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Convergence of conforming approximations for inviscid

incompressible Bingham fluid flows and related problems

F. Bouchut, R. Eymard and A. Prignet∗

September 9, 2013

Abstract

We study approximations by conforming methods of the solution to the variational in-
equality 〈∂tu, v − u〉 + ψ(v) − ψ(u) ≥ 〈f, v − u〉, which arises in the context of inviscid
incompressible Bingham fluid flows and of the total variation flow problem. We propose a
general framework involving total variation functionals, that enables to prove convergence
of space, or time-space approximations, for steady or transient problems. We consider time
implicit, or time implicit regularized (linearized or not) algorithms, and prove their conver-
gence for general total variation functionals. Comparison with analytical solutions show the
accuracy of the methods.

Keywords. Total variation flow, Bingham fluids, conforming approximations, regularization
method, convergence

1 Introduction

A series of practical physical and engineering problems involve the flows of the so-called incom-
pressible “Bingham fluids”. For such flows within a domain Ω ⊂ RN , N = 2 or 3, the relation
between the stress tensor σ(t, x) (seen as a N ×N matrix), the pressure p(t, x) and the velocity
u(t, x) ∈ RN is given by (see for example [12] and references therein)

σ = −pIN +

(
κ

|Du|
+ 2ν

)
Du, (1.1)

where κ > 0 and ν > 0 are given physical coefficients (ν is called the viscosity of the fluid), IN
is the N ×N identity matrix, and where

(Du)ij =
1

2
(∂iuj + ∂jui), i, j = 1, . . . , N, (1.2)

denoting by ∂i the partial derivative with respect to the i-th coordinate of a point x ∈ Ω, and

|Du|2 =
N∑

i,j=1

(Du)2
ij . (1.3)
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UPEC, F-77454, Marne-la-Vallée, France (francois.bouchut, robert.eymard, alain.prignet@univ-mlv.fr)

1



Since the case of Bingham fluids with negligible viscosity arises in practice [23], our motiva-
tion is to provide here numerical methods which remain available in the case when ν is small.
Therefore, this paper is focused on approximate methods allowing for the limit case ν = 0. The
incompressibility condition for the fluid reads

div u =
N∑
i=1

∂iui = 0. (1.4)

Assuming a constant density ρ = 1 for the fluid and neglecting the nonlinear convection term,
the momentum conservation equation is given by

∂tui −
N∑
j=1

∂jσij = fi, i = 1, . . . , N, (1.5)

where f has values in RN . An initial condition

u(0, ·) = u0 (1.6)

is considered, as well as boundary conditions. For simplicity, we assume here homogeneous
Neumann boundary conditions, which can be written

N∑
j=1

σijnj = 0 on ∂Ω, i = 1, . . . , N, (1.7)

where n is the outward normal unit vector on the boundary ∂Ω of Ω.
In order to provide a formal variational formulation, let us define a set E of regular functions
v : Ω → RN such that div v = 0. We then multiply (1.5) by vi, sum over i = 1, . . . , N and
integrate on Ω. We get, after an integration by parts in space accounting for the homogeneous
Neumann boundary conditions and for the relation div v = 0,

∀v ∈ E,
∫

Ω

(
∂tu · v +

(
κ

|Du|
+ 2ν

)
Du : Dv

)
dx =

∫
Ω
f · v dx, (1.8)

where we denote by

Du : Dv =
N∑

i,j=1

(Du)ij(Dv)ij . (1.9)

In (1.8) and (1.5), the ratio Du/|Du| is not always defined. The physical understanding of this
term indicates that it should be interpreted when Du = 0 as “any trace-free symmetric matrix
with norm less or equal to one”. In the mathematical language such quantity is called “multi-
valued”. This fundamental difficulty makes the approximation of the problem (1.8) already a
complex challenge for ν > 0, and has motivated a large literature, see [12, 15, 16] and references
therein.
Since our motivation is to provide discretization methods also available in the case ν = 0, a first
step is to rewrite (1.8) under a form which provides a well-posed continuous formulation. We
then follow [12], writing a variational inequality giving a rigorous sense to this problem. Let us
define, for u, v ∈ E and x ∈ Ω,

A(u, v)(x) = Du(x) : Dv(x) and a(u)(x) =
(
A(u, u)(x)

)1/2
. (1.10)
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Then from the Cauchy-Schwarz inequality one has

A(u, v) +A(u, u) = A(u, u+ v) ≤ a(u)a(u+ v),

which gives
1

a(u)
A(u, v) ≤ a(u+ v)− a(u).

Let us also note that
2A(u, v) ≤ A(u+ v, u+ v)−A(u, u).

Then, denoting

ψ(v) =

∫
Ω

(κ a(v) + ν A(v, v)) dx, (1.11)

the formulation (1.8) implies

∀v ∈ E,
∫

Ω
∂tu · v dx+ ψ(u+ v)− ψ(u) ≥

∫
Ω
f · v dx. (1.12)

Reciprocally, letting v = θw in the previous inequality, we note that

A(u+ θw, u+ θw)−A(u, u) = θ
(
2A(u,w) + θA(w,w)

)
,

and

a(u+ θw)− a(u) = θ
2A(u,w) + θA(w,w)

a(u+ θw) + a(u)
.

We then formally recover (1.8) from (1.12) by dividing by θ, letting θ > 0 tend to 0 and letting
θ < 0 tend to 0. We conclude that (1.12) is more general than (1.8) since it can be written in
cases when a(u)(x) = 0 occurs for some x ∈ Ω. The formulation (1.12) can indeed be understood
as saying that the linear form v 7→

∫
(f − ∂tu) · v dx belongs to the subdifferential of the convex

functional ψ at u. The term in (1.8) appears in fact as the formal differential of the functional
ψ.
Note that all the theoretical background of [12] relies on the viscous term, and strongly depends
on the assumption ν > 0, while here we want to also handle the case ν = 0. We would like to
extend the definition of ψ(v) to all functions v ∈ L2(Ω)N , thus we write for v ∈ E∫

Ω
|Dv| dx = sup

ϕ∈(C1
c (Ω))N2 , ‖ϕ‖L∞(Ω)≤1

∫
Ω
Dv : ϕdx, (1.13)

(∫
Ω
|Dv|2 dx

)1/2

= sup
ϕ∈(C1

c (Ω))N2 , ‖ϕ‖L2(Ω)≤1

∫
Ω
Dv : ϕdx, (1.14)

where C1
c (Ω) is the set of C1(Ω) functions with compact support in Ω. Integrating by parts, we

thus extend the definition of ψ(v) to all functions v ∈ L2(Ω)N by defining

ψ(v) = κ sup
w∈VN,N

〈v, w〉+ ν

(
sup

w∈WN,N

〈v, w〉

)2

∈ [0,∞], (1.15)
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where 〈·, ·〉 denotes the L2(Ω)N scalar product, and where

VN,N =

{
w ∈ L2(Ω)N ,∃ϕ ∈

(
C1
c (Ω)

)N2

, wi =
1

2

N∑
j=1

∂j(ϕij + ϕji),

N∑
i,j=1

ϕ2
ij ≤ 1 in Ω

}
,

(1.16)

WN,N =

{
w ∈ L2(Ω)N ,∃ϕ ∈

(
C1
c (Ω)

)N2

, wi =
1

2

N∑
j=1

∂j(ϕij + ϕji),

∫
Ω

N∑
i,j=1

ϕ2
ijdx ≤ 1

}
.

(1.17)
We consider the space H of all functions v ∈ L2(Ω)N such that div v = 0. Then the functional
ψ may be defined by (1.15) as a mapping from H to [0,∞], and we may define the set B of all
functions v ∈ H such that ψ(v) < ∞. Indeed, the finiteness of the first term in (1.15) means
that Dv is a finite measure on Ω, while the finiteness of the second term (if ν > 0) means that
Dv ∈ L2(Ω).
The problem is then to find, for a given T > 0, a function u such that

u ∈ L2(0, T ;H),

∫ T

0
ψ(u(t))dt <∞, ∂tu ∈ L2(0, T ;H), u(0) = u0 and

∀v ∈ L2(0, T ;H),

∫ T

0

(
〈∂tu(t), v(t)− u(t)〉+ ψ(v(t))− ψ(u(t))

)
dt

≥
∫ T

0
〈f(t), v(t)− u(t)〉dt.

(1.18)

For such nonlinear monotone variational inequalities in a Hilbert space, involving a convex
lower semi-continuous functional (which is precisely the case for the function ψ defined above
and valued in ] −∞,∞]), the theory of [6] applies, giving the existence and uniqueness of the
solution.
This theory has been used in several works, applied to the total variation flow, and we refer to
[22] for a general exposition on the subject. The total variation flow problem is a scalar problem
which consists in looking for the solution u : Ω→ R to the problem

∂tu− div

(
∇u
|∇u|

)
= f, (1.19)

with Neumann boundary condition (∇u/|∇u|) ·n = 0 on ∂Ω. Indeed, this problem may also be
written under the form of inequality (1.18), denoting by H the space L2(Ω), and introducing
the BV seminorm defined by

ψ(v) = sup
w∈VN

〈v, w〉, (1.20)

where 〈·, ·〉 denotes the L2(Ω) scalar product and where

VN =

{
w ∈ L2(Ω),∃ϕ ∈

(
C1
c (Ω)

)N
, w = divϕ,

N∑
i=1

ϕ2
i ≤ 1 in Ω

}
. (1.21)

The total variation problem is however more “regular” than the inviscid Bingham problem, since
it is also monotone in L1(Ω), as proved in [1]. The theory of monotone problems in Banach spaces
is provided in [9, 2, 3]. This L1 monotonicity (implying the almost everywhere monotonicity,
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via the well-known Crandall-Tartar lemma [10]) enables to use the Kruzkov entropies, as for
hyperbolic scalar conservation laws, and therefore to include a transport term. This is done in
[4], including convergence results for numerical approximations.
The Bingham problem does not have this L1 structure. Nevertheless, there is a very strong
result in [20], that states that in two-dimensions, the Bingham evolution problem has a smooth
solution, without viscosity, and including advection.
It is worth noticing that the form of inequality (1.18) includes both linear problems and nonlinear
problems such as the p−Laplacian, which shows that it is quite general. Therefore it presents
some interest to give general lines for its approximation.

This paper is devoted to the approximation by conforming methods of the solution to (1.18) in
the general case of a convex lower semi-continuous (l.s.c. for short) functional on a Hilbert space.
It is then applied to the framework of general total variation functionals, which includes the
particular cases of the inviscid Bingham problem and of the total variation flow problem. In this
situation we use a regularization procedure and time implicit or linearized implicit integration.
Our results generalize the ones of [13, 14], obtained for the total variation flow, and for more
regular data. Our analysis of the linearized implicit scheme, which is the one applied in practice
for Bingham flows (see [19, 21]), seems to be new.
The paper is organized as follows. In Section 2, we first recall some properties of the steady
problem, following [6], and we propose sufficient conditions for a convergent approximation in a
finite dimensional subspace, provided that some interpolation conditions be satisfied (Subsection
2.1). We then provide in Subsection 2.2 the analysis of the regularization method, applied to
general total variation functionals. We turn to the transient problem in Section 3: we first state
some basic properties in Subsection 3.1, and we then prove the convergence of a time-space
conforming approximation of fully implicit type in Subsection 3.2. We provide in Subsection
3.3 the proof of convergence for the implicit regularization method for general total variation
functionals, and treat the linearized algorithm in Subsection 3.4. We finally propose in Section
4 the study of numerical convergence in the particular case of the total variation flow. In a
first subsection, we show that the problem to be solved in a finite dimensional space is itself
approximated in the steady case. In a second subsection we consider the transient case, for which
we show the convergence of the implicit method, where the use of a linearization is studied in
the case of the regularized problem. Our results extend the ones of [13, 14], since they apply
without further hypotheses on the regularity of the continuous solution. A short conclusion is
finally given in Section 5.

2 Approximation of the steady problem

2.1 General framework

As stated in the introduction of this paper, we focus on the approximation of a steady version
of the problem (1.18), using the framework of [6].
Let H be a Hilbert space, with scalar product 〈·, ·〉 and norm ‖ · ‖. Let ψ : H →]−∞,∞] be a
convex, lower semi-continuous function such that the set B = {v ∈ H,ψ(v) < ∞} (the domain
of ψ) is not empty. Classical results in this situation can be found for example in [7].
We first recall the following standard lemma in convex analysis.
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Lemma 2.1 A functional ψ is convex, lower semi-continuous with non-empty domain B, and
first order positively homogeneous (i.e. for all λ ∈ R, v ∈ B, ψ(λv) = |λ| ψ(v)) if and only if
there exists a non empty set V ⊂ H such that

∀w ∈ V, −w ∈ V, (2.1)

and
∀v ∈ H, ψ(v) = sup

w∈V
〈w, v〉. (2.2)

In this case, B is a subspace of H, and ψ satisfies ψ(u+ v) ≤ ψ(u) + ψ(v).

Proof. It is given in [8] or [18, theorem 3.1.1], but for completeness we give it shortly. Since
the “if” part is obvious, consider ψ convex, lower semi-continuous with non-empty domain, and
first order positively homogeneous. Then applying the homogeneity property to some v0 ∈ B
and λ = 0 yields that ψ(0) = 0. We deduce that ψ(λv) = |λ| ψ(v) for all λ ∈ R and v ∈ H, with
the convention that 0 × ∞ = 0. In particular, ψ(−v) = ψ(v). Applying the Fenchel-Moreau
theorem we have that ψ is the supremum of all affine functions upper dominated by ψ. Consider
such an affine function v 7→ µ+ 〈w, v〉 with µ ∈ R and w ∈ H. We have

ψ(v) ≥ µ+ 〈w, v〉 for all v ∈ H. (2.3)

Applying this inequality to λv, using the homogeneity and letting λ→∞ yields that

ψ(v) ≥ 〈w, v〉 for all v ∈ H. (2.4)

Applying this to −v gives then that ψ(v) ≥ |〈w, v〉| ≥ 0. Since (2.3) applied to v = 0 gives
µ ≤ 0, we deduce that the linear function v 7→ 〈w, v〉, which is upper dominated by ψ by (2.4),
is greater than the affine function v 7→ µ+〈w, v〉. Therefore, ψ is also the supremum of all linear
functions upper dominated by ψ. In other words, (2.2) holds with

V = {w ∈ H, ∀v ∈ H 〈w, v〉 ≤ ψ(v)} . (2.5)

It is easy to check finally that 0 ∈ V and that (2.1) holds. �

Let us notice that the examples provided in the introduction of this paper (without viscosity)
fall into the class given by Lemma 2.1.

We recall that, according to the convexity of ψ, the property of lower semi-continuity also holds
for the weak topology of H, which implies that, for any sequence (vn)n∈N of elements of B that
weakly converges to v ∈ H, and such that there exists C ∈ R with ψ(vn) ≤ C for all n ∈ N,
then ψ(v) ≤ lim inf

n
ψ(vn), which implies that v ∈ B.

Let α > 0 and f ∈ H be given. The aim of this section is to approximate the solution to the
following problem: find u such that

u ∈ B,
∀v ∈ B, α〈u, v − u〉+ ψ(v)− ψ(u) ≥ 〈f, v − u〉. (2.6)

Note that (2.6) may also be written as

αu+ ∂ψ(u) 3 f, (2.7)
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with introducing the subdifferential of the function ψ at u,

∂ψ(u) = {w ∈ H, ∀v ∈ H, ψ(v) ≥ ψ(u) + 〈w, v − u〉}. (2.8)

Then according to [6] we have the following result.

Lemma 2.2 There is existence and uniqueness of the solution u to the problem (2.6), which
moreover satisfies

u = argmin
v∈B

J(v), (2.9)

where J : B → R is defined by

J(v) =
α

2
‖v‖2 + ψ(v)− 〈f, v〉, ∀v ∈ B. (2.10)

Corollary 2.3 There exists u0 ∈ B such that ∂ψ(u0) is not empty.

Proof. Take α = 1 and f = 0. Then the solution u obtained by Lemma 2.2 satisfies (2.7),
which implies that ∂ψ(u) is not empty. �

Remark 2.4 In the case when ψ is first order positively homogeneous (the case of Lemma 2.1),
then u ∈ B is solution to the problem (2.6) if and only if

u ∈ H
∀v ∈ H, α〈u, v〉+ ψ(v) ≥ 〈f, v〉, (2.11)

and
α‖u‖2 + ψ(u) = 〈f, u〉. (2.12)

It indeed suffices to let v = 0 and v = 2u in (2.6) for obtaining (2.12), which also shows that
u ∈ B. This characterization is used in the examples for exhibiting an analytical solution.

Remark 2.5 If we have two solutions u1 and u2 to (2.6) associated to two different right-hand
sides f1 and f2, then one has ‖u2− u1‖ ≤ ‖f2− f1‖/α. This is obtained by taking v = u2 in the
formulation (2.6) for u1, taking v = u1 in the formulation (2.6) for u2, and adding the results.
This contraction property is in the heart of the theory of monotone operators (here ∂ψ is the
monotone operator in (2.7)).

Let us now introduce a reduction argument. Take u0 ∈ B such that ∂ψ(u0) is not empty, and
pick some w ∈ ∂ψ(u0). Then one has ψ(v) ≥ ψ(u0) + 〈w, v − u0〉 for all v ∈ H. Therefore,
setting for v ∈ H

ψ̃(v) = ψ(v + u0)− ψ(u0)− 〈w, v〉, (2.13)

the functional ψ̃ : H →] −∞,∞] is convex and lower semi-continuous, and satisfies ψ̃ ≥ 0,
and ψ̃(0) = 0 (implying 0 ∈ B̃ = {v ∈ H, ψ̃(v) <∞}). For a ∈ R (chosen later) and for v ∈ H,
define then

J̃(v) = J(v + u0)− a =
α

2
‖v + u0‖2 + ψ(v + u0)− 〈f, v + u0〉 − a.
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Then the minimum of J̃ is obtained at the point ũ = u − u0, where u is the solution to the
problem (2.6). Setting f̃ = f − w − αu0, we have

J̃(v) =
α

2
‖v‖2 + ψ̃(v)− 〈f̃ , v〉+ ψ(u0) +

〈α
2
u0 − f, u0

〉
− a,

thus choosing a = ψ(u0) + 〈α2u0 − f, u0〉, the problem is to find the minimum of

J̃(v) =
α

2
‖v‖2 + ψ̃(v)− 〈f̃ , v〉.

Therefore, ũ is the solution to the problem

ũ ∈ B̃,
∀v ∈ B̃, α〈ũ, v − ũ〉+ ψ̃(v)− ψ̃(ũ) ≥ 〈f̃ , v − ũ〉.

(2.14)

Indeed, (2.14) can also be deduced directly from (2.6). We conclude that we may assume,
without loss of generality, that ψ ≥ 0 and ψ(0) = 0. This is done in the following Hypothesis.

Hypothesis 2.6 We consider the following assumptions:

1. H is a Hilbert space,

2. ψ : H →]−∞,∞] is convex and lower semi-continuous,

3. ψ(v) ≥ 0 for all v ∈ H, and ψ(0) = 0.

Note that the third assumption ensures that if f = 0, the solution to (2.6) is u = 0.

Assuming Hypothesis 2.6 (that implies 0 ∈ B = {v ∈ H,ψ(v) <∞}), let Ĥ be a closed subspace
of H and let B̂ = Ĥ ∩ B. Note that 0 ∈ B̂ (in the examples, B is a subspace of H and Ĥ is a
finite dimensional subspace of H). We define the approximate problem as: find û such that

û ∈ B̂,
∀v ∈ B̂, α〈û, v − û〉+ ψ(v)− ψ(û) ≥ 〈f, v − û〉.

(2.15)

It is then immediate to get the existence and uniqueness of û solution to (2.15).

Lemma 2.7 Under Hypothesis 2.6, let α > 0 and f ∈ H be given. Let Ĥ be a closed subspace
of H and let B̂ = Ĥ ∩ B. Then there exists one and only one solution to the problem (2.15),
which moreover satisfies

û = argmin
v∈B̂

J(v), (2.16)

where J is defined by (2.10).

Proof. It suffices to consider f̂ , the orthogonal projection of f on Ĥ. Then (2.15) is identical
to (2.6) replacing ψ by its restriction to Ĥ and f by f̂ , since 〈f̂ , v〉 = 〈f, v〉 for all v ∈ Ĥ.
Therefore, Lemma 2.2 gives the existence and uniqueness of the solution to (2.15). �

The scheme (2.15) leads to the resolution of a convex minimization problem in a finite dimen-
sional space. There are many numerical methods well-suited to that (gradient or conjugate gra-
dient methods for example). We analyze a different type of method, the regularization method,
in the particular case of total variation functionals in Subsection 2.2, based on the particular
form of the function ψ. Let us however give the following error estimate result for the scheme
(2.15) in the general case.
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Lemma 2.8 Under Hypothesis 2.6, let α > 0 and f ∈ H be given and let u ∈ B be the solution
to the problem (2.6). Let Ĥ be a closed subspace of H, let B̂ = Ĥ ∩ B and let û ∈ B̂ be the
solution to (2.15). Then

‖u− û‖ ≤ 2

(
R̂u,f
α

)1/2

, (2.17)

and ∣∣ψ(u)− ψ(û)
∣∣ ≤ 6‖f‖

(
R̂u,f
α

)1/2

, (2.18)

with
R̂u,f = inf

v∈B̂

(
‖f‖ ‖v − u‖+

(
ψ(v)− ψ(u)

)+)
, (2.19)

where we denote for all x ∈ R, x+ = max(0, x).

Proof. Let us first observe that û satisfies, setting v = 0 in (2.15) and using that ψ(0) = 0,

α‖û‖2 + ψ(û) ≤ 〈f, û〉,

which gives, according to the Young inequality,

α

2
‖û‖2 + ψ(û) ≤ 1

2α
‖f‖2. (2.20)

Since ψ ≥ 0 this shows that

‖û‖ ≤ 1

α
‖f‖. (2.21)

We similarly write, from taking v = 0 in (2.6),

‖u‖ ≤ 1

α
‖f‖. (2.22)

From (2.15), we get for any v ∈ B̂

α〈û, u− û〉+ ψ(u)− ψ(û) +R(v) ≥ 〈f, u− û〉,

with
R(v) = α〈û, v − u〉+ ψ(v)− ψ(u) + 〈f, u− v〉. (2.23)

Hence, taking the infimum, we get

α〈û, u− û〉+ ψ(u)− ψ(û) + inf
v∈B̂

R(v) ≥ 〈f, u− û〉, (2.24)

while from (2.23) and (2.19) we have

inf
v∈B̂

R(v) ≤ 2R̂u,f . (2.25)

We have also, letting v = 0 in (2.23) and using that ψ(0) = 0, ψ ≥ 0 and (2.21)-(2.22),

inf
v∈B̂

R(v) ≤ R(0) ≤ 2

α
‖f‖2. (2.26)
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Taking v = û in (2.6), we get

α〈u, û− u〉+ ψ(û)− ψ(u) ≥ 〈f, û− u〉. (2.27)

Adding the inequalities (2.24) and (2.27) yields

α‖u− û‖2 ≤ inf
v∈B̂

R(v), (2.28)

which provides (2.17), using (2.25). We deduce also that the right-hand side of (2.28) is non-
negative. We then write, again using (2.24) and (2.21),

ψ(û)− ψ(u) ≤ 2‖f‖‖u− û‖+ inf
v∈B̂

R(v),

and similarly from (2.27)

ψ(u)− ψ(û) ≤ α〈u, û− u〉+ 〈f, u− û〉 ≤ 2‖f‖‖u− û‖.

We deduce, with (2.28) and (2.26), that∣∣ψ(u)− ψ(û)
∣∣ ≤ 2‖f‖‖u− û‖+ inf

v∈B̂
R(v)

≤
√

inf
v∈B̂

R(v)

(
2‖f‖√
α

+
√

inf
v∈B̂

R(v)

)
≤ 4‖f‖√

α

√
inf
v∈B̂

R(v),

which leads to (2.18) using (2.25). �

We deduce the following convergence result for the approximation method.

Corollary 2.9 Under Hypothesis 2.6, let (Ĥn)n∈N be a sequence of closed subspaces of H, and
let, for all n ∈ N, B̂n = Ĥn ∩B. We assume that

lim
n→∞

inf
w∈B̂n

(
‖w − v‖+

(
ψ(w)− ψ(v)

)+)
= 0, ∀v ∈ B. (2.29)

Let, for all n ∈ N, ûn ∈ B̂n be the unique solution û to (2.15) with B̂ = B̂n. Then, ûn converges
in H to the unique solution u ∈ B to the problem (2.6) as n tends to ∞ and ψ(ûn) converges to
ψ(u).

2.2 Total variation functionals

In this subsection we apply the framework of the previous section to the case of functionals ψ of
total variation type, generalizing (1.20), or (1.15) with ν = 0, in the introduction of this paper.

Hypothesis 2.10 We assume Hypothesis 2.6. Moreover, we assume that there exists a subspace
H1 ⊂ H, an open set Ω ⊂ RN with N ≥ 1, a nonnegative Borel measure µ on Ω such that
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µ(Ω) <∞, and a symmetric bilinear mapping A : H1 ×H1 → L1
µ(Ω) such that A(u, u)(x) ≥ 0

for µ a.e. x ∈ Ω, for all u ∈ H1, and

∀u ∈ H1, ψ(u) =

∫
Ω
a(u)(x)dµ, (2.30)

denoting by a(u)(x) = (A(u, u)(x))1/2 for µ a.e. x ∈ Ω. In particular, ψ is finite on H1, i.e.
H1 ⊂ B.

The two examples we are interested in obviously satisfy these conditions, with the following
choices.

Example 2.11 (Total variation flow) The Hilbert space is taken H = L2(Ω), with Ω a
bounded open set in RN , ψ is as in (1.20), (1.21), B = L2(Ω)∩BV (Ω), µ is the Lebesgue measure
on Ω, H1 is any space such that C∞(Ω) ⊂ H1 ⊂ H1(Ω), and A(u, v)(x) = ∇u(x) · ∇v(x).

Example 2.12 (Inviscid Bingham flow) The Hilbert space is taken H = {u ∈ L2(Ω)N , div u =
0} with Ω a bounded open set in RN , ψ is as in (1.15), (1.16) with ν = 0, B = {u ∈
L2(Ω)N , div u = 0, Du ∈ M(Ω)}, where Du = (∇u + (∇u)t)/2, M(Ω) is the space of fi-
nite measures over Ω, µ is κ times the Lebesgue measure on Ω, H1 is any space such that
{u ∈ C∞(Ω)N , div u = 0} ⊂ H1 ⊂ {u ∈ H1(Ω)N , div u = 0}, and A(u, v)(x) = Du(x) : Dv(x).

We next analyze the algorithm by regularization for computing an approximate solution to (2.16)
(which converges to the continuous solution according to Corollary 2.9).

Lemma 2.13 Under Hypothesis 2.10, let α > 0 and f ∈ H. Let Ĥ be a finite dimensional
subspace of H1. Then, for ε > 0, there exists one and only one function ûε ∈ Ĥ solution to

ûε ∈ Ĥ,

∀v ∈ Ĥ, α〈ûε, v〉+

∫
Ω

A(ûε, v)(x)

ε+ a(ûε)(x)
dµ = 〈f, v〉. (2.31)

Moreover, denoting by û ∈ Ĥ the unique solution to (2.16), we have

‖ûε − û‖ ≤
√
µ(Ω)ε

α
, (2.32)

and

|ψ(ûε)− ψ(û)| ≤ 2‖f‖
√
µ(Ω)ε

α
+ 3µ(Ω)ε. (2.33)

The estimates (2.32), (2.33) provide, with Corollary 2.9, the convergence of (ûε)n to u under
the conditions (2.29) and ε→ 0. Note that since Ĥn ⊂ H1, it is necessary for having (2.29) that
the following condition holds:

∀v ∈ B, inf
w∈H1

(
‖w − v‖+

(
ψ(w)− ψ(v)

)+)
= 0. (2.34)

This condition is proved to hold true for the total variation flow and for the Bingham flow in
the appendix. Then to recover (2.29) from (2.34), it suffices to require that

lim
n→∞

inf
w∈Ĥn

(
‖w − v‖+

(
ψ(w)− ψ(v)

)+)
= 0, ∀v ∈ H1, (2.35)
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which is easily fulfilled.
Proof of Lemma 2.13. Let us begin with the proof of uniqueness. Consider two elements u1

and u2 of Ĥ satisfying (2.31). Subtracting (2.31) with u1 and u2, and taking v = u1 − u2 leads
to

α‖u1 − u2‖2 +

∫
Ω

(
A(u1, u1 − u2)(x)

ε+ a(u1)(x)
− A(u2, u1 − u2)(x)

ε+ a(u2)(x)

)
dµ = 0. (2.36)

We have according to the Cauchy-Schwarz inequality A(u1, u2)(x) ≤ a(u1)(x)a(u2)(x) for µ a.e.
x ∈ Ω. Since s→ s/(ε+ s) is strictly increasing from [0,∞) to [0, 1), omitting for simplicity the
argument x we get

0 ≤
(

a(u1)

ε+ a(u1)
− a(u2)

ε+ a(u2)

)(
a(u1)− a(u2)

)
≤
(
A(u1, u1 − u2)

ε+ a(u1)
− A(u2, u1 − u2)

ε+ a(u2)

)
.

Using this information in (2.36) we obtain

α‖u1 − u2‖2 ≤ 0,

which concludes the proof of uniqueness. Turning to the existence proof, we consider the operator
T : Ĥ → Ĥ defined for u ∈ Ĥ by

∀v ∈ Ĥ, 〈T (u), v〉 =

∫
Ω

A(u, v)(x)

ε+ a(u)(x)
dµ. (2.37)

Since A is bilinear and Ĥ is finite dimensional, the restriction of A to Ĥ× Ĥ is continuous, with
values in L1

µ(Ω). Therefore, the operator T is continuous from Ĥ to itself. Then, we have that
any solution to (2.31), in which a factor λ ∈ [0, 1] is introduced in front of the integral, satisfies
the estimate

α

2
‖ûε‖2 + λ

∫
Ω

a(ûε)(x)2

ε+ a(ûε)(x)
dµ ≤ 1

2α
‖f‖2. (2.38)

Since, for λ = 0, the problem is a finite dimensional invertible linear problem, we get by a
standard topological degree argument that there exists at least one solution to the problem for
λ = 1. Let us now turn to the proof of (2.32). We remark that, for u, v ∈ H1 and µ a.e. x ∈ Ω,
omitting for simplicity the argument x, applying the Cauchy-Schwarz inequality and (5.6),

A(u, v − u)

ε+ a(u)
≤ a(u)a(v)− a(u)2

ε+ a(u)
≤ ε+ a(v)− a(u). (2.39)

Using (2.31) where we replace v by v − ûε, we get

∀v ∈ Ĥ,
α〈ûε, v − ûε〉+ µ(Ω)ε+ ψ(v)− ψ(ûε) ≥ 〈f, v − ûε〉.

(2.40)

Letting v = û (the solution to (2.16)) in (2.40), we obtain

ψ(ûε)− ψ(û) ≤ 〈αûε − f, û− ûε〉+ µ(Ω)ε. (2.41)

Then, taking v = ûε in (2.15) we get

ψ(û)− ψ(ûε) ≤ 〈αû− f, ûε − û〉. (2.42)

12



Adding the two inequalities, we then get (2.32). Let us now turn to the proof of (2.33). Setting
v = 0 in (2.40), we get

α‖ûε‖2 + ψ(ûε) ≤ µ(Ω)ε+ 〈f, ûε〉,

which implies, since 〈f, ûε〉 ≤ 1
2α‖f‖

2 + α
2 ‖ûε‖

2,

α2‖ûε‖2 ≤ 2αµ(Ω)ε+ ‖f‖2 ≤ (‖f‖+
√

2αµ(Ω)ε)2.

This leads with (2.41) to

ψ(ûε)− ψ(û) ≤ (2‖f‖+
√

2αµ(Ω)ε)‖ûε − û‖+ µ(Ω)ε.

Similarly, using (2.21) in (2.42) yields

ψ(û)− ψ(ûε) ≤ 2‖f‖‖ûε − û‖.

Using (2.32), we finally get (2.33). �

The last step is to approximate the solution ûε to the regularized problem (2.31), since it is
nonlinear. For given initial u(0) ∈ Ĥ (and fixed ε > 0), we now define the sequence (u(k))k∈N by

u(k+1) ∈ Ĥ,

∀v ∈ Ĥ, α〈u(k+1), v〉+

∫
Ω

A(u(k+1), v)(x)

ε+ a(u(k))(x)
dµ = 〈f, v〉.

(2.43)

We have the following result.

Lemma 2.14 Under Hypothesis 2.10, let α > 0 and f ∈ H. Let Ĥ be a finite dimensional
subspace of H1, and let u(0) ∈ Ĥ and ε > 0 be given. Then there exist a unique sequence
(u(k))k∈N defined by (2.43). Moreover, as k → ∞, u(k) converges to ûε, the unique solution to
(2.31), and ψ(u(k)) converges to ψ(ûε).

Proof. The estimate

α

2
‖u(k+1)‖2 +

∫
Ω

a(u(k+1))(x)2

ε+ a(u(k))(x)
dµ ≤ 1

2α
‖f‖2, (2.44)

obtained by letting v = u(k+1) in (2.43) and applying the Young inequality, shows that with a
null right-hand side, the square linear system to be solved has the unique solution 0. Hence it
is invertible, showing the existence and uniqueness of the sequence (u(k))k∈N.
We then let v = u(k+1) − u(k) in (2.43). Since the Cauchy-Schwarz inequality implies, µ a.e. in
Ω,

a(u(k+1))

ε+ a(u(k))

(
a(u(k+1))− a(u(k))

)
≤ A(u(k+1), u(k+1) − u(k))

ε+ a(u(k))
,

we get from (5.4) proved in Lemma 5.1 that

α

2

(
‖u(k+1)‖2 + ‖u(k+1) − u(k)‖2 − ‖u(k)‖2

)
+

∫
Ω

(
Fε

(
a(u(k+1))(x)

)
− Fε

(
a(u(k))(x)

)
+

(
a(u(k+1))(x)− a(u(k))(x)

)2
2(ε+ a(u(k))(x))

)
dµ

≤ 〈f, u(k+1) − u(k)〉.

(2.45)

13



Therefore, summing the above inequality for k = 0, . . . ,m and applying the Young inequality
to the right-hand side, we get

α

2

(
‖u(m+1)‖2 +

m∑
k=0

‖u(k+1) − u(k)‖2 − ‖u(0)‖2
)

+

∫
Ω

(
Fε

(
a(u(m+1))(x)

)
− Fε

(
a(u(0))(x)

)
+

1

2

m∑
k=0

(
a(u(k+1))(x)− a(u(k))(x)

)2
ε+ a(u(k))(x)

)
dµ

≤ 1

α
‖f‖2 +

α

4
‖u(m+1)‖2 − 〈f, u(0)〉.

(2.46)

This proves on one hand that α
4 ‖u

(m+1)‖2 +
∫

Ω Fε(a(u(m+1))(x))dµ remains bounded indepen-

dently of m, and using (5.3) proved in Lemma 5.1, we get that ψ(u(m+1)) remains bounded.
This proves on the other hand that the two series in the left-hand side of the above inequality
converge, and therefore that

‖u(k+1) − u(k)‖ → 0, as k →∞. (2.47)

We next observe that v 7→ ‖a(v)‖L2
µ(Ω) is a semi-norm on H1. Since Ĥ has finite dimension, this

implies that there exist a constant M̂ such that

∀v ∈ Ĥ, ‖a(v)‖L2
µ(Ω) ≤ M̂‖v‖. (2.48)

Writing

‖a(u(k+1))− a(u(k))‖L2
µ(Ω) ≤ ‖a(u(k+1) − u(k))‖L2

µ(Ω) ≤ M̂‖u(k+1) − u(k)‖, (2.49)

we get that a(u(k+1)) − a(u(k)) → 0 in L2
µ(Ω). Using again that the dimension of Ĥ is finite,

we deduce from (2.44) that there exists a subsequence of (u(k))k∈N, again denoted (u(k))k∈N,
strongly convergent in the finite dimensional vector space to some element u ∈ Ĥ. This implies
that (a(u(k)))k∈N converges in L2

µ(Ω) to a(u), and that ψ(u(k)) tends to ψ(u). Using (2.47), we
may then pass to the limit in (2.43) for this extracted subsequence, and we get that the limit u
satisfies (2.31). Since the solution to (2.31) is unique, we get that the whole sequence (u(k))k∈N
converges to this solution. �

Lemma 2.15 With the assumptions of Lemma 2.14, assume further that

∀v ∈ Ĥ, ‖a(v)‖L∞µ (Ω) <∞. (2.50)

Then the convergence of u(k) to ûε as k → ∞ is asymptotically geometric with ratio arbitrarily
close to

‖a(ûε)‖L∞µ (Ω)

ε+ ‖a(ûε)‖L∞µ (Ω)
< 1. (2.51)

14



Proof. With the assumption (2.50), v 7→ ‖a(v)‖L∞µ (Ω) is a semi-norm on Ĥ, which is finite

dimensional. Thus there exists a constant Ĝ such that

∀v ∈ Ĥ, ‖a(v)‖L∞µ (Ω) ≤ Ĝ‖v‖. (2.52)

It implies that a(u(k))→ a(ûε) in L∞µ (Ω). Then, take successively v = u(k+2)− u(k+1) in (2.43),
and in (2.43) with k incremented of 1. The difference yields

α‖u(k+2) − u(k+1)‖2 +

∫
Ω

A(u(k+2), u(k+2) − u(k+1))(x)

ε+ a(u(k+1))(x)
dµ

−
∫

Ω

A(u(k+1), u(k+2) − u(k+1))(x)

ε+ a(u(k))(x)
dµ = 0.

(2.53)

We deduce omitting the x that

α‖u(k+2) − u(k+1)‖2 +

∫
Ω

a(u(k+2) − u(k+1))2

ε+ a(u(k+1))
dµ

=

∫
Ω
A(u(k+1), u(k+2) − u(k+1))

(
1

ε+ a(u(k))
− 1

ε+ a(u(k+1))

)
dµ

≤
∫

Ω
a(u(k+1))a(u(k+2) − u(k+1))

∣∣a(u(k+1))− a(u(k))
∣∣

(ε+ a(u(k)))(ε+ a(u(k+1)))
dµ

≤ 1

2

∫
Ω

(
a(u(k+2) − u(k+1))2

ε+ a(u(k+1))
+ a(u(k+1))2

∣∣a(u(k+1))− a(u(k))
∣∣2

(ε+ a(u(k)))2(ε+ a(u(k+1)))

)
dµ,

(2.54)

and therefore that

2α‖u(k+2) − u(k+1)‖2 +

∫
Ω

a(u(k+2) − u(k+1))2

ε+ a(u(k+1))
dµ

≤
∫

Ω
a(u(k+1))2 a(u(k+1) − u(k))2

(ε+ a(u(k)))2(ε+ a(u(k+1)))
dµ.

(2.55)

Now, since a(u(k))→ a(ûε) in L∞µ (Ω), for given η > 0 there exist some k0 such that

∀k ≥ k0, µ a.e. in Ω,
a(u(k+1))2

(ε+ a(u(k)))(ε+ a(u(k+1)))
≤ (r + η)2, (2.56)

where r is the left-hand side of (2.51). Then, for k ≥ k0 one has

2α‖u(k+2) − u(k+1)‖2 +

∫
Ω

a(u(k+2) − u(k+1))2

ε+ a(u(k+1))
dµ

≤ (r + η)2

∫
Ω

a(u(k+1) − u(k))2

ε+ a(u(k))
dµ,

(2.57)

which implies that for k ≥ k0∫
Ω

a(u(k+1) − u(k))2

ε+ a(u(k))
dµ ≤ (r + η)2(k−k0)

∫
Ω

a(u(k0+1) − u(k0))2

ε+ a(u(k0))
dµ. (2.58)
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Plugging this in (2.57) we deduce that for k ≥ k0,

‖u(k+2) − u(k+1)‖ ≤ C(r + η)k−k0 , (2.59)

where C does not depend on k. If r + η < 1 we finally write for k ≥ k0

‖u(k) − ûε‖ ≤
∞∑
k′=k

‖u(k′+1) − u(k′)‖ ≤ C(r + η)k−k0 , (2.60)

which proves the claim. �

3 Transient problem

3.1 Continuous framework

Assuming Hypothesis 2.6 (we again notice that the assumptions ψ ≥ 0 and ψ(0) = 0 bring no
restriction to generality in Problem (3.3) below), let T > 0 be given. The space L2(0, T ;H)
is defined as the Hilbert space of all measurable, almost everywhere defined functions u (in
the so-called “Bochner integral” sense, recalled for example in [11]) from (0, T ) to H such that

‖u‖2L2(0,T ;H) :=
∫ T

0 ‖u(t)‖2dt <∞. The set BT is defined as

BT =

{
u ∈ L2(0, T ;H);

∫ T

0
ψ(u(t))dt <∞

}
. (3.1)

For any u ∈ L1
loc(0, T ;H), we denote by ∂tu ∈ L1

loc(0, T ;H) the time weak derivative of u when
it exists, that is ∂tu ∈ L1

loc(0, T ;H) is such that

∀ϕ ∈ C1
c (]0, T [),

∫ T

0
ϕ′(t)u(t)dt = −

∫ T

0
ϕ(t)∂tu(t)dt.

We recall that C∞([0, T ];H) is dense in the Hilbert spaces L2(0, T ;H) and in H1(0, T ;H) :=
{u ∈ L2(0, T ;H); ∂tu ∈ L2(0, T ;H)}, and that H1(0, T ;H) ⊂ C0([0, T ];H) (see [11]). We also
recall that, for all u, v ∈ H1(0, T ;H), we have for any t1, t2 ∈ [0, T ]∫ t2

t1

〈∂tu(t), v(t)〉dt+

∫ t2

t1

〈u(t), ∂tv(t)〉dt = 〈u(t2), v(t2)〉 − 〈u(t1), v(t1)〉. (3.2)

Let f ∈ L2(0, T ;H) and u0 ∈ B be given. We look in this section for a function u such that

u ∈ H1(0, T ;H) ∩BT ,
u(0) = u0,∫ T

0
〈∂tu(t), v(t)− u(t)〉dt+

∫ T

0

(
ψ(v(t))− ψ(u(t))

)
dt

≥
∫ T

0
〈f(t), v(t)− u(t)〉dt, ∀v ∈ BT .

(3.3)
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Let us remark that the inequality (3.3) implies∫ t2

t1

〈∂tu(t), v(t)− u(t)〉dt+

∫ t2

t1

(
ψ(v(t))− ψ(u(t))

)
dt

≥
∫ t2

t1

〈f(t), v(t)− u(t)〉dt, ∀v ∈ Bt1,t2 , ∀t1 < t2 ∈ [0, T ],

(3.4)

where Bt1,t2 denotes the set of all v ∈ L2(t1, t2;H) such that
∫ t2
t1
ψ(v(t))dt < ∞. It indeed

suffices, for a given ṽ ∈ Bt1,t2 , to define v(t) = ṽ(t) for a.e. t ∈]t1, t2[ and v(t) = u(t) for a.e.
t ∈]0, t1[∪]t2, T [, and then use this v ∈ BT as test function in (3.3). Then, since the restriction of
v ∈ BT to any interval ]t1, t2[ belongs to Bt1,t2 , we conclude that the inequality (3.3) is equivalent
to

〈∂tu(t), v(t)− u(t)〉+ ψ(v(t))− ψ(u(t))
≥ 〈f(t), v(t)− u(t)〉, for a.e. t ∈]0, T [, ∀v ∈ BT .

(3.5)

One can derive even a stronger formulation. Let E ⊂]0, T [ a set such that meas(]0, T [\E) = 0
and for all t ∈ E, as t1, t2 → t with 0 < t1 < t < t2 < T ,∫ t2

t1

ψ(u(s))ds→ ψ(u(t)),∫ t2

t1

〈∂tu(s)− f(s), u(s)〉ds→ 〈∂tu(t)− f(t), u(t)〉,∫ t2

t1

(
∂tu(s)− f(s)

)
ds ⇀ ∂tu(t)− f(t) weakly in H,

where the bar integral denotes the average, i.e. the integral normalized by the volume. Dividing
(3.4) by t2 − t1, passing to the limit as t1, t2 → t for all t ∈ E and taking v equal to a constant
element of B, we get

〈∂tu(t), v − u(t)〉+ ψ(v)− ψ(u(t))
≥ 〈f(t), v − u(t)〉, ∀v ∈ B, for a.e. t ∈]0, T [.

(3.6)

This strong formulation is therefore equivalent to (3.5) and to (3.3). It may also be written as

∂tu(t) + ∂ψ(u(t)) 3 f(t) for a.e. t ∈]0, T [, (3.7)

with the subdifferential defined in (2.8). However, in this paper we shall not use this formulation.

The study of existence and uniqueness for Problem (3.3) is given in [22, Theorem 20], following
[6], in the case when f = 0, using the semi-group approach and the Yosida regularization.
Since we focus on the approximation of this problem, we indeed recover the existence through
the convergence of a semi-discrete (in time) approximation. A convergence result is however
established for general time-space approximations.
The following lemma is classical. We recall its short proof.

Lemma 3.1 Under Hypothesis 2.6, let T > 0 be given, and f ∈ L2(0, T ;H). If u1 and u2

are two solutions to Problem (3.3), with possibly different initial data, then ‖u2(t) − u1(t)‖ is
nonincreasing in [0, T ]. In particular, there exists at most one solution to Problem (3.3) with a
given initial data u0 ∈ B.
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Proof. Let u1 and u2 be two solutions to Problem (3.3), with possibly different intial data.
Choosing, for given t1 < t2 ∈ [0, T ], v = u2 (respectively v = u1) in (3.4) with u = u1

(respectively u = u2), and adding the two obtained inequalities, we get∫ t2

t1

〈∂tu1(t)− ∂tu2(t), u2(t)− u1(t)〉dt ≥ 0.

Taking into account (3.2), it yields

1

2
‖u2(t2)− u1(t2)‖2 ≤ 1

2
‖u2(t1)− u1(t1)‖2,

which proves the claim. �

Lemma 3.2 Under Hypothesis 2.6, let T > 0 be given, f ∈ L2(0, T ;H) and u0 ∈ B. Then any
solution u to Problem (3.3) verifies the a priori estimates

‖u(t)‖ ≤ ‖u0‖+ 2
√
t‖f‖L2(0,T ;H), for all t ∈ [0, T ], (3.8)∫ T

0
ψ(u(t))dt ≤ 1

2

(
‖u0‖+ 2

√
T‖f‖L2(0,T ;H)

)2
. (3.9)

Proof. We take v = 0 in (3.4), which gives for all t1 < t2 ∈ [0, T ]

1

2
‖u(t2)‖2 +

∫ t2

t1

ψ(u(t))dt ≤ 1

2
‖u(t1)‖2 +

∫ t2

t1

〈f(t), u(t)〉dt. (3.10)

In particular this implies by taking t1 = 0 that for all t ∈ [0, T ],

‖u(t)‖2 ≤ ‖u0‖2 + 2‖f‖L2(0,T ;H)

(∫ t

0
‖u(s)‖2ds

)1/2

. (3.11)

Defining ϕ(t) =
∫ t

0 ‖u(s)‖2ds, it satisfies the differential inequality ϕ′(t) ≤ ‖u0‖2 + 2‖f‖
√
ϕ(t),

which implies that

d

dt

(
ϕ(t)

‖u0‖2 + 2‖f‖
√
ϕ(t)

)
≤ 1.

Taking into account that ϕ(0) = 0, we deduce that

ϕ(t)

‖u0‖2 + 2‖f‖
√
ϕ(t)

≤ t,

i.e.
ϕ(t)− 2t‖f‖

√
ϕ(t)− t‖u0‖2 ≤ 0,

which yields √
ϕ(t) ≤ t‖f‖+

(
t2‖f‖2 + t‖u0‖2

)1/2
.

18



Plugging this into (3.11) we obtain

‖u(t)‖2 ≤ ‖u0‖2 + 2‖f‖
(
t‖f‖+

(
t2‖f‖2 + t‖u0‖2

)1/2)
≤ ‖u0‖2 + 4t‖f‖2 + 2

√
t‖u0‖‖f‖

≤
(
‖u0‖+ 2

√
t‖f‖

)2
,

(3.12)

which proves (3.8). Finally, coming back to (3.10) we easily get (3.9). �

Remark 3.3 A generalization of the previous result is as follows. Under Hypothesis 2.6, let
T > 0 be given, f1, f2 ∈ L2(0, T ;H) and u0

1, u
0
2 ∈ B. Then two solutions u1, u2 to the Problem

(3.3) with respective data verify

‖u2(t)− u1(t)‖ ≤ ‖u0
2 − u0

1‖+ 2
√
t‖f2 − f1‖L2(0,T ;H), ∀t ∈ [0, T ]. (3.13)

This is obtained by taking as test function v = u2 for the formulation associated to u1, taking
v = u1 as test function for the formulation associated to u2, adding the results and arguing as
above by a Gronwall lemma.

Remark 3.4 The lemmas 3.1 and 3.2 indeed only use that u0 ∈ H, and not that u0 ∈ B.
However, in order to get an estimate on ∂tu, the property ψ(u0) <∞ is needed, as we shall see
below.

3.2 Time-space implicit approximation

In this subsection we consider the space approximation (2.15), but applied to the transient prob-
lem of the previous subsection. We thus consider the following approximate method. Assuming
Hypothesis 2.6, let Ĥ be a closed subspace of H, and let B̂ = Ĥ ∩ B. We first approximate
u0 ∈ B by some

û0 ∈ B̂, satisfying ψ(û0) ≤ G, ψ(u0) ≤ G, (3.14)

for some constant G ≥ 0. We then take n ∈ N?, we define the timestep τ = T/n, the sequence
(fk)k=1,...,n of elements of H and the function fn(t) by

fk =
1

τ

∫ kτ

(k−1)τ
f(t)dt, ∀k = 1, . . . , n,

fn(t) = fk, for a.e. t ∈](k − 1)τ, kτ [, ∀k = 1, . . . , n.

(3.15)

The sequence (ûk)k=1,...,n is then defined by

ûk ∈ B̂,
〈Dkû, w − ûk〉+ ψ(w)− ψ(ûk) ≥ 〈fk, w − ûk〉, ∀w ∈ B̂, ∀k = 1, . . . , n,

(3.16)

where (Dkû)k=1,...,n is expressed in terms of ûk and ûk−1 by

Dkû =
ûk − ûk−1

τ
, k = 1, . . . , n. (3.17)
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The existence and uniqueness of (ûk)k=1,...,n solution to (3.16) is obvious since this problem has
the same form as (2.15) with α = 1/τ and f = fk + ûk−1/τ . Let us denote by

û(t) = ûk and Dtû(t) = Dkû, ∀t ∈ ](k − 1)τ, kτ ], ∀k = 1, . . . , n,
û(0) = û0,

(3.18)

hence û(t) is defined for all t ∈ [0, T ]. We have the following estimates on û and Dtû.

Lemma 3.5 Under Hypothesis 2.6, let T > 0, f ∈ L2(0, T ;H) and u0 ∈ B be given. Let Ĥ be
a closed subspace of H, and let B̂ = Ĥ ∩ B. Let û0 ∈ B̂ be such that (3.14) holds. Let n ∈ N?,
τ = T/n, and let û and Dtû be defined by (3.15)-(3.18). Then, for C2 given by (3.25), there
holds

ψ(û(t)) ≤ C2/2, ∀t ∈ [0, T ], (3.19)

‖Dtû‖2L2(0,T ;H) ≤ C2, (3.20)

‖û(t)‖ ≤ ‖û0‖+ (T C2)1/2, ∀t ∈ [0, T ], (3.21)

and
‖û(t2)− û(t1)‖ ≤ (C2)1/2(|t2 − t1|+ τ)1/2, ∀t1, t2 ∈ [0, T ]. (3.22)

Proof. Let us first remark that, according to the Cauchy-Schwarz inequality,

‖fk‖2 ≤ 1

τ

∫ kτ

(k−1)τ
‖f(t)‖2dt,

which leads to
n∑
k=1

τ‖fk‖2 ≤ ‖f‖2L2(0,T ;H). (3.23)

Setting w = ûk−1 in (3.16), we get

τ‖Dkû‖2 + ψ(ûk)− ψ(ûk−1) ≤ 〈fk, ûk − ûk−1〉 ≤ τ

2
‖fk‖2 +

τ

2
‖Dkû‖2, (3.24)

which gives, summing for k = 1, . . . ,m for a given m = 1, . . . , n,

ψ(ûm) +
1

2
‖Dtû‖2L2(0,mτ ;H) ≤ ψ(û0) +

1

2
‖f‖2L2(0,T ;H)

≤ G+
1

2
‖f‖2L2(0,T ;H).

This gives (3.19) and (3.20) with

C2 = 2G+ ‖f‖2L2(0,T ;H). (3.25)

We then write

ûm = û0 +
m∑
k=1

τDkû, ∀m = 1, . . . , n,

which implies, using the Cauchy-Schwarz inequality and (3.20)

‖ûm − û0‖ ≤
m∑
k=1

τ‖Dkû‖ ≤ (mτ‖Dtû‖2L2(0,mτ ;H))
1/2 ≤ (T C2)1/2. (3.26)
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This leads to (3.21). Finally, let t1 < t2 ∈ [0, T ] and k1, k2 = 0, . . . , n such that (k1− 1)τ < t1 ≤
k1τ and (k2 − 1)τ < t2 ≤ k2τ , which implies that (k2 − 1− k1)τ < t2 − t1. We have

‖û(t2)− û(t1)‖ ≤
k2∑

k=k1+1

τ‖Dkû‖ ≤

(k2 − k1)τ

k2∑
k=k1+1

τ‖Dkû‖2
1/2

,

which provides (3.22), using (3.20). �

We may now prove the following convergence result.

Theorem 3.6 Under Hypothesis 2.6, let T > 0, f ∈ L2(0, T ;H) and u0 ∈ B be given. Let
(Ĥn)n∈N? be a sequence of closed subspaces of H, and let B̂n = Ĥn ∩B. We assume that

lim
n→∞

inf
w∈B̂n

(
‖w − v‖+ (ψ(w)− ψ(v))+

)
= 0, ∀v ∈ B. (3.27)

For all n ∈ N?, let û0
n satisfy

û0
n ∈ B̂n, ‖û0

n − u0‖ → 0 as n→∞, G := sup
n
ψ(û0

n) <∞, (3.28)

which is possible according to (3.27). Let τ = T/n, let ûn and Dtûn be defined by (3.15)-(3.18)
where Ĥ has to be replaced by Ĥn and û0 = û0

n. Then ûn(t) weakly converges in H to u(t) as
n → ∞, uniformly with respect to t ∈ [0, T ], and u is solution to Problem (3.3). Moreover, u
satisfies

ψ(u(t)) ≤ 1

2
C2, ∀t ∈ [0, T ], (3.29)

‖∂tu‖2L2(0,T ;H) ≤ C2, (3.30)

‖u(t2)− u(t1)‖ ≤ (C2)1/2|t2 − t1|1/2, ∀t1, t2 ∈ [0, T ], (3.31)

where C2 = 2G+ ‖f‖2L2(0,T ;H).

Remark 3.7 Letting Ĥn = H and û0
n = u0 for all n ∈ N? (semi-discretization in time),

Theorem 3.6 provides the existence of a solution to Problem (3.3), and allows for taking G =
ψ(u0) and C2 = 2ψ(u0) + ‖f‖2L2(0,T ;H) in (3.29)-(3.31), since the solution is unique.

Remark 3.8 Theorem 3.11 shows indeed stronger convergence properties.

Proof of Theorem 3.6. Applying Lemma 3.5, we get that the hypotheses of the Ascoli-
type Lemma 5.3 (provided in appendix) are fulfilled, from which we deduce that there exists
u ∈ C0([0, T ];H) and of a subsequence of (ûn)n∈N? , again denoted (ûn)n∈N? , such that ûn(t)
converges to u(t) weakly in H, uniformly for t ∈ [0, T ]. Note that, according to (3.28), we have
u(0) = u0. Using (3.19) and the lower semi-continuity of ψ, we get that (3.29) holds, and in
particular that u(t) ∈ B and u ∈ BT . Next, (3.31) comes directly from (5.10). Then, according
to (3.20), we have that (Dtûn)n∈N is bounded in the Hilbert space L2(0, T ;H). Hence extract-
ing a subsequence, Dtûn weakly converges in L2(0, T ;H) to some w ∈ L2(0, T ;H) satisfying
‖w‖2L2(0,T ;H) ≤ C2. We then have, for a given ϕ ∈ C1

c (]0, T [),

−
∫ T

0
ûn(t)ϕ′(t)dt = −

n∑
k=1

ûk
∫ kτ

(k−1)τ
ϕ′(t)dt =

n∑
k=1

τDkû ϕ((k − 1)τ).
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Passing to the limit weakly in H in the above relation gives

−
∫ T

0
u(t)ϕ′(t)dt =

∫ T

0
w(t)ϕ(t)dt,

which shows that ∂tu = w ∈ L2. This concludes the proof that u ∈ H1(0, T ;H) with the
estimate (3.30).
Let us finally prove that this function u verifies (3.3). Take v ∈ BT , and for n ∈ N?, consider

vn(t) = argmin
w∈B̂n

(
‖w − v(t)‖2 + (ψ(w)− ψ(v(t)))+

)
, for a.e. t ∈]0, T [. (3.32)

Indeed, the existence of vn(t) is given by Lemma 2.7, for the lower semi-continuous function
w 7→ (ψ(w)− ψ(v(t)))+. Since 0 ∈ B̂n, vn(t) verifies

‖vn(t)− v(t)‖2 + (ψ(vn(t))− ψ(v(t)))+ ≤ ‖v(t)‖2, for a.e. t ∈]0, T [.

Then, according to (3.27) (which is still valid if we put a square on the first term), we have
that ‖vn(t) − v(t)‖2 + (ψ(vn(t)) − ψ(v(t)))+ → 0 for a.e. t ∈]0, T [. Therefore, by dominated
convergence, we get that

lim
n→∞

(
‖vn − v‖2L2(0,T ;H) +

∫ T

0

(
ψ(vn(t))− ψ(v(t))

)+
dt

)
= 0. (3.33)

For n ∈ N?, k = 1, . . . , n, for a.e. t ∈](k − 1)τ, kτ [, we let w = vn(t) in (3.16). We integrate on
](k − 1)τ, kτ [ and sum on k = 1, . . . , n. We obtain, using (3.15),∫ T

0
〈Dtûn(t), vn(t)− ûn(t)〉dt+

∫ T

0

(
ψ(vn(t))− ψ(ûn(t))

)
dt

≥
∫ T

0
〈fn(t), vn(t)− ûn(t)〉dt.

(3.34)

We then notice that∫ T

0
〈Dtûn(t), ûn(t)〉dt =

n∑
k=1

〈ûk − ûk−1, ûk〉

≥
n∑
k=1

1

2

(
‖ûk‖2 − ‖ûk−1‖2

)
=

1

2
‖ûn(T )‖2 − 1

2
‖û0

n‖2.

According to the weak convergence of ûn(T ) to u(T ) inH, we have ‖u(T )‖ ≤ lim infn→∞ ‖ûn(T )‖,
thus using that û0

n → u0,

lim sup
n→∞

∫ T

0
〈Dtûn(t),−ûn(t)〉dt ≤ 1

2
‖u0‖2 − 1

2
‖u(T )‖2.

But using the weak convergence of Dtûn to ∂tu in L2(0, T ;H) and (3.33), we have

lim
n→∞

∫ T

0
〈Dtûn(t), vn(t)〉dt =

∫ T

0
〈∂tu(t), v(t)〉dt.
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According to Lemma 5.5 given in the appendix, (3.33) implies that ψ(vn(t)) → ψ(v(t)) in
L1(0, T ). Thus using Fatou’s lemma and the lower semi-continuity of ψ,

lim sup
n→∞

∫ T

0

(
ψ(vn(t))− ψ(ûn(t))

)
dt ≤

∫ T

0

(
ψ(v(t))− ψ(u(t))

)
dt.

Using the density of C1([0, T ];H) in L2(0, T ;H), we get the convergence of fn to f strongly in
L2(0, T ;H). Therefore we can then pass to the limit in (3.34), and get∫ T

0
〈∂tu(t), v(t)〉dt+

1

2
‖u0‖2 − 1

2
‖u(T )‖2 +

∫ T

0

(
ψ(v(t))− ψ(u(t))

)
dt

≥
∫ T

0
〈f(t), v(t)− u(t)〉dt.

Since ∫ T

0
〈∂tu(t), u(t)〉dt =

1

2
‖u(T )‖2 − 1

2
‖u0‖2,

we obtain that u satisfies (3.3). According to the uniqueness of the solution to (3.3), we conclude
that the whole sequence converges. �

The next lemma states an error estimate for this approximate method.

Lemma 3.9 Under Hypothesis 2.6, let T > 0, f ∈ L2(0, T ;H) and u0 ∈ B be given, and let u
denote the unique solution of Problem (3.3). Let Ĥ be a closed subspace of H, and let B̂ = Ĥ∩B.
For a given n ∈ N?, let τ = T/n, let û and Dtû be defined by (3.14)-(3.18). Then, there exists
an absolute constant C0 ≥ 0 such that

‖û(t)− u(t)‖2 ≤ C0

(
C2τ + T‖fn − f‖2L2(0,T ;H) + ‖û0 − u0‖2 + R̂u

)
, ∀t ∈ [0, T ], (3.35)

and ∫ T

0

∣∣ψ(û(t))− ψ(u(t))
∣∣dt

≤ R̂u + C0(TC2)1/2
(
C2τ + T‖fn − f‖2L2(0,T ;H) + ‖û0 − u0‖2 + R̂u

)1/2
,

(3.36)

where fn(t) is defined by (3.15), C2 is defined by (3.25), and

R̂u = inf
v∈L2(0,T ;Ĥ)∩BT

((
(2G)1/2 + 2‖f‖L2(0,T ;H)

)
‖v − u‖L2(0,T ;H)

+

∫ T

0

(
ψ(v(t))− ψ(u(t))

)+
dt

)
.

(3.37)

Remark 3.10 The estimate (3.35) extends [14, Theorem 3] to the case of time dependent right-
hand side. We use in (3.35) the continuity properties of the functions with respect to t.

Proof of Lemma 3.9. The assumptions enable to apply Lemma 3.5, thus we have the
estimates (3.19)-(3.22). As in the proof of Lemma 2.8, we consider, for a given v ∈ L2(0, T ; Ĥ)∩
BT , the test function w = v(t) in (3.16), for a.e. t ∈](k − 1)τ, kτ [. This gives that

〈Dtû(t), v(t)− û(t)〉+ ψ(v(t))− ψ(û(t)) ≥ 〈fn(t), v(t)− û(t)〉, for a.e. t ∈]0, T [. (3.38)
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For a given time t2 ∈ [0, T ], we integrate the previous inequality on ]0, t2[, and obtain∫ t2

0
〈Dtû(t), u(t)− û(t)〉dt+

∫ t2

0

(
ψ(u(t))− ψ(û(t))

)
dt+Rn

≥
∫ t2

0
〈fn(t), u(t)− û(t)〉dt,

(3.39)

with

Rn =

∫ t2

0
〈Dtû(t)− fn(t), v(t)− u(t)〉dt+

∫ t2

0

(
ψ(v(t))− ψ(u(t))

)
dt.

We then get, according to (3.23) and (3.20),

Rn ≤
(

(C2)1/2 + ‖f‖L2(0,T ;H)

)
‖v − u‖L2(0,T ;H) +

∫ T

0

(
ψ(v(t))− ψ(u(t))

)+
dt. (3.40)

Taking û as test function in (3.4) with t1 = 0, we get∫ t2

0
〈∂tu(t), û(t)− u(t)〉dt+

∫ t2

0

(
ψ(û(t))− ψ(u(t))

)
dt

≥
∫ t2

0
〈f(t), û(t)− u(t)〉dt.

(3.41)

The sum of (3.39) and (3.41) gives∫ t2

0
〈Dtû(t)− ∂tu(t), u(t)− û(t)〉dt+Rn ≥

∫ t2

0
〈fn(t)− f(t), u(t)− û(t)〉dt.

We now introduce the function ũ(t) defined by

ũ(t) =
t− (k − 1)τ

τ
ûk +

kτ − t
τ

ûk−1, ∀t ∈ [(k − 1)τ, kτ ], ∀k = 1, . . . , n, (3.42)

so that
∂tũ(t) = Dtû(t), for a.e. t ∈]0, T [,

which yields∫ t2

0
〈Dtû(t)− ∂tu(t), u(t)− ũ(t)〉dt =

1

2
‖û0 − u0‖2 − 1

2
‖ũ(t2)− u(t2)‖2.

This leads to
1

2
‖û0 − u0‖2 − 1

2
‖ũ(t2)− u(t2)‖2

+

∫ t2

0
〈Dtû(t)− ∂tu(t), ũ(t)− û(t)〉dt+Rn

≥
∫ t2

0
〈fn(t)− f(t), u(t)− û(t)〉dt.

We have for t ∈](k − 1)τ, kτ ]

ũ(t)− û(t) =
t− kτ
τ

(
ûk − ûk−1

)
=
t− kτ
τ

(
û(kτ)− û((k − 1)τ)

)
,
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and thus using (3.22),
‖ũ(t)− û(t)‖ ≤ (2C2τ)1/2, ∀t ∈ [0, T ].

We also have
‖ũ(t)− û(t)‖ ≤ τ‖Dtû(t)‖, ∀t ∈ [0, T ].

Using the estimates (3.20), (3.30), we thus get

1

4
‖û(t2)− u(t2)‖2 ≤ 1

2
‖û(t2)− ũ(t2)‖2 +

1

2
‖ũ(t2)− u(t2)‖2

≤ C2τ +
1

2
‖û0 − u0‖2 + 2(C2)1/2τ(C2)1/2 +Rn

+ ‖fn − f‖L2(0,T ;H)

(∫ t2

0
‖û(t)− u(t)‖2dt

)1/2

.

Since this holds for all t2 ∈ [0, T ], with the Gronwall argument of Lemma 3.2 we deduce that
for all t ∈ [0, T ]

1

4
‖û(t)− u(t)‖2 ≤ 2

(
3C2τ +

1

2
‖û0 − u0‖2 +Rn

)
+ 8T‖fn − f‖2L2(0,T ;H),

which shows (3.35) with (3.40), since v ∈ L2(0, T ; Ĥ) ∩ BT is arbitrary. We next deduce from
(3.38) that for all v ∈ L2(0, T ; Ĥ) ∩BT and a.e. t ∈]0, T [,

ψ(û(t))− ψ(v(t)) ≤ 〈Dtû(t)− fn(t), u(t)− û(t)〉
+‖Dtû(t)− fn(t)‖‖v(t)− u(t)‖.

We symmetrically deduce from (3.5) in which we take û as test function, that for a.e. t ∈]0, T [

ψ(u(t))− ψ(û(t)) ≤ 〈∂tu(t)− f(t), û(t)− u(t)〉.

This leads to ∣∣ψ(û(t))− ψ(u(t))
∣∣

≤
(
‖∂tu(t)‖+ ‖Dtû(t)‖+ ‖fn(t)‖+ ‖f(t)‖

)
‖û(t)− u(t)‖

+ ‖Dtû(t)− fn(t)‖‖v(t)− u(t)‖+
(
ψ(v(t))− ψ(u(t))

)+
.

Integrating this relation on ]0, T [, using (3.35), the Cauchy-Schwarz inequality and taking the
infimum on v ∈ L2(0, T ; Ĥ) ∩BT provides (3.36). �

With Lemma 3.9, we now deduce the following convergence result for the approximate method.

Theorem 3.11 Under the hypotheses of Theorem 3.6, ûn(t) converges strongly in H to u(t) ∈ B
as n tends to ∞, uniformly in t ∈ [0, T ], and ψ(ûn) converges in L1(]0, T [) to ψ(u).

Proof. We can apply Lemma 3.9 with G = supn ψ(û0
n). Let us prove that the right-hand sides

of (3.35) and (3.36) tend to 0 as n → ∞. It is clear that τ → 0 as n → ∞. We recall that by
density of C1([0, T ];H) in L2(0, T ;H), we have the strong convergence of fn to f in L2(0, T ;H).
Therefore it only remains to prove that

inf
v∈L2(0,T ;Ĥn)∩BT

(
‖v − u‖L2(0,T ;H) +

∫ T

0

(
ψ(v(t))− ψ(u(t))

)+
dt

)
−→ 0, (3.43)
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as n → ∞. Let us prove this property for all u ∈ C0([0, T ];H) such that u(t) ∈ B for all
t ∈ [0, T ]. Given η > 0, consider an integer M ∈ N?, and for i = 1, . . . ,M the intervals
Ii = [(i − 1)T/M, iT/M ]. Then Ki = u(Ii) is a compact subset of H. Since ψ is lower semi-
continuous, it attains its lower bound over each Ki. In other words, there exists ti ∈ Ii such
that

ψ(u(t)) ≥ ψ(u(ti)), ∀t ∈ Ii. (3.44)

Since u is uniformly continuous, one can choose M ∈ N? such that

‖u(ti)− u(t)‖ ≤ η, ∀t ∈ Ii, ∀i = 1, . . . ,M. (3.45)

Then applying the property (3.27) to u(ti) for all i = 1, . . . ,M , we find n1 such that for all
n ≥ n1, we can find wi ∈ B̂n for i = 1, . . . ,M satisfying

‖wi − u(ti)‖+
(
ψ(wi)− ψ(u(ti))

)+
≤ η.

Define then the function v by

v(t) = wi, ∀t ∈](i− 1)T/M, iT/M ], ∀i = 1, . . . ,M,

and v(0) = w1. Then v ∈ L2(0, T ; Ĥn) ∩BT ,

sup
t∈[0,T ]

‖v(t)− u(t)‖ ≤ 2η, sup
t∈[0,T ]

(
ψ(v(t))− ψ(u(t))

)+
≤ η,

which concludes the proof of (3.43). �

3.3 Total variation functionals, regularized implicit approximations

We now take a functional ψ of the type considered in Subsection 2.2, as stated in Hypothesis
2.10, and we modify the scheme (3.14)-(3.18) by including a regularization procedure with
parameter ε > 0. We assume that Ĥ is a finite dimensional subspace of H1, that û0 ∈ Ĥ is an
approximation of u0 ∈ B. For a given n ∈ N?, we define τ = T/n and the sequence (ûkε)k=1,...,n

by

ûkε ∈ Ĥ,

〈Dkûε, w〉+

∫
Ω

A(ûkε , w)(x)

ε+ a(ûkε)(x)
dµ = 〈fk, w〉, ∀w ∈ Ĥ, ∀k = 1, . . . , n,

(3.46)

again using (3.17) (with index ε) and (3.15). This scheme is called the regularized implicit
algorithm. At each timestep, a problem of the form (2.31) with α = 1/τ , f = fk + ûk−1

ε /τ has
to be solved, and the fixed point method (2.43) can be used. Note that, according to Lemma
2.13, there exists one and only one family (ûkε)k=1,...,n defined by (3.46).

Theorem 3.12 Under Hypothesis 2.10, let T > 0, f ∈ L2(0, T ;H) and u0 ∈ B be given. Let Ĥ
be a finite dimensional subspace of H1, and let B̂ = Ĥ. Let ε > 0 be given, and, for n ∈ N?, let
τ = T/n, let ûε be defined by (3.14), (3.15), (3.46), and (3.17), (3.18) with indices ε everywhere,
and let û be defined by (3.14)-(3.18), with û0

ε = û0. Then it holds

‖ûε(t)− û(t)‖2 ≤ 2εµ(Ω)T, ∀t ∈ [0, T ], (3.47)
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and ∫ T

0
|ψ(ûε(t))− ψ(û(t))|dt ≤ εµ(Ω)T + (2G1/2 + 3‖f‖L2(0,T ;H))(2εµ(Ω)T 2)1/2. (3.48)

Remark 3.13 By Lemma 3.9 and the triangle inequality, we get estimates on ‖ûε(t) − u(t)‖
and on

∫
|ψ(ûε(t))−ψ(u(t))|dt. These are improvements with respect to [13, Theorem 1.7] since

Theorem 3.12 does not include terms in 1/ε (thus the limit ε→ 0 is possible), and no additional
regularity is required on the solution. Moreover, under assumptions (3.27), (3.28), Theorem
3.11 gives also the convergence of ûε to u as ε→ 0 and n→∞.

Proof of Theorem 3.12. Using (5.6) (in the same way as in (2.39)), we get from (3.46)

〈fk, v − ûkε〉 ≤ 〈Dkûε, v − ûkε〉+ ψ(v)− ψ(ûkε) + εµ(Ω), ∀v ∈ Ĥ. (3.49)

We then let v = ûk, and we add the result to (3.16), with w = ûkε . We thus obtain

〈Dk(ûε − û), ûkε − ûk〉 ≤ εµ(Ω).

Multiplying by τ , using (a − b)a = 1
2(a2 + (a − b)2 − b2) and summing on k = 1, . . . ,m for

m = 1, . . . , n, we get
1

2
‖ûmε − ûm‖2 ≤

1

2
‖û0

ε − û0‖2 + εµ(Ω)T,

which proves (3.47).
We then have, taking w = ûkε − ûk−1

ε in (3.46), for k = 1, . . . , n, and omitting (x),

τ‖Dkûε‖2 +

∫
Ω

A(ûkε , û
k
ε − ûk−1

ε )

ε+ a(ûkε)
dµ = τ〈fk, Dkûε〉.

We now use the Cauchy-Schwarz inequality, which implies

a(ûkε)(a(ûkε)− a(ûk−1
ε )) ≤ A(ûkε , û

k
ε − ûk−1

ε ),

and we use (5.5). This leads to

τ‖Dkûε‖2 +

∫
Ω

(
Fε
(
a(ûkε)

)
− Fε

(
a(ûk−1

ε )
))

dµ ≤ τ〈fk, Dkûε〉 ≤
τ

2
‖fk‖2 +

τ

2
‖Dkûε‖2.

Hence, taking the sum on k = 1, . . . , n, using
∫

Ω Fε(a(û0
ε))dµ ≤

∫
Ω a(û0

ε)dµ = ψ(û0
ε) ≤ G, we get

that, for C2 = 2G+ ‖f‖2L2(0,T ;H), one has

‖Dtûε‖2L2(0,T ;H) ≤ C2. (3.50)

We get, as above from (3.49) with v = ûk, and (3.16) with w = ûkε , that

|ψ(ûkε)− ψ(ûk)| ≤ εµ(Ω) + |〈fk, ûkε − ûk〉|+ max
(∣∣〈Dkûε, û

k
ε − ûk〉

∣∣, ∣∣〈Dkû, ûkε − ûk〉
∣∣) .

Writing the corresponding inequality for all t ∈ [0, T ] and integrating the result on [0, T ], using
the Cauchy-Schwarz inequality, (3.47), (3.20) and (3.50), we get (3.48).

�
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3.4 Total variation functionals, regularized linearized implicit approxima-
tions

As in Subsection 3.3, we again take a functional ψ of the type considered in Subsection 2.2, as
stated in Hypothesis 2.10, we again modify the scheme (3.14)-(3.18) by including a regularization
procedure with parameter ε > 0. We assume that Ĥ is a finite dimensional subspace of H1, that
û0 ∈ Ĥ is an approximation of u0 ∈ B. For a given n ∈ N?, we define τ = T/n and the sequence
(ûk)k=1,...,n by

ûk ∈ Ĥ,

〈Dkû, w〉+

∫
Ω

A(ûk, w)(x)

ε+ a(ûk−1)(x)
dµ = 〈fk, w〉, ∀w ∈ Ĥ, ∀k = 1, . . . , n,

(3.51)

using (3.17) and (3.15). Note that the main difference with Subsection 3.3 is that Problem (3.51)
has been linearized with respect to ûk, the denominator being evaluated at ûk−1, corresponding
to the previous time step. This is what we call the regularized linearized implicit algorithm.
The great advantage of the approximation (3.51) with respect to (3.46) is that at each time
step it suffices to solve a linear system. Then the limitation that ε must not be too small in
Lemma 2.15 (otherwise the convergence of the iterative method is very slow) is replaced here by
a restriction saying that the time step must be much smaller than ε. Moreover, the assumption
(3.27) (or equivalently (2.34), (2.35)) has to be slightly strengthened.

Theorem 3.14 Under Hypothesis 2.10, let T > 0, f ∈ L2(0, T ;H) and u0 ∈ B be given, and let
u denote the unique solution of Problem (3.3). Let (Ĥn)n∈N? be a sequence of finite dimensional
subspaces of H1. We assume that

inf
w∈H1

(
‖w − v‖+ (ψ(w)− ψ(v))+

)
= 0, ∀v ∈ B, (3.52)

and that

lim
n→∞

inf
w∈Ĥn

(
‖w − v‖+

(∫
Ω

(a(w − v)(x))2dµ(x)

)1/2)
= 0, ∀v ∈ H1. (3.53)

For all n ∈ N?, let τn = T/n, let û0
n ∈ Ĥn be such that

‖û0
n − u0‖ → 0, as n→∞, sup

n
ψ(û0

n) <∞. (3.54)

Let (εn)n∈N? be a sequence of positive numbers converging to 0, such that

τn
εn
−→ 0, as n→∞. (3.55)

Let ûn and Dtûn be defined by û0 = û0
n, (3.17), (3.18), (3.15), and (3.51) where Ĥ has to be

replaced by Ĥn, τ by τn, and ε by εn. Then ûn(t) converges in H to u(t) ∈ B as n tends to ∞,
uniformly in t ∈ [0, T ], and ψ(ûn) converges in L1(]0, T [) to ψ(u).

Proof. Let us first notice that (3.52) and (3.53) imply (2.34) and (2.35), because |ψ(w)−ψ(v)| =
|
∫

Ω(a(w) − a(v))dµ| ≤
∫

Ω a(w − v)dµ ≤ (µ(Ω)
∫

Ω a(w − v)2dµ)1/2, and thus also imply (3.27).
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We denote by G ≥ 0 a constant such that ψ(û0
n) ≤ G. We have, taking w = ûk− ûk−1 in (3.51),

for k = 1, . . . , n,

τn‖Dkû‖2 +

∫
Ω

A(ûk, ûk − ûk−1)(x)

εn + a(ûk−1)(x)
dµ = τn〈fk, Dkû〉.

We again use (5.4) proved in Lemma 5.1. This leads, omitting (x), to

τn‖Dkû‖2 +

∫
Ω

(
Fεn
(
a(ûk)

)
− Fεn

(
a(ûk−1)

)
+

(a(ûk)− a(ûk−1))2

2(εn + a(ûk−1))

)
dµ

≤ τn〈fk, Dkû〉 ≤ τn
2
‖fk‖2 +

τn
2
‖Dkû‖2.

Hence, taking the sum on k = 1, . . . , n, using (5.3) and
∫

Ω Fεn(a(û0))dµ ≤
∫

Ω a(û0
n)dµ = ψ(û0

n) ≤
G, we get the existence of C2 ≥ 0, only depending on ‖f‖L2(0,T ;H) and G, such that

n∑
k=1

∫
Ω

(a(ûk)− a(ûk−1))2

2(εn + a(ûk−1))
dµ ≤ C2, (3.56)

‖Dtûn‖2L2(0,T ;H) ≤ C2, (3.57)

ψ(ûn(t)) ≤ C2 + εnµ(Ω), ∀t ∈ [0, T ], (3.58)

‖ûn(t)‖ ≤ ‖û0
n‖+ (TC2)1/2, ∀t ∈ [0, T ], (3.59)

and
‖ûn(t2)− ûn(t1)‖ ≤ (C2)1/2(|t2 − t1|+ τn)1/2, ∀t1, t2 ∈ [0, T ]. (3.60)

Another a priori estimate is needed in further computations. We let w = τnû
k in (3.51), for

k = 1, . . . , n, and we take the sum on k = 1, . . . , n. We obtain, using the inequality 1
2a

2− 1
2b

2 ≤
(a− b)a,

1

2
‖ûn‖2 − 1

2
‖û0

n‖2 +
n∑
k=1

τn

∫
Ω

a(ûk)2

εn + a(ûk−1)
dµ ≤

n∑
k=1

τn〈fk, ûk〉.

We then apply (3.59) and (3.23). We obtain

n∑
k=1

τn

∫
Ω

a(ûk)2

εn + a(ûk−1)
dµ ≤ 1

2
‖û0

n‖2 + ‖f‖L2(0,T ;H)T
1/2(‖û0

n‖+ (TC2)1/2) ≤ C1, (3.61)

for some constant C1. For a given element vn ∈ L2(0, T ; Ĥn) ∩ BT , we let w = vn(t) − ûk in
(3.51), for a.e. t ∈](k − 1)τn, kτn[ and k = 1, . . . , n. This gives that

〈Dkû, vn(t)− ûk〉+

∫
Ω

A(ûk, vn(t)− ûk)
εn + a(ûk−1)

dµ = 〈fk, vn(t)− ûk〉,

which provides, according to the Cauchy-Schwarz inequality,

〈Dkû, vn(t)− ûk〉+

∫
Ω

a(ûk)
(
a(vn(t))− a(ûk)

)
εn + a(ûk−1)

dµ ≥ 〈fk, vn(t)− ûk〉.

Then, for a given t2 ∈]0, T ], we take m = 1, . . . , n so that (m − 1)τn < t2 ≤ mτn, we integrate
the previous equation on ](k − 1)τn, kτn[, sum on k = 1, . . . ,m − 1, and also sum the integral
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over ](m − 1)τn, t2[ for k = m. This leads, using (5.7) with c = a(ûk−1)(x), d = a(ûk)(x) and
e = a(vn(t))(x), to ∫ t2

0
〈fn(t), vn(t)− ûn(t)〉dt

≤
∫ t2

0

(
〈Dtûn(t), vn(t)− ûn(t)〉+ ψ(vn(t))− ψ(ûn(t))

)
dt

+ εnµ(Ω)T + T (1)
n + T (2)

n ,

with

T (1)
n =

n∑
k=1

∫ kτn

(k−1)τn

∫
Ω

a(vn(t))|a(ûk)− a(ûk−1)|
εn + a(ûk−1)

dµdt,

and

T (2)
n = τn

n∑
k=1

∫
Ω

a(ûk)|a(ûk)− a(ûk−1)|
εn + a(ûk−1)

dµ.

We have, according to the Cauchy-Schwarz inequality and to (3.56),

(T
(1)
n )2 ≤ 1

εn
‖a(vn)‖2L2(0,T ;L2

µ(Ω))

n∑
k=1

τn

∫
Ω

(a(ûk)− a(ûk−1))2

εn + a(ûk−1)
dµ

≤ 2C2
τn
εn
‖a(vn)‖2L2(0,T ;L2

µ(Ω)).

We then have similarly, using (3.56) and (3.61),

(T
(2)
n )2 ≤

(
τn

n∑
k=1

∫
Ω

a(ûk)2

εn + a(ûk−1)
dµ

)(
τn

n∑
k=1

∫
Ω

(a(ûk)− a(ûk−1))2

εn + a(ûk−1)
dµ

)
≤ 2τnC1C2.

We then follow the proof of (3.35) in Lemma 3.9, and we obtain the existence of an absolute
constant C0 such that

‖ûn(t)− u(t)‖2

≤ C0

(
C2τn + T‖fn − f‖2L2(0,T ;H) + ‖û0

n − u0‖2 + R̂u(vn)

+εnµ(Ω)T +

(
C2
τn
εn

)1/2

‖a(vn)‖L2(0,T ;L2
µ(Ω)) + (C1C2τn)1/2

)
,

(3.62)

for all t ∈ [0, T ], where fn(t) is defined by (3.15) and R̂u(vn) is defined by

R̂u(vn) =
(
C

1/2
2 + ‖f‖L2(0,T ;H)

)
‖vn − u‖L2(0,T ;H) +

∫ T

0

(
ψ(vn(t))− ψ(u(t))

)+
dt.

Let now η > 0. As in the proof of Theorem 3.11, we can take M ∈ N? such that for some
ti ∈ Ii = [(i − 1)T/M, iT/M ], one has (3.44) and (3.45). Then since u(ti) ∈ B, one can use
(3.52), and find ϕi ∈ H1 such that

‖ϕi − u(ti)‖+ (ψ(ϕi)− ψ(u(ti)))
+ ≤ η.
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Define then

ϕ(t) = ϕi for all t ∈](i− 1)T/M, iT/M ], i = 1, . . . ,M, ϕ(0) = ϕ1.

Applying (3.53), one can find for all i = 1, . . . ,M some vin ∈ Ĥn such that

‖vin − ϕi‖+

(∫
a(vin − ϕi)2dµ

)1/2

−→ 0, as n→∞.

This implies in particular that ψ(vin)− ψ(ϕi) =
∫

(a(vin)− a(ϕi))dµ→ 0. Define vn by

vn(t) = vin for all t ∈](i− 1)T/M, iT/M ], i = 1, . . . ,M, vn(0) = v1
n.

Then

sup
n

sup
t∈[0,T ]

∫
a(vn(t))2dµ <∞.

Therefore, passing to the limit in (3.62) as n→∞, we get

lim sup
n→∞

sup
t∈[0,T ]

‖ûn(t)− u(t)‖2 ≤ C0R̂u(ϕ) ≤ Cη,

where C depends only on G, ‖f‖L2(0,T ;H), T . This being true for all η > 0, we conclude that

lim sup
n→∞

sup
t∈[0,T ]

‖ûn(t)− u(t)‖2 = 0,

showing the convergence of the scheme. The proof that ψ(ûn) converges in L1(]0, T [) to ψ(u)
uses a similar procedure, following the proof of (3.36) in Lemma 3.9. �

Remark 3.15 Even if the implicit linearized algorithm (3.51) looks very simple in its imple-
mentation, it must be said that this simplicity hides indeed a very slow rate of convergence,
obtained as (τ/ε)1/4 in a weak sense. This is much slower than the rate of Theorem 3.12 and
Remark 3.13 (estimates (3.35), (3.36), (3.47), (3.48)). However, for solving (3.46), which is a
nonlinear problem on ûkε , we have to use the iteration procedure (2.43) at each time step, which
can be written

û
k(j)
ε ∈ Ĥ,

〈 û
k(j)
ε − ûk−1

ε

τ
, w〉+

∫
Ω

A(û
k(j)
ε , w)(x)

ε+ a(û
k(j−1)
ε )(x)

dµ = 〈fk, w〉, ∀w ∈ Ĥ, ∀j ∈ N?,

ûk(0)
ε = ûk−1

ε ,

(3.63)

for k = 1, . . . , n. This can be extremely costly. In practice a strategy which is intermediate
between the two algorithms is to perform only a few iterations in (3.63) (a single iteration
corresponding to the regularized linearized implicit method (3.51)). Then the ratio accuracy
versus cost is improved.
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4 Numerical examples

4.1 Steady case

We consider the framework of Section 2.2, and the total variation flow of example 2.11. We take
Ω =]0, 1[ and α = 1. We consider the function f defined by

f(x) = 1000 (x− 1

10
)(

1

2
− x)(x− 2

3
), ∀x ∈ [0, 1].

Let us consider 0 < x1 < x2 < x3 < x4 < 1 (see Figure 1) such that∫ x1

0 (f(s)− f(x1))ds = 1,
f(x2) = f(x3),∫ x3

x2
(f(s)− f(x2))ds = 0,∫ 1

x4
(f(s)− f(x4))ds = −1.

One can check that there exists a solution to these equations which is such that x1 ' 0.0781928,
x2 ' 0.1309924, x3 ' 0.7134521 and x4 ' 0.9501621. We then define the function u by

u(x) = f(x1), ∀x ∈ [0, x1]
u(x) = f(x), ∀x ∈ [x1, x2]
u(x) = f(x2) = f(x3), ∀x ∈ [x2, x3]
u(x) = f(x), ∀x ∈ [x3, x4]
u(x) = f(x4), ∀x ∈ [x4, 1].

We can then prove, using Remark 2.4, that this function u is the exact solution to (2.6) in this
case. Indeed, on one hand we have∫ 1

0

(
u(s)2 + |u′(s)|

)
ds =

∫ 1

0
f(s)u(s)ds,

since f is decreasing on [x1, x2] and on [x3, x4], which leads to∫ 1

0
|u′(s)|ds = f(x1)− f(x4),

and since ∫ 1

0

(
f(s)u(s)− u(s)2

)
ds

=

∫ x1

0

(
f(s)− f(x1)

)
f(x1)ds+

∫ x3

x2

(
f(s)− f(x2)

)
f(x2)ds

+

∫ 1

x4

(
f(s)− f(x4)

)
f(x4)ds

= f(x1)− f(x4).

Defining µ(x) =
∫ x

0 (f(s)− u(s))ds, we get that

µ(0) = µ(1) = 0,
|µ(x)| ≤ 1,∀x ∈ [0, 1],
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which leads to

∀v ∈ H1(]0, 1[),

∫ 1

0
|v′(s)|ds ≥ −

∫ 1

0
µ(s)v′(s)ds =

∫ 1

0

(
f(s)− u(s)

)
v(s)ds.

Gathering the two above equations, we get that u ∈ H1(]0, 1[) is such that

∀v ∈ H1(]0, 1[),

∫ 1

0

(
u(s)(v(s)− u(s)) + |v′(s)| − |u′(s)|

)
ds

≥
∫ 1

0
f(s)

(
v(s)− u(s)

)
ds,

which implies (2.6).

Let us now check that the numerical method considered in Lemmas 2.13 and 2.14 well approxi-
mates the function u.

We consider that Ĥ is spanned by the P 1 finite element basis, using a constant space step
h = 1/2000. We take ε = 10−6 in (2.43), and k = 10000 iterations of the algorithm (2.43), that
provide ‖u(k) − u(k−1)‖∞/(max(u) − min(u)) ' 0.00002. We get that ‖u(k) − u‖∞/(max(u) −
min(u)) ' 0.007, which is acceptable in this case. This is confirmed by Figure 1, where the
three functions, u, u(k) and f are drawn.
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Figure 1: Approximate solution (blue), exact solution (black) and right-hand side (red).

4.2 Transient case

We again consider the total variation flow of example 2.11 with Ω =]0, 1[. We consider the
framework of subsection 3.4, we let f = 0 and

u0(x) = 1000 (x− 1

10
)(

1

2
− x)(x− 2

3
), ∀x ∈ [0, 1].
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We consider the following data in the scheme (3.51): Ĥ is the P 1 finite element approximation
with constant space step equal to h = 1/200, τ = 0.001, ε = 0.01. We show in Figure 2 the
approximate solution at different times. It is then possible to check that Figure 2 provides an
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Figure 2: Initial solution (blue) and approximate solutions at times 0.1 (green), 0.2 (red), 0.3
(magenta), 0.4 (black), 0.5 (blue), 0.6 (green), 0.7 (red). The vertical lines are approximate
values at the same times of xi(t), i = 1, . . . , 6.

accurate approximation of the analytical solution of the problem, at least for small times. Let
us give the ordinary differential equations leading to the definition of this analytical solution.
We denote by y1 = (76 −

√
916)/180 ' 0.2540806 and y2 = (76 +

√
916)/180 ' 0.5903638 the

two roots of the equation ∇u0(x) = 0. The analytical solution is given for t sufficiently small
by 0 < x1(t) < x2(t) < x3(t) < x4(t) < x5(t) < x6(t) < 1 (see Figure 2) such that, for all t > 0
small enough such that x3(t) < x4(t),

x1(0) = 0 and ∂t(u
0(x1(t))) = −1/x1(t),

x2(0) = x3(0) = y1, u
0(x2(t)) = u0(x3(t)),

∂t(u
0(x3(t))) = 2/(x3(t)− x2(t)),

x4(0) = x5(0) = y2, u
0(x4(t)) = u0(x5(t)),

∂t(u
0(x5(t))) = −2/(x5(t)− x4(t)),

x6(0) = 1 and ∂t(u
0(x6(t))) = 1/(1− x6(t)).

(4.1)
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Note that the above system is not well posed at t = 0, since (u0)′(y1) = (u0)′(y2) = 0. We then
define the function u(t, x) by

u(t, x) = u0(x1(t)), ∀x ∈ [0, x1(t)],
u(t, x) = u0(x), ∀x ∈ [x1(t), x2(t)],
u(t, x) = u0(x2(t)) = u0(x3(t)), ∀x ∈ [x2(t), x3(t)],
u(t, x) = u0(x), ∀x ∈ [x3(t), x4(t)],
u(t, x) = u0(x4(t)) = u0(x5(t)), ∀x ∈ [x4(t), x5(t)],
u(t, x) = u0(x), ∀x ∈ [x5(t), x6(t)],
u(t, x) = u0(x6(t)), ∀x ∈ [x6(t), 1].

The function u verifies, for t small enough such that x3(t) < x4(t),∫ 1

0

(
∂tu(t, x)u(t, x) + |∇u(t, x)|

)
dx

= −u0(x1(t))x1(t)
x1(t) + u0(x1(t))− u0(x2(t)) + 2u0(x2(t))x3(t)−x2(t)

x3(t)−x2(t)

+ u0(x4(t))− u0(x3(t))− 2u0(x4(t))x5(t)−x4(t)
x5(t)−x4(t)

+ u0(x5(t))− u0(x6(t)) + u0(x6(t))1−x6(t)
1−x6(t)

= 0.

We then denote

µ(t, x) =

∫ x

0
∂tu(t, s)ds.

We remark that µ(t, 1) = 1− 2 + 2− 1 = 0 and it is easy to check that −1 ≤ µ(t, x) ≤ 1 for all
x ∈ [0, 1]. Therefore we have

∀v ∈ H1(]0, 1[),

∫ 1

0
|v′(x)|dx ≥

∫ 1

0
µ(t, x)v′(x)dx = −

∫ 1

0
∂tu(t, x)v(x)dx.

Gathering the above equations, we get that u is such that

∀v ∈ H1(]0, 1[),

∫ 1

0

(
∂tu(t, x)

(
v(x)− u(t, x)

)
+ |∇v(x)| − |∇u(t, x)|

)
dx ≥ 0,

which proves that u is the analytical solution of the problem. Therefore, in order to assess the
accuracy of the numerical scheme, we have plotted on Figure 2 vertical lines at approximations
of abscissae xi(t), i = 1, . . . , 6, t = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, obtained using the following
algorithms:

x1 → 0, t1 → 0

while t1 < T
x1 → x1 + δx
t1 → t1 − δx (u0)′(x1) x1

endwhile

x2 → y1, x3 → y1, t2 → 0, t3 → 0

while t2 < T and t3 < T
if t2 < t3 then

x2 → x2 − δx
t2 → t2 − δx (u0)′(x2) (x3 − x2)/2

else
x3 → x3 + δx
t3 → t3 + δx (u0)′(x3) (x3 − x2)/2

endif
endwhile
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The approximation of x6 is similar to that of x1, and that of x4 and x5 is similar to that of x2 and
x3. We then numerically check that these algorithms provide accurate approximations of (4.1)
(in particular, u0(x2(t)) remains close to u0(x3(t)), and u0(x4(t)) remains close to u0(x5(t)),
setting δx = 10−4).

5 Conclusion

We have introduced numerical approximations by conforming methods and regularization, for a
general class of steady or time-dependent variational problems that include the total variation
flow and the inviscid Bingham flow. We have proved their convergence, generalizing the results
of [13, 14], and shown the accuracy of the approximation for the total variation flow problem
on a one-dimensional analytic solution.
In general, the lack of viscosity generates a big loss of accuracy in the regions where the multi-
valued aspect of these systems takes effect. This point appears in our error estimates in Lemma
2.15, where the number of iterations may be very large if ε is small, and in Theorem 3.14, where
the rate of convergence is very weak, in (τ/ε)1/4. The practical aspects of the method for inviscid
incompressible Bingham fluid flows are evaluated in [21, 19]. A related work is [5], using the
augmented Lagrangian method.

Appendix

Lemma 5.1 Let ε > 0 be given and let Fε : R+ → R+ be defined by

∀z ∈ R+, Fε(z) =

∫ z

0

s

ε+ s
ds = z − ε log

ε+ z

ε
. (5.1)

Then the following properties hold:

∀z ∈ R+, 0 ≤ Fε(z) ≤ z, (5.2)

∀z ∈ R+, Fε(z) ≥ (z − ε)(1− log 2), (5.3)

∀c, d ∈ R+, Fε(d)− Fε(c) +
(d− c)2

2(ε+ c)
≤ d

ε+ c
(d− c), (5.4)

and

∀c, d ∈ R+, Fε(d)− Fε(c) ≤
d

ε+ d
(d− c). (5.5)

Finally, one has

∀c, d ∈ R+, d− c− ε ≤ d

ε+ d
(d− c), (5.6)

and

∀c, d, e ∈ R+,
d

ε+ c
(e− d) ≤ e− d+ ε+

|d− c|
ε+ c

(e+ d). (5.7)

Proof. The first property (5.2) is obvious from the integral definition of Fε. We then observe
that

z log 2− ε log
ε+ z

ε
≥ 0, ∀z ∈ [ε,∞),
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which implies (5.3). We then set, for c, d ∈ R+, Φc(d) = d
ε+c(d − c) − (d−c)2

2(ε+c) −
∫ d
c
zdz
ε+z . We

have Φc(c) = 0, and Φ′c(d) = d
ε+c −

d
ε+d , whose sign is that of d − c. Hence Φc(d) ≥ 0, which

proves (5.4). We then set, for c, d ∈ R+, Φ̂c(d) = d
ε+d(d− c)−

∫ d
c
zdz
ε+z . We have Φ̂c(c) = 0, and

Φ̂′c(d) = ε
(ε+d)2 (d− c), whose sign is that of d− c. Hence Φ̂c(d) ≥ 0, which proves (5.5).

Finally, the proof of (5.6) is obtained by developing the expressions, as well as that of (5.7),
which results from (5.6) and from

d

ε+ c
(e− d)− d

ε+ d
(e− d) =

d

ε+ d

d− c
ε+ c

(e− d) ≤ |d− c|
ε+ c

(e+ d).

�

Remark 5.2 One can perform the same analysis if ε + a(u) is replaced by
√
ε2 + a(u)2 in

(2.31). Then Fε(z) =
√
ε2 + z2 − ε.

We now state and prove the following compactness result for the sake of completeness.

Lemma 5.3 (Weak version of Ascoli’s theorem) Let T > 0 be given and let H be a Hilbert
space. Let (un)n∈N be a sequence of functions from [0, T ] to H, such that there exists C∞ ≥ 0
with

‖un(t)‖ ≤ C∞, ∀n ∈ N, ∀t ∈ [0, T ]. (5.8)

We also assume that there exists a sequence (τn)n∈N with τn ≥ 0 and τn → 0 as n→∞, and a
constant C2 ≥ 0 such that

‖un(t2)− un(t1)‖ ≤ C1/2
2 (|t2 − t1|+ τn)1/2, ∀n ∈ N, ∀t1, t2 ∈ [0, T ]. (5.9)

Then there exists u ∈ C0([0, T ];H) and a subsequence of (un)n∈N, again denoted (un)n∈N, such
that, for all t ∈ [0, T ], un(t) converges to u(t) for the weak topology of H, and for all v ∈ H,
〈un(t), v〉 converges uniformly with respect to t ∈ [0, T ] to 〈u(t), v〉.

Proof. The proof follows that of Ascoli’s theorem. Let (tp)p∈N be a dense sequence in [0, T ]. In
view of (5.8), for each p ∈ N, we may extract from (un(tp))n∈N a subsequence which is convergent
to some element of H for the weak topology of H. Using the diagonal method, we can find a
strictly increasing function ϕ : N→ N, such that (uϕ(n)(tp))n∈N is weakly convergent in H for
all p ∈ N. For any t ∈ [0, T ] and v ∈ H, we then prove that the sequence (〈uϕ(n)(t), v〉)n∈N is a
Cauchy sequence. Indeed, let ε > 0 be given. We choose p ∈ N such that |t − tp| ≤ ε2. Since
(〈uϕ(n)(tp), v〉)n∈N is a Cauchy sequence, we can find n0 ∈ N such that, for k, l ≥ n0,∣∣〈uϕ(k)(tp)− uϕ(l)(tp), v〉

∣∣ ≤ ε,
and such that τϕ(k), τϕ(l) ≤ ε2. We then get, using (5.9),∣∣〈uϕ(k)(t)− uϕ(l)(t), v〉

∣∣ ≤ C1/2
2 ‖v‖

(
(|t− tp|+ τϕ(k))

1/2 + (|t− tp|+ τϕ(l))
1/2
)

+ ε,

which gives ∣∣〈uϕ(k)(t)− uϕ(l)(t), v〉
∣∣ ≤ (2 21/2C

1/2
2 ‖v‖+ 1

)
ε.
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This proves that the sequence (〈uϕ(n)(t), v〉)n∈N converges. It is clear that its limit is a linear
function of v. Since, from (5.8), we have

|〈uϕ(n)(t), v〉| ≤ C∞‖v‖,

we get by Riesz’ theorem the existence of u(t) ∈ H such that (uϕ(n)(t))n∈N converges to u(t) for
the weak topology of H. From (5.9), we have

|〈un(t2)− un(t1), v〉| ≤ C1/2
2 (|t2 − t1|+ τn)1/2‖v‖, ∀n ∈ N, ∀t1, t2 ∈ [0, T ],∀v ∈ H.

Passing to the limit n→∞ in the above equation, we get

|〈u(t2)− u(t1), v〉| ≤ C1/2
2 |t2 − t1|

1/2‖v‖, ∀t1, t2 ∈ [0, T ], ∀v ∈ H,

thus
‖u(t2)− u(t1)‖ ≤ C1/2

2 |t2 − t1|
1/2, ∀t1, t2 ∈ [0, T ], (5.10)

showing that u ∈ C0([0, T ];H). Finally, fix v ∈ H, and let ε > 0. Then there is a finite P ∈ N
such that [0, T ] ⊂ ∪Pp=1]tp − ε2, tp + ε2[. Then there exists n1 such that for all n ≥ n1 one has

τn ≤ ε2 and for all p = 1, . . . , P ,

|〈un(tp)− u(tp), v〉| ≤ ε.

Then for a time t ∈ [0, T ], one can find p ≤ P such that |t− tp| ≤ ε2. It follows that

|〈un(t)− u(t), v〉| ≤ |〈un(t)− un(tp), v〉|+ |〈u(t)− u(tp), v〉|+ ε

≤ 2(C2)1/2‖v‖(|t− tp|+ τn)1/2 + ε

≤
(
2 21/2C

1/2
2 ‖v‖+ 1

)
ε,

(5.11)

which proves the uniform convergence with respect to t. �

We have the following approximation properties, partly stated in [17] and [22] without full proof.

Lemma 5.4 Let Ω ⊂ RN , with N ≥ 1, be an open bounded set, such that there exists a point
O ∈ Ω with Ω strictly star-shaped with respect to O. Then

∀u ∈ L2(Ω) ∩BV (Ω), inf
v∈C∞(Ω)

(
‖v − u‖2L2(Ω) +

∣∣∣ ‖∇v‖L1(Ω) − |u|BV (Ω)

∣∣∣) = 0, (5.12)

and
∀u ∈ L2(Ω)N with Du ∈M(Ω), div u = 0,

inf
v∈C∞(Ω)N ,div v=0

(
‖v − u‖2L2(Ω) +

∣∣∣ ‖Dv‖L1(Ω) − |Du|M(Ω)

∣∣∣) = 0. (5.13)

Proof. Here, M(Ω) denotes the space of finite measures over Ω, and Du = (∇u + (∇u)t)/2.
We only prove (5.12), since (5.13) is obtained very similarly, replacing (1.20), (1.21) by (1.15),
(1.16) with ν = 0. Let us assume, without restricting the generality, that the point O is the
origin of RN . Let u ∈ L2(Ω) ∩BV (Ω) be given, and let n ∈ N be given. We define Ωn by

Ωn = {x ∈ RN ,
1

1− 1
n+2

x ∈ Ω} ⊂ Ω.
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Since Ω is strictly star-shaped with respect to O, one has ∂Ωn ∩ ∂Ω = ∅. Since Ω is bounded,
we have that an = 1

4d(∂Ωn, ∂Ω) > 0. Moreover, an → 0 as n → ∞. For a mollifier ρ ∈
C∞c (B(0, 1),R+) with integral equal to 1, we define the function ρn by ρn(x) = 1

aNn
ρ( x

an
). We

then consider the function un ∈ C∞(Ωn) defined by

un(x) =

∫
Ω
u(y)ρn(x− y)dy, ∀x ∈ Ωn.

Let ϕ ∈ C1
c (Ωn)N , with |ϕ(x)| ≤ 1, for all x ∈ Ωn. We have∫

Ωn

un(x) divϕ(x)dx =

∫
Ωn

∫
Ω
u(y)ρn(x− y)dy divϕ(x)dx

=

∫
Ω
u(y)

∫
Ωn

ρn(x− y) divϕ(x)dxdy

=

∫
Ω
u(y) divϕn(y)dy,

where ϕn denotes the function defined by

ϕn(y) =

∫
Ωn

ρn(x− y)ϕ(x)dx, ∀y ∈ Ω.

We have ϕn ∈ C1
c (Ω)N , with |ϕn(y)| ≤ 1 for all y ∈ Ω. Therefore, because of the characterization

(1.20), (1.21) of the BV seminorm,∫
Ω
u(y) divϕn(y)dy ≤ |u|BV (Ω).

Since this holds for all ϕ ∈ C1
c (Ωn)N with |ϕ(x)| ≤ 1, we get

|un|BV (Ωn) ≤ |u|BV (Ω),

and therefore lim supn→∞ |un|BV (Ωn) ≤ |u|BV (Ω). Reciprocally, let ϕ ∈ C1
c (Ω)N , with |ϕ(x)| ≤ 1,

for all x ∈ Ω. Since, for all n ∈ N, we have that d(∂Ωn, ∂Ω) ≤ 1
n+2d(O, ∂Ω), there exists n0 ∈ N

such that, for all n ≥ n0, ϕ ∈ C1
c (Ωn)N . For such an n, one has∫
Ωn

un(x) divϕ(x)dx ≤ |un|BV (Ωn).

Since this holds for all n ≥ n0 and since un converges to u in L2, one gets∫
Ω
u(x) divϕ(x)dx ≤ lim inf

n→∞
|un|BV (Ωn).

Since this holds for all ϕ ∈ C1
c (Ω)N , with |ϕ(x)| ≤ 1, we may take the supremum in the above

inequality, which yields
|u|BV (Ω) ≤ lim inf

n→∞
|un|BV (Ωn).

Hence we conclude, gathering these results, that

lim
n→∞

|un|BV (Ωn) = |u|BV (Ω). (5.14)
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Let us now define, for n ∈ N,

ũn(x) = un

(
(1− 1

n+ 2
)x
)
, ∀x ∈ Ω.

Then ũn ∈ C∞(Ω). Let ϕ ∈ C1
c (Ω)N , with |ϕ(x)| ≤ 1, for all x ∈ Ω. We have∫

Ω
ũn(x) divϕ(x)dx =

∫
Ω
un

(
(1− 1

n+ 2
)x
)

divϕ(x)dx

=
1

(1− 1
n+2)N

∫
Ωn

un(y) divϕ
( y

1− 1
n+2

)
dy.

Denoting ϕn the function defined by

ϕn(y) = ϕ
( y

1− 1
n+2

)
, ∀y ∈ Ωn,

we have ϕn ∈ C1
c (Ωn)N with |ϕn(y)| ≤ 1 for all y ∈ Ωn, and divϕn(y) = 1

1− 1
n+2

divϕ( y

1− 1
n+2

).

Hence ∫
Ω
ũn(x) divϕ(x)dx =

1

(1− 1
n+2)N−1

∫
Ωn

un(y) divϕn(y)dy

≤ 1
(1− 1

n+2
)N−1 |un|BV (Ωn).

We then get that

|ũn|BV (Ω) ≤
1

(1− 1
n+2)N−1

|un|BV (Ωn).

We show in a similar way the converse inequality, thus

|ũn|BV (Ω) =
1

(1− 1
n+2)N−1

|un|BV (Ωn).

With (5.14) we conclude that
lim
n→∞

|ũn|BV (Ω) = |u|BV (Ω).

Since ũn converges as well to u in L2, this concludes the proof of (5.12). �

Lemma 5.5 Let H be a Hilbert space, with norm ‖ · ‖, and let ψ satisfy Hypothesis 2.6. Let

T > 0 be given, and let BT be defined as BT =
{
v ∈ L2(0, T ;H);

∫ T
0 ψ(v(t))dt <∞

}
. Let

v ∈ BT , and let, for all n ∈ N, vn ∈ BT such that

lim
n→∞

‖vn − v‖L2(0,T ;H) = 0, lim
n→∞

∫ T

0

(
ψ(vn(t))− ψ(v(t))

)+
dt = 0.

Then ψ(vn)− ψ(v)→ 0 in L1(]0, T [).

Proof. We first extract a subsequence of (vn) such that, for a.e. t ∈]0, T [, vn(t) → v(t) in H.
Using the lower semi-continuity of ψ and Fatou’s lemma,∫ T

0
ψ(v) ≤

∫ T

0
lim inf ψ(vn) ≤ lim inf

∫ T

0
ψ(vn) ≤ lim sup

∫ T

0
ψ(vn).
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But since ∫ T

0
ψ(vn)−

∫ T

0
ψ(v) ≤

∫ T

0

(
ψ(vn)− ψ(v)

)+
→ 0,

we deduce that lim sup
∫ T

0 ψ(vn) ≤
∫ T

0 ψ(v), and
∫ T

0 ψ(vn)→
∫ T

0 ψ(v). Then∫ T

0
|ψ(vn)− ψ(v)| = 2

∫ T

0
(ψ(vn)− ψ(v))+ −

∫ T

0
(ψ(vn)− ψ(v))→ 0.

We can argue in this way for all subsequences of (vn), thus we conclude that the whole sequence
converges. �
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[7] H. Brézis. Functional analysis, Sobolev spaces and partial differential equations. Springer,
New-York, Dordrecht, Heidelberg, London, 2010.
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