708.

David Sauzin

CNRS UMI 3483 - Laboratorio Fibonacci
Collegio Puteano, Scuola Normale Superiore di Pisa
Piazza dei Cavalieri 3, 56126 Pisa, Italy
email: david.sauzin@sns.it

125


	Introduction
	Prologue
	An example by Poincaré

	The differential algebra C[[z-1]]1 and the formal Borel transform
	The differential algebra (to.C[[z-1]],)to.
	The formal Borel transform and the space of Gevrey-1 formal series C[[z-1]]1
	The convolution in C[[]] and in C{}

	The Borel-Laplace summation along R+
	The Laplace transform
	The fine Borel-Laplace summation
	The Euler series

	1-summable formal series in an arc of directions
	Varying the direction of summation
	Return to the Euler series
	The Stirling series
	Return to Poincaré's example
	Non-linear operations with 1-summable formal series

	Formal tangent-to-identity diffeomorphisms
	Germs of holomorphic diffeomorphisms
	Formal diffeomorphisms
	Inversion in the group 
	The group of 1-summable formal diffeomorphisms in an arc of directions

	The algebra of resurgent functions
	Resurgent functions, resurgent formal series
	Analytic continuation of a convolution product: the easy case
	Analytic continuation of a convolution product: an example
	Analytic continuation of a convolution product: the general case
	Non-linear operations with resurgent formal series

	Simple singularities
	Singular points
	The Riemann surface of the logarithm
	The formalism of singularities
	Simple singularities at the origin

	Alien calculus for simple resurgent functions
	Simple -resurgent functions and alien operators
	The alien operators + and 
	The symbolic Stokes automorphism for a direction d
	The operators  are derivations
	A glance at a class of non-linear differential equations

	The resurgent viewpoint on holomorphic tangent-to-identity germs
	Simple -resurgent tangent-to-identity diffeomorphisms
	Simple parabolic germs with vanishing resiter
	Resurgence and summability of the iterators
	Fatou coordinates of a simple parabolic germ
	The horn maps and the analytic classification
	The Bridge Equation and the action of the symbolic Stokes automorphism

	References

