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Abstract: A new missile midcourse guidance algorithm is proposed in this paper. It is a
combination of sampling based path planning, Dubins’ curves and classical guidance laws.
Moreover, a realistic interceptor missile model is used. It allows to anticipate the future changes
of flight conditions along the trajectory, especially the loss of maneuverability at high altitude.
Simulation results are presented to demonstrate the substantial performance improvements over
classical midcourse guidance laws.
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1. INTRODUCTION

The guidance of an interceptor missile to a target includes
two main stages after the launch: the midcourse guidance
and the terminal guidance. The midcourse guidance con-
sists in ensuring a proper collision course to the target so
that the seeker can detect the target before engaging the
terminal homing phase. While a Proportional Navigation
(PN) law is often sufficient for the homing phase, trajec-
tory shaping is necessary for the midcourse phase to fulfil
the conditions for target detection. Furthermore, for long-
range missile, an acceptable velocity before the endgame
needs to be ensured. Therefore, the midcourse guidance
problem is an optimal problem with constraints.

This optimal problem can be solved numerically using op-
timal control theory. However, such a nonlinear two-point
boundary value problem cannot be solved in real time on a
recent embedded computer. To avoid numerical problems,
many closed-loop optimal guidance laws were proposed in
the past using singular perturbation theory (Cheng and
Gupta [1986], Menon and Briggs [1990], Dougherty and
Speyer [1997]), linear quadratic regulators (Imado et al.
[1990], Imado and Kuroda [1992]), analytical methods (Lin
and Tsai [1987]) or modified proportional guidance (New-
man [1996]). The kappa guidance detailed in (Lin [1991])
is certainly the most known of these guidance laws. It is
designed using optimal control theory so that the missile
final speed is maximized. Thus, gains of the control law are
updated depending on current flight conditions. However,
control limitations (saturations) are difficult to satisfy us-
ing this type of guidance law. Likewise, the kappa guidance
is not suitable for a surface-to-air missile dedicated to high
altitude interception since air density decreases with in-
creasing altitudes. For such complex systems and missions,
the optimal problem needs to be considered globally.
More recently, neural networks were trained with precom-
puted optimal trajectories (Song and Tahk [2001, 2002])
and used as a feedback control law to obtain almost
optimal trajectories. However, neural networks cannot be

trained with an exhaustive amount of optimal trajectories
that would cover any possible configurations. Fuzzy logic
techniques have also been investigated for the design of a
midcourse guidance law (Lin and Chen [2000], Lin et al.
[2004]). Nevertheless, control constraints remain difficult
to satisfy.

In parallel with work on missile guidance problems, many
studies in robotic field address optimal control problems
and path planning. From the robotic point of view, a
missile is a non-holonomic system moving forward. Al-
though a missile is much more complex, the well-known
Dubins’ vehicle (Dubins [1957]) is the most similar system
in mobile robotic. Very little work on midcourse guidance
is based on Dubins’ results to find minimum path length
trajectories, though a recent work on reachability guidance
is one of the first attempts (Robb et al. [2005]). However,
the original result by Dubins only addresses non-varying
systems while the maneuverability of a long-range missile
can vary substantially along the trajectory due to varying
control constraints. Therefore, Dubins’ results are not suf-
ficient to solve the path planning problems for a missile.
Sampling-based path planning methods, such as Rapidly-
exploring Random Trees (RRT) (LaValle [2006]) or Proba-
bilistic Roadmap Methods (PRM) (Kavraki et al. [1996]),
offer solutions for trajectory shaping in complex envi-
ronments while a classical optimal method often fails to
find a solution. These are usually used for path planning
of a Dubins’ car in environments cluttered by obstacles
(LaValle and Kuffner [2001]). The main advantage of these
techniques is that even a complex system can be considered
without the need for approximations (Pepy et al. [2006]).
The idea of this paper is to use such a sampling-based
method.

The proposed method in this paper consists in using the
RRT algorithm for the trajectory shaping of a missile
midcourse guidance stage. The principle is to use Dubins’
results to define the metric of the algorithm. A PN law
is used to steer the vehicle. Terminal constraints are
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defined with respect to the Predicted Interception Point
(PIP) and the interceptor capabilities for the terminal
guidance stage. Simulations results are obtained on a
missile model consisting of one propulsion stage. The
proposed approach demonstrates promising performance
for trajectory planning in some high altitude cases where
existing methods, such as kappa guidance, fail.

This paper is organized in three sections followed by a
conclusion and some perspectives. Section 2 introduces the
missile model and the problem. In Section 3, the RRT
algorithm is described. Section 4 presents some simulation
results obtained with the proposed approach.

2. PROBLEM STATEMENT

2.1 System model

The missile is modeled as a rigid body of mass m and
inertia I maneuvering in a vertical 2D plane. A round
earth model is used. Due to small flight times (less than
one minute), the earth rotation has very little effect on
the missile and is neglected in this paper. Three frames
(Fig. 1) are introduced to describe the motion of the
vehicle: an earth-centred earth-fixed (ECEF) reference
frame I centered at point O and associated with the vector
basis (i,k); a body-fixed frame B attached to the vehicle
at its center of mass Cg with the vector basis (eb

1 , e
b
3);

and a velocity frame V attached to the vehicle at Cg

with the vector basis (ev
1, e

v
3) where ev

1
def
= v
‖v‖ and v

is the translational velocity of the vehicle in I. Position
and velocity defined in I are denoted ξ = (x, z)> and
v = (ẋ, ż)>. The translational velocity v is assumed to
coincide with the apparent velocity (no wind assumption).
The orientation of the missile is represented by the pitch
angle θ from horizontal axis to eb

1 . The angular velocity is

defined in B as q
def
= θ̇.

Translational forces include the thrust fthrust, the force
of lift flift, the force of drag fdrag and the force due to
the gravitational acceleration mgk (Fig. 1). Aerodynamic
torque is denoted τaero and perturbation torque is denoted
τpert. Using these notations, the vehicle dynamics can be
written as
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ξ̇ = v, (1)

mv̇ = fdrag + flift + fthrust −mgk, (2)

θ̇ = q, (3)

Iq̇ = τaero + τpert. (4)

The aerodynamic forces are

fdrag = −1

2
ρv2SCDev

1,

flift = −1

2
ρv2SCLev

3,
(5)

where ρ is the air density; S is the missile reference area,
CD is the drag coefficient, CL is the lift coefficient, and

v
def
= ‖v‖. CL and CD both depend on the angle of attack

α (Fig. 1) and on the longitudinal speed of the missile.

The thrust force is applied until the boost phase stops, i.e.
as long as t ≤ tboost. It is assumed to be constant and is
defined as

fthrust = (Isp(Vac)g0qt −Aep0) eb
1 , (6)

where Isp(Vac) is the vacuum specific impulse, qt = −ṁ is
the mass flow rate of exhaust gas, g0 is the gravitational
acceleration at sea level, Ae is the cross-sectional area of
nozzle exhaust exit and p0 is the external ambient pressure.
Mass m and inertia I are time-varying values during the
propulsion stage.

A hierarchical controller is used to control the lateral
acceleration av = avev

3 perpendicular to v: an inner loop
stabilizes the rotational velocity q of the vehicle and an
outer loop controls the lateral acceleration av (Devaud
et al. [2000]). In the following, av

c denotes the setpoint
of this control loop.

2.2 Atmospheric model

The US Standard Atmosphere, 1976 (US-76) is used in
this paper. In the lower earth atmosphere (altitude <
35 km), density of air and atmospheric pressure decrease
exponentially with altitude and approach zero at about
35 km (Fig. 2). As we consider a missile with only
aerodynamic flight controls, the maneuvering capabilities
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are linked to the density of air (5) and approaches zero at
35 km.

2.3 Mission and requirements

Let x(t) = (ξ(t),v(t)) ∈ X ⊆ R4 be the state of the
system, av

c ∈ U(t,x) ⊆ R3 be an admissible control input
and consider the differential system

ẋ = f(t,x,av
c), (7)

where f is defined in section 2.1.

X ⊆ R4 is the state space. It is divided in two subsets. Let
Xfree be the set of admissible states and let Xobs = X\Xfree

be the obstacle region i.e. the set of non-admissible states.
In this paper, Xfree is defined as

Xfree = {x : altitude(ξ) > 0, ‖v(t > tboost)‖ > vmin}, (8)

where vmin is the minimum tolerated interceptor speed at
the interception point defined by the performance of the
terminal phase of the interceptor.

The initial state of the system is xinit ∈ Xfree.

The path planning algorithm is given a predicted inter-
ception point xpip = (ξpip,vpip). In order to achieve its
mission, the interceptor has to reach a goal set Xgoal,
shown in Fig. 3, defined as

Xgoal = {x : ‖ξ−ξpip‖ < R, ‖v‖ > vmin,∠(v,−vpip) < φf}
(9)

where R is the radius of a sphere centered at ξpip and φf is
related to the maximum allowed aspect angle. Values of R,
φf and vmin are defined by the homing loop performance
of the interceptor.

U(t,x) is the set of admissible control inputs at the time
t, when the state of the system is x:

U(t,x) = {av
c : αc 6 αmax(t,x)} (10)

where αc is the needed angle of attack to obtain the control
input av

c and αmax(t,x) is the maximum tolerated value of
the angle of attack which depends on t and x. It is defined
by

αmax(t,x) = min
(
αstb

max(t,x), αstruct
max (t,x)

)
. (11)

αstb
max(t,x) is the maximum achievable angle of attack using

tail fins. This value depends on altitude and speed of the
missile. It is given by wind tunnel experiments. αstruct

max (t,x)
is the structural limit which is given by the maximum
lateral acceleration ab

max in body frame that the missile
can suffer before it breaks.

The motion planning problem is to find a collision free
trajectory x(t) : [0, tf ] → Xfree with ẋ = f(t,x,av

c), that

Algorithm 1 RRT path planner

Function : build rrt(in : K ∈ N, xinit ∈ Xfree, Xgoal ⊂
Xfree, ∆t ∈ R+, out : G)

1: G← xinit

2: i = 0
3: repeat
4: xrand ← random state(Xfree)
5: xnew ← rrt extend(G,xrand)
6: until i+ + > K or (xnew 6= null and xnew ∈ Xgoal)
7: return G

Function : rrt extend(in : G, xrand, out : xnew)

8: xnear ← nearest neighbour(G,xrand)
9: av

RRT ← select input(xrand,xnear)
10: (xnew,a

v
c)← new state(xnear,a

v
RRT,∆t)

11: if collision free path(xnear,xnew,∆t) then
12: G.AddNode(xnew)
13: G.AddEdge(xnear,xnew,a

v
c)

14: return xnew

15: else
16: return null
17: end if

starts at xinit and reaches the goal region, i.e. x(0) = xinit

and x(tf ) ∈ Xgoal.

3. ALGORITHM DESCRIPTION

3.1 Rapidly-exploring Random Trees

Rapidly-exploring Random Trees (RRT) (LaValle and
Kuffner [2001]) is an incremental method designed to
efficiently explore non-convex high-dimensional spaces.
The key idea is to visit unexplored part of the state
space by breaking its large Voronoi areas (Voronoi [1907]).
Algorithm 1 describes the principle of the RRT when used
as a path planner.

First, the initial state xinit is added to the tree G.
Then, a state xrand ∈ Xfree is randomly chosen. The
nearest neighbor function searches the tree G for the
nearest node to xrand according to a metric d (section 3.2).
This state is called xnear. The select input function se-
lects a control input av

RRT according to a specified criterion
(section 3.3) to connect xnear to xrand. Equations (1) and
(2) are then integrated on the time increment ∆t using
av

RRT and xnear to generates xnew (new state function). At
line 11, a collision test (collision free path function) is
performed: if the path between xnear and xnew lies in Xfree

then xnew is added to the tree (lines 12 and 13).

These steps are repeated until the algorithm reaches K
iterations or when a path is found, i.e. xnew ∈ Xgoal.

Figure 4 illustrates RRT expansion.

3.2 nearest neighbour

xnear is defined as the nearest state to xrand according to
a specified metric. While the euclidean distance is suit-
able for holonomic systems, this cannot measure the true
distance between two states for non-holonomic vehicles.
Indeed, initial and final orientations of the velocity vector
v need to be taken into account. A metric that uses
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Fig. 4. RRT expansion

Dubins’ results (Dubins [1957], Boissonnat et al. [1991])
is proposed in this paragraph.

Let γ = θ − α denote the flight path angle of the vehicle.
Recall the translational dynamics (1) and (2) of the missile
while ignoring the dynamics of the norm v of the velocity
vector v, then rewrite it as follows:

ẋ = v cos(γ)

ż = v sin(γ)

γ̇ =
av

v

(12)

where av = avev
3. Assume that the control of the lateral

acceleration is perfect, that is ∀t, av ≡ av
c ∈ U (t,x).

System (12) is similar to the system considered in (Dubins
[1957]), often called the Dubins’ car. This is a non-
holonomic vehicle moving forward with a constant velocity
and capable of maneuvering with a bounded curvature.
The velocity v is not constant in (12) due to drag and
thrust forces. In order to use Dubins’ results, a change of

variable from time t to curvilinear abscissa s =
∫ t

0
v(u) du

is made. Thus, (12) becomes
x′ =

dx

ds
= cos(γ)

z′ =
dz

ds
= sin(γ)

γ′ =
dγ

ds
= c

(13)

where c = av

v2 is the curvature of the vehicle trajectory.
Since av ∈ U (t,x), the maximum curvature cmax (t,x)
depends on t and x along the trajectory.

In (Dubins [1957]), cmax was considered as a constant along
the trajectory and minimum length paths from an initial
state (xinit, zinit, γinit) to a final state (xfinal, zfinal, γfinal)
were analyzed. It was shown that such paths are a sequence
of circles C of maximum curvature and segment lines S.
Furthermore, it was proved that minimum length paths are
either of type CCC (Curve-Curve-Curve) or CSC (Curve-
Segment-Curve). Later, using optimal control theory and
some geometric arguments (Boissonnat et al. [1991]), the

(i) CCC type (ii) CSC types

xinit

xfinal
xinit

xfinal

xinit

xfinal

Fig. 5. Dubins’ paths

same result was obtained. An example of each type of
paths is presented in Fig. 5. Thus, the length of the optimal
path can be obtained analytically.

The Dubins’ metric used in the nearest neighbour func-
tion is based on the Dubins’ work as follows. Given a node
x(t) ∈ G, the maximum curvature cmax(t,x) is computed
at x(t). Then, the minimum length path from x to xrand is
computed using Dubins’ results described previously. This
procedure is repeated for all x(t) ∈ G and the state xnear

with the shortest optimal path to xrand is returned.

3.3 select input

The select input function returns a control input av
RRT,

using xnear and xrand. av
RRT can be chosen randomly or

using a specific criterion. In this paper, to rapidly explore
the state space, the control input av

RRT is chosen in order
to create a new state xnew as close as possible to xrand. A
Proportional Navigation (PN) guidance law is proposed in
this paper:

av
RRT =

(
N

t2go

(ξrand − ξnear − vneartgo) · ev
3

)
ev

3 (14)

where N is a constant gain and tgo is the estimated time-
to-go.

To satisfy the missile constraints, the control input av
c is

obtained after saturating av
RRT so that av

c ∈ U(t,x).

The new state function applies this control input during
the time increment ∆t to obtain xnew.

4. RESULTS AND ANALYSIS

A single-stage missile is used in this section. The boost
phase of the missile lasts 20s. During the whole flight, the
missile is only controlled aerodynamically using tail fins,
the missile speed at tboost is approximately 2000m/s. The
control loop is assumed to be perfect (∀t, av = av

c).

In this section, two scenarios are analyzed. For both, the
time increment ∆t = 2s, the initial position ξinit = (0, 0),
the missile is launched vertically, X = [−20km, 20km] ×
[0km, 30km],

Xgoal =
{
x : ‖ξ − ξpip‖ < 500m, ‖v‖ > 500m/s,

∠(v,−vpip) < π/8} ,
ξpip = (15km, 15km) in scenario 1, ξpip = (10km, 25km)
in scenario 2 and vpip is parallel to the ground.
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0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

250

300

350

m
/s

2

t/tf

 

 

||av
c(αmax)||

||av
kappa||

||av
RRT||

Fig. 7. Scenario 1 - Lateral accelerations along the solution
trajectories

In both scenarios, trajectories generated by our RRT-
based guidance law are compared to those obtained using
kappa guidance (Lin [1991]). Control input returned by
kappa guidance before saturation is denoted av

kappa.

A bias toward the goal is introduced in the algorithm to
reduce the number of needed nodes to reach Xgoal. This
bias, called RRT-GoalBias (LaValle and Kuffner [2001]),
consists in choosing xpip as xrand in the random state
function with a probability p. In this paper, p = 0.01.

On the following figures, the dashed curve is the trajectory
obtained using the kappa guidance, the tree G is repre-
sented in blue, Xgoal is represented as a red circle with two
dashed line segments as in figure 3. The boost phase of the
generated trajectory between xinit and Xgoal is in green,
the second phase in pink.

Figure 6 illustrates the trajectories obtained for scenario
1. Figure 7 illustrates the lateral accelerations av

kappa and
av

RRT respectively returned by kappa guidance and com-
puted in select input function. av

c(αmax) is the maxi-
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Fig. 9. Scenario 2 - Lateral accelerations along the solution
trajectories

mum lateral acceleration tolerated by the missile. Since the
control inputs av

kappa and av
RRT for both guidance methods

are always below the maximum values tolerated by the
missile, both trajectories reach Xgoal easily.

The number of generated nodes to find this solution
is 1115. The final speeds are respectively 1717m/s and
1807m/s for kappa guidance and RRT-based guidance.

Scenario 1 illustrates a case where a solution can be found
using a classical midcourse guidance law. In this case,
our RRT-based guidance law is also able to provide a
trajectory with similar performances.

Figure 8 illustrates the trajectories obtained for scenario
2. This case differs from scenario 1 since the target is
higher and closer in terms of horizontal distance. The
difficulty for an aerodynamically controlled missile lies in
the low maneuverability at high altitude due to the low
density of air. Therefore, it is hard to satisfy the constraint
∠(v(tf ),−vpip) < φf where vpip is parallel to the ground.



Kappa guidance trajectory (dashed curve) cannot satisfy
this constraint since ∠(v(tf ),−vpip) = 0.62 > π/8 rad.
It does not anticipate the future lack of maneuverability
and sends low control inputs until t/tf = 0.5 (Fig. 9).
Thus, at the end of the trajectory (t/tf > 0.9), the
guidance law tries to respect the aspect angle by sending
huge control inputs to the controller. As the maneuvering
capabilities are low, the missile cannot perform such lateral
accelerations and fails to reach Xgoal.

On the contrary, as the RRT-based algorithm anticipates
the loss of maneuverability near the PIP, the generated
trajectory performs a back-turn. Indeed, it moves away
from the line-of-sight at the beginning in order to re-
duce the curvature of the trajectory when approaching
Xgoal. Thus, the needed lateral acceleration at the end
of the trajectory remains lower than the maneuvering
capabilities at these altitudes (Fig. 9). Since this problem
is harder to solve than the previous one, the number
of iterations increases and reaches 5953. Furthermore,
‖v(tf )‖ = 1552m/s > vmin is verified.

This scenario illustrates the effectiveness of our RRT-based
guidance law compared to classical midcourse guidance
laws, based on its capability to anticipate future flight
conditions.

5. CONCLUSION AND PERSPECTIVES

A new and novel approach of missile guidance is intro-
duced in this paper. This guidance scheme combines a
sampling-based RRT path planner, Dubins’ curves whose
lengths are used as metric function, and Proportional
Navigation guidance law to chose the appropriate control
inputs. This method solves critical problems encountered
in midcourse guidance that cannot be easily solved using
classical guidance laws as it anticipates future flight con-
ditions.

Results are promising and some possible extensions could
be studied in future work. First, the optimality of the
generated trajectories has to be studied. For example,
it would be interesting to maximize the final velocity
or to minimize the flight time. This could be performed
by improving both metric function and control input
selection. Next, the missile model could be more realistic
including delays in the control loop. Then, as the generated
trajectories currently lie in a 2-dimensional plan, the
algorithm has to be generalized to a 3-dimensional space.
Finally, the computing time could be improved by, for
example, reducing Xfree using preprocessing.
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