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Abstract 

In this paper we explore several indicators to evidence the impact of land use change, and 

particularly of urbanization/artificialization on discharge series of periurban catchments. A 

first  set  of indicators  is  derived from the literature and describes the monthly and annual 

hydrological regime, low flows and high flows, and flow components. Statistical tests are also 

applied to assess the existence of trends/ruptures on the longest time series. In addition, new 

indicators,  especially  built  to  show  the  impact  of  Sewer  Overflow  Devices  (SODs)  and 

infiltration into sewer networks are proposed. The method is applied to the Yzeron (150 km2) 

catchment, located close to Lyon city (France) where various discharge gauges with a variable 

time step are available on sub-catchments  ranging from a few to 130 km2 (some of them 

nested),  with a large variety of land uses (forest,  agricultural  land, artificialized areas). In 

addition,  discharge is also measured in a SOD and a combined sewer network so that the 

relevance of the new proposed indicators can be assessed. In the largest sub-catchments, the 

results show a decrease of specific discharge from upstream to downstream corresponding to 

an increase of artificialized areas, except for high flows. When a SOD is present, the specific 

discharge  is  increased  for  frequencies  larger  than  50%,  and  the  frequency  of  zero  daily 

discharge is decreased. Waste water can be the only source of water in autumn month in a 4.1 

km2 sub-catchment.  Base  flow is  also  decreased  for  the  most  urbanized  catchments.  Our 

results confirm the impact of SODs on the modification of the flood regime, with an increase 

of frequent floods, but a marginal impact on the largest floods, mainly governed by saturation 

of the rural parts of the catchments. The decomposition of the sewer discharge shows that, on 

an annual basis, infiltration in the sewer network accounts for 30% of the total discharge and 

runoff due to rainwater  to about 40% (the remaining being composed of the waste water 

discharge). It can explain the decrease of base flow. Our analysis shows that, for periurban 

catchments,  a  long  term monitoring  of  nested  sub-catchments  and infrastructures  (SODs, 

sewer  networks)  with  a  small  time  step,  is  very  valuable  and  provides  data  allowing  a 

quantitative assessment of the impact of urbanization on the whole hydrological regime.

Keywords: Suburban/periurban rivers, hydrological regime, high flow, low flow, impact of 

urbanization
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1. Introduction

Projections  of  population  growth  states  that  about  60%  of  the  worldwide  population  is 

expected to live in towns in 2030 (Paul and Meyer, 2001). Around big cities, periurban areas 

are often the most affected by the corresponding urbanization (e.g. Meija and Moglen., 2010). 

In this paper, the word periurban, used in Europe and Australia, will refer to catchments made 

of  a  mixture  of  natural  or  agricultural  lands,  and  urbanized  areas.  In  the  US,  the  word 

suburban is  most  often  used,  but  it  refers  generally  to  residential  areas  with  houses  and 

gardens. Urbanization increases imperviousness of previously natural or agricultural  areas. 

Construction of built-up areas is generally associated with the building of artificial structures 

such as road networks, drinkable, rainwater or sewer networks. These changes have an impact 

on the water cycle and aquatic ecosystems, due to the increase and acceleration of surface 

runoff, decrease of groundwater recharge and a modification of natural water pathways due to 

the artificial networks (e.g. Bras and Perkins, 1975; Chocat et al., 2001; Booth et al., 2002; 

Randhir, 2003; Matteo et al., 2006; Marsalek et al., 2007). This can lead to flooding, pollution 

and erosion problems within periurban rivers. In some areas, equipped with Combined Sewer 

Systems (CSSs), Sewer Overflow Devices (SODs) are introduced. When the sewer network is 

overflowed,  it  delivers  polluted  water  to  the  river.  This  can  lead  to  incision  and erosion 

problems, which perturb the ecological status of the rivers (e.g. Hatt et al., 2004; Walsh et al., 

2005; Lafont et al., 2006). In addition, periurban catchments have a complex structure, made 

of a mixture of natural, agricultural and urbanized areas, and are evolving very quickly (e.g. 

Beighley et al., 2003; Radojevic et al., 2010; Jankowfsky, 2011). 

Studies of land use change impact on the hydrological regime generally analyse long term 

time series or long term simulations, and not only events. The objective is not to reproduce 

some historical events for sizing hydraulic works, but to get an appraisal of the change of the 

whole river regime. Appropriate criteria and indicators relevant to reveal the impact of land 

use change on this river regime must therefore be defined. In the following, the discussion 

will be restricted to indicators related to quantitative hydrology. Lots of other indicators have 

been  defined  to  quantify  the  ecological  status  of  receiving  waters,  based  on  chemistry, 

biology,  etc  (e.g.  Walsh et  al.,  2005),  in  particular  in  Europe with the Water  Framework 

Directive. But they are beyond the scope of this paper. In the remaining of the paper, the word 

indicator  will  be  used  in  a  broad sense  and will  include  both  hydrological  variables  and 

quantities derived from discharge data analysis.
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The literature dealing with the impact of climate change, land use/ land cover change on the 

water cycle and hydrological model evaluation was reviewed. The objective was to identify 

the hydrological indicators used by their authors to quantify the impact on discharge data. A 

review of climate change studies is provided by Praskievicz and Chang (2009). Examples of 

land use change studies,  mainly related to  the impact  of  deforestation/aforestation  on the 

water cycle can be found in Ott and Uhlenbrook (2004), Wang et al. (2007), Archer (2007) 

and Bathurst et al. (2011). These studies are either based on model results or on data analysis 

(Table 1). A large number of the experimental studies are based on paired catchments, where 

natural and preserved catchments are compared to disturbed catchments (Table 1). Vazquez et 

al. (2008) and Willems (2009) introduced several criteria which provide information on the 

performance  of  a  model  for  several  ranges  of  discharges.  These  indicators  include  the 

components  of  stream flow:  base  flow,  inter  flow and  quick  flow,  as  well  a  Peak  Over 

Threshold (POT) analysis (Stedinger et al., 1992) both for low flows and high flows. From 

this literature review we have extracted 5 classes of  indicators used to examine the impact of 

land use/land cover change on discharge time series. They are summarized in Table 1, which 

also presents the corresponding references. 

The  first  class  of  indicators  in  Table  1  is  related  to  the  hydrological  regime  where  the 

indicators are the mean annual runoff, its seasonal components, discharge quantiles and flow 

duration curves. 

The  second  class  of  indicators  is  related  to  high  flows:  value  and/or  date  of  the  annual 

maximum discharge, peak over threshold (POT) analysis which studies peak flow.  The QdF 

– Discharge – duration – frequency analysis (Galéa and Prudhomme, 1994, 1997; Javelle et 

al., 1999), an extension of POT analysis to different characteristic durations and not only to 

the instantaneous maximum, is also used to study high flows. 

Low  flow  indicators  form  the  third  class  of  indicators.  They  include  value  and  date  of 

minimum annual discharge, frequency of zero discharge, base flow index defined as the ratio 

between annual base flow and total annual flow, POT analysis for low flow (Willems, 2009).

The fourth class of indicators is based on hydrograph analysis. It includes the study of event 

characteristics (runoff coefficient, rising and falling limbs of hydrographs), the quantification 

of flow components based on the separation into base flow, interflow and quick flow (Blume 

et  al.,  2007;  Willems,  2009).  Archer  (2007)  and  Archer  et  al.  (2010)  introduce  more 

sophisticated indicators based on the analysis of rising and falling limbs of discharge series, 
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or  their  rate  of  change.  These  indicators  are  the  number  and  duration  of  exceedance  of 

multiple of the annual discharge. These indicators are relevant to identify quick disturbances 

in hydrographs.

Finally the fifth class of indicators is based on statistical analyses of discharge time series, 

mainly relevant when long time series are available. This includes the results of statistical 

tests,  comparing  if  differences  between various  periods   are  significant  (e.g.  Tong,  1990; 

Wang et al.,2007; Radojevic et al., 2010), the results of trend analysis (e.g. Claessens et al., 

2006). The results of regression analysis or neural network models, proposed by some authors 

to relate hydrological characteristics to climate or landscape variables such as imperviousness 

(Tetzlaff  et  al.,  2005;  Dow, 2007;  Wang et  al.,  2007;  Arrigoni  et  al.,  2010)  can  also  be 

included in this fifth class. 

In urbanized areas, as can be seen from Table 1, the analysis is often restricted to mean annual 

runoff (Beighley et al., 2003; Claessens et al., 2006); high flow with indicators such as annual 

peak discharge (Beighley et al.,  2003; Burns et al.,  2005), QdF analysis (Radojevic et al., 

2010) and/or to the study of selected events (Ott and Uhlenbrook, 2004; Chormanski et al., 

2008;  Meierdiercks  et  al.,  2010).  But  this  may  not  be  sufficient  for  all  applications,  in 

particular  when  addressing  the  quality  of  receiving  waters.  For  ecological  problems,  the 

whole hydrological regime, and in particular low flows are also important. Walsh et al. (2005) 

suggest that a good target for the rehabilitation of rivers affected by urbanization would be to 

go back to “near natural” surface flow conditions. This requires the characterization of the 

whole  range  of  discharges.  Indicators  of  Hydrological  Alteration  (IHA)  spanning  all  the 

hydrological regime to compare pre and post river flow management with an emphasis to 

stream ecology are proposed by Richter et al. (1996, 1997, 2003). It includes timing of annual 

extreme water conditions; frequency and duration of high/low pulses; rate/frequency of water 

condition changes. Jacobson (2011) also provides a review of the impact of imperviousness in 

urban catchments.

Response times of impervious areas are much shorter than those of natural areas. For small 

periurban catchments,  with response time of  less  than one day,  indicators  based on daily 

discharge may not be fully relevant.  In addition,  given the very short functioning time of 

SODs, specific analyses are required to fully evidence the impact of the urban areas on the 

river flow, especially for small catchments (a few km2).  Therefore the analysis of indicators 

based  on  smaller  time  steps  should  be  contemplated.  Some  authors  also  suggest  that 

periurbanization  mainly  affect  frequent  floods  (e.g.  Radojevic  et  al.,  2010)  like  observed 
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when  studying  the  impact  of  forest  or  deforestation  on  floods  (Bathurst  et  al.,  2011). 

Therefore indicators based only on peak discharge or extreme events may not be relevant for 

assessing the impact of urbanization on the water regime, and the whole range of floods must 

be investigated. Another specificity of periurban catchments is the impact of sewer networks, 

installed  to  manage  both  waste  water  and  rainwater.  In  general  those  networks  are  not 

watertight and infiltration of clear water in the sewer system is very common (e.g. Breil et al, 

1993; Berthier et al., 2004; Rodriguez et al., 2008). This may have an impact on the low flow 

within the rivers (e.g. Gufstafsson et al., 1997) and should also be considered.

In  order  to  characterize  the  impact  of  urbanization  on  periurban  rivers  discharge,  paired 

catchments studies, comparing a natural and an urbanized catchments would be the best way 

to get the answer. When trying to assess land use change impacts on discharge, it  is also 

sometimes  difficult  to  distinguish  between  climate  variability  and  land  use  impact  (e.g. 

Ashagrie  et  al.,  2006).  Sub-periods  comparison  for  instance  may  be  affected  by  climate 

variability  which  can  lower  the  significance  of  the  results.  Some  authors  have  proposed 

methods to filter climate variability and highlight the impact of land use by removing climate 

variability using regressions from a reference period, in general considered as undisturbed 

(e.g. Dow, 2007; Wang et al., 2007; Arrigoni et al., 2010). However, those methods may be of 

limited use when recorded data have started as the same time as urbanization (i.e.  in the 

1970s, as it is the case in France). And it is not obvious to find “natural” catchments other  

things being equal. Therefore, there is a need to develop specific methods which cope with 

existing  data  series  and  try  to  separate  the  impact  of  land  use  change/  urbanization/ 

management structures from the natural variability of discharge time series. This direction is 

explored in this paper for small to medium-sized periurban catchments, that range from some 

hectares to some tenth/hundreds of squared kilometres. This analysis is complementary to the 

set of indicators identified in the previous literature review.  

The objectives of the paper can therefore be stated as follows: are we able to define indicators  

revealing  and  possibly  quantifying  the  impact  of  land  use  change  and  in  particular 

artificialization on the hydrological regime of small to medium size periurban catchments? 

The study is conducted in two steps. First some indicators characterizing the discharge time 

series,  derived  from the  above  cited  literature,  are  assessed.  Then,  given  their  identified 

limitations, essentially in taking into account the effect of sewer systems and SODs, specific 

approaches, adapted to periurban catchments are introduced and discussed. The methods are 

applied to the Yzeron catchment, located close to the city of Lyon, France where quite long 
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time  series  of  both  rainfall  and  discharge  are  available  for  nested  sub-catchments 

encompassing various ranges of urbanization and sizes. The results are discussed in order to 

define the advantages/limitations of the retained indicators. 

2. Case study

2.1. Context of the study and presentation of the catchment

The Yzeron catchment (150 km2) is located to the south-west of Lyon city (Figure 1). It forms 

part  of  the  Observatoire  de  Terrain  en  Hydrologie  Urbaine  (OTHU,  2011) long  term 

observatory. It is representative of French periurban areas and is characterized by a marked 

topography (Figure 1). The outlet reaches the Rhône river at the elevation of 162 m and the 

highest points culminates at 917 m above see level. The slope map calculated from a 25 m 

resolution Digital Elevation Model (DEM), derived from IGN BDTopo® shows that more 

than  50% of  the catchment  has  slopes  larger  than  10% (Gnouma,  2006).  The geology is 

contrasted with crystalline formations (granite, gneiss ) in the western part of the catchment 

and more alluvial and glacier formations in the eastern part. This led to a complex soil types 

map with 22 cartographic  units  identified  in  the soil  map (SIRA, 2011).  The land use is 

heterogeneous.  The upstream and western part  of the basin is  limited by a  range of hills  

covered with forests. The intermediate part is mainly covered with grassland and cultivated 

lands,  mixed with urban nucleus.  Thin green corridors  remain  along rivers,  covered  with 

deciduous trees. The downstream part is mainly covered with densely urbanized areas (Figure 

2c). 

A fast  progression of  urbanization  is  observed since the eighties  (Cottet,  2005;  Gnouma, 

2006, Radojevic et al., 2010). This evolution generally develops in the form of small urban 

centres that expand from old villages, along road networks, following topographic constraints 

that  are  imposed by the river  networks.  A recent  analysis  was conducted to  quantify the 

increase of urbanization in this catchment (Jacqueminet et al., 2011; Kermadi et al., submitted 

for publication). A manual digitalization of aerial photographs allowed the identification of 

artificialized surfaces including the urban parcels, parkings, industries and their green fraction 

(gardens,  parks)  (Figure  3).  The  percentage  of  artificialized surfaces  was 22%  of  the 

catchment area in 1970, 33% in 1990 and 36% in 2008 (Figure 2), showing a slight decrease 

in the rate of urbanization between 1990 and 2008, as compared to the period 1970-1990. A 

similar  analysis  based on SPOT images analysis  allowed the quantification of impervious 

areas which were found to cover 15% of the catchment area in 1990, 18% in 1999 and 23% in 
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2008. The difference between both image treatments  can be seen by comparing  Figure 1 

which shows the impervious areas and Figure 2c, which shows the artificialized areas for year  

2008. 

The area is prone to sharp Mediterranean-type flood events due to its steep topography in the 

upstream part  and limited  soil  water  storage  capacity  overall.  The   response time  of  the 

catchment is about 12 hours at 130 km2, causing sometimes flooding in the downstream town 

of Oullins. An increase in the frequency of flooding has been observed in the recent years 

(Radojevic et al., 2010). The water responsible from these flooding mainly comes from the 

rural part of the catchment, but its effect can be enhanced by the fast contribution of urbanized 

zones. The water coming from combined sewer overflow devices is rich of sediments and 

pollutions, causing quality problems in the rivers, especially during summer storms, where 

most of the water reaching the river comes from urbanized areas via SODs (Lafont et al., 

2006).  Increased  erosion  of  the  river  banks  has  also  been  evidenced  with  impact  on  the 

ecosystems (Schmitt et al., 2008).

The Yzeron catchment was recently studied within the framework of the AVuPUR (Assessing 

the Vulnerability of Peri-Urban Rivers) project (Braud et al., 2010). The aim of the project 

was  to  increase  the  knowledge  of  the  functioning  and behaviour  of  periurban  catchment 

hydrology and to propose modelling tools, adapted to those catchments. The study presented 

in this paper is a contribution to this project. The indicators discussed here are also relevant 

for model evaluation. 

2.2. Available data

Rainfall and climate data: A network of rain gauges was set up over the Grand Lyon area in 

1985. It includes 28 rain gauges, 4 of which are located within the Yzeron catchment, but 

mainly in the eastern part of the catchment (Figure 1). The rainfall is recorded continuously 

with a 6 minutes  time step and all  the data set  is available  until  2010. In order to better 

document  the  research  catchment  and the  mountainous  area,  Cemagref  has  also  installed 

complementary rain gauges with a variable time step. The oldest ones were installed in 1997 

(Pollionnay and Grézieu) and the network is continuously upgraded since then. The daily data 

(1921-2009) from the synoptic Bron station, located about 20 km east of the catchment, were 

also used.

The SAFRAN reanalysis  data set (Quintana-Segui et  al.,  2008; Vidal et  al.,  2010), which 

provides the climate variables over a 8 x 8 km2 grid is  also available  for the grid points 
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covering the Yzeron catchment over the 1970-2010 period with an hourly time step. This data 

set is the only one available to document the climate (air temperature and humidity,  wind 

speed, long and short wave radiation). The SAFRAN data were used to compute the reference 

evapotranspiration, PET, following the FAO (1998) method. 

Stream flow data: Two gauges from the national HYDRO data base, maintained by DREAL 

Rhône-Alpes are available on the catchment: the Craponne station (48 km2) since 1969, and 

the Taffignon station (130 km2) since 1988 (Figure 1). These two stations are nested. The data 

are available with a variable time step. Three other stations from Cemagref are also available. 

They  sample  the  Mercier  (7  km2),  Chaudanne  upstream  a  sewer  overflow  device 

(Upstream_SOD1)  (2.19 km2),  Chaudanne at  La Léchère  (2.9-4.1 km2)  experimental  sub-

catchments (Figure 1). The last two stations are nested. The data are registered with a variable 

time step. In addition,  in the Chaudanne catchment,  data are collected at the outlet  of the 

sewer overflow device (SOD1) since 2001. Discharge is  also measured since 2001 in the 

combined sewer system (CSS) which is directed to the WWTP but sometimes overflows in 

the SOD1 (Figure 3).  The main characteristics of the gauging stations are summarized in 

Table 2 and  Figure 4 provides the land use encountered within the sub-catchments,  using 

three main classes:  wooded areas,  agricultural  land and artificialized  areas.  We must  also 

mention the existence of additional SODs just upstream the gauging stations of La Léchère 

(SOD2) (Figure 3) and Craponne. The methodology presented in section 3.2 will be used to 

assess  the  impact  of  these  SODs on the  discharge  measured  at  the  downstream gauging 

stations.

The discharge gauging stations network is quite original due to the range of scales and variety 

of land uses which are sampled (Table 2 and Figure 4). The length of the series is also very 

valuable to evidence the impact of land use change on river discharge.

2.3. Summary of previous researches

The Yzeron catchment is studied for about 20 years. In the following, we only summarize the 

studies directly related with hydrology and water fluxes. Radojevic (2002) and Radojevich et 

al. (2010) analysed the rainfall and stream flow data (Craponne and Taffignon stations) over 

the  1969-1978 and 1988-1997 decades.  The rainfall  series  showed significant  differences 

between both decades, with an increase of maximum daily rainfall in the 1988-1997 period. 

This analysis was updated using the climatic data presented above (Bron rainfall daily time 
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series  and  SAFRAN  daily  climatic  data)  in  order  to  detect  possible  changes  in  the 

climate/rainfall forcing (Kermadi et al., 2011; Braud, 2011). On the rainfall data, a significant 

increase  (Mann  Kendall  test  (Mann  and  Whitney,  1947)  at  the  5% level)  of  the  annual 

maximum of 5, 10, 15-day cumulative rainfall was found for the Bron station in the 1920-

2010  period,  with  a  rupture  detected  in  1974  by  the  Pettitt  test  (1976).  No  significant 

trends/ruptures  were  found when the  period  was  restricted  to  the  1970-2009 period.  The 

analysis of the daily SAFRAN data on the 1970-2009 period showed a significant increase (at 

the 1% level) of the annual mean temperature of 0.52 °C every 10 years. But no significant 

trend in annual PET was found. On the other hand, the Pettitt test show a significant (at the 

5% level) rupture of the annual PET in 2002, which will have to be confirmed in the future. 

From all the results obtained on the daily rainfall, temperature and PET data, we concluded 

that  it  was  unlikely  that  change  in  the  rainfall  and  climate  could  have  affected  the 

hydrological  regime  on  the  1970-2010  study  period.  However,  in  the  context  of  urban 

catchments with short response times, such an analysis should also be conducted with shorter 

time steps. It will be done when longer short time step rainfall series will be available (they 

are presently only 25 years long). 

In the study by Radojevic et al. (2010), the stream flow series showed an increase of frequent 

floods,  whereas  large  floods  were  not  so  affected.  The  change  in  frequent  floods  was 

attributed  to  the  impact  of  urbanization.  Radojevic  et  al.  (2010)  also  used  a  modelling 

approach to asses the possible impact of urbanization on the hydrological regime, through the 

impact on the discharge – duration – frequency (QdF) curves. But their analysis is restricted 

to  two short  periods  of  about  10 years,  and more  than  10 years  additional  data  are  now 

available. Gnouma (2006) analysed the data from the Craponne, Mercier and Chaudanne sub-

catchments, and tried to propose monthly water balance. The analysis was restricted to the 

1997-2004 period. 

In  the  present  study,  the  discharge  data  analysis  will  be  extended  to  include  the  whole 

available period (until 2010) and all stream flow gauges will be considered. The aim is the 

assessment of indicators, relevant to evidence the impact of land use change on the discharge 

time series. These indicators include annual and monthly discharge, base flow index, peak 

over  threshold  (POT),  QdF  analysis  and  flow  components  deduced  from  hydrographs 

decomposition. The analysis provides elements for a better understanding of the catchment 

behaviour, both for its rural and urban components. The derived data and synthesis are also 

useful for the evaluation/validation of the models developed within the AVuPUR project. 
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3. Methodology

In section  3.1, we first assess indicators taken from the five classes that were identified in the 

literature  review,  as  our  objective  was  to  qualify  the  impact  of  land  use  change  and 

urbanization on the whole hydrological regime: flow duration curves, low flows, high flows. 

The flow components derived from the hydrograph decomposition were also considered as 

urbanization is suspected to increase quick flow and decrease base flow. Finally, as one of the 

discharge series was long enough, statistical tests (trends/ruptures) were also applied to this 

time series. 

In section 3.2, we present methods specifically developed to evidence the impact of sewer 

systems and sewer overflow devices (SODs) on the river discharge time series.

3.1. Indicators derived from the literature

The objective of this analysis is to describe and characterize the discharges time series at a 

given  location.  Whenever  possible  the  indicators  will  be  adapted/normalized  so  that 

comparison between different catchments of various sizes and/or various land use become 

possible.  

Hydrological regime:

For the characterization of the hydrological regime (annual, monthly and daily time step), the 

variable time step stream flow data were first interpolated to a 30 (respectively 60) minutes 

time step for the Pollionnay, Upstream_SOD1, La Léchère stations (respectively Craponne 

and Taffignon stations)  and then aggregated to daily,  monthly and annual time step from 

which the hydrological  regime was calculated (Sauquet  et  al.,  2000, 2008).  Missing daily 

values were replaced by the interannual monthly average corresponding to the month of the 

missing data. 

From  the  daily  discharges  we  also  derived  the  flow  duration  curves  (FDCs).  They  are 

obtained  by  ordering  all  the  daily  discharge  values  in  decreasing  order.  Each  ordered 

discharge  value  Qf is  associated  with  an  empirical  frequency which  is  the  probability  of 

finding a value Y, larger or equal to Qf.

 ( )
N

r
QYob f =≥Pr (1)

 where N is the total number of observations and r is the rank of observation Qf. 
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In order to compare data from catchments of different sizes and identify the possible impact 

of  land  use  on  the  discharge,  it  is  convenient  to  normalize  the  discharge  data  before 

calculating  the  flow  duration  curves.  The  most  obvious  choice  is  to  compute  specific 

discharges by dividing all the data by the catchment area. The advantage is that this method 

provides water heights comparable to rainfall heights, which can be directly used to compute 

the  water  balance  or  runoff  coefficients.  However,  in  periurban  catchments,  especially 

equipped  with  combined  sewer  systems,  this  is  not  so  obvious  (Jankowfsky,  2011). 

Jankowfsky (2011) shows that, in such catchments, the boundary is not only dependent on 

topography, but is influenced by the sewer systems. The areas connected to the river via sewer 

overflow devices are only contributing to the streamflow when the sewer systems overflows. 

In addition, only part of this runoff drains into the river, because part of it continues to reach 

the Waste Water Treatement Plant (WWTP). For the Chaudanne at La Léchère catchment, 

Jankowfsky (2011) shows that under dry conditions, the area of the catchment is 2.9 km2, 

whereas it  reaches 4.1 km2 when all the SODs are activated. This result shows that using the 

specific discharge in periurban watersheds may lead to some problems and that this quantity,  

as well as runoff height and runoff coefficients must be used with caution.

The second option is  to normalize discharge data with the average annual discharge (e.g. 

Sauquet  et  al.,  2008).  This  indicator  is  independent  of  the  catchment  area  estimation. 

However, if the mean annual discharge changes with time due to land use modifications, this 

may bias the results. Comparison between catchments is therefore more difficult and only 

normalisation based on specific discharges will be discussed in the remaining of the paper. 

Low flows:

The base flow was estimated using the Tallaksen and Van Lanen (2004) algorithm on the 

daily  data.  The  base  flow  was  estimated  by  linear  interpolation  between  n points 

corresponding to the local minima of n periods of 5-days duration without intersection. The 

BFI (Base Flow Index), which is defined as the average of the base flow divided by the mean 

interannual discharge of the time series, was selected in this study. It is a non-dimensional 

index which allows comparison between catchments. Low flow were also characterized with 

the frequency of zero daily discharge (Richter et al., 1996).

High flows:

Variable time step discharge time series were used for the discharge- duration- frequency 

analysis (QdF). The method provides a theoretical description of floods for several durations. 

The studied variable was the maximum discharge continuously exceeded during the duration 

d, QCXd (Figure 5a) The analysis was performed in several steps.
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• A characteristic flood duration was estimated for each gauge. The analysis was performed 

using data from which the base flow (calculated as described above) had been removed. As 

the base flow data were available at the daily time step, an interpolation of base flow at the 

variable  time  step  was performed  before  removing  it  from the  variable  time  step  time 

series. An automatic program has been developed which selects the hydrographs around 

major  floods.  A discharge  threshold,  determined from the POT analysis  (see  below) is 

prescribed for the events selection and all the floods higher than this threshold are retained. 

Each  hydrograph  is  scaled  by  its  maximum  peak  discharge  Qmax.  Therefore  all  the 

hydrographs have a maximum value of 1 (and can be compared amongst catchments). From 

all the hydrographs, we compute the median hydrograph. The characteristic flood duration 

θ is then calculated as the duration where Q/Qmax =0.5 in this median hydrograph (Figure 

5b). An iteration with the next step may be required to properly fix the discharge threshold.

• The next step is the extraction of independent values of floods for various durations d. One 

value per year (annual maximum) can be extracted, but in order to increase the sample size, 

the Peak Over Threshold approach was used. We tested extractions with an average of 2 

and 4 floods per year in the analysis. As we are interested  not only in extreme floods but 

also in frequent floods and given the shortness of some of the time series, the extraction 

with 4 floods per year was finally used and will be presented below. The corresponding 

threshold was automatically determined so that the target average flood number per year 

was obtained (Lang et al., 1999). The procedure also ensures independence of the selected 

events. The analysis was performed on the hydrological years (from September 1 to August 

31) for the instantaneous flood peak (d  =0) and for  d/8, d/4, d/2., d, 3d. For the various 

gauges, the duration d was chosen close to the characteristic flood duration θ determined in 

the previous step. Next, the empirical probability of non-exceedance of the value x 

)()(Pr xFxQCXob d =≤ (2)

was calculated on the sampled variable QCXd. From this relation, it is possible to calculate 

the quantile x(T) of return period T, associated with the F law. 

Hydrograph separation:

In this study, we used the WETSPRO tool proposed by Willems (2009) to compute base flow, 

inter flow (sub-surface flow) and quick flow. This method is an extension of the recursive 

digital filter of Chapman (1991). It assumes that the recession curve can be adjusted with an 

exponential model. The recession constant,  k, of the exponential model corresponds to the 

time in which the flow is reduced by a factor exp(-1)=0.37 during dry weather periods. The 
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method of Willems (2009) includes a second parameter w, which corresponds to the average 

fraction of the  sum of the quick and inter flow volume over the total  flow volume. The 

filtering procedure is first applied to extract the base flow. It is then repeated to extract the 

interflow on the (total – base flow) time series. The values of the k and  w parameters were 

determined manually by trials and errors so that the base flow fraction was close to the BFI 

determined previously.  The analysis  was performed for  the Craponne and Taffignon data 

using daily data, and the Pollionnay,  Upstream_SOD1 and La Léchère gauges, using two-

hours time step data in order to capture the inter flow.

Statistical tests:

The Craponne gauging station was the only station with a long enough (40 years) time series 

to perform trend/rupture statistical tests. The Mann Kendall (Mann and Whitney, 1947) and 

Pettitt  (1979)  tests  were  used  for  trend  and  rupture  analyses  respectively.  The  analysed 

variables were the mean annual discharge, BFI, components of the flow as derived from the 

hydrograph separation, the POT values (using an extraction of two and four  floods per year 

on variable  time  step  time series),  following the methodology proposed by Renard et  al. 

(2006) and Lang et al. (2006). 

3.2.  Methods specific to the existence of sewer overflow devices and sewer  

networks

As  said  before,  given  the  quick  response  time  of  the  urban  parts  and  the  very  short 

functioning time of SODs, the indicators proposed in the previous section are not sufficient to 

fully evidence the impact of the urban areas on the river flow, especially for small catchments 

(a few km2). Therefore, we propose specific methods, particularly adapted to these conditions. 

These  methods  rely  on  filtering  techniques  of  the  discharge  time  series.  Two  types  of 

applications were developed (Table 3):

Filtering of SODs discharge to derive “pseudo-natural”  discharge series. In order to get a 

clear  signature  of  the  SOD on the  river  discharge  time  series,  the  SOD must  be  located 

upstream and close to the discharge gauging station (10 to 100 m). The filtering method is 

applicable to variable time steps time series as it takes benefit of the fact that, in case of SOD 

overflows,  the  discharge  will  increase  rapidly  and  the  measurement  points  will  be  more 

frequent.  The  filtering  is  based  on  a  moving  average  with  a  constant number  of  points. 

Therefore the time step of the filtering will be much shorter when the response is quicker 

(activation of the SOD) than when the response is slower. The method was applied to the La 
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Lèchere and Craponne stations where a SOD is present less than 100m upstream, with a 4 

points moving average. This leads to two additional time series corresponding to the SOD 

discharge (indexed SOD in Table 3) and the river discharge if the SOD was absent (indexed 

Rural in Table 3). 

Filtering of the combined sewer systems discharge (CSS) series. In this  case,  the method 

allows the separation of the measured discharge between waste water (WW), parasite clear 

groundwater  infiltration  in  the sewer network (GW) and the runoff  component  (RW).  Its 

application combines times series of Combined Sewer System (CSS) discharge, rainfall data, 

SOD discharge (when a SOD is present). Contrarily to the previous case, the filtering method 

is applied to fixed time step time series (in our case 6 min time step given the size of the 

catchment and the response time) in order to process simultaneously the various time series. 

The fixed time step time series are obtained from linear interpolation of the variable time step 

times series.

The principles underlying the method are summarized in Figure 6 and detailed below.

• Step 1: determination of the WW fraction. This step is conducted in two phases. Step1a: 

During the night, as the catchment is quite small, it is assumed that the waster water (WW) 

is zero. In dry period conditions, the discharge measured in the sewer system during the 

night can therefore be assumed to be clear parasite groundwater infiltration (GW). This GW 

water is obtained by using a moving average tracking the daily minimum discharge (in our 

case a moving average calculated using 240 points, corresponding to 24h of 6 min time step 

data). Step 1b: This clear parasite water infiltration is subtracted from the CSS discharge, 

leading to a residual time series (CSS – GW). To estimate the waste water discharge, it is 

assumed that,  during dry weather periods, the CSS-GW discharge is equal to the waste 

discharge (WW). A weekly averaged cycle  is calculated from the 6 min time step data 

during dry weather. This weekly cycle takes into account week and week-end days that 

have specific patterns. 

• Step 2: The WW series is substracted from the CSS data. This leads to a time series of 

runoff + infiltrated groundwater data (RW + GW). The same moving average tracking the 

daily minimum discharge is applied once again to separate the RW and GW discharges.

• Step 3:  If a SOD exists, its contribution is added to the runoff because the water which 

overflows the SOD is also generated by runoff. This leads to the final value of the runoff 

series (RW + SOD). 

15

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

1

Author-produced version of the article published in Journal of Hydrology, 2013, 485, 5-23 
The original publication is available at http://www.sciencedirect.com/ doi:10.1016/j.jhydrol.2012.04.049



Table 3 presents a synthesis of the various time series, derived using the two filtering methods 

and the name they will be referred to in the paper. The same indicators as those presented in 

section 3.1 were applied to the filtered time series, when relevant. 

4. Results

The results section contains two sub-sections. First we present the results of the observed data 

analysis, based on the methods described in section 3.1. Second we present the result of the 

filtering methods presented in section 3.2

4.1. Analysis of observed discharge time series

4.1.1. Hydrological regime

Table  4  provides  the  values  of  the  mean  annual  discharge  (and  specific  discharge  when 

relevant)  and  50%  quantile  of  the  FDC.  Figure  7  shows  the  average  monthly  specific 

discharge for the 5 gauged stations for the 2005-2010 common measurement period. Table 4 

and Figure 7 show that  the “rural” catchments have an average annual specific  discharge 

ranging between 5.5 and 6.9 l s-1 km2. They also exhibit similar monthly patterns with higher 

values in spring and winter and low discharge in summer and autumn (Craponne, Pollionnay, 

Upstream_SOD1).  On the  other  hand,  the  Taffignon station  exhibits  systematically  lower 

monthly specific discharge than its upstream gauging station Craponne. This is also reflected 

in the average annual specific discharge which is only 5.1 l s-1 km2 as compared to 6.9 l s-1 

km2 for Craponne. An analysis of the annual runoff coefficient (not shown) confirms that the 

Taffignon values are systematically lower than those of Craponne and the difference in mean 

(0.26 for Craponne and 0.21 for Taffignon) is significant at the 5% level (p=0.02 for the t-

test). Figure 7 shows that the La Léchère station (when considering the most favourable case 

with  a  2.9  km2 catchment  area)  has  larger  values  of  average  monthly  discharge  than  its 

upstream station  (Upstream_SOD1) in summer  and autumn (May to October  ).  It  can be 

explained by a larger contribution of artificialized areas in summer (see section 4.2.3). 

Figure  8a  shows  the  flow duration  curve  of  the  daily  specific  discharge  for  the  gauged 

catchments:  Taffignon, Craponne, Pollionnay,  Upstream_SOD1, La_Léchère.  It shows that 

the Craponne station has larger specific discharge than the downstream Taffignon station for 

almost all the range of frequencies. The lowest runoff production is therefore generalised for 
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the  whole  range  of  discharges  (except  high  flows  –  see  section  4.1.3).  The  downstream 

La_Léchère station has significantly higher values than the Upstream_SOD1, which is much 

less urbanized than the La_Léchère station (Figure 4),  for the frequencies larger than 40%. 

4.1.2. Low flows and hydrograph separation

Low flows are characterized using the % of zero daily discharge and the BFI (Table 4).  For 

the gauged catchments, the % of zero daily discharge ranges between 0.25% (Craponne) to 

31%  (Upstream_SOD1).  Note  that  the  Taffignon  gauge  has  a  larger  frequency  of  zero 

discharge (5.4%) than the upstream gauging station Craponne. This confirms the decrease in 

runoff  production,  already observed on the  annual  specific  discharge  and the  FDC, from 

upstream to downstream. On the other hand, the % of zero daily discharge decrease from 

31.2% Upstream_SOD1 to 11.1%  at the downstream La Lèchère station (see also Figure 8a). 

This increase can be attributed to the impact of urbanization as the additional area is mainly 

composed of artificialized areas (Table 4). 

The BFI values of the observed time series range between 0.26 and 0.54. Those values are 

quite low and are characteristic of catchments with a low storage capacity. For the catchments 

with  the  lowest  %  of  artificialized  areas  (Upstream_SOD1  (24%),  Pollionnay  (11%), 

Craponne (18%)), the BFI increase with the catchment area, consistently with a decrease of 

the % of days with zero discharge (Table 4). The behaviour of the Taffignon station is, once 

again, inverse to what is expected: the BFI decreases between the upstream Craponne and 

downstream  Taffignon  stations.  The  lowest  specific  annual  discharge  could  therefore  be 

explained by a lower base flow.

Table 5 shows the results of the discharge decomposition into base flow, inter flow, quick 

flow  using  the  WETSPRO  tool.  The  two  small  rural  catchments  (Pollionnay  and 

Upstream_SOD1) have similar values of the  k recession constant (5 days). The quick flow 

represents 43.5% of the total flow for the Pollionnay station and 49% for the Upstream_SOD1 

catchment. This can be explained by the difference in land use (mainly forest and crops for 

Pollionnay and crops for Upstream_SOD1), and because crop land has been shown to have a 

lower infiltration capacity than forest (Gonzalez-Sosa et al., 2010). The recession constant of 

the La_Léchère station is smaller than that of the upstream station Upstream_SOD1, and the 

% of quick flow is higher (54.4% against  49%), with a lower base flow. This shows the 

impact of the SODs and the urbanized areas which is the dominant land use in the additional 
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area between the two gauges. When comparing the Craponne and Taffignon stations, we can 

see that the  k recession constant increase between the upstream and downstream gauge (28 

and 35 days respectively). However, the downstream Taffignon gauge has a smaller base flow 

(39.3% against 49.8%), as said before, and a higher portion of quick flow (37.6% against 

25.6%). This corresponds to an increase of the artificialized surfaces (from 18% of the total 

catchment area at Craponne to 31% of the total catchment area at Taffignon – see Figure 4). 

This analysis confirms the expected impact of urbanization: an increase of quick flow at the 

expense of base flow, but this effect has been quantified here.

4.1.3. High flows

The characteristic flood durations appear in Table 4. Figure 9a shows the normalised median 

hydrographs for the various observed time series. We remind that the base flow has been 

removed before performing the extraction. For all the catchments, Figure 9a shows that the 

rising limb of the characteristic hydrographs is very sharp (a few hours). On the other hand, 

the catchments with the lowest artificialized area (Craponne, Pollionnay, Upstream_SOD1) 

have a quite heavy and long recession, although the characteristic duration, corresponding to 

Q/Qmax=0.5 is short (between 3 and 7 hours, Table 4), except for Upstream_SOD1 where it 

reaches  10  hours.  The most  artificialized  catchments  (La  Léchère  and to  a  lesser  extend 

Taffignon)  present  characteristic  hydrographs  with  the  sharpest  rising  limbs  (less  than  5 

hours) and a very quick recession (about 5 hours). Urbanization has therefore a significant 

impact on the hydrograph shape.

The maximum daily  discharge and their corresponding specific values are provided in Table 

4. Figure 10 shows the result of the QdF analysis in terms of specific discharge, for durations 

d=0 (maximum instantaneous peak discharge) and 12h for the 5 gauged stations. For all the 

stations, the flood discharge decreases sharply between the two durations, which is consistent 

with the peaky shape of the characteristic flood hydrographs (Figure 9a). For the duration d=0 

and for a return period of less than ten years,  the highest  floods are encountered for the 

Pollionnay, Upstream_SOD, Taffignon and Craponne stations, in decreasing order. The most 

rural and natural catchment (Pollionnay) appears the most productive in terms of high floods. 

Contrarily to what is observed for the monthly regime and the low flow, the downstream 

Taffignon  station  is  most  productive  than  the  upstream  Craponne  one  for  high  flows. 

Urbanization may be responsible for this larger runoff for the highest floods. These features 

also hold for the d= 12 h duration. The results for the La Léchère station are shown using the 

two extreme catchments areas. For the most frequent floods, the specific discharge for d=0, is 
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significantly  larger  than  that  of  the  Upstream_SOD1 station,  whatever  the  choice  of  the 

catchment area. We can deduce that the urbanization of the downstream part of the catchment 

increase the magnitude of the most frequent floods. 

4.1.4. Statistical tests for the Craponne gauging station

The results of the trend and rupture statistical tests performed on the Craponne time series 

(1970-2010) are summarized in Table 6. They show a significant decrease of the % of base 

flow and inter flow at the 5% and 1% level respectively,  whereas the quick flow increase 

significantly at the 1% level. The increase in maximum annual discharge is not significant,  

nor the increase in maximum peak discharge. On the other hand, the POT analysis reveals a 

significant increase (at the 5 or 10% level) of the magnitude of floods for all the durations 

except d=0, when sampling the floods with two floods per year. If the sampling is performed 

to retain four floods per year,  i.e to include less intense floods, none of the trend/rupture 

remains significant (not shown). These results show that a trend is only evidenced for the 

largest floods.

4.2. Application of the filtering methods

4.2.1 Evaluation of the SOD discharge filtering method

The result of the filtering of SOD discharge is illustrated in Figure 11 for the La Lèchere 

station.  This  figure  shows  the  initial  time  series,  the  calculated  La_Léchère_SOD2  and 

La_Léchere_Rural time series. We have also added the SOD1 time series on the graph, in 

order to assess the relevance of the method. Although the La_Léchère_SOD2 seems to react 

much more frequently than the SOD1 (the frequency of zero daily discharge are 22.9 and 87% 

respectively, see Table 4), we can assume that when SOD1 is active, SOD2 should also be 

active. This can allow the validation of the timing of the filtering method. Figure 11 shows 

that the agreement is reasonable and similar results were obtained on the whole period. The 

total  volume  discharged  by  SOD2 represents  5.3% of  the  total  discharge  at  La  Lèchère 

gauging station. 

For the Craponne_SOD time series, no data were available for validation. The area drained by 

the SOD is estimated to be about 10% of the total  catchment surface (Table 3). The total 

volume of the SOD discharge represents 7% of the total Craponne discharge. This figure is 

reasonable and comparable to that of the La Léchère catchment. In the near future, it will be 

possible to fully validate them, as the La Léchère and Craponne SODs are gauged since 2010. 
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In the remaining of the paper, we will assume that the filtering method is accurate enough so 

that the corresponding data series can be analysed similarly to the truly gauged time series. 

4.2.2. Hydrological regime

When considering the reconstructed “rural” time series for the Craponne and La Léchère time 

series, the average annual specific discharge of the rural time series is 13% lower for the 

Craponne station and 5% for the La Léchère station (Table 4).

This is confirmed (both for the Craponne and La Léchère station) by Figure 12 (top), which 

shows  the  fraction  of  the  total  average  monthly  discharge  coming  from the  SODs.  This 

contribution of the SODs to the monthly regime ranges from 2-3 to about 15% with a clear 

annual cycle. The highest values occur in summer and autumn, when the natural discharge is 

the smaller. In this period, the contribution of SODs to the discharge is therefore important in 

a period where the river can be dry (see next section). This can increase pollution problems,  

all the more than discharge is low and dilution effects cannot occur.

4.2.3  . Low flows and high flows  

The  frequency  of  zero  daily  discharge  for  the  total,  rural  and  SOD  components  of  the 

Craponne  and  La  Léchère  stations  (Figure  12,  bottom),  show  very  different  behaviours 

between the two gauges. Whereas the frequency of zero discharge in the Craponne_SOD is 

quite  constant  throughout the year,  it  presents a clear annual cycle  at  La_Lèchère_SOD2. 

Values are higher in summer than in winter, which shows that the SOD2 is more frequently 

activated in winter, when the soil conditions are humid, than in summer when they are drier.  

For the two gauges, the % of zero daily discharge of the “rural” time series is systematically 

lower than that of the total discharge. For the La Léchère station, the difference can reach 

20% in September and October. It means that the discharge in the river only comes from the 

SOD2 during this period.

We also see that, when the SODs contribution are filtered, the BFI values are larger than for 

the total  discharge (Table 4),  showing, as expected that SODs mainly contribute to quick 

flow. 

4.2.3. Low flows and high flows

Figure 9b and 9c show the normalized hydrographs for the total, rural and SOD components 

of the Craponne and La Léchère stations respectively. As expected the SOD hydrographs are 

very peaky with characteristics  flood durations  of  about  1h.  Although the  total  and rural 

hydrographs are very close for the La Léchère station,  the rural  Craponne series shows a 
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much slower recession than the total curve with a doubling of the characteristic flood duration 

for the rural component. On this gauge, the impact of the SOD seems to be much influential 

on the hydrographs shapes than for the La Léchère catchment. 

Figure  13 shows  the  QdF analysis  for  the  total,  rural  and SOD components  of  both  the 

Craponne and La Léchère stations. This figure shows that, for the largest floods, the rural and 

total curves are very close. It suggests that the largest floods are mainly associated with a 

large contribution of the rural area. On the other hand, the impact of SODs is significant for 

frequent floods, with return period of less than 2 years.  

4.2.4. Analysis of the sewer system components

The mean annual values of the sewer discharge components are provided in Table 4. The 

waste water accounts for 33% of the total discharge, the rainwater runoff for 38% and the 

infiltration of groundwater into the sewer for 30%. The results of the filtering of the sewer 

discharge  time  series  is  illustrated  in  Figure 14  at  the  monthly  time  scale  for  the  whole 

measurement period (2001-2010). It shows that the groundwater infiltration exhibits a clear 

annual cycle. It is almost zero in summer when the soil is dry and increases in winter and 

spring when the soil moisture is higher. The monthly pattern of rainwater runoff follows that 

of  the  monthly  rainfall.  Figure  8b  shows the  FDC of  the  CSS discharge  and its  various 

components. The FDC of the waster water (WW) is very flat as expected from its building. 

Values of CSS_RW+SOD1 below 0.001 m3 s-1 can be considered as noise, which explain the 

low value of zero daily discharge (about 10% in Table 4). The average fraction of rainy days 

is about 50% and the CSS_RW+SOD component of the CSS discharge is only not null when 

it rains. For the values larger than 0.001 m3 s-1, Figure 8b shows that the ranges of infiltrated 

groundwater and runoff discharges are very similar. Groundwater infiltration into the network 

is therefore a major problem for the efficiency of the sewer network. It may explain the larger 

activation of SOD2 in winter when the groundwater table is high (see Figure 12, bottom).

5. Discussion

The importance of data collection. The analysis presented in this paper relies on a nested and 

complete network of gauging stations, monitoring discharges in sub-catchments with various 

land uses but also on some infrastructures such as SODs and sewer networks. The set up in 

the Chaudanne sub-catchment is very valuable, as it allows the quantification of the impact of 

SODs  and  infiltration  into  the  sewer  network.  However,  although  lots  of  efforts  were 

dedicated to monitor the various branches, it is still impossible to close the water balance of 
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the catchment  (uncertainty of  the partition  of water  between SODs and the Waste Water 

Treatment Plant, partial measurements of the SODs). 

For the type of analysis presented in the paper, the data quality and length of the series is of 

prime importance.  The data availability period is very variable (between 5 and 40 years). 

Except Figure 7, all the indicators are calculated using the largest available time series. Due to 

internanual climate variability,  which is large in this catchment (the CV of average annual 

rainfall is 241 mm at Pollionnay for an average of 746 mm on the 1997-2009 period), this 

may induce sampling fluctuations of the indicators. We verified that the conclusions were 

similar  when  the  indicators  were  calculated  on  the  same  period  (2005-2010).  Another 

important point is the accuracy of the discharge data. A diagnostic of the gauging stations 

showed that low flows are generally quite uncertain due to very large sections and a small 

water  height  (Pollionnay,  Upstream_SOD).  This  problem  is  being  solved  by  adding  a 

triangular device to get a higher accuracy for small discharges. The Craponne and Taffignon 

stations  are  considered  reliable  by their  manager  (DREAL) and therefore the decrease  of 

runoff from upstream to downstream cannot be attributed to measurement problems. The La 

Lèchère station is the most accurate as it is equipped with a calibrated canal, but it may be 

overflooded for the largest discharges. This can explain the decrease in specific discharge for 

high flows (Figure 10). Branger et al. (2011) proposed a method to assess the accuracy of 

stage-discharge relationship and provide an error bound for each discharge measurement. The 

use of this information was beyond the scope of this paper, but will be useful to better assess 

the significant changes/trends. In terms of monitoring, progress is under way as new SODs 

are now monitored in the context of the quantification of rejected water in the receiving rivers 

(Water Framework Directive). These new data offer an opportunity to better understand the 

response of urbanized areas in periurban catchments and further validate the filtering method 

leading  to  the  decomposition  of  total  discharge  into  rural  and  SOD  components.  The 

Craponne subcatchment has a quite large area and it may be difficult to discriminate between 

the  influence  of  the  various  infrastructures  impacting  the  flow.  The  new  discharges 

measurements in the SOD will be very valuable as they will allow a better assessment of the  

limits of applicability of the SOD filtering method.

 

Impact of artificialization on the regime and the flow components. Impact on low flows and  

the importance of the sewer network. Two results of this study are particularly striking: the 

decrease  of  specific  discharge  from upstream to  downstream  between  the  Craponne  and 

Taffignon gauges, and the large fraction (30% of the total discharge) of infiltration into the 
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sewer system calculated for the Chaudanne subcatchment. This figure is high but consistent 

with independent estimation conducted using punctual measurements during the night by the 

services in charge of the network management.  Recently Prigiobbe and Guilianelli  (2009) 

reported an infiltration of about 50% in the old Rome sewer network and 14% in a recently 

constructed area. Berthier et al. (2004) found that the contribution of soil water infiltration to 

runoff in sewer pipes was about 15% in a small residential periurban catchment. On the same 

catchment,  Rodriguez  et  al.  (2008)  simulate  11% of  infiltration  into  the  rainwater  sewer 

system and 18% in the wastewater sewer system. In the Yzeron catchment, the main pipes 

network  was  built  along  the  valley  bottom  in  the  seventies  to  collect  waters  from  the 

surroundings. Breil et al. (2010) analysed one year of discharge monitoring in the main sewer 

collector close to the Taffignon station. They estimated the infiltration into the network to be 

27% of the annual discharge. There is therefore a consistency in the results and infiltration 

into the sewer network can be considered as responsible for the decrease of base flow and 

average monthly discharge between Craponne and Taffignon. The impact of the SODs is also 

significant on low flows. They significantly impact the frequency of zero discharge and, for 

the smallest sub-catchments where the natural river regime is seasonal, water coming from the 

SODs is the only source of water during a significant part of the year. The impact in terms of 

water quality is of course important (Lafont et al., 2006). However, in order to conform to the 

water  framework  directive,  the  management  of  rainwater  is  being  reconsidered:  where 

possible rain waters are diverted to new separate sewers flowing to retention/detention basins. 

This process is under way in the Chaudanne catchment and should be monitored to quantify 

its future impact on the river discharge. Another lesson of this study is the importance of 

knowing precisely the catchments areas. This task is quite simple for natural catchments but is 

much  more  complicated  for  periurban  catchments  (Jankowfsky,  2011).  However,  such 

determination  is  essential  to  compare  various  catchments  based  on  specific  discharge.  A 

normalisation with the mean annual discharge was attempted,  but the interpretation of the 

results was not found relevant. This question of catchment area is therefore a major challenge 

for data interpretation and comparison in periurban catchments.    

Impact on high flows. The results obtained in this paper confirm that for the highest floods, 

the  impact  of  urbanization  (via  the  SODs)  is  limited.  In  this  case,  the  rural  part  of  the 

catchment is the major contributor to floods, which can be explained by saturation of the soil 

due  to  long  rainfall  events.  It  may  be  counter-intuitive  to  see  that  the  most  productive 

catchment  for  high  flows  is  the  less  urbanized  one  (Pollionnay).  However,  other  studies 

(Sarrazin, 2012) have shown that the whole catchment is saturated during the largest floods 
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(corresponding to long lasting events of at least 70-80 mm). The whole catchment area is 

therefore contributing to the flow, whereas a part of the rainwater is diverted towards the 

WWTP in the artificialized catchments, even if all the SODs are activated. Our results also 

confirm that  SODs mainly  impact  frequent  floods,  as  already shown by Radojevic  et  al. 

(2010) using model  simulations.  Urbanization and catchment  artificialization have also an 

impact on the hydrographs dynamics as shown by Figure 9. The most urbanized catchments 

have more peaky flood hydrographs. In order to refine this type of analysis, approaches such 

as those proposed by Archer (2007), Archer et al. (2010) should be investigated in the future, 

as they allow a full exploration of the whole discharge series, by analysing the frequency and 

duration of exceedance of various threshold discharges. In the Yzeron catchment, it has been 

shown that these variables were very relevant to quantify the impact of SODs on the incision 

and bank erosion risk (Grosprêtre, 2011). In the case of a upstream-downstream gradient of 

urbanization, like in the Yzeron basin, urban generated floods are flowing before the rural 

floods, avoiding peak flood accumulation. The effect of urbanization could be more sensitive 

and  may  be  dramatic  if  impervious  areas  extension  takes  place  upstream,  increasing  the 

probability of concomitancy between urban and rural floods (Ostrowski, 2000; Ostrowki et 

Bras, 2000.). Such an explanation may be invoked to explain the largest specific discharge of 

the downstream Taffingon station, as compared to its upstream Craponne one for high flows. 

Indeed, the Yzeron rivers receives a tributary flowing through a quite densely urbanized area 

before the Taffignon station.

Statistical tests. Statistical tests were only applied to the longest Craponne time series. They 

highlighted a modification of the components of the flow, with a decrease of base and inter 

flow, and an increase of quick flow. The SODs in this catchment were installed between 1970 

and 1980 and therefore impact most of the available time series (1970-2010). There is also a 

significant increase of POT discharge (sampling with an average of two floods per year) for 

all  the  durations,  except  peak  discharge.  This  can  be  put  in  parallel  to  the  increase  of 

artificialized surfaces in this catchment between 1970 (9%) and 2008 (18%), all the more than 

no significant  change of maximum annual cumulated (1 to 15 days)  daily rainfall  can be 

evidenced. For the analysis of floods, an analysis of rainfall with a shorter time step (typically 

hourly) would be necessary but the available time series are too short up to now for such an 

analysis.  In addition,  those results  on floods must  be considered with caution as they are 

sensitive to the sampling strategy. 

Towards  a  perceptual  model  of  the  Yzeron catchment  behaviour.  From the  data  analysis 

presented before, we can propose a perceptual model of the Yzeron catchment hydrological 
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functionning. The rural part of the catchment has a high infiltration capacity (Gonzalez-Sosa 

et  al.,  2010) but a small  storage capacity.  Therefore,  for the small  to medium events,  the 

catchment  response  is  mainly  dominated  by  the  quick  response  of  urban  areas  for  the 

formation  of peak discharge and a delayed rural  response mainly impacting  the recession 

curve. Frequent floods are increased by the catchment urbanization. For the largest events 

(mainly  long duration  rainfall  events),  the  catchment  response  is  dominated  by  the  rural 

response due to  soil  saturation.  The river  regime is  also perturbed by the sewer  systems 

through a high rate of infiltration of soil water which is diverted towards the WWTP and 

contributes  to  a  decrease  of  base  flow in  the  rivers.  On  the  other  hand,  SODs  have  an 

antagonist impact as they provide a significant contribution to the river discharge in summer, 

especially for small catchments. But their impact is smaller than that of the sewer systems and 

the whole impact  is  mostly a base flow decrease.  However,  given the actions planned to 

improve  the  quality  of  the  receiving  waters  (improvement  of  the  tightness  of  the  sewer 

systems,  separation  of  rainwater  and  waste  water,  building  of  retention  basin,  etc),  the 

discharge monitoring must  be continued to see if those actions have a real impact on the 

discharge. The indicators presented in this study can help monitoring the system.

6. Conclusions and perspectives

The data analysis presented in this paper provides valuable insight into the periurban Yzeron 

catchment  behaviour.  We  were  able  to  highlight  relevant  indicators  of  the  impact  of 

urbanization/artificialization on the hydrological regime of periurban rivers. The results were 

obtained thanks to the availability of a long term and rich data set, sampling various aspects 

of the periurban water cycle. These series were relevant for our analysis. However, longer 

time series and sampling of more infrastructures would be necessary to fully close the water 

balance  of  such  catchments.  We  have  also  seen  that  the  determination  of  the  periurban 

catchment  area  is  also  of  importance  for  a  correct  data  analysis.  The  filtering  method 

proposed to decompose the measured discharge into rural and SOD component was found to 

be  efficient  in  highlighting  the  major  role  of  SODs  on  the  whole  hydrological  regime, 

including, mean monthly regime, low flows and high flows. The application of the method 

requires the location of the SOD and gauging station to be very close, and data acquired with 

a variable time step. This findings provide guidelines for the setting of proper monitoring 

networks of those periurban catchments. Finally, the role of water infiltration within the sewer 
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system was highlighted. It was found to account for 30% of the total combined sewer system 

discharge. There are evidence that this infiltration has an impact on low flow and on a large 

part  of  the  hydrological  regime,  by decreasing  the  water  into  the  stream.  This  impact  is 

important to consider due to its large impact on water quality and on ecosystems.

The indicators derived in this study are also very useful for the assessment of model results 

set  up in the Yzeron catchment  both at  small  scale  (Chaudanne and Mercier  catchments, 

Jankowfsky et al, 2011) and the Yzeron catchment (Branger et al., 2012).

Future work would be required to analyse more in depth the events characteristics, such as 

done  in  Sheeder  et  al.  (2002)  or  Furusho  et  al.  (2012)  and  characterize  the  impact  of 

artificialization  on the hydrograph shape using for  instance  methods derived from Archer 

(2007), Archer et al. (2010).
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List of figures

Figure 1: Map of the DTM (25m resolution) of the Yzeron catchment with location of the 

rainfall gauges and streamflow gauges. For the gauges used in the study the corresponding 

sub-catchments are delineated in yellow. The location of roads and built areas is also shown 

in grey.

Figure 2: Maps of land use of the Yzeron catchment in (a) 1970; (b) 1990; (c) 2008. The 

original maps were obtained by manual digitalization of aerial photographs by Jacqueminet et 

al. (2011), UMR EVS, 2010. They were reclassified in 3 classes: wooded areas (broad leaved 

and coniferous  forests,  moors),  agricultural  areas  (crops,  pastures,  orchards,  gardens)  and 

artificialized areas (urban parcels including gardens and parks, roads, parkings).  

Figure 3: Zoom of the available gauging stations on the Chaudanne river, close to the Sewer 

Overflow Device (SOD1). It shows the location of the gauging stations in the stream, the 

SOD1,  the  combined  sewer  system  (CSS).  The  approximate  location  of  SOD2  and  La 

Léchère gauging stations is also provided.

Figure 4: Land use of the various study catchments. Three classes are presented: wooded, 

agricultural and artificialized areas (see Figure 2 caption). 

Figure 5: (a) Illustration of the sampling strategy used in the QdF method for various duration 

d and  d2. (b) Determination of the flood hydrograph shape. Light grey lines are individual 

floods normalised by their maximum value Qmax. The thick black line is the median of all the 

curves.  θ is  the  flood  characteristic  duration  corresponding  to  Q/Qmax=0.5  in  the  median 

hydrograph. 

Figure 6: Scheme illustrating the methodology retained for the decomposition of combined 

sewer  system (CSS) discharge  between waster  water  discharge  (WW),  clear  groundwater 

infiltration (GW) and runoff (RW). SOD refers to the contribution of a SOD is present.

Figure  7:  Average  monthly  specific  discharge  of  the  Craponne,  Taffignon,  Pollionnay, 

Upstream_SOD1, La Léchère stations. For the La Léchère station, two graphs are provided 

corresponding to the minimum (2.9 km2) and maximum (4.1 km2) catchment area.

Figure 8: (a) Flow duration curve (FDC) for the daily specific discharge of the Taffignon, 

Craponne, Pollionnay, Upstream_SOD1, La_Léchère (area 2.9 km2) stations. (b) FDC of the 
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sewer  discharge  (CSS)  and its  components:  rainwater  runoff  (RW+SOD1),  infiltration  of 

groundwater (GW), waste water (WW).

Figure  9:  (a)  Normalised  median  of  the  flood  hydrographs  for  the  Taffignon,  Craponne, 

Pollionnay, Upstream_SOD1, La_Léchère, CSS_RW+SOD1 stations. (b) Normalised median 

of the flood hydrographs for the Craponne gauge and its “Rural” and “SOD” components. (c) 

Normalised median of the flood hydrographs for the La Léchère gauge and its “Rural” and 

“SOD2” components.

Figure 10: Specific discharge from the POT analysis of the Taffignon, Craponne, Pollionnay,  

Upstream_SOD1,  La_Léchère  (with  surface  catchment  2.9  and 4.1  km2)  stations  for  the 

duration d=0 (peak discharge) and d=12 h. The analysis was performed extracting an average 

of four flood events per year. The x-axis provides the empirical return period of each event.

Figure 11: Result of the filtering of the SOD2 discharge from the La Léchère gauge discharge 

time series  for the 01-06 July 2007 period.  The discharge  of  the upstream SOD1 is  also 

shown. 

Figure 12: Top: fraction of the total monthly discharge (%) coming from the SODs for the 

Craponne  and  La  Léchère  stations.  Bottom:  fraction  of  zero  daily  discharge  (%)  for  the 

Craponne and La Léchère stations and their filtered Rural and SOD components. 

Figure 13: Discharge from the POT analysis of the Craponne (bottom) and La Léchère (top) 

stations and their rural and SOD components for the duration d=0 (peak discharge) and d=3 h. 

The analysis was performed extracting an average of four flood events per year. The x-axis 

provides the empirical return period of each event.

Figure 14: Partition of the monthly sewer discharge volume data into the runoff component 

(grey) and the groundwater infiltration (black) for the 2001-2010 period. The monthly rainfall 

is shown at the top of the graph. The date format in the x-axis is yy-mm where 01 is 2001 for  

instance.
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Table 1: Indicators derived from discharge time series analysis found in the literature, and 
associated references. We distinguished studies based on model simulations and data analysis. 
In bold, we highlight references dealing with catchment urbanization. With a star, the study 
uses paired catchments

Analysed indicators Model simulation Data analysis
Hydrological regime
Mean annual runoff, runoff coefficient Ashagrie  et  al.  (2006), 

Beighley  et  al.  (2003), 
Praskievicz and Chang (2009), 

*Arrigoni et al. (2010), Bullock 
(1992), Wang et al. (2007)

Seasonal runoff Praskievicz and Chang (2009) Richter et al. (1996)
Quantiles *Arrigoni et al. (2010)
Flow duration curve Gustard and Wesselink (1993) *Bathurst et al. (2011), Wang et 

al. (2007)
Water balance components Claessens et al. (2006), Elfert 

and Bormann (2010)

High flows
Value  and/or  date  of  annual  max  peak 
discharge  or  max  annual  discharge  other 
several durations

Ashagrie  et  al.  (2006), 
Beighley et al.  (2003), Burns 
et al. (2005),  Praskievicz and 
Chang (2009)

*Arrigoni  et  al.  (2010), 
*Bathurst  et al.  (2011), Bullock 
(1992),Wang  et  al.  (2007), 
Richter et al. (1996)

Peak over threshold (POT) Vazquez  et  al.  (2008), 
Willems (2009), Vazquez and 
Feyen (2010)

Tong (1990), 

QdF (discharge-duration-frequency) Sauquet  and  Leblois  (2001), 
Radojevic et al. (2010)

Low flows
Value and/or date of annual min discharge 
(or minimum over a period of several days)

Ashagrie et al. (2006),  Burns 
et al.  (2005),  Praskievicz and 
Chang (2009)

*Arrigoni  et  al.  (2010),  Richter 
et al. (1996)

POT for low flow Vazquez  et  al.  (2008), 
Willems (2009), Vazquez and 
Feyen (2010)

Base Flow Index (BFI) Bullock  (1992),  *Dow  (2007), 
Wang et al. (2007)

Low flow frequency, Q95% Gustard and Wesselink (1993) Bullock (1992)

Indicators based on hydrographs analyses
Indicators  derived  from  events  analysis: 
runoff coefficient, recession curves

Chormanski  et  al.  (2008), 
Meierdiercks  et  al.  (2010), 
Ott and Uhlenbrook (2004)

*Buytaert et al. (2004)

Flow components based on flow separation Vazquez  et  al.  (2008), 
Willems (2009), Vazquez and 
Feyen (2010)

Number  and/or  duration  of  discharge 
exceeding thresholds

*Archer  (2007),  Richter  et  al. 
(1996)

Number  and/or  duration  of  rising  and 
falling  rate  of  discharge  exceeding 
thresholds 

Archer  et  al.  (2010),  Richter  et 
al. (1996), Tetzlaff et al. (2005)

Results of statistical analyses
Statistical comparison of sub-periods Radojevic et al. (2010) Tong (1990), Wang et al. (2007)
Trend detection Claessens et al. (2006) Kliment and Matoušková (2009)
Regression with landscape characteristics *Arrigoni  et  al.  (2010), 

*Dow(2007),  Tetzlaff  et  al. 
(2005), Wang et al. (2007)
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Table 2: Characteristics of the gauged sub-catchments 
River Name of the gauging 

station
Catchment  area 
(km2)

Data availability

Yzeron Taffignon 129.00 1988/09/16 – present
Yzeron Craponne 48.00 1969/10/27 – present
Mercier Pollionnay 6.77 1997/01/14 – present 
Chaudanne Upstream_SOD1 2.19 1997/06/21  –  2001/07/24; 

2005/01/01 – present
Chaudanne La_Léchère 2.9 to 4.1(*) 2005/01/01 – present 
Chaudanne SOD1 ≈0.16 2001/06/26 – present 
Chaudanne CSS ≈0.16 2000/11/15 – present 
(*) The La Léchère area is minimum (2.9 km2) under dry conditions, and can reach 4.1 km2 

when all the SODs are activated (Jankowfsky, 2011)
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 Table 3: Time series derived by the filtering methods

River Name  of  the  time 
series

Discharge 
component

Method of derivation Catchment 
area (km2)

Yzeron Craponne_SOD Upstream  SOD 
contribution

4  points  moving 
average  on  the 
variable  time  step 
series

≈4.5

Yzeron Craponne_Rural “Rural”  discharge 
without  the 
upstream SOD

4  points  moving 
average  on  the 
variable  time  step 
series

48

Chaudanne La_Léchère_SOD2 Upstream  SOD2 
contribution

4  points  moving 
average  on  the 
variable  time  step 
series

≈1.1

Chaudanne La_Léchère_Rural “Rural”  discharge 
without  the 
upstream SOD2

4  points  moving 
average  on  the 
variable  time  step 
series

2.9

Chaudanne CSS_RW+SOD1 Rainwater runoff Filtering  of  the 6mn 
Chaudanne_CSS 
series

≈0.16

Chaudanne CSS_GW Groundwater 
infiltration into the 
CSS

Filtering  of  the 6mn 
Chaudanne_CSS 
series

-

Chaudanne CSS_WW Waste water Filtering  of  the 6mn 
Chaudanne_CSS 
series

-
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Table 4: Mean annual discharge QA (m3 s-1) and corresponding specific discharge qA (l s-1 km-

2), 50% quantile of the flow duration curves, Q50%;  frequency of zero daily discharge and BFI; 
maximum daily discharge Qmax (m3 s-1), and corresponding specific discharge qmax (l s-1 km-2); 
characteristic flood duration for an extraction of 4 floods per year, θ (h), and duration, d (h), 
retained  for  the  QdF  analysis.  Specific  discharges  are  not  provided  for  the  SODs  and 
CSS_RW+SOD components, due to the large uncertainty on their drained areas. For the La 
Léchère station, figures in parenthesis correspond to a 4.1 km2 catchment area.

Series QA qA Q50% % of zero 
daily 

discharge

BFI Qmax qmax θ d 

m3 s-1 l s-1 
km2

m3 s-1 - - m3 s-1 l s-1 

km2
h h

Observed time series
Taffignon 0.664 5.15 0.275 5.44 0.388 46.25 358.5 6 12
Craponne 0.332 6.92 0.169 0.25 0.486 20.94 436.2 7 12

Pollionnay 0.045 6.65 0.129 13.96 0.336 5.95 878.9 3 12
Upstream_SOD1 0.012 5.55 0.0028 31.25 0.307 0.67 305.9 10 12
La_Léchère 0.019 6.55 

(4.63)
0.0069 11.15 0.260 1.58 544.8

(385.4)
1 4

SOD1 0.00027 - 0.000 87.00 - 0.06 - 1 1
CSS 0.00545 - 0.0039 0.24 - 0.13 - - -

Derived series using the filtering methods
Craponne_Rural 0.289 6.02 0153 0.53 0.536 14.79 308.1 16 12
Craponne_SOD 0.045 - 0.003 34.31 - 6.21 - 3 1
La_Léchère_Rural 0.018 6.20 0.0056 15.96 0.269 1.50 517.2 1 4
La_Léchère_SOD2 0.001 - 0.0002 22.86 - 0.08 - 1 1
CSS_RW+SOD1 0.002 - 0.0012 9.90 - 0.13 - 1 1
CSS_GW 0.002 - 0.0015 48.33 - 0.03 - - -
CSS_DW 0.002 - 0.0017 0.00 - 0.002 - - -
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Table 5: Decomposition of the discharge into base flow, inter flow and quick flow (in % of 
the total volume) for the 5 gauged catchments. The values of the constant of the exponential 
recession model, k (days) and the w parameters are also given.

Gauging station Exponential 
parameter k for 
the base flow 

extraction (days)

Exponential 
parameter k for 
the inter flow 

extraction (days)

w (-) 
parameter

% 
base 
flow

% 
inter 
flow

% 
quick 
flow

Taffignon 35 12 0.25 39.3 23.1 37.6
Craponne 28 7 0.20 49.8 24.6 25.6
Pollionnay 5 3 0.28 34.6 21.9 43.5
Upstream_SOD1 5 3 0.32 30.2 20.8 49.0
La_Léchère 3.75 1.5 0.35 26.3 19.2 54.5
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Table 6: Results of statistical tests applied to the Craponne daily  discharge time series. The p-
values of the Mann-Kendall trend tests are provided in the first line and the direction of the 
trend (+ for an increase, -  for a decrease) are given in parenthesis  when significant.  The 
second line contains the p-value of the Pettitt test and the date of the most probable rupture is 
given in parenthesis  when significant.  The  p-value are followed with (*) when the test is 
significant at the 10% level, (**) at the 5% level and (***) at the 1% level. The POT analysis 
is applied on the QCXd data (maximum discharge continuously exceeded during the duration 
d) extracted with an average of two floods per year on the variable time step discharge time 
series.

Indicator calculated using the daily 
discharge at Craponne from 1970-2010

p

BFI (calculated using the Tallaksen et al., 
2004 algorithm)

0.12 (-)
0.17

% base flow (from WETSPRO) 0.02** (-)
0.13

% inter flow (from WETSPRO) 0.006*** (-)
0.11

% quick flow (from WETSPRO) 0.001*** (+)
0.02** (1988)

Max annual discharge 0.21
0.63

POT QCX d=0 (maximum peak discharge) 0.35
1.05

POT QCX duration d=1h30 0.04** (+)
0.17

POT QCX duration d=3h 0.06 * (+)
0.13

POT QCX duration d=6h 0.07 * (+)
0.08* (1979)

POT QCX duration d=12h 0.06 * (+)
0.21

POT QCX duration d=36h 0.07* (+)
0.07* (1977)
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Figure 1
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Figure 2
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(c)
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Figure 4
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Figure 5
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Figure 6
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Figure 7
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Figure 8
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Figure 9
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Figure 10
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Figure 11
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Figure 12
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Figure 14
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