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Analytical solution of the µ(I)−rheology for fully

developed granular flows in simple configurations

Merline Tankeo · Patrick Richard and

Édouard Canot

Abstract Using the µ(I) continuum model recently proposed for dense granular
flows, we study theoretically steady and fully developed granular flows in two con-
figurations: a plane shear cell and a channel made of two parallel plates (Poiseuille
configuration). In such a description, the granular medium behaves like a fluid
whose viscosity is a function of the inertia. In the shear plane geometry our cal-

culation predicts that the height of the shear bands scales with U
1/4
0 P

1/2
0 , where

U0 is the velocity of the moving plate and P0 the pressure applied at its top. In
the Poiseuille configuration, the medium is sheared between the lateral boundaries
and a plug flow is located in the center of the channel. The size of the plug flow
is found to increase for a decreasing pressure gradient. We show that, for small
pressure gradient, the granular material behaves like a Bingham plastic fluid.

1 Introduction

Granular flows [1] are of important scientific interest because of their complex
nature as well as their wide occurrence in industry and in environment. Unlike
classical fluid flows, they display different behaviors in different flow regimes thus
making difficult a complete and general constitutive law from being derived.
Three flow regimes are generally reported in the literature. In case of compact,
slowly sheared flows, the grains experience enduring contacts. They dissipate en-
ergy by internal friction, so the constitutive law is plastic-like. In case of dilute,
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Édouard Canot
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rapidly sheared and agitated flows, the granular materials interact mainly through
collisions. The constitutive law can be deduced from the kinetic theory of a gas
of inelastic grains [2]. In the intermediate flow regime, for example dense granular
flows down an inclined plane, the granular materials are dense as well as rapid,
and subject to both frictional and collisional stresses.
In the last decade, significant theoretical progresses [3,4] has been made for the
latter regime. Those approaches consist in describing the granular medium as an
incompressible fluid whose behavior is captured by a purely local rheology (called
the µ(I) rheology) that can be used to write the stresses in balance equations:

{

∂u
∂t + (u ·∇)u = − 1

ρ ∇P + 1
ρ ∇ · τ ,

∇ · u = 0.
(1)

In those equations, P is the pressure, τ the deviatoric stress tensor, u the velocity
and ρ the bulk density. Such a rheology is able to reproduce observations from a
great variety of experimental and numerical setups [3–9]. It is based on a coulombic
friction model, and relates the value of the effective coefficient of friction µ (i.e.
the ratio of tangential to normal stresses) to the non-dimensional inertial number
I that compares the typical time scale of microscopic rearrangements with the
typical time scale of macroscopic deformations:

|τ |
P

= µ (I) with I =
|γ̇| d
√

P/ρs
, (2)

where |τ | =
√

1
2
τijτij is the deviatoric stress tensor norm, d is the particle diameter,

ρs is the particle density and γ̇ the shear rate. Note that the inertial number I is
the square root of the Savage number [10] also called the Coulomb number [11].
It has been empirically shown [12] that, for dense granular flows, the effective
coefficient of friction µ of the system can be expressed by the following expression:

µ (I) = µs +
µ2 − µs

I0/I + 1
. (3)

In the previous expression, µs is the threshold value for the quasi-static regime
(I → 0). It corresponds to the angle of repose of the material. Therefore, the
material flows only if the yield criterion |τ | > µsP is satisfied. Below this threshold,
the system behaves locally as a rigid body. In strongly sheared regimes (I ≫ 1),
µ(I) grows asymptotically towards µ2. In Eq. (3), the values of the coefficients are
material-dependent, for example the values for the spherical glass bead used in [12]
are µs = tan(20.9◦), µ2 = tan(32.76◦) and I0 = 0.279. If the inertial number I is
much lower than I0 (I ≪ I0) the coefficient of friction can be approximated by the
following (simpler) expression:

µ(I) ≈ µs + (µ2 − µs)
I

I0
, (4)

with µ2 > µs. Recently it has been shown [13,14] that the tensorial extension [6]
of the µ(I) rheology is questionable since stress and strain tensors are not always
aligned. Therefore the µ(I) should be applied only to monodirectional flows. In
such a case Eq. 1 becomes

∂ux
∂t

+ ux
∂ux
∂x

= −1

ρ

∂P

∂x
+

1

ρ

∂τ

∂y
, (5)
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where τ is the shear stress.
Another quantity of interest is the packing fraction Φ, which has been found to
decrease when the inertial number I increases [15].

Φ = Φmax − ζI, (6)

where Φmax is the maximum packing fraction of the system and ζ is a positive
constant typically equal to 0.2. The latter equation is only valid for small values
of I since it leads to negative packing fractions for I > Φmax/ζ. This is consistent
with the restriction of the µ(I) rheology to dense flows where relatively small val-
ues of I are expected. However, for sake of simplicity, in the following, we will
not take into account the latter equation and assume that the packing fraction
does not depend on I: Φ = Φmax. This assumption will be discussed in the last
section of the paper. For systems made of monodispersed spherical glass beads,
Φmax ≈ 0.6.
As shown above, the µ(I)-rheology is based on a phenomenological approach. Other
models, based on different theoretical backgrounds [16–21] can be found in the lit-
erature, but it has the advantage to be simple and to compare well against many
experiments. It should be however pointed out that this rheology is purely local,
i.e. the shear stress depends only on the local shear rate and pressure. Hence, it
does not include long range correlations, which are prevalent near the jamming
point [22–24]. A possible way to overcome this flaw, consists in introducing non-
local effects in such models (see e.g. [25,26]). Another questionable point is that
such a rheology does not use the notion of granular temperature which is at the
base of the kinetic theory [2] even in the case of dense flows. Some discrepancies
with experiments and simulations are also found in the case of dilute granular
flows or important inclination angles [13,14,27,28]. Moreover the influence of the
fluctuating energy flux is not taken into account. This point is problematic espe-
cially close to boundaries. In spite of its flaws, the µ(I) rheology emerges so far as
a reliable description of granular flows, at least if they are dense.
In this article, we use the µ(I) rheology to solve analytically the conservation of
momentum equation in the case of two-dimensional granular flows in two simple
setups: the shear plane and the Poiseuille configurations. We will also restrict our-
selves to the cases of steady and fully developed flows, i.e flows whose properties
depend neither on time nor on the position along the main flow axis.
The outline of this article is the following. In the next section we will present the
assumptions used in this work. Section 3 is devoted to the presentation of the
description of the analytical resolution that we used. Then, we will present the
analytical approach, results and discussions for the shear plane flows (Sect. 4) and
the Poiseuille flows (Sect. 5). Finally we will present our conclusions.

2 Simplifying assumptions: steady and fully developed flows

The analytical resolution of the Navier Stokes equations in the case of Newtonian
fluids is difficult. The µ(I) rheology introduces a non-constant viscosity that com-
plicate the resolution further. To bypass these difficulties, we restrict ourselves to
the case of steady and fully developed granular flows.
Let us define the x-axis as the horizontal axis from left to right and the y-axis as
the vertical axis from bottom to top. The used assumptions are:
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– the flow is steady i.e. it no longer depends on time, which implies that ∂u/∂t =
0.

– the flow is fully developed; that is, its properties (e.g. velocity) are nearly
invariant along the main direction of flow. Consequently, we have for velocity,
∂u/∂x = 0 (flow does not depend on x-direction), and then the y component
of the velocity is equal to zero, uy = 0.

– the pressure P is supposed to be hydrostatic within the flow i.e. P = P0 +
ρg(H− y) where H is the height of the flow and P0 the external pressure. Note
that this hypothesis was tested many times by simulation of discrete elements
in different geometries [29,30].

Taking these assumptions into account, the system to solve (5) is reduced to
the following differential equation:

∂

∂y

(

η(y)
∂u

∂y

)

= K, (7)

where K = ∂P/∂x is the pressure gradient in the direction of flow (assumed to
be constant) and η(y) = µ(I)P/|γ̇| is the effective dynamic viscosity. Let us recall
here that the variations of the packing fraction are neglected (Φ = 0.6 uniformly
within the system).

3 Analytical resolution

We solve analytically the nonlinear Eq. (7). The steps of this calculation are the
followings:

1. We integrate analytically with respect to y the pressure gradient ∂P/∂x (as-
sumed to be constant). This leads to:

η(y)
∂u

∂y
= K y + k1, (8)

where k1 is the constant of integration.
2. We solve directly the Eq. (8) with γ̇ = ∂u/∂y as unknown. Let us recall here

that η(y) = µ(I)P/|γ̇| is the effective viscosity.
3. We integrate with respect to y the result ∂u/∂y and call k2 the constant of

integration.
4. By applying the boundary conditions of the studied configuration, we obtain

a system of two equations which allows the determination of the unknowns k1
and k2.

As mentioned above, in the following two sections, we will apply this resolution
to two simple configurations: the plane shear flow (Sect. 4) and the Poiseuille flow
(Sect. 5).

4 Shear plane flow

We applied the resolution described in Sect. 3 to the shear plane configuration
(see Fig. 1) with no pressure gradient (K = 0). The granular medium is located
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between two plates separated by a height H, P0 is the pressure resulting from a
vertical stress on the top plate, which moves at a constant velocity U0, the lower
one being fixed. This geometry has been studied intensively both experimentally [3]
and numerically by discrete element methods [3,4,29].

U0P0

H g

x
y

Fig. 1 Sketch of the 2D shear plane configuration. H is the distance between the two plates,
P0 is the pressure resulting from a vertical stress on the top plate and U0 the horizontal velocity
of the same plate.

4.1 Dimensionless formulation

In Eq. (7), we have seven parameters that characterize the flow: U0, P0, H, ρ,
ρs, g and d which are respectively the velocity of the top plate, the pressure on
the top plate, the height between the plates, the density of the granular medium,
the grain density, the gravity and the diameter of the grains. To write Eq. (7) in
a dimensionless form, we must choose three scales: a length scale H, a velocity
scale U0 and a pressure scale P0. The dimensionless variables are then: y∗ = y/H,
u∗ = u/U0 and P ∗ = P/P0. From Vaschy-Buckingham theorem [31] we can then
reduce our set of parameters to only four dimensionless ones:

Λ =
H

d
, ε =

ρgd

P0
, α =

U0
√

P0/ρs
and Φ =

ρ

ρs
.

The variables which depend on y∗ are: P ∗(y∗) = 1 + εΛ(1 − y∗), I(y∗) =
α |γ̇∗|

Λ
√

P ∗(y∗)
, and µ(I) = µs+

µ2 − µs

I0/I + 1
. Note that µs, µ2 and I0 are not considered as

variables because they are constants of the µ(I)-rheology. Thus, the dimensionless
equation to solve is:

∂

∂y∗

[

∣

∣γ̇∗
∣

∣

(

εΛ
(

1− y∗
)

+ 1
)

(

α (µ2 − µs)

ΛI0
√

εΛ (1− y∗) + 1 + α|γ̇∗|
+

µs

|γ̇∗|

)]

= 0. (9)

In order to easily solve this equation, we must get rid of the absolute value that
applies to the shear rate γ̇∗. In our geometry, the top plate moves at a positive
velocity and the bottom one is motionless. The shear rate within the granular
system is therefore positive, or equal to zero:
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γ̇∗ > 0 then
∣

∣γ̇∗
∣

∣ = γ̇∗. (10)

This allows us to obtain the following expression for the shear rate

dotγ∗ = −ΛI0
√

ε Λ (1− y∗) + 1 (εΛ µs y
∗ − εΛµs − µs + k1)

α (εΛµ2 y∗ − εΛµ2 − µ2 + k1) .
(11)

where k1 is the constant of integration of Eq. (9).
The velocity is then obtained by integrating the shear rate with respect to y∗:

u∗(y∗) = k2 +
k1

3/2 I0 (µs − µ2)

α ε µ2
5

2

log

(

2µ2

√

Λε (1− y∗) + 1− 2
√
µ2 k1

2µ2

√

Λε (1− y∗) + 1 + 2
√
µ2 k1

)

+

2 I0
3αεµ2

2

(

µ2 µs
(

εΛ
(

1− y∗
)

+ 1
)

3

2 + 3 k1 (µs − µ2)
√

εΛ (1− y∗) + 1
)

(12)

To completely define the velocity profile, it is necessary to determine the
constants k1 and k2. This is done in the next section through the use of the
boundary conditions.

4.2 Boundary conditions

Although the use of the µ(I) rheology close to boundaries, where the influence
of the fluctuating energy flux may not be disregarded, is questionable we assume
here that such an approximation does not modify significantly the features of the
flow. The relevancy of that assumption will be discussed in the last section of
the present paper. Assuming that there is no slip on the walls, the velocity of
the granular material at y∗ = 1 is equal to that of the top plate i.e. U0. Since
the pressure P ∗ decreases with increasing y∗, we may observe situations where
the yield criterion τ/P > µs is verified only if y∗ is larger than a critical value
y∗critical. Therefore, two situations have to be considered. First, the case where the
yield criterion is verified at any depth. In that case, the velocity of the granular
medium at the bottom plate is equal to the one of the bottom plate, i.e. zero. The
corresponding boundary condition is therefore u∗(y∗ = 0) = 0. The other situation
is the case where the yield stress condition is only satisfied for y∗ ≥ y∗critical. The
flow is then localized close to the moving plate between y∗ = 1 and y∗critical. In
such a case, the former boundary condition is still valid but the latter has to be
replaced by τ(y∗ = y∗critical)/P

∗(y∗ = y∗critical) = µs and by u∗(y∗ = y∗critical) = 0.
From a practical point of view, y∗critical, depends on α and ε, dependence which
will be studied in the following. The flow localization is therefore observed only if
the dimensionless height of the channel Λ is greater than the dimensionless length
Λcritical = Λ(1−y∗critical). Note that, for given ε and α, if Λ is set equal to Λcritical,
the conditions τ(y∗ = y∗critical)/P

∗(y∗ = Λcritical) = µs and u∗(y∗ = y∗critical) = 0
are equivalent to u∗(y∗ = 0).
If the yield criterion is satisfied at any depth, the two boundary conditions allow
us to find the values of k1 and k2 in step 4 of the resolution (see Sect. 3). To solve
this nonlinear equation, we use the second boundary condition and Eq. (12) to
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write k2 as a function of k1. Then, the same equation and the other boundary
condition are used to get the value of k1 by using Newton’s iterative method. Note
that it is necessary to choose an adequate initial value of k1. Indeed, if we set
f(k1) = 0 the equation to be solved, the graph of f(k1) has a vertical asymptote,
which correspond to I → +∞, at the point of abscissa k1 = µ2, and no real values
for k1 > µ2. Practically, we therefore choose k

1 init = µ2 − 10−4.
If the flow is localized between y∗ = 1 and y∗ = y∗critical the system composed of
the three boundary conditions is solved numerically by using Newton’s iterative
method.

4.3 Results

We have previously shown that the description of the flow depends on four param-
eters Λ, ε, α and Φ. As mentioned above, the variations of the packing fraction Φ

are neglected within the flow, so we restrict ourselves to the study of the influence
of the other three parameters. Note that by definition, these parameters are all
positive and different to zero except ε which can be zero if gravity is not taken
into account. In that case, the shear rate |γ̇∗| (see Eq. (11)) reduces to a constant

|γ̇∗| = −
ΛI0 (k1 − µs)

α (k1 − µ2)
and the velocity profile becomes linear with y, as follows:

u∗
(

y∗
)

= −
ΛI0 (k1 − µs) y

∗

α (k1 − µ2)
+ k2.

In the general case (ε 6= 0), we assigned values to the variables ε and α, and
vary Λ. Experimentally that corresponds to a variation of the height between the
plates, or a variation of the grain diameter. We chose values of α and ε compatible
with typical experimental situations on glass beads. Thus, by choosing ρ = 1.5×
103 kg/m3, g = 9.81 m/s2, d = 0.5× 10−3 m, P0 = 1, 000 Pa and U0 = 100 mm/s
we obtain ε = 0.15 and α = 0.007.

Figure 2 shows the velocity profiles for different values of Λ. Note that for very
small values of Λ (Λ ≤ 2), the velocity profile tends to be linear, whereas for larger
values (Λ = 5 and 10) the velocity profile is more curved. If the gap between
plates are even greater i.e. Λ > Λcritical, the yield criterion is not satisfied between
y∗ = 0 and y∗ = y∗critical leading to a localization of the flow between the latter
depth and y∗ = 1. Therefore, as expected, three cases can be observed:

– for Λ = Λcritical the granular system flows at any height and the shear rate is
equal to zero at the bottom plate,

– for Λ < Λcritical the flow also occurs at any height but the shear rate is strictly
positive at the the bottom plate,

– for Λ > Λcritical the flow is localized. The static zone corresponds to y∗ ∈
[0, 1− Λcritical/Λ[) and the flowing zone to y∗ ∈ [1− Λcritical/Λ, 1]).

Note that, practically, the value of Λcritical is determined numerically by di-
chotomy on a given interval of Λ. Interestingly, as long as Λcritical is defined (i.e.
Λ ≥ Λcritical), it does not depend on Λ. This result is in agreement with exper-
iments [3,32,33] as well as discrete element simulations [4,29] that report that
under some conditions the flow in a plane shear cell is localized close to the mov-
ing surface. Below the aforementioned shear layers, the system is quasistatic. An
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increase of the height of the system modifies neither the height of the shear layer
nor the velocities of its grains. However, it should be noted that considering the
zone below the shear layer as a purely static area is an approximation. Although it
has been used many times [32,34–38] it does not reflect the reality: the grains ac-
tually move intermittently [39,40] and the corresponding average profile decreases
exponentially with depth. This discrepancy comes from the limitation of the µ(I)-
rheology that is not able to take into account the non-local effects responsible of
the aforementioned intermittent motion.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0  0.2  0.4  0.6  0.8  1

u*
x

y*

Λcritical = 10
Λ = 2    
Λ = 5    
Λ = 20  
Λ = 40  
Λ = 100 Λ increasing

Fig. 2 Velocity profiles obtained by varying Λ for ε = 0.15 and α = 0.007. For Λ = Λcritical,
the shear rate is exactly zero at y∗ = 0. For Λ > Λcritical there is an area for which the velocity
is equal to zero.

4.4 Discussion

4.4.1 Proposed law for Λcritical

We will now investigate the dependency of Λcritical with the other two parameters:
ε and α. Figure 3 reports the variations of Λcritical versus α (α ∈ [0.01 , 1]) and for
different values of ε. It shows that

Λcritical ≈ f(ε)α
1

2 , (13)

where f(ε) is a function that describes the dependence of Λcritical with ε. Figure 4
reports the variations of Λ for 1/ε ranged from 0 to 100 and for different values
of α. Let us recall that 1/ε is proportional to the pressure P0. Therefore, studying
the influence of 1/ε is equivalent to studying the effect of the external pressure P0.
We observe that

Λcritical ≈ g(α) 1/ε
1

2 , (14)

where g(α) is a function that describes the dependence of Λcritical with α. From
equations (13) and (14) we deduce:

Λcritical ≈ A

√
α√
ε
, (15)
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Fig. 3 Critical height Λcritical as a function of the dimensionless parameter α for several

values of ε. For a given ε, Λ is proportional to α1/2. log refers to the neperian logarithm.
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Fig. 4 Critical height Λcritical versus the dimensionless parameter 1/ε for several values of

α. For a given α, Λ is proportional to 1/ε1/2. log refers to the neperian logarithm.

where A = 2.2 is calculated at point α = 10−2, ε = 10−2.

An important point should be stressed out. In Figs. 3 and 4, Λcritical takes any
value between ≈ 0 and ≈ 10. However, since the height of a granular system cannot
be smaller than the diameter of a grains, we have H > d i.e. Λ > 1. The latter
condition and relation (15) lead to the following condition 2.2

√
α >

√
ε. Figure 5

shows the interval of validity of the approached law given by Eq. (15). We can
observe that the aforementioned simplified equation does not hold for large values
of ε and α (for log10(ε

−1/2) < 0.5 and log10(α
1/2) > -0.5). On the other side, the

approximate law better fits the exact results for small values of 1/ε and α. That
approached law as well as the relative deviations from that law – whose isovalues
are given by Fig. 6 – will be discussed in next section.
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Fig. 5 Isovalue lines of Λcritical = 1, 2, 4, 8, 16 (continuous line), compared to the approxi-
mated law (15) (dashed line). The approximated law fits well the isovalue lines for values of α
and 1/ε near to α = 10−2, ε = 10−2. The map was obtained by a plot of isovalues of a matrix
of 34 by 34 points.
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Fig. 6 Isovalue lines of the relative error= 20%, 10%, 5%, 2%, 1% of approximate law (15).
The map was obtained by a plot of isovalues of a matrix of 34 by 34 points.

4.4.2 Justification of the simplified law for Λcritical

In order to justify the dependency of Λcritical in
√

α/ε, we will derive below this
relationship by a simplified approach. That will allow us to better understand the
origin of its domain of validity (see Fig. 5). In the configuration of the shear plane,
the horizontal pressure gradient is zero ∂P (y)/∂x = 0, the equation of motion
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therefore is ∂τ(x, y)/∂y = 0, i.e.

∂τ

∂y
=

∂µ(y)P (y)

∂y
= 0. (16)

After integration, we obtain

µ(y) =
A

P (y)
, (17)

where A is a constant.
One of the simplifying assumptions adopted (see Sect. 2) is the hydrostatic char-
acter of the pressure within the granular medium. Thus, in dimensionless form,
we have P ∗(y) = 1 + εΛ(1− y∗). Then, we can write the Eq. (16) as

µ(y∗) =
A

1 + εΛ(1− y∗)
. (18)

In the following, we will consider the case where the flow height is exactly equal
to the critical height for which the shear stress becomes zero at the bottom plate
(at y∗ = 0). In this case, at this same plate, the granular system is at the limit of
the static state and, consequently, we have µ(y∗ = 0) = µs. Using this last relation
in Eq. (18) we can find the expression of the constant A and obtain for µ(y∗) the
following expression

µ(y∗) = µs
1 + εΛcritical

1 + εΛcritical(1− y∗)
. (19)

At y∗ = 1 this equation becomes

µ(y∗ = 1) = µs(1 + εΛcritical). (20)

We have an expression for the critical height Λcritical depending on the effective
friction coefficient µ(y∗). It is then sufficient to express the coefficient of friction as
a function of α and ε to derive an expression for Λcritical in terms of these quanti-
ties. This can be done with the empirical formula connecting the effective friction
with the inertial number I: µ(I) = µs+(µ2 − µs) /(1 + I0/I). The inertial number
depends on y through pressure and shear rate: I(y∗) = γ̇(y∗)α/(Λcritical

√

P ∗(y∗)).
The pressure dependency with y is known (hydrostatic assumption) contrary

to that of the shear rate. To overcome this lack, we can assume that the velocity
profile is linear between y∗ = 1 and y∗ = 0. In doing so, we underestimate the
shear rate at the surface y∗ = 1 but it seems reasonable to assume that this
approximation does not alter the dependency of γ̇ in respect to α and ε. Thus,
within this approximation, the shear rate at the upper plate is γ̇ ≈ U0/Hcritical

which corresponds to a dimensionless shear γ̇∗ of the order 1. Moreover, still at
y∗ = 1, we have P ∗(y∗ = 1) = 1 and I ≈ α/Λcritical. We can then deduce the
following expression for µ(y∗):

µ(y∗ = 1) ≈ µs + (µ2 − µs)
α

α+ I0Λcritical

.

Then, this equation can be used to substitute µ(y∗ = 1) in the Eq. (19) for which
y∗ = 1 leading to the following second-order equation:

Λ2
critical +

α

I0
Λcritical −

µ2 − µs

I0µs

α

ε
= 0, (21)
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which has real solutions only if

αε ≥ −4

(

µ2 − µs

µs

)

. (22)

Since the left hand side of this equation is negative, and the quantities α and ε are
positive, this condition is always satisfied. The only positive solution, physically
acceptable, is therefore

Λcritical =

√

α

ε

µ2 − µs

µsI0

(
√

1 +
αεµs

4I0(µ2 − µs)
−
√

αεµs

4I0(µ2 − µs)

)

(23)

The dependency Λcritical ∝
√

α/ε is found if ζ = αεµs/[4I0 (µ2 − µs)] ≪ 1. This
condition corresponds to neglect the first order term in Λcritical in Eq. (21). In this
case, we have

Λcritical =

√

µ2 − µs

µsI0

√

α

ε
≈ 1.57

√

α

ε
. (24)

Note the proximity of the coefficient 1.57 with the coefficient 2.2 of Eq. (15).
The weak difference comes from the approximation made above on the shear rate
at the upper plate for Λ = Λcritical. By estimating the shear rate more accurately
by using the Fig. 2 we find the right factor.

As mentioned above the law Λcritical = 2.2
√

α/ε is an approximation and the
isovalue lines of the relative error are reported in Fig. 6. The simple justification
mentioned above is also able to explain the shape of those isovalues lines. Indeed,
to obtain such a simple relation between Λcritical, α and ε we have to assume that
ζ is negligible with respect to 1. If it is not the case, but if ζ is small, we can
perform a first order Taylor expansion in ζ of Eq. (23) that leads to

Λcritical ≈
√

α

ε

µ2 − µs

µsI0

(

1−
√
αε

2
√
I0

√

µs

µ2 − µs

)

.

Therefore, the relative error can be approximated by

|∆Λcritical/Λcritical| ≈
√
αε

2
√
I0

√

µs

µ2 − µs
,

justifying why the isovalues are more or less straight lines when they are plotted
in the plane (logα1/2, log ε−1/2).

5 Poiseuille flow

The second configuration for which we applied the semi-analytical resolution is
the Poiseuille flow. The granular medium flows in a channel, i.e. between two
stationary plates (see Fig. 7) and a pressure difference between inlet and outlet of
the channel is imposed. In this configuration we have been working in the absence
of gravity. Here again we assume that the packing fraction is uniform within the
flow and equal to 0.6.
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Umax H

y

x

Fig. 7 Sketch of the 2D Poiseuille configuration. H is the distance between the two plates
and Umax the maximum velocity of the imposed parabolic profile as input.

5.1 Dimensionless formulation

Following the same way as in the case of shear plane, to solve the Eq. (7), we
have six parameters that characterize our flow, i.e. K [the pressure gradient, see
Eq. (8)], P0, H, ρ, ρs and d. Let us recall that gravity is not taken into account.
To write Eq. (7) into a dimensionless form, we give three scales: a length scale H,

a velocity scale
√

−K H
ρs

and a pressure scale P0. The rescaled variables are then

written as follows: y∗ =
y

H
, u∗ =

u
√

−K H
ρs

, P ∗ =
P

P0
. This allows us to have three

dimensionless variables:

Λ =
H

d
, β =

√
−KH
√
P0

and Φ =
ρ

ρs
.

The variables which depends on y∗ are: P ∗(y∗) = 1, I(y∗) =
β |γ̇∗|

Λ
√

P ∗(y∗)
, and

µ(I) = µs +
µ2 − µs

I0/I + 1
.

In the Poiseuille configuration we have a plane of symmetry (Fig. 7) which
allows us to restrict our study to the half of the domain (y∗ ∈ [0,1/2]) where the
shear rate is positive γ̇∗ > 0 then |γ̇∗| = γ̇∗.

Thus the system is solved in dimensionless form:

∂

∂y∗

(

β |γ̇∗| (µ2 − µs)

Λ I0 + β |γ̇∗| + µs

)

= −β2, (25)

with

∣

∣γ̇∗
∣

∣ = −
ΛI0

(

β2 y∗ + µs − k1
)

β (β2 y∗ + µ2 − k1)
, (26)

where k1 is the constant of integration. By integrating this equation with respect
to y∗, we obtain, if the yield criterion is satisfied, the following expression of the
velocity:

u∗(y∗) = k2 − ΛI0
β3

(

y∗ β2 + (µs − µ2) log
(

β2 y∗ + µ2 − k1

))

, (27)

where k2 is the constant of integration.
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5.2 Boundary conditions

The two boundary conditions that we have in the half-Poiseuille configuration are:

– the shear stress is equal to zero at the center line, i. e. τ(y∗ = 1/2) = 0.
– we consider that the granular medium does not slide at the plate, i.e. u∗(y∗) = 0

at y∗ = 0.

These two conditions allow us to find the value of k1 and k2 in step 4 of
resolution (see Sect. 3), thus:

k1 = β2/2,

and

k2 = −ΛI0 (µ2 − µs)

β3
log

(

µ2 − β2

2

)

.

The dimensionless shear stress is then given by τ∗ = β2(1/2−y∗). Note that, since
this quantity has an upper boundary µ2, a steady state cannot be attained, in
the framework of this theory, if β (the dimensionless pressure gradient) is higher
than

√
2µ2. In the following we will therefore consider that β <

√
2µ2. Let us

now determine y∗c , the value of y∗ for which the yield criterion is no more satisfied
i.e. τ < µsP . From the latter expression of τ it corresponds to y∗c = 1/2 − µs/β

2.

Below this value, the yield criterion is satisfied and the system is sheared. Above,
it behaves like a plug flow. Physically, y∗c cannot be lower than 0. This conditions
leads to β2 > 2µs. So, in the following, we will consider that β ∈ [

√
2µs,

√
2µ2].

After integration of the shear rate, we obtain for y∗ < y∗c , the following expression
of the velocity:

u∗(y∗) = −
ΛI0

β3

(

β2 y∗ + (µs − µ2) log

(

−
2 β2 y∗ + 2µ2 − β2

β2 − 2µ2

))

. (28)

The maximum value of the velocity is then

u∗m = u∗(y∗ = 1/2− µs/β
2) = −

ΛI0

β3

(

β2/2− µs + (µs − µ2) log(
µ2 − µs

µ2 − β2/2
)

)

.

(29)
Interestingly, the limit case y∗c = 1/2 is only obtained for infinite pressure gra-
dient i.e. β → +∞ which is incompatible with the aforementioned condition
β ∈ [

√
2µs,

√
2µ2]. Therefore, in such a geometry, the flow always displays a plug

flow at the center of the cell. Its minimum and maximum sizes are respectively
µs/µ2 (obtained for β → √

2µ2) and 1 (obtained for β → √
2µs).

5.3 Results and Discussion

In the current configuration, the description of the flow depends on two parameters
Λ and β as the variations of Φ are neglected (Φ = 0.6). For a granular flow with
the parameters ρ = 1.5× 103 kg/m3, g = 9.81 m/s2, d = 0.5× 10−3 m, H = 0.1 m,
P0 = 100 Pa and K = −100 Pa/m we have Λ = 20 and β = 0.31. We study the
influence of these parameters on the velocity profile of the flow. Equation (28)
clearly shows that the amplitude of the velocity profile is proportional to Λ. Thus,
the study will be restricted to the influence of the parameter β (Λ is kept constant
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Fig. 8 Variation of velocity profile for different β and for Λ = 20. The Inset represents the
profile of the sheared regions which tend to to be parabolic for β →

√
2µs = 0.8739.

and equal to 20).

Figure 8 reports the profiles obtained for different values of β. As expected a
plug flow is visible at the center of the channel for any values of β ∈ [

√
2µs,

√
2µ2].

Those profiles are somewhat close to the ones obtained by the “Da Vinci fluid”
model described in [41]. They also look similar to the profiles obtained with Bing-
ham plastic fluids, i.e. a material that behaves as a rigid body at low stresses but
flows as a viscous fluid at high stress. Let us recall here that Poiseuille flows of
such fluids display a plug at the center of the cell and a parabolic velocity pro-
file close to the sidewalls. To quantify this resemblance, we report in the inset of
Fig. 8, the quantity (1−u∗x/umax) versus (1−y∗/y∗c )

2. For Bingham plastic fluids,
those two dimensionless quantities are equal. Interestingly, we find that the veloc-
ity profiles correspond to those of a Bingham plastic fluid for small values of β (e.g.
β = 0.88,and 0.90). They flatten for larger values (e.g. β = 1, 1.1, 1.339). Another
quantity of interest is the maximum velocity u∗m, which is equal to u∗(y∗ = y∗c ).
Figure 9, which reports previous quantity as a function of β, shows that u∗m is
equal to zero for β =

√
2µs and diverges when β tends to

√
2µ2. The presence of

this divergence can be explained as follows. The balance of flow momentum over
half the cell width gives that the pressure gradient K times the half width H/2
is balanced by the difference in shear stresses on the wall and on the center of
the cell. The former shear stress is [µs + (µ2 − µs)/(1 + I0/I)]P0 and the latter is
equal to zero. Consequently, KH/2 can increase no further than the limiting stress
difference µ2P0 obtained as I and u∗m become infinite.

This figure also shows that for small value of β (β < 0.95), the velocity Umax is
the same as in the case of a Bingham plastic fluid (i.e. a parabolic profile between
0 and y∗c , then a plug flow) although the viscosity of the granular fluid is not that
of a Bingham plastic fluid. Figure 8 also shows that for the same range of β (β < 1)
the velocity profile of the sheared region is approximated by a parabola. To justify
Bingham-like behavior for β → √

2µs, let us first recall that for such fluid, when
the yield criterion is satisfied, the shear stress is equal to to τc + ηnγ̇, where τc
is the yield stress and ηn a constant Newtonian viscosity. Then, let us consider
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Fig. 9 Variation of u∗

m as a function of β and for Λ = 20. A Bingham plastic fluid and a
granular material obeying the µ(I)-rheology display a similar behavior when β → 0. On the
contrary, the latter displays a divergence in velocity for when β →

√
2µ2 = 1.1344 whereas

the former remains linear.

now the µ(I)-rheology and assume that I is much smaller that I0, justifying the
approximation µ(I) = µs + (µ2 − µs)I/I0. If the yield criterion is satisfied, the
shear stress is then Bingham-like:

τ = τc + ηn |γ̇| , (30)

with τc = µsP and ηn = (µ2−µs)
√
ρSP/I0. In such a case, we obtain the following

expressions of the velocity for y∗ ≤ y∗c :

u∗ =
I0Λ

2β(µs − µ2)

(

β2y∗
2
+ (2µs − β2)y∗

)

(31)

Its maximum value is given by

u∗m = u∗(y∗ = y∗c ) =
ΛI0
8β3

(β2 − 2µs)2

µs − µ2
. (32)

It is worth noting that, if the expression used for the effective friction coefficient
µ(I) is the simplified one (Eq. 4), β has no upper limit. Therefore, the position of
the plug flow y∗c belongs to the range [0,1/2]. Then, when β → ∞ the half-length
of the plug flow, λplug, tends to zero and the system is sheared all along its length.
This point is illustrated on Fig. 10 where λplug is reported versus β. The gray
zone corresponds to the ranges of β and λplug that can be reached using the full
expression of µ(I) (Eq. 2). If the simplified expression is used (Eq. 4), the values of
λplug are bounded between 0 and 1 and those of β between

√
2µs and +∞. From

the two latter equations we can easily show that, in such a condition, the velocity
profile tends toward a parabola and the maximum velocity diverges like β−1.

6 Conclusion and discussion

In this paper, we studied theoretically granular flows in the framework of the
µ(I) rheology. We focused on steady and fully developed granular flows in two
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Fig. 10 The half-length of the plug flow in the Poiseuille configuration depends on the gradient
pressure β. Depending on the expression used for µ(I) (see text for details), this half-length is
between 0.5 and µs/2µ2 (full expression given by Eq. 2 - gray zone) or 0.5 and 0 (simplified
expression given by Eq. 4).

geometries: the shear plane and Poiseuille. We obtained results can be summarized
as follow:

In the shear plane configuration, we have shown that for appropriate param-
eters, the flow is spatially localized. This is consistent with many experimental
observations. We have also identified a law characterizing the flow, including
Λcritical ∝

√

α/ε [see Eqs. (15) and (24)], i.e. the height H on which the gran-

ular medium is in motion is proportional to U
1/2
0 P

1/4
0 . Although this law is not

valid for all values of α and ε the domain of applicability seems very broad.
In the Poiseuille configuration, we have described in detail the influence of

the parameter β which is a function of the pressure gradient in the flow. We have
shown that the granular material flows only if the pressure gradient is greater
than a threshold value and that, under certain circumstances, the system behaves
like a Bingham plastic fluid.

As mentioned above, the µ(I) rheology does not take into account the influence
of the fluctuating energy flux that cannot be disregarded close to a boundary,
especially when the granular material is not dense. In the case of the plane shear
flow, we obtain a qualitative agreement with experiments [3] and simulations [29,
40] which suggests that neglecting the energy flux is a reasonable assumption. The
case of Poiseuille flow is more difficult since few experimental data are available in
such a configuration. Our goal was not to compare directly experimental results
with the µ(I) rheology but to apply the latter to a geometry commonly used in
fluid mechanics. However the following discussion will shed some light on that
particular point.
In this work, we have assumed that the packing fraction is constant within the
granular material, assumption that can be checked a posteriori. For that purpose,
we can use Eq. 6 (with ζ = 0.2) and the expressions of I derived in Sect. 4 for
the shear plane flow and in Sect. 5 for the Poiseuille flow and see whether the
variations of Φ are important or not. Figure 11 reports packing fraction profiles
for the shear plane flow (a) and the Poiseuille flow (b). For the former geometry the



18 Merline Tankeo, Patrick Richard and Édouard Canot
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Fig. 11 The variations of the packing fraction profiles versus y∗ is found to be almost constant
for the shear plane flow (a). The values of Λ are Λ = 2.5, 5, 10, 20, 40 and 100. On the
contrary, for the Poiseuille flow, it displays important variations close to the sidewalls for
important pressure gradients (b).

packing fraction varies slightly (< 2%) justifying the approach used in this work.
This is not surprising since, as mentioned above, our results agree with numerical
and experimental results. In the Poiseuille geometry, at low β, the packing fraction
variations are also weak. On the contrary, when β is increased, low values of the
packing fraction are found close to sidewalls. Therefore, the approach used above
is no more valid for those conditions (i.e. close to boundaries at high values of
β). As mentioned above this was expected since the µ(I) rheology does not take
into account the energy flux which are important close to the boundaries. Note
however that the aforementioned conclusions obtained in that geometry at low β

remain fully valid.
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des Ponts et chaussées, 2004.
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