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A SIMPLE PROOF OF THE TREE-WIDTH DUALITY

THEOREM

FRÉDÉRIC MAZOIT

Abstract. We give a simple proof of the “tree-width duality theorem” of
Seymour and Thomas that the tree-width of a finite graph is exactly one less
than the largest order of its brambles.

1. Introduction

A tree-decomposition T = (T, l) of a graph G = (V,E) is tree whose nodes are
labelled in such a way that

i. V =
⋃

t∈V (T ) l(t);

ii. every e ∈ E is contained in at least one l(t);
iii. for every vertex v ∈ V , the nodes of T whose bags contain v induce a connected

subtree of T .

The label of a node is its bag. The width of T is max{|l(t)| ; t ∈ V (T )} − 1, and
the tree-width tw(G) of G is the least width of any of its tree-decomposition.

Two subsets X and Y of V touch if they meet or if there exists an edge linking
them. A set B of mutually touching connected vertex sets in G is a bramble. A
cover of B is a set of vertices which meets all its elements, and the order of B is
the least size of one of its covers.

In this note, we give a new proof of the following theorem of Seymour and
Thomas which Reed [Ree97] calls the “tree-width duality theorem”.

Theorem 1 ([ST93]). Let k ≥ 0 be an integer. A graph has tree-width ≥ k if and

only if it contains a bramble of order > k.

Although our proof is quite short, our goal is not to give a shorter proof. The
proof in [Die05] is already short enough. Instead, we claim that our proof is much
simpler than previous ones. Indeed, the proofs in [ST93, Die05] rely on a reverse
induction on the size of a bramble which is not very enlightening. A new conceptu-
ally much simpler proof appeared in [LMT10] but this proof is a much more general
result on sets of partitions which through a translation process unifies all known
duality theorem of this kind such as the branch-width/tangle or the path-width
blockade Theorems. We turn this more general proof back into a specific proof for
tree-width which we believe is interesting both as an introduction to the framework
of [AMNT09, LMT10], and to a reader which does not want to dwell into this
framework but still want to have a better understanding of the tree-width duality
Theorem.
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2. The proof

So let G = (V,E) be a graph and let k be a fixed integer. A bag of a tree-
decomposition of G is small if it has size ≤ k and is big otherwise. A partial (< k)-
decomposition is a tree-decomposition T with no big internal bag and with at least
one small bag. Obviously, if all its bags are small, then T is a tree-decomposition
of width < k. If not, it contains a big leaf bag and the neighbouring bag l(u) of
any such big leaf bag l(t) is small. The nonempty set l(t)− l(u) is a k-flap of T .

Now suppose that X and Y are respectively k-flaps of some partial (< k)-
decompositions (TX , lX) and (TY , lY ), and that S = N(X) ⊆ N(Y ). Then by
identifying the leaves of the two decompositions which respectively contains X
and Y and relabelling this node S, then we obtain a new “better” partial (< k)-
decomposition.

This gluing process is quite powerful. Indeed let S ⊆ V have size ≤ k and
let C1, . . . , Cp be the components of G − S. The star whose centre u is labelled
l(u) = S and whose p leaves v1, . . . , vp are labelled by l(vi) = Ci ∪ N(Ci) is a
partial (< k)-decomposition which we call the star decomposition from S. It can
be shown that if tw(G) < k, then an optimal tree-decomposition can always be
obtained by repeatedly applying this gluing process from star decompositions from
sets of size ≤ k. But this process is not powerful enough for our purpose. We need
the following lemma.

Lemma 1. Let X and Y be respectively k-flaps of some partial (< k)-decompositions

(TX , lX) and (TY , lY ) of some graph G = (V,E). If X and Y do not touch, then

there exists a partial (< k)-decomposition (T, l) whose k-flaps are subsets of k-flaps
of (TX , lX) and (TY , lY ) other than X and Y .

Proof. Since, X and Y no not touch, there exists S ⊆ V such that no component
of G − S meet both X and Y (for example N(X)). Choose such an S with |S|
minimal. Note that |S| ≤ |N(X)| ≤ k. Let A contain S and all the components of
G− S which meet X , and let B = (V −A) ∪ S.

Claim 1. There exists a partial (< k)-decomposition of G[B] with S as a leaf and

whose k-flaps are subsets of the k-flaps of (TX , lX) other than X.

Let x be the leaf of TX whose bag contains X . Since |S| is minimum, there
exists |S| vertex disjoint paths Ps from X to S (s ∈ S). Note that Ps only meets
B in s. For each s ∈ S, pick a node ts in TX with s ∈ lX(ts), and let l′X(t) =
(lX(t) ∩ B) ∪ {s|t ∈ path from x to ts} for all t ∈ T . Then (TX , l′X) is the tree-
decomposition of G[B]. Indeed, since we removed only vertices not in B, every
vertex and every edge of G[B] is contained in some bag l′X(t). Moreover, for any
v /∈ S, l′X(t) contains v if and only if lX(t) does. And l′X(t) contains s ∈ S if lX(t)
does or if t is on the path from x to ts. In either cases, the vertices t ∈ V (TX)
whose bag l′X(t) contain a given vertex induce a subtree of TX .

Now the size of a bag l′X(t) is at most |lX(t)|. Indeed, since Ps is a connected
subgraph of G, it induces a connected subtree of TX , and this subtree contains
the path from x to ts. So for every vertex s ∈ l′X(t) \ lX(t), there exists at least
one other vertex of Ps which as been removed. The decomposition (TX , l′X) is
thus indeed a partial (< k)-decomposition of G[B]. It remains to prove that the
k-flaps of (TX , l′X) are contained in the k-flaps of (TX , lX) other than X . But by
construction, the only leaf whose bag received new vertices is x and l′X(x) = S
which is small. This finishes the proof of the claim.
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Let (TY , l
′

Y ) be obtains in the same way for G[A]. By identifying the leaves x
and y of TX and TY , we obtain a partial (< k)-decomposition which satisfies the
conditions of the lemma. �

We are now ready to prove the tree-width duality Theorem.

Proof. For the backward implication, let B be a bramble of order > k in a graph
G. We show that every tree-decomposition (T, l) of G has a part that covers B,
and thus T has width ≥ k.

We start by orienting the edges t1t2 of T . Let Ti be the component of T \ t1t2
which contains ti and let Vi = ∪t∈V (Ti)l(t). If X := l(t1) ∩ l(t2) covers B, we are
done. If not, then because they are connected, each B ∈ B disjoint from X in
contained is some B ⊆ Vi. This i is the same for all such B, because they touch.
We now orient the edge t1t2 towards ti. If every edge of T is oriented in this way
and t is the last vertex of a maximal directed path in T , then l(t) covers B.

To prove the forward direction, we now assume that G has tree-width ≥ k, then
any partial (< k)-decomposition contains a k-flap. There thus exists a set B of
k-flaps such that

(i) B contains a flap of every partial (< k)-decomposition;
(ii) B is upward closed, that is if C ∈ B and D ⊇ C is a k-flap, then D ∈ B.

So far, the set of all k-flaps satisfies (i) and (ii).

(iii) Subject to (i) and (ii), B is inclusion-wise minimal.

The set B may not be a bramble because it may contain non-connected elements but
we claim that the set B′ which contains the connected elements of B is a bramble
of order ≥ k. Obviously, its elements are connected. To see that its order is > k,
let S ⊆ V have size ≤ k. Then B′ contains a k-flap of the star-decomposition from
S, and S is thus not a covering of B′.

We now prove that the elements of B pairwise touch, which finishes the proof
that B′ is a bramble. Suppose not, then let X and Y ∈ B witness this. Obviously,
no subsets of X and Y can touch so let us suppose that they are inclusion-wise
minimal in B. The set X being minimal, B \ {X} is still upward closed and is
a strict subset of B. There thus exists at least one partial (< k)-decomposition
(TX , lX) whose only flap in B is X . Likewise, let (TY , lY ) have only Y as a flap
in B. Let (T, l) be the partial (< k)-decomposition satisfying the conditions of
Lemma 1. Since B is upward closed and contains no k-flap of (TX , lX) and (TY , lY )
other than X and Y , it contains no k-flap of (T, l), a contradiction. �
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