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Abstract. A central problem in the delivery of intensity-modulated ra-
diation therapy (IMRT) using a multileaf collimator (MLC) relies on
finding a series of leaves configurations that can be shaped with the
MLC to properly deliver a given treatment. In this paper, we analyse,
from an algorithmic point of view, the power of using dual-layer MLCs
and Rotating Collimators for this purpose.

1 Radiation therapy planning

Radiation therapy is one of the most commonly used cancer treatments and has
been shown to be effective. The radiation treatment poses a tuning problem: the
radiation needs to be effective enough to kill the tumor while sparing healthy
tissues and organs close to the tumor – so-called organs at risk. Towards this
goal, the design of radiation treatment has to be specifically customized for each
patient. Once both tumor and organs at risks have been delineated, the radiation
oncologist will prescribe minimal, maximal and mean irradiation quantity for
each of them. The amount of radiation is measured in gray (Gy). For example,
typical dose for a tumor ranges from 60 Gy to 80 Gy (a minimal dose that the
treatment should achieve), whereas healthy organs should not receive more than
a given threshold of radiation – for example, 20 Gy for lungs, 50 Gy for bones
or 12 Gy for lens. Usually, the overall treatment dose is fractioned – e.g. 1.8 to
2 Gy per day, five days a week for an adult.

Each fraction is delivered by a linear accelerator (linac) using a cone beam
that rotates around the patient; achieving a concentric irradiation converging
in the tumor site. In the so-called ”Step-And-Shoot” technique, the treatment
design specifies some specific angles where the linac successively stops to ir-
radiate the patient. For each of these angles, a specific intensity distribution
accross the radiation beam (later on referred to as intensity matrix) is computed
(for instance, with the multicriteria approach to radiation therapy planning of
Hamacher and Küfer [6]) in order to achieve the desired overall dosage of the
fraction. An illustration is provided in Figure 1a. The radiation generated by
the accelerator is uniform. Therefore, in order to achieve the varying intensity,
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this radiation needs to be modulated. For this purpose, each intensity matrix
is delivered through a multileaf collimator (MLC). An MLC is a device com-
posed of parallel pairs (referred to as rows) of facing tungsten strips (referred
to as leaves) that can block the radiation by moving toward each other from
left and right (see Figure 1c). However, radiation can pass through the open
gap between the leaves endpoint. Each intensity matrix is realized by a sequence
of MLC configurations (i.e. specific leaves positions for each row of the MLC)
each of which is maintained for a certain amount of time (corresponding to the
intensity). In the static case, the radiation is switched off while the collimator
leaves are moving. The so-called gantry denotes the whole device including the
linac and the MLC.

Fig. 1. a) IMRT with some intensity matrices – shown in grayscale coded grids with 5
intensities (the lighter the color the higher the radiation intensity). b) A realization of
IM2 with i1 = 0, i2 = 1, i3 = 2, i4 = 3, i5 = 4. c) MLC illustration from Varian

From an algorithmic point of view, the corresponding problem is a matrix
decomposition problem where each intensity matrix is given as an integer matrix
that has to be decomposed into a weighted sum of binary matrices (each binary
matrix denotes an MLC configuration and the weight represents the associated
intensity). These binary matrices are consecutive ones matrices (the 1s occur
consecutively as a single block in each row) since MLC leaves are moving from
left and right sides of the device on each row. For example, the intensity matrix
IM2 of Figure 1b can be decomposed into three configurations. Of course, there
are many ways of decomposing a given intensity matrix. It is desirable to select
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the decomposition that can be delivered the most efficiently. The two main
efficiency criteria that play a role are the total beam-on time, i.e., the total
amount of time that the patient is being irradiated, and the total setup time,
i.e., the total amount of time that is spent shaping the apertures. The former
metric is proportional to the sum of intensities used in the decomposition, while
the latter is (approximately) proportional to the number of matrices used in
the decomposition. Although closely related, these two efficiency criteria are
not equivalent. The intensity matrix IM2 decomposition shows a decomposition
using only 3 apertures with a beam-on time of 6. However, the minimum beam-
on time for this intensity matrix is 5, which can be realized by 5 apertures.
Actually, it turns out that, while minimizing the total beam-on time is solvable
in linear time, minimizing the total setup time is NP-hard for matrices with
at least two rows [4]. This later result was strengthen by Baatar et. al [1] who
proved that it is even strongly NP-hard, even for matrices with a single row.

Technology is running very fast and different MLC settings have been indeed
proposed during the last decade. In this paper, we focus on algorithmic aspects
of two technological variants: Intensity Modulated Radiation using Rotating
Collimator and Multi-Layer Multileaf Collimator.

Rotating Collimator. Remember that the gantry is rotating around the patient
to deliver the radiation. We consider here MLC rotations together with gantry
rotations. Indeed, whereas most studies consider the problem of finding the most
efficient collimator angle for each linac angle [2, 15, 13], some recent contributions
tackle the use of collimator rotation in the decomposition of a given intensity
matrix (i.e. for a given fixed linac angle) [14, 16, 17, 20, 5, 10, 11, 3]. The practi-
cal efficiency of this latter technique was stated in [21]. From a Consecutive 1
Property (C1P) point of view, rotating collimator allows each intensity matrix
to be decomposed in both row C1P or column C1P configurations. For example,
decomposing the following intensity matrix with only row C1P configurations
requires at least 8 of them whereas only 6 configurations are needed if rotation
is allowed (the last two configurations are column C1P).


1 4 2 5
1 3 3 2
1 3 5 5
6 4 6 0

 =


0 0 0 1
0 0 1 1
0 0 1 1
1 1 1 0

 +


0 0 0 1
0 1 1 1
0 0 1 1
1 1 1 0

 +


0 1 1 1
1 1 1 0
0 1 1 1
1 1 1 0

 +


1 1 1 1
0 0 0 0
1 1 1 1
1 1 1 0

 + 	 +


0 1 0 1
0 0 0 0
0 0 0 0
1 0 1 0

 +


0 1 0 0
0 1 0 0
0 1 0 1
1 0 1 0


Multi-Layer Multileaf Collimator. Using multiple layers of leaves has been origi-
nally patented by [23] in 1997 and has been intensively studied since 2003. Most
studies consider two orthogonal layers, referred in the literature as the dual-MLC
[7, 12, 9, 8]. Topolnjak et al. investigated the use of three layers placed every 60
degree [18, 19]. The state-of-the-art is presented in [22] which claimed the effi-
ciency of the gear. For example, decomposing the following intensity matrix with
only C1P matrices (even allowing MLC rotations) requires a linear number of
configurations whereas only 2 are needed when using a dual-MLC.
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

1 0 1 0 1 . . . 0
0 1 0 1 0 . . . 1
1 0 1 0 1 . . . 0
0 1 0 1 0 . . . 1
1 0 1 0 1 . . . 0
...

...
...

...
...

. . .
...

0 1 0 1 0 . . . 1


=



1 ↑ 1 ↑ 1 . . . ↑

← + ← + ← . . . +

1 ↑ 1 ↑ 1 . . . ↑

← + ← + ← . . . +

1 ↑ 1 ↑ 1 . . . ↑
...

...
...

...
...

. . .
...

← + ← + ← . . . +


+



+ → + → + . . . →
↑ 1 ↑ 1 ↑ . . . 1
+ → + → + . . . →
↑ 1 ↑ 1 ↑ . . . 1
+ → + → + . . . →
...

...
...

...
...

. . .
...

↑ 1 ↑ 1 ↑ . . . 1


To the best of our knowledge, all these contributions mentioned the complex-

ity increase of the problem when considering rotation or multiple layers with-
out being able to state it formally. In this contribution, we prove formally the
algorithmic hardness of the corresponding problems. More precisely, we study
the Matrix Orthogonal Decomposition (MOD) problem introduced in [5] which
consider the decomposition problem of an intensity matrix using a unique 90◦

rotation and the Dual-MLC Decomposition (DMD) problem which consider two
orthogonal layers of MLCs. We prove that both problems are still NP-hard when
minimizing total-setup time. Finally we prove that MOD becomes NP-hard even
when minimizing the total beam-on time but is approximable.

2 Dual-MLC Decomposition minimizing total setup-time

In order to prove the hardness of the problem, we will use the construction of
Baatar et. al [1] as a gadget. Therefore, let us first present briefly a slightly
modified version of their proof. As a reminder, they originally proved the hard-
ness of total setup-time decomposition even for matrices with a single row by a
reduction from the NP-complete 3-Partition problem where one has to partition
3Q numbers – say S = (b1, b2, . . . , b3Q) – (allowing duplicates) into Q triples –
say {T1, T2, . . . , TQ}, such that each triple has the same sum. Considering that
all 3Q numbers sum to N , then every triple should have a sum of B = N

Q (we

may assume that B
4 < bi <

B
2 for every bi ∈ S).

From any instance S of the 3-Partition problem, one can construct in poly-
nomial time an integer vector A = x1 x2 . . . x3Q yQ yQ−1 . . . y1 z0 such that

xi =
∑i

j=1 bj , yi = i · B and z0 = b1
1 and asks for a decomposition with at

most 3Q MLC configurations. As a reminder, any solution of the problem is a
set of C1P vectors (i.e. configurations) provided with corresponding intensity.
Therefore, for each configuration, we will denote by left (resp. right) endpoint
the first (resp. last) position of a 1 in the corresponding vector. First, notice
that since {xi|1 ≤ i ≤ 3Q} is a set of 3Q different values, any decomposition
of A will need at least 3Q configurations and thus 3Q corresponding intensities
(among which one is b1 due to x1) each having their left endpoint disjointly in
one of {xi|1 ≤ i ≤ 3Q} positions. Moreover, the configuration with the intensity
b1 is defined as a totally open configuration (i.e. a vector of 4Q+ 1 1′s). Indeed,

1 We added z0 to the original construction for ease of proof demonstration
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among the at most Q · B radiation doses that can go through x3Q, exactly B
of them is needed for irradiating Y1. To respect the consecutiveness of the 1′s,
whatever left endpoints of the configurations used, the corresponding configura-
tions will contribute exactly B to each of {Yi|2 ≤ i ≤ Q}. Repeating this last
argument over {Yi|2 ≤ i ≤ Q}, one can prove that each Yi is the right end-
points of some configurations which overall contribution sums to B. Moreover,
by construction, z0 needs b1 irradiation doses that has to be included into the
B needed by Y1. Consequently, since one of the configuration contributed b1 to
all positions of A, x2 now only needs an extra b2 contribution which should be
delivered at once. Repeating this argument over {xi|3 ≤ i ≤ 3Q}, one can prove
that the set of configuration intensities is indeed {bi|1 ≤ i ≤ 3Q}. Since, for any
1 ≤ i ≤ 3Q, B

4 < bi <
B
2 , any Yj will need to be the right endpoint of exactly 3

configurations to get an overall irradiation summing to B (recall that there are
at most 3Q configurations).

Provided with these properties, one can easily prove that (⇐) given a solution
to the 3-Partition problem such that, w.l.o.g., b1 ∈ T1, for all 2 ≤ j ≤ 3Q,
irradiating the interval [xj , Yq] with intensity bj if bj ∈ Tq and irradiating the
full vector with b1 leads to a valid decomposition of exactly 3Q configurations.
Moreover, (⇒) considering any solution of the decomposition problem, defining
the triples {Ti|1 ≤ i ≤ Q} such that bj ∈ Tq ⇔ there exists a configuration of
intensity bj with resp. left and right endpoints in xj and Yq.

Back to our original problem, we will use a slightly similar reduction using A
as a gadget. We, thus now consider the decomposition of a matrix. The reduction
is again from the 3-Partition problem. From any instance S, one can construct
in polynomial time a matrix M = (R1, R2, . . . R6Q+3) composed of 6Q+ 3 rows,
where for all 1 ≤ i ≤ 3Q, Ri = R6Q+4−i = (x3Q+1−i)

4Q+1, R3Q+1 = R3Q+3 =
04Q+1 and R3Q+2 is the vector A designed in the previous proof and asks again for
a decomposition with at most 3Q Dual-MLC configurations. Roughly, the vector
A is vertically surrounded by two opposed sorted heaps of vectors (increasing,
when going away from A) filled with the {xi|1 ≤ i ≤ 3Q} values defined in the
previous proof and two null rows.

M =



x3Q x3Q . . . x3Q x3Q x3Q . . . x3Q x3Q

...
...

...
...

...
...

...
...

...
x2 x2 . . . x2 x2 x2 . . . x2 x2

x1 x1 . . . x1 x1 x1 . . . x1 x1

0 0 . . . 0 0 0 . . . 0 0
x1 x2 . . . x3Q yQ yQ−1 . . . y1 z0
0 0 . . . 0 0 0 . . . 0 0
x1 x1 . . . x1 x1 x1 . . . x1 x1

x2 x2 . . . x2 x2 x2 . . . x2 x2

...
...

...
...

...
...

...
...

...
x3Q x3Q . . . x3Q x3Q x3Q . . . x3Q x3Q


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The correctness of the proof relies on proving that, whereas one may use the
vertical leaves to make a different set of configurations for realizing the peculiar
row A, this would not lead to a valid solution. Indeed, the rows R3Q+1 and R3Q+3

ensures that if a vertical leaf was used to tune the irradiation configuration used
for A – say the one in column j – then the corresponding intensity could not
be used for any element of column j except in A. Since, by construction, yet
again exactly 3Q configurations are required, there will exist at least one row
in the end with a non null value on the column j. This property, ensures that
if the vertical leaves are used, this is not to disturb the configurations plan of
row R3Q+2. Provided with these properties, one can easily prove that (⇐) given
a solution to the 3-Partition such that, w.l.o.g., b1 ∈ T1, for all 2 ≤ j ≤ 3Q,
irradiating the interval R3Q+2[xj , Yq] and fully the rows R3Q−j and R6Q+3−j
with intensity bj if bj ∈ Tq and irradiating the full rows R3Q, R3Q+2 and R3Q+4

with b1 leads to a valid decomposition of exactly 3Q configurations. Moreover,
(⇒) considering any solution of the decomposition problem, defining the triples
{Ti|1 ≤ i ≤ Q} such that bj ∈ Tq ⇔ there exists a configuration of intensity bj
with resp. left and right endpoints in xj and Yq in row R3Q+2 leads to a solution
to 3-Partitioning.

3 Matrix Orthogonal Decomposition

This section is devoted to proving a stronger result for the MOD problem: min-
imizing the total setup time is NP-Hard even if the intensity matrix is binary.
This result shows that the problem is also NP-hard when one whants to mini-
mize the beam-on time (whereas it is polynomial when rotation is not changed
during decomposition). Fortunately, we will also prove that the problem is how-
ever approximable in this later case. For ease of presentation, we will first give a
construction using an integer matrix and show afterwards how to make it binary.
In order to prove the hardness of the problem, we define a reduction from the
NP-Complete 3-Hitting Set problem: given a collection C = {C1, . . . , Cm} of m
subsets of size at most three of a finite set S = {x1, . . . xn} of n elements and a
positive integer k, the problem asks for a subset S′ ⊆ S with |S′| ≤ k such that
S′ contains at least one element from each Ci’s.

From any instance (C, k) of the 3-Hitting Set problem, one can construct in
polynomial time a square matrix M composed of two rows and columns inde-
pendant submatrices – a submatrix of 2n + 9 columns and 2n + 8 rows referred
as MDHV defined below is placed top-right of M whereas another submatrix
of 3n + 2 columns and m + 4 rows named M3HS and defined later on is placed
bottom-left; the rest of the matrix M is filled with 0’s in order to obtain a square
matrix – and asks for a decomposition with at most n + 3 MLC configurations.

The submatrix MDVH is designed in such a way that it will ensure that any
solution to the decomposition problem will use only one vertical configuration
and (n + 2) horizontal ones. Indeed, since, by construction, a) there are (n + 4)
horizontal blocks of single 1′s in the first row, and b) all the 2(n+2) last columns
are each composed of (n + 4) vertical blocks of single 1′s, any solution (i.e. not
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inducing more than (n + 3) configurations) has to have at least one horizontal
and one vertical configurations. Moreover, any solution has to use exactly one
vertical configuration. Indeed, suppose, aiming at a contradiction, that a given
solution uses more – say k′ vertical configurations, then there at most k′ 1′s from
each column that can be irradiated by those k′ configurations. Unfortunately,
since k′ ≤ (n + 2), at least two 1′s per column (except the five leftmost ones)
will subsist. In order for the solution to be feasible, one would then have to
irradiate the remaining 1′s with a unique horizontal configuration. To do so, the
remaining 1′s should be placed in order not to have more than one 1 per row; a
contradiction since we have at least 2 × (2n + 4) 1′s and at most 2n + 8 rows.
We just proved that the submatrix MDVH will force any solution to use exactly
one vertical configuration and (n + 2) horizontal ones, each with an intensity of
1.

M =

[
0 MDHV

M3HS 0

]
with MDHV =



0 1 0 1 0 1 0 1 0 . . . 1 0

0

0 0 1 0 1 . . . 0 1
0 1 0 1 0 . . . 1 0
...

...
...

...
... . . .

...
...

0 1 0 1 0 . . . 1 0
0 0 1 0 1 . . . 0 1
0 1 0 1 0 . . . 1 0


and

M3HS =



CTRLV
U{ (n+3) 0 1 1 0 1 1 0 . . . 1 1 0

GATE{ 0 0 0 0 0 0 0 0 . . . 0 0 0
CTRLV

D{ (n+2) 0 0 0 1 0 0 1 . . . 0 0 1
CTRLmax{ (n+2-k) 0 0 1 1 1 1 1 . . . 1 1 1

C1{ c1 0 0 1 x1
1 0 1 x2

1 . . . 0 1 xn
1

C2{ c2 0 0 1 x1
2 0 1 x2

2 . . . 0 1 xn
2

...
...

Cm{ cm 0 0 1 x1
m 0 1 x2

m . . . 0 1 xn
m

C

{ { {

x1 x2 . . . xn


Let us now describe the submatrix M3HS which is totally independant of

MDVH but which will inherit the repartition of the vertical and horizontal con-
figurations that we just showed. M3HS is defined as pictured above and where
xj
i = 2 if xj ∈ Ci; x

j
i = 1 otherwise and ci = 0 if |Ci| = 3; ci = 1 otherwise. The

submatrix M3HS is designed to encode the 3-Hitting Set instance. Roughly, each
subset Ci of C is encoded by a row whereas each element xi of S is encoded by
a column2. Let us now prove some interesting properties of this construction.

Let us have a look at the constraints of the unique vertical configuration.
Since CTRLV

U [0] is set to (n+ 3) – that is both the maximal number of configu-

2 Due to space consideration, we will not include a full illustra-
tion of a construction but one may build one from our website
http://igm.univ-mlv.fr/∼gblin/MOD/index.php.
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rations and intensity, the first column of the vertical configuration will have to ir-
radiate this last and so does the corresponding row (i.e. (2n+9)th of M) of all the
horizontal configurations. It has many consequences: a) all the 1′s of CTRLV

U will
have to be irradiated during the vertical configuration (inducing that no other 1′s
in the corresponding columns can be irradiated during the vertical configuration
– namely columns in {3j − 1, 3j|1 ≤ j ≤ n}) and b) CTRLV

D[0], CTRLmax[0]
and any Ci[0] will all only be irradiated by horizontal configurations3. Since
CTRLV

D[0] is set to (n+ 2), all the horizontal configurations for this specific row
CTRLV

D will need to be dedicated to CTRLV
D[0]. This implies, in turn, that all

remaining 1′s of CTRLV
D – that is {CTRLV

D[i]|i = 2 + 3j, 1 ≤ j ≤ n}– would
have to be vertically irradiated. On the whole, except for the set of bottom leaves
for the columns {i = 2 + 3j|1 ≤ j ≤ n}, we know exactly what is the endpoint
positions of each leave (top and bottom) of the vertical configuration in M3HS :
a) for all i ∈ {0, 3j, 3j − 1|1 ≤ j ≤ n} the ith top leave (resp. bottom one)
precisely blocks all the rows preceding (resp. succeeding) CTRLV

U , b) column 1
is totally blocked and c) for all i ∈ {3j + 1|1 ≤ j ≤ n} the ith top leave precisely
blocks all the rows preceding CTRLV

D.

Now, notice that any Ci needs at least (n + 3) configurations to be realized.
This implies that any Ci should be irradiated at least in one of its column by the
vertical configuration. By construction, this irradiation can only occur in (xj

i )
′s

positions (i.e. {3j + 1|1 ≤ j ≤ n}) moreover set to 2 (otherwise it will not help
decreasing the total irradiation needed to realize Ci) – later referred to as target
positions. The CTRLmax row is designed to ensure that at least n−k cells among
{CTRLmax[3j+1]|1 ≤ j ≤ n} will be blocked by bottom leaves. In other words,
at least n−k bottom leaves will block all the succeeding rows of CTRLmax. Thus,
at most k bottom leaves would be able to allow vertical irradiation contribution
for the target positions. As we just prove, the only differences between both
solutions to the decomposition problem is the position of bottom leaves endpoints
for positions in {3j + 1|1 ≤ j ≤ n}; we will thus characterize any such solution
as a set of n positions in [2n + 13, 2n + m + 14] (corresponding to all possible
solutions – 2n + m + 14 being a leave not used at all).

Provided with these properties, one can easily prove that (⇐) given a solution
(S′ ⊆ S) to 3-Hitting Set problem, for each 1 ≤ i ≤ n, if xi ∈ S′, P [i] =
2n + m + 14; P [i] = 2n + 13 otherwise. We claim that P corresponds to valid
positions for the bottom leaves in {3j + 1|1 ≤ j ≤ n}. Since S′ is a hitting set
of size at most k, we can ensure that at least one element of each subset in C
belongs to S′. This guarantees that all C ′is rows and CTRLmax are realized.
Moreover, (⇒) considering any solution to the decomposition problem, one can
define the hitting set S′ such that xj ∈ S′ ⇔ the position of the (3j + 1)th

bottom leaf is strictly greater than 2n + 13.

Let us now try to transform the construction in order to obtain a binary
matrix with the same property. First, on can encode the x′is using two columns
rather than one as follows. Insert a column just before each actual column rep-

3 For ease, in the above description of M3HS matrix, all the cells which will not have
a contribution from the vertical configuration have been put in gray.
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resenting an xi, fill it with 0′s except on the CTRLV
U row which has to be set

to 1 and the C ′js rows where the corresponding columns have to be set to 0 1 if

xi ∈ Cj ; 1 1 otherwise4. This update is clearly not changing the original proof.
The tricky part stands in the replacement of CTRLV

U [0]. Indeed, one wants that
it still requires all the horizontal configurations and the vertical one. To do so,
one can design a submatrix of 2(n+4) rows defined as follows: a) each odd row is
filled with 0′s and b) the ith even row is defined as (0)i−1 1 0(1 0)n+2(0)n+3−i.
Roughly, the block representing (n + 3) (i.e. (1 0)n+3) is shifted right of one
position every new even row. This ensures that no one under the position of
this gadget will be able to have a vertical contribution and that in any of the
corresponding rows, all the remaining 1′s will need to be irradiated vertically.
We just showed that the properties of the original gadget are preserved. Both
CTRLV

D[0] and CTRLmax[0] can be easily replaced by resp. (0 1)n+2(0)3n+7 and
(0 1)n+2−k(0)3n+7. Again, the properties of the original gadgets are preserved.
This concludes the proof of the following theorem.

Theorem 1. The Matrix Orthogonal Decomposition problem is NP-hard when
minimizing either the total setup or the total beam-on time.

Now, let us prove that there exists an interesting algorithm based on linear
programming and rounding techniques that produces an approximate solution
for minimizing the total beam-on time. First, recall that for horizontal configu-
rations, rows can be dealt with separately. It is also the case for vertical config-
urations and columns. Indeed, an intensity matrix is realized by a sequence of
MLC configurations each of which is maintained for a certain amount of time
(corresponding to the intensity). Since the problem is to minimize the sum of
intensities and not the number of configurations, one can always consider that
configurations can be changed every unit of time. This implies that any row (col-
umn) can be processed independently of the others and that the overall beam-on
time will be deduced by the (most) expensive row (column).

The problem can be phrased, as an Integer Linear Programming, as follows:

minimize H + V
subject to ∀1 ≤ k ≤ m,

∑
i≤j H

k
ij ≤ H (1)

∀1 ≤ k ≤ m,
∑

i≤j V
k
ij ≤ V (2)

∀k, k′ ∈ {1, . . .m}2,
∑

i≤k′≤j H
k
ij +

∑
i′≤k≤j′ V

k′

i′j′ = M [k][k′] (3)

∀i, j, k, Hk
ij ≥ 0, V k

ij ≥ 0
1 ≤ i ≤ j ≤ m, 1 ≤ i′ ≤ j′ ≤ m, H ≥ 0, V ≥ 0.

For any row of the intensity matrix M , let Hk
ij be a variable indicating the

amount of time the following horizontal configuration is maintained: considering
the kth pair of leaves, the left one’s endpoint is at position i−1 and the right one’s

4 Due to space consideration, please consider checking the construction on our website
http://igm.univ-mlv.fr/∼gblin/MOD/index.php.
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endpoint is at position j+1 (therefore irradiating any position between i and j in
row k). Similarly, for any column of the intensity matrix M , let V k

ij be a variable
indicating the amount of time the following vertical configuration is maintained:
considering the kth pair of leaves, the left one’s endpoint is at position i− 1 and
the right one’s endpoint is at position j + 1 (therefore irradiating any position
between i and j in column k). Finally, variables H and V are respectively hori-
zontal and vertical costs of a solution computed respectively as maxk

∑
i≤j H

k
ij

and maxk

∑
i≤j V

k
ij (which is encoded by constraints (1) and (2)). Constraint (3)

ensures that the desired intensity matrix is realized. Indeed,
∑

i≤k′≤j H
k
ij (resp.∑

i′≤k≤j′ V
k′

i′j′) represents the overall contribution of all the horizontal (resp. ver-

tical) configurations contributing to the entry M [k][k′]. There are about 2m3 +2
variables, 2n inequalities and n2 equalities. Our linear programming problem
can be rewritten with only inequalities. Indeed, each equality constraint may be
removed, by solving it for variable Hk

0k′ and substituting this solution into the
corresponding form of constraint (1) (i.e. for the corresponding k).

Of course Integer Linear Programming is NP-hard. Therefore, we relax the
integrality constraint, that is, allowing all variables to take a non-integral but still
positive value. We end-up with a fractional linear program that can be solved in
polynomial time. Notice that the solution provided by this linear program cannot
be greater than the optimal integer one, since we only allow more solutions to
become feasible. We apply a clever rounding of the fractional solution to obtain
an integral feasible solution not too far from optimal.

Assume that fL : {V,H,Hk
ij , V

k
ij |1 ≤ i ≤ j ≤ m, 1 ≤ k ≤ m} → R is an

optimal fractional solution of the relaxed version of our problem. If one slightly
modifies the values of Hk

ij
′s then due to constraint (3) the values of V k′

i′j′
′s will

need to be modified accordingly and with a comparable amount. The basic idea
is to provide an integral rounding of the horizontal configurations and compute
polynomially the corresponding vertical configurations while guaranteeing that
the corresponding solution is a good approximation of the optimal one.

Let us present the rounding technique for a single row – say the kth. Con-
sidering all the corresponding variables {Hk

ij |1 ≤ i ≤ j ≤ m}, one can represent

each non-null variable Hk
ij by an interval [i, j] over the real line on [1,m] weighted

by Hk
ij (illustrated in Figure 25). Let us transform this set of intervals I into

a set I ′ where given any pair of intervals either one is included into the other
or they are disjoint. To do so, we process I with the following algorithm. While
there exists two intervals [i, j] and [k, l] with respective weights w1 and w2 such
that i < k < j < l (i.e. crossing) remove [i, j] and [k, l] from I and add [i, k− 1],
[k, j] and [j + 1, l] with respective weights w1, w1 + w2 and w2. As an example,
given intervals [1, 9] and [3, 11], it will result in intervals [1, 2], [3, 9] and [10, 11]
with respectively weights Hk

1,9, Hk
1,9 + Hk

3,11 and Hk
3,11. Now that all intervals

are nested or independent, while there exists three intervals [x, y], [i, j] and [k, l]
with respective weights w1, w2 and w3 such that x ≤ i < j ≤ k < l ≤ y, if
j < k then remove [x, y] from I and add [x, j] and [j, y] both weighted by w1;

5 in Appendix due to page limitation.
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otherwise (j = k) remove [i, j] and [k, l] from I and if w2 < w3 then add [i, l]
and [k, l] with respective weights w2 and w3 − w2; otherwise add [i, l] and [i, j]
with respective weights w3 and w2 − w3. As an example, given intervals [3, 9],
[4, 7] and [9, 9], it will result in intervals [3, 7], [8, 9], [4, 7] and [9, 9]. Moreover
given two copies of an interval [i, j] with respective weights w1 and w2, remove
them and add an interval [i, j] with weight w1 + w2. As an example, copies of
intervals [1, 2], [3, 7] and [8, 9] have been merged.

We end up with a set of independent subset of nested intervals ( later referred
to as a stack). Note that there are at most m such stacks. We will proceed to
the rounding of each stack separately. We will do so while ensuring that the sum
of the original weights is smaller than the sum of the rounded ones with a gap of
at most 1. This will induce that for a given row of the horizontal configuration,
we manage to get an integral solution with an at most m extra cost. For ease,
considering the stack as increasingly sorted by interval size and let wi and w′i
denote respectively the original and rounded weights of the ith interval of the
stack. The rounding algorithm proceeds as follows: start from the wider interval
and round up w1

6. Then consider iteratively each remaining interval – say the
jth, round it down if possible – that is if bwjc+

∑j−1
i=1 w′i ≥

∑j
i=1 wi – round it

up otherwise. As an example, consider

j 1 2 3 4 5 6
wj 3.3 1.2 2.4 1.5 4.5 2.5∑j
i=1 wi 3.3 4.5 6.9 8.4 12.9 15.4
w′j 4 1 2 2 4 3∑j
i=1 w

′
i 4 5 7 9 13 16

Applying the rounding to each row of the horizontal configurations leads to
an integral solution for the horizontal configurations that we can subtract for
the original intensity matrix.Then, we compute in polynomial time the vertical
configurations on the resulting matrix. We claim that the overall solution is at
most 2m from the optimal solution. Indeed, in the resulting matrix, each cell is
at most greater by one than the fractional matrix. This means that the sum of
the elements in any column is at most greater by m than the fractional matrix.
Thus we loose at most m with the rounding of the horizontal configurations plus
at most m for adjusting the vertical configurations, for a total of an additive 2m
overcost.
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Appendix

5 3 8 9 10 13 10 8 5 3 6
Mk

[6, 6] [8, 9]
[5, 7]

[4, 7]
[1, 1] [3, 8] [11, 11]
[1, 3]
[1, 9]

[3, 11]

Original set of intervals

5 3 8 9 10 13 10 8 5 3 6
Mk

[6, 6] [9, 9]
[5, 7]

[4, 7]
[1, 1]

[4, 7]
[8, 8] [11, 11][3, 3]

[1, 2]

[1, 2]
[3, 9]

[10, 11]

Transformed set without crossing

5 3 8 9 10 13 10 8 5 3 6
Mk

[6, 6]
[5, 7]

[1, 1] [8, 8] [11, 11]

[1, 2]
[3, 7]

[8, 9]

[10, 11]

Final set composed of independent towers

Fig. 2.
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