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Abstract

This paper presents a symbolic and recursive calculation of the
elastodynamic model of flexible parallel robots. In order to reduce the
computational time required for simulating the elastodynamic behav-
ior of robots, it is necessary to minimize the number of operators in
the symbolic expression of the model. Some algorithms have been pro-
posed for the rigid case, for parallel robots with lumped springs or for
serial robots with distributed flexibilities. In this paper, we extend the
previous works to parallel robots with distributed flexibilities.

The generalized Newton-Euler model is used and combined with
the principle of virtual powers to minimize the number of operators
and intermediate variables. Recursive calculations are proposed for
the computation of the Jacobian matrices defining the kinematic con-
straints in order to decrease the number of operators. The proposed
algorithm is used to compute the elastodynamic model of a prototype
of a planar parallel robot developed at IRCCyN: the DualEMPS. The
computed model is compared both with simulations done on Adams
and with experiments. The validity of the approach in terms of result
accuracy and computational time is demonstrated.

1 Introduction

Many studies have been devoted to the computation of the full dynamic
model of rigid parallel robots [Khalil and Ibrahim, 2007, Ibrahim and Khalil,
2010, Moon, 2007], however there are still many opened questions concern-
ing the computation of their elastodynamic model. One of them concerns
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the reduction of the computational time that is generally huge and prevents
the use of such models in many applications, such as real-time control, de-
sign optimization process, etc. To decrease the computational cost, it is
either (i) possible to decrease the number of variables (using model reduc-
tion methods [Craig and Bampton, 1968, Briot et al., 2011, Craig, 1981]
and truncated series of shape functions [Blevins, 2001]) or (ii) to efficiently
compute the symbolic model in order to minimize the number of operators
(similarly to what has been done for rigid robots [Khalil and Dombre, 2002],
robots with lumped springs [Khalil and Gautier, 2000] or for serial robots
with distributed flexibilities [Boyer and Khalil, 1998]). Both methods can
obviously be combined. However, this paper only focuses on the efficient
symbolic computation for the elastodynamic model of parallel robots.

For the computation of the elastodynamic models of robots, two main
approaches are generally proposed (see [Dwivedy and Eberhard, 2006] for
a large literature review): (i) lumped modeling [Khalil and Gautier, 2000,
Kruszewski et al., 1975, Wittbrodt et al., 2006] and (ii) modeling using
distributed flexibilities [Boyer and Khalil, 1998, Shabana, 2005, Bauchau,
2011, Stachera and Schumacher, 2008, Rognant et al., 2010, de Jalon and
Bayo]. The lumped modeling is generally simpler to use by non-experts
in finite element methods but, to obtain a correct model accuracy, higher
number of elements is required, thus increasing the computational time. The
most relevant works in lumped modeling methods are probably [Khalil and
Gautier, 2000] and [Wittbrodt et al., 2006]. In [Khalil and Gautier, 2000],
the flexibilities are modeled by one degree of freedom (dof ) springs and a
systematic procedure for the symbolic computation of the model is proposed.
This procedure allows the minimization of the number of operators in the
model. In [Wittbrodt et al., 2006], springs of higher dimension are used, but
it is shown that for obtaining good accuracy, the number of elements must
be high, thus leading to bigger computational time.

Contrary to lumped modeling, using distributed flexibilities allows the
improvement of the model accuracy. However, such methods require highly-
skilled users. In [Shabana, 2005, Bauchau, 2011, Rognant et al., 2010,
de Jalon and Bayo], some general methodologies based on the Lagrange
principle that can be applied to any system are proposed. In the case of
closed-loop mechanisms, some Jacobian matrices are computed that allow
taking into account the kinematic dependencies. The work [Stachera and
Schumacher, 2008] combines the Lagrange principle and the principle of vir-
tual works for computing the elastodynamic model of parallel robots. How-
ever, the main drawback of such general methodologies is that they are not
specifically designed for parallel robots and that they do not guarantee the
minimization of the number of operators for the symbolic computation of
the model. A first approach for the systematic computation of the required
Jacobian matrices has been proposed in [Bouzgarrou et al., 2005]. However,
this approach was not designed so that a minimal number of operators for
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the model symbolic computation can be obtained. Indeed, to the best of
our knowledge, a systematic procedure to compute the elastodynamic model
(using distributed flexibilities) of parallel robot with a minimal numbers of
operators has never been proposed, even if such models are useful for several
different reasons:

• In design optimization processes, optimization algorithms that test
thousands of robot parameters are used. If the computational time
required for the calculation of one iteration of the the elastodynamic
model of the robot is not minimized, several days, and even month,
can pass before the results are obtained.

• Symbolic expressions, with a minimized number of variables and op-
erators, are requested for computing the identification model, in order
to decrease the risk of error propagation due to the noisy measured
data.

The present work aims at filling this gap. In order to minimize the
number of operations, a generalized Newton-Euler (NE ) model (which is
known to reduce the number of operators [Khalil and Dombre, 2002, Boyer
and Khalil, 1998, Boyer et al., 2007, Shabana, 1990]) is used and combined
with the principle of virtual powers (PVP). The Jacobian matrices defined in
the PVP are computed using recursive algorithms that decrease the number
of operators. For computing the full elastodynamic model of parallel robots,
the approach proposed in [Khalil and Ibrahim, 2007, Ibrahim and Khalil,
2010] for rigid robots and in [Stachera and Schumacher, 2008] for flexible
robots is adapted. This approach proposes to:

1. convert the parallel robot into a virtual system defined by: (i) a tree-
structure robot composed of the kinematic chains of the actual robot
for which all joints (passive and active) are considered actuated and
(ii) a free body (the platform which is considered as rigid) (Fig. 1),

2. compute the elastodynamic model of this new virtual system,

3. finally, close the loops by using the PVP.

This method is effective, systematic and can be applied to any parallel
robot.

The paper is organized as follows. In Section 2, the computation of the
generalized NE model of a flexible free body is recalled. Then, in Section 3,
the elastodynamic model of the virtual tree structure is developed. Section 4
shows the computation of the elastodynamic model of the actual parallel
robot. In Section 5, the proposed approach is applied for the computation
of the elastodynamic model of a prototype of parallel robot designed at
the IRCCyN, named the DualEMPS. Finally, in Section 6, conclusions are
drawn.
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Figure 1: A general parallel robot.

A first condensed version of this work has been proposed in [Briot and
Khalil, 2013]. The present paper contains detailed explanations to enlighten
the theoretical understanding of the method, especially in Section 4 in which,
contrary to [Briot and Khalil, 2013] that focused on isostatic robots, a gen-
eral and systematic method for the choice of the generalized coordinates of
overconstrained parallel robots is presented. Moreover, this is the first time
that experimental validations are shown.

2 Recall on the Generalized Newton-Euler Model

of a Flexible Free Body

This section aims at making some recalls on the way to obtain the generalized
NE model of a flexible free body. For further development, the reader is
referred to [Boyer and Khalil, 1998, Boyer et al., 2007, Shabana, 1990, Sharf
and Damaren, 1992].

2.1 Kinematics of a Flexible Free Body

The twist of any free flexible body j at any point Mj (Fig. 2(a)) can always
be expressed as:

[
vj(Mj)
ωj(Mj)

]
= tj +

[
ωj(Aj)× rj(Mj)

0

]
+

[
vej (Mj)
ωej (Mj)

]
(1)

where tj =
[
vT
j (Aj), ω

T
j (Aj)

]T
is the twist of the local frame fixed on the

body j expressed at point Aj , vj(Aj) and ωj(Aj) being the translational
and rotational velocities, respectively, rj(Mj) is the position vector of the
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Figure 2: Schematics of the flexible elements into consideration.

point Mj (of the deformed body) with respect to the local frame, vej (Mj)
and ωej (Mj) are the translational and rotational velocities due to the body
elasticity that can be parameterized as truncated series of Rayleigh-Ritz
shape functions:

[
vej (Mj)
ωej (Mj)

]
=

[
Φdj (M0j)

Φrj (M0j)

]
q̇ej = Φj(M0j)q̇ej (2)

with Φd,rj
=
[
φd,r1j , · · · , φd,rNjj

]
, φdkj (M0j) and φrkj (M0j) being the k-

th shape functions for the displacement and the rotation of the flexible

body expressed at point M0j , respectively, and q̇T
ej

=
[
q̇e1j , · · · , q̇eNjj

]
, q̇ekj

being the k-th elastic generalized velocity of the body and Nj the number
of considered shape functions. It should be noted that the vector rj(Mj) of
(1) can be expressed as:

rj(Mj) = rj(M0j) + Φdj (M0j)qej (3)

where rj(M0j ) is the position of the point M0j with respect to the local

frame and qT
ej

=
[
qe1j , · · · , qeNjj

]
are the elastic generalized coordinates of

the body.
Equations (1) to (3) define the kinematic model of the flexible free body

j. This model is thus parameterized by the following set of variables:

• tj that are the Euler variables characterizing the rigid displacement of
the body j at the origin of the local frame,

• qej that are the Lagrange variables characterizing the elastic displace-
ment of the body j.
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Thus, the kinematics model of a flexible free body is parameterized by
Nj supplementary variables qej and Nj shape functions compared to the
free rigid body case.

It should be mentioned that this description can be applied to both robot
segments and joints, as along as all the shape functions can be defined.

2.2 Matrix Form of the Generalized Newton-Euler Model

for a Flexible Free Body

Skipping all mathematical derivations and referring the reader to [Boyer and
Khalil, 1998, Boyer et al., 2007, Shabana, 1990, Sharf and Damaren, 1992],
the generalized NE model of a flexible free body can be obtained via the
application of the PVP. This model takes the form:



∆fcj
∆ccj
∆scj


 =



mjId3 M̂S

T

j MSdej

M̂Sj Ij MSrej

MST
dej

MST
rej

Meej






γj(Aj)
αj(Aj)
q̈ej


+



finj

cinj

sinj


+




0

0

Keejqej


+



fgj
cgj
sgj


 = Mj

[
ṫj
q̈ej

]
+ cj

(4)

where

• mj the total mass of the body j

• Idk is the k × k Identity matrix,

• Ij is the 3× 3 total inertia matrix of the body j,

• M̂Sj is the 3× 3 matrix containing the first moments of inertia of the
body j,

• Meej is the Nj ×Nj elastic mass matrix of the body j,

• MSdej and MSrej are 3×Nj matrices,

• ṫj =
[
γj(Aj)

T , αj(Aj)
T
]T

is the acceleration of frame j expressed at
point Aj with γj(Aj) and αj(Aj) the translational and rotational accel-
erations of the local frame fixed on the body j at point Aj , respectively,

• finj
and cinj

are vectors of the inertial force and torques, respectively,

• sinj
is the vector of the generalized elastic forces,

• fgj and cgj are vectors of the gravity force and torques plus the other
external forces, respectively,

• sgj is the vector of the generalized elastic forces due to gravity,
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• Keej the stiffness matrix of the body j,

• Mj is the global mass matrix of the body j,

• cj is the global vector of the centrifugal, Coriolis, gravity and elastic
forces of the body j,

• ∆fcj and ∆ccj are the total sum of forces and torques transmitted by
the joints, respectively,

• ∆scj is the total sum of the elastic generalized forces transmitted by
the joints.

The computation of all these terms is detailed in the Appendix.
This generalized NE model is known to reduce the number of operators

necessary for the computation of the elastodynamics behavior of a flexible
link [Boyer and Khalil, 1998].

3 Computation of the Elastodynamic Model for

the Virtual System

Let us consider a parallel robot composed of one rigid fixed base (denoted
as the element 0), one rigid moving platform and n legs, each leg being
a serial kinematic chain composed of mi − 1 elements linked by mi joints
(revolute, prismatic or even fixed joints - i = 1, ..., n) (Fig. 1(a)). The
actuated variables are denoted by qa and the leg passive variables by qp.
The platform coordinates are denoted as xp. The size na of qa must be
equal or superior to the number of dof of the parallel robot. The number
of shape functions by element is denoted as Nij (j = 1, ...,mi − 1). As
a result, there are ne =

∑n
i=1

∑mi−1
j=1 Nij elastic variables grouped in the

vector qe. All the active, passive and elastic variables are grouped into the
vector qT

t =
[
qT
a ,q

T
p ,q

T
e

]
.

3.1 Application of the PVP

Considering the link j of leg i (denoted in the following as the element ij),
the PVP states that:

[
t∗Tij q̇∗T

eij

] [
∆fTcij ∆cTcij ∆sTcij

]T
= q̇∗T

t

[
τtij
0ne

]
(5)

where τtij is the vector of the virtual input torques of the tree structure
(Fig. 1(b)) due to the movement of the link ij and 0ne a null vector of
dimension ne.

7



The twist t∗ij and generalized elastic velocities q̇∗
eij

are linked to the
generalized velocities q̇∗

t by the relation:

[
tij
q̇eij

]
= Jijq̇t (6)

where Jij is the Jacobian matrix of the element ij whose expression will be
given in the following section.

Eq. (5) can thus be rewritten as:

q̇∗T
t JT

ij

[
∆fTcij ∆cTcij ∆sTcij

]T
= q̇∗T

t

[
τtij
0ne

]
(7)

which leads to, for any virtual velocity q̇∗
t :

[
τtij
0ne

]
= JT

ij

[
∆fTcij ∆cTcij ∆sTcij

]T
(8)

Thus, now considering all the links of the robot, it comes that

[
τt =

∑
i,j τtij

0ne

]
=
∑

i,j

JT
ij



∆fcij
∆ccij
∆scij




=
∑

i,j

JT
ij

(
Mij

[
ṫij
q̈eij

]
+ cij

) (9)

where τt is the vector of the tree-structure input efforts.
In the next section, recursive algorithms for the computation of the vec-

tors tij , ṫij and of the Jacobian matrices Jij are developed.

3.2 Recursive Computation of the Velocities and Jacobian

Matrices

Let us consider the Fig. 2 describing the displacement of the element j.
From (1), it comes that

[
vj(Bj)
ωj(Bj)

]
= tj +

[
ωj(Aj)× rj(Bj)

0

]
+

[
vej (Bj)
ωej (Bj)

]
(10)

If an element j + 1 is linked at Bj by an actuated joint moving at a
velocity q̇j+1 (Fig. 2(b) – if the joint is a fixed joint, q̇j+1 = 0), it comes
that:

tj+1 =

[
vj(Bj)
ωj(Bj)

]
+ q̇j+1aj+1 (11)

where aj+1 is the unit twist describing the motion of the actuator [Khalil
and Dombre, 2002].
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As a result, for the element ij of the global robot, it can be demonstrated
that (in the following expressions, the preceding superscript indicate the
frame in which the vector expression is given) [Boyer and Khalil, 1998]:

ijtij =
ijTi(j−1)

i(j−1)ti(j−1)+
ijRi(j−1)Φi(j−1)(Aij)q̇ei(j−1)

+ q̇ij
ijaij

(12)

which can also be written as:

ijtij = Jtij q̇t (13)

with
Jtij =

ijTi(j−1)Jti(j−1)
+Φqeij

+Aij (14)

where

Φqeij
=
[
0 · · · ijRi(j−1)Φi(j−1)(Aij) · · · 0

]

Aij =
[
0 · · · ijaij · · · 0

] (15)

In the matrix Φqeij
, the term ijRi(j−1)Φi(j−1)(Aij) is located at the columns

corresponding to the variables q̇ei(j−1)
and, for the matrix Aij , the term

ijaij
is located at the column corresponding to the variable q̇ij .

In the previous expressions, matrix Φi(j−1) is the matrix containing all
shape functions for the element i(j − 1) and:

ijRi(j−1) =

[
ijRi(j−1) 0

0 ijRi(j−1)

]

ijTi(j−1) =
ijRi(j−1)

(
Id6 −

[
0 i(j−1)r̂i(j−1)(Aij)

0 0

]) (16)

where ijRi(j−1) is the rotation matrix between frames ij and i(j − 1),
i(j−1)r̂i(j−1)(Aij) is the cross product matrix associated with the vector
i(j−1)ri(j−1)(Aij), i.e the position of point Aij in the frame i(j − 1).

Finally, the global Jacobian matrix Jij of (6) can be computed as:

Jij =

[
Jtij

Oqeij

]
(17)

where Oqeij
is defined such that

q̇eij = Oqeij
q̇e

9



3.3 Recursive Computation of the Accelerations

Differentiating (10), it can be shown that [Boyer and Khalil, 1998]:

ij ṫij =
ijTi(j−1)

i(j−1)ṫi(j−1) + q̈ij
ijaij +

ijhij+
ijRi(j−1)Φi(j−1)(Aij)q̈ei(j−1)

(18)

where:

ijhij =

[
i(j−1)hlinij

i(j−1)hangij

]

ijhlinij
=ijRi(j−1)

i(j−1)ωi(j−1)(Ai(j−1))×
ijRi(j−1)(2Φdi(j−1)

(Aij)q̇ei(j−1)
+

i(j−1)ωi(j−1)(Ai(j−1))×
i(j−1)ri(j−1)(Aij))

ijhangij =
ijRi(j−1)(q̇ij(

i(j−1)ωi(j−1)(Ai(j−1))+

Φri(j−1)
(Aij)q̇ei(j−1)

)× ijaij+

i(j−1)ωi(j−1)(Ai(j−1))×
ijRi(j−1)Φri(j−1)

(Aij)q̇ei(j−1)
)

(19)

Eq. (18) can be then put into the form:

ij ṫij = Jtij q̈t +
ijgij (20)

with
ijgij =

ijhij +
ijTi(j−1)

i(j−1)gi(j−1) (21)

initialized with i0gi0 = 0 if the base is fixed. Thus,

[
ij ṫij
q̈eij

]
=

[
Jtij

Oqeij

]
q̈t +

[
ijgij
0

]
= Jijq̈t +

ijgs
ij (22)

3.4 Elastodynamic model of the virtual system

Introducing (22) into (9) leads to:

[
τt
0ne

]
=
∑

i,j

JT
ijMijJijq̈t + csij (23)

where
csij = JT

ij

(
cij +Mij

ijgs
ij

)
(24)

The NE equations for the rigid moving platform are given by [Ibrahim
and Khalil, 2010]:

fp = Mpṫp + cp (25)
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where fp is the platform reaction wrench expressed at the platform local
frame origin, Mp is the platform mass matrix, ṫp is the platform acceleration
screw and cp the centrifugal, Coriolis, gravity effects and external efforts
applied on the platform.

Finally, the global elastodynamic model of the virtual structure can be
put into the form:



[
τt
0ne

]

fp


 =

[∑
i,j J

T
ijMijJij Mp

] [q̈t

ṫp

]
+

[
csij
cp

]

= Mt

[
q̈t

ṫp

]
+ ct

(26)

Adding the contributions of the motor inertia and friction effects [Khalil
and Dombre, 2002]:



[
τt
0ne

]

fp


 = Ms

t

[
q̈t

ṫp

]
+ cst +

[
It 0

0 0

] [
q̈t

ṫp

]
+

[
Fvq̇t

0

]
+

[
Fssign (q̇t)

0

]
= Mtotq̈tot + ctot

(27)

where It is a diagonal matrix whose j-th element corresponds to the value
of the inertia of joint j (the j-th element of It is equal to zero is the joint is
passive or if it corresponds to an elastic coordinate) and Fv, (Fs, resp.) a
diagonal matrix of viscous (Coulomb, resp.) friction parameters.

4 Computation of the Elastodynamic Model of Par-

allel Robots

The model of the virtual tree structure and of the free moving platform
does not consider the closed-loop kinematic chains. As a matter of fact,
the nqtot components of the generalized velocity vector q̇T

tot = [q̇T
t tTp ] are

dependent. The independent components are gathered in vector q̇ (dim q̇ =
nq < ntot) and their determination is described thereafter.

4.1 Determination of the Generalized Coordinates of the

Parallel Robot

For determining one possible subset of generalized coordinates for the par-
allel robot, let us express the relations between the vector of generalized
velocities of the tree structure q̇t and the twist of the last element mi for
each leg i. Using (6) for computing the twist i,miti,mi

of the extremity of
each leg, it comes that:

i,miti,mi
= Ji

ti,mi
q̇ti (28)
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where Ji
ti,mi

can be obtained from Jti,mi
by extracting the columns corre-

sponding to the vector q̇T
ti
=
[
qT
ai
,qT

pi
,qT

ei

]
, i.e. the vector concatenating all

active, passive and elastic variables of the leg i.
As the leg extremity is also linked to the rigid platform, its twist can be

related to the platform twist tp via the rigid body displacement relation:

i,miti,mi
= Ji

ptp , where Ji
p =

i,miR0

[
I3 −0p̂i

0 I3

]
(29)

in which Ji
p is a 6×6 matrix, 0p̂i is the cross product matrix of vector 0pi that

characterizes the position of the attachment point Ai,mi
with respect to the

platform center position (Fig. 1(a)) and i,miR0 is the 6× 6 rotation matrix
between the global frame and the local frame attached to element i,mi.

Thus, expressing the twist i,miti,mi
for each leg in relation with the plat-

form twist tp and generalized coordinates q̇ti , the following set of equations
is obtained:



J1
t1,m1

· · · 0

...
. . .

...
0 · · · Jn

tn,mn






q̇t1
...

q̇tn


−



J1
p
...
Jn
p


 tp = 0

⇔Jtq̇t − Jptp =
[
Jt −Jp

] [q̇t

tp

]
= Jtotq̇tot = 0

(30)

where Jtot is a r n × nqtot matrix, nqtot > r n (r = 6 for a spatial robot,
r = 3 for a planar robot). This means that a subset q̇d of r n variables
in vector q̇tot is linked to the others. This subset is not unique. An idea
could be to put all passive joints and platform variables in this subset, i.e.,

q̇∗
d =

[
q̇T
p tTp

]T
. However, for over-constrained parallel robots, dim (q̇∗

d) <
r n. As a result, this vector should be completed using some other elastic
variables that could be chosen arbitrarily. Meanwhile, it must be mentioned
that most of parallel robots have identical legs and that such a methodology
will lead to an asymmetrical description of the leg variables, which is not
ideal. In order to avoid this problem, we had better put in q̇d the last r
components q̇

f
ti
of each vector q̇ti that is now decomposed into two parts:

q̇T
ti
=
[
q̇0T
ti

q̇
fT
ti

]
. Thus, variables q̇f

ti
are related to the others using (30):

−




J
f1
t1,m1

· · · 0

...
. . .

...

0 · · · J
fn
tn,mn






q̇
f
t1
...

q̇
f
tn




=



J01
t1,m1

· · · 0 −J1
p

...
. . .

...
...

0 · · · J0n
tn,mn

−Jn
p







q̇0
t1
...

q̇0
tn

tp




(31)
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which can be written under the form

−J
f
t



q̇
f
t1
...

q̇
f
tn


 =

[
J0
t −Jp

]




q̇0
t1
...

q̇0
tn

tp


 (32)

or also



q̇
f
t1
...

q̇
f
tn


 = q̇d = −

(
J
f
t

)−1 [
J0
t −Jp

]




q̇0
t1
...

q̇0
tn

tp




=



Jd1,1 · · · Jd1,n Jd1,n+1

...
. . .

...
...

Jdn,1 · · · Jdn,n
Jdn,n+1


 q̇

= Jdq̇

(33)

where

• J0i
ti,mi

(Jfi
ti,mi

, resp.) are the columns of matrix Ji
ti,mi

corresponding to

variables q̇0
ti
(q̇f

ti
, resp.);

• Jdij is the matrix that relates the variable q̇
f
ti
to q̇0

tj
, j = 1, . . . , n;

• Jdi,n+1 is the matrix that relates the variable q̇
f
ti
to tp.

It is noteworthy that the inversion of matrix J
f
t involves only the inversion

of the n r × r matrices J
fj
t1,m1

, which is more efficient in terms of compu-
tational time. Moreover, when 3D beam elements are used for leg i, if the
coordinates q

f
ti

are the elastic coordinates of l-th element of this leg (de-
noted as element il), it can be proven that, as the k-th column of matrix

J
fi
til

corresponds to a unit twist that describes the displacement of the leg

extremity due to the k-th coordinate of vector q
f
ti
, Jfi

til
is equal to [Khalil

and Dombre, 2002]

J
fi
til

=

[
i,miRil −i,miRil

ilp̂il

0 i,miRil

]
(34)

where i,miRil is the rotation matrix between the local frame linked at el-
ement i,mi and the local frame linked at element il and ilp̂il is the cross
product matrix of the vector ilpil that characterizes the position of the leg
extremity with respect to the frame linked at element il. Thus its inverse is
equal to (

J
fi
til

)−1
=

[
i,miRT

il p̂il
i,miRT

il

0 i,miRT
il

]
(35)
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which does not require much calculation. If 2D beam elements are used,
some similar relations can be obtained.

Finally, the Jacobian matrix relating all variables q̇tot to the configura-
tion variables q̇T =

[
q̇0T
t1

· · · q̇0T
tn

tp
]
can be obtained as:

q̇tot =




q̇0
t1

q̇
f
t1
...

q̇0
tn

q̇
f
tn

tp



=




Idc1 · · · 0 0

Jd1,1 · · · Jd1,n Jd1,n+1

... · · ·
...

...
0 · · · Idcn 0

Jdn,1 · · · Jdn,n
Jdn,n+1

0 · · · 0 Id6







q̇0
t1
...

q̇0
tn

tp


 = Jq̇ (36)

where Idci is the ci × ci identity matrix, ci being the size of vector q̇0
ti
.

4.2 Computation of the Generalized Accelerations of the Ac-

tual Parallel Robot

Expressing the acceleration i,mi ṫi,mi
of the extremity of each leg using (22)

and combining this expression with the time derivative of (29), it comes
that:

i,mi ṫi,mi
= Ji

ti,mi
q̈ti +

i,migi,mi
= Ji

pṫp + J̇i
ptp (37)

Thus, considering all the robot legs,


J1
t1,m1

· · · 0

...
. . .

...
0 · · · Jn

tn,mn






q̈t1
...

q̈tn


−



J1
p
...
Jn
p


 ṫp

+




1,m1g1,m1 − J̇1
ptp

...
n,mngn,mn − J̇n

ptp


 = 0

⇔Jtq̈t − Jpṫp + b∗ =
[
Jt −Jp

] [q̈t

ṫp

]
+ b∗ = 0

(38)

As a result, by analogy with (33), it can be demonstrated that

q̈d = Jdq̈+
(
J
f
til

)−1
b∗ = Jdq̈+ bd (39)

Finally, similarly to expression (36),

q̈tot =




q̈0
t1

q̈
f
t1
...

q̈0
tn

q̈
f
tn

ṫp



= Jq̈+




0

bd1
...
0

bdn

0



= Jq̈+ b (40)
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where bdi is the part of the vector bd corresponding to the accelerations q̈f
ti
.

4.3 Elastodynamic Model of the Actual Parallel Robot

Considering the actual robot, the PVP states that:

q̇T∗
tot (Mtotq̈tot + ctot) = q̇T∗

r

[
τ

0neind

]
(41)

where q̇r = Eq̇, in which E is a matrix that makes it possible to sort vector
q̇ in such a manner that the first na rows of q̇r correspond to the vector q̇a

of the actual active variables, τ is the vector of the actual actuator input
efforts and 0neind

is a zero vector of dimension neind = nq − na.
Introducing (36) into (41), it comes that,

q̇T∗
r EJT (Mtotq̈tot + ctot) = q̇T∗

r

[
τ

0neind

]
(42)

(42) must be true for any value of q̇T∗
r , thus

[
τ

0neind

]
= EJT (Mtotq̈tot + ctot) (43)

Finally, introducing (40) into (43) leads to:

[
τ

0neind

]
= EJTMtotJE

T q̈r +EJT (Mtotb+ ctot)

= Mq̈r + c

(44)

which is the full elastodynamic model of the parallel robot, with M its mass
matrix and c the global vector of the centrifugal, Coriolis, gravity and elastic
forces.

4.4 Discussion

In order to finally obtain the symbolic equations for the model with the
minimum number of operations, the following method is used. First, the
rigid kinematics of each element are modeled using the modified Denavit-
Hartenberg notations [Khalil and Dombre, 2002]. If the link ij taken into
consideration is flexible, Nij supplementary elastic variables qeij

are in-
troduced in combination with Nij shape functions. Then, the previously
developed equations are used in the following sequence:

• Step 0: Initialization of the algorithm
Variables considered known: q, q̇
Computation of:
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– Φdi(j−1)
(Aij), Φri(j−1)

(Aij), Φi(j−1)(Aij) from (2); i(j−1)ri(j−1)(Aij)
from (3);

– Mij , Keeij , fgij , cgij , sgij from (4);

– Mp, cp from (25);

– ijRi(j−1),
ijTi(j−1) from (16); ijaij from (11);

– Aij , Φqeij
from (15);

• Step 1: Forward recurence (computation of the twist and acceleration
of each body, and computation of the Jacobian matrices required for
applying the PVP on the virtual tree structure)
Computation of:

– ijtij from (12);

– finij
, cinij

, sinij
, cij from (4);

– Jtij from (14); Jij from (17);

– ijhij from (19); ijgij from (21); gs
ij from (22);

• Step 2: Computation of the global mass matrix and global vector of
the centrifugal, Coriolis, gravity and elastic forces of the virtual tree
structure
Computation of:

– Mt, ct from (26);

– Mtot, ctot from (27);

• Step 3: Computation of the global mass matrix and global vector of
the centrifugal, Coriolis, gravity and elastic forces of the parallel robot
Computation of:

– Jt, Jp from (30);

– J
f
t from (31);

(
J
f
t

)−1
from (35);

– Jd from (33); J from (36);

– J̇i
p from (37);

– b∗ from (38); bd from (39); b from (40);

– M, c from (44);

• Step 4: Solving the model

– Inverse dynamic model: computation of τ and q̈e as a function
of q, q̇ and q̈a.

– Forward dynamic model: computation of q̈ as a function of q, q̇
and τ .
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For each computation, the elements of a vector or a matrix containing
at least one mathematical operation are replaced by an intermediate vari-
able. This variable is written in an output file which contains the model.
The elements that do not contain any operations are not modified. The
obtained vectors and matrices are propagated in the subsequent equations.
Consequently, at the end, the dynamic model is obtained as a set of inter-
mediate variables. Those that have no effect on the desired output (τ and
the neind last values of q̈r corresponding to the elastic variables in the case
of the inverse model, q̈r for the direct model) can be eliminated by scanning
the intermediate variables from the end to the beginning. With this proce-
dure, it is also possible to know the exact number of operators necessary for
the computation of the model. This algorithm has been successfully imple-
mented with Mathematica and is used in the next section for computing the
elastodynamic model of a flexible planar parallel robot.

5 Case Study

The previous equations are used to compute the elastodynamic model of the
DualEMPS, a prototype of flexible planar PRRRP robot (Fig. 3 – R stands
for a passive revolute joint and P for an active prismatic joint) designed and
manufactured at IRCCyN. This robot is actuated by two rotary actuators
controlled by a dSPACE card in which simple PD control laws are introduced
(the cut-off pulsation is set to 100 rad/s). The actuator movements are
transmitted to the prismatic pairs via the use of ball screws (the stroke of
the prismatic pairs is of 25cm). The two prismatic pairs are parallel and are
linked to the two legs via passive revolute joints. Each leg is designed such
that it can be decomposed as a succession of rigid and elastic links (Fig. 4)
rigidly attached all together. The elastic links are very thin when compared
to the rigid links. Their cross-sections are rectangular with a width of 4mm
and an height of 50mm and they are made of Duralumin (AU4G). The two
legs are connected via a passive revolute joint.

The modified Denavit-Hartenberg parameters corresponding to the ar-
chitectural description of the Fig. 4 are given in Table 1, where the parame-
ters dij and qij are detailed in Fig. 3. The gravity is directed along z0. The
a priori rigid dynamic parameters of the links have been extracted from
CAD and are described in Table 2. In this table, mij is the mass of the link
ij, mxij its first moment of inertia around the axes of the plane (yijOzij),
zzij the second moment of inertia around zij , fvij the viscous friction pa-
rameter and fsij the Coulomb inertia parameter. Note that the values of
the friction terms have been set by hand so that the obtained results best fit
with experimental data. The elastic links are modeled as planar beam finite
elements (one element by elastic link, i.e. there are 9 elastic coordinates in
total). Their corresponding elastic dynamic parameters are not detailed for
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Figure 3: The DualEMPS flexible parallel robot.

reasons of paper compactness but can be easily computed using the formulas
given in Section 2 applied to the beam shape functions given in [Shabana,
2005].

The model is thus calculated with Mathematica applying the proposed
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Table 1: Modified Denavit-Hartenberg parameters of the DualEMPS robot.

ij a(ij) µij σij αij dij θij rij
11 0 1 1 0 0 0 q11
12 11 0 0 π/2 0 q12 0
13 12 0 2 0 d13 = 0.0675m 0 0
14 13 0 2 0 d14 = 0.4505m 0 0
15 14 0 2 0 d15 = 0.082m 0 0
16 15 0 2 0 d16 = 0.065m 0 0
17 16 0 2 0 d17 = 0.14m 0 0
21 0 1 1 0 d21 = 0.4m 0 q21
22 21 0 0 π/2 0 q22 0
23 22 0 0 0 d10 = 0.0675m 0 0
24 23 0 0 0 d11 = 0.4505m 0 0
25 24 0 0 0 d12 = 0.082m q25 0

Table 2: Rigid dynamic parameters for the links of the DualEMPS robot
(SI units).

ij mij mxij zzij fsij fvij
11 95.196 0.000 0.000 25 250
12 0.843 0.004 7.06e− 4 0.02 0.08
13 0.252 0.057 0.017 0.00 0.00
14 0.396 0.030 0.003 0.00 0.00
15 0.000 0.000 0.000 0.00 0.00
16 0.078 0.005 5.12e− 4 0.00 0.00
17 0.177 0.006 2.56e− 4 0.00 0.00
21 95.196 0.000 0.000 25 250
22 0.843 0.004 7.06e− 4 0.02 0.08
23 0.252 0.057 0.017 0.00 0.00
24 0.190 0.011 9.44e− 4 0.00 0.00
25 0.000 0.000 0.000 0.01 0.005

Table 3: Comparison of natural frequencies of the DualEMPS robot com-
puted with the proposed model, computed with Adams and experimentally
measured for q11 = q21 = 0.

(Hz) f1 f2 f3 f4 f5 f6

Adams 14.41 24.92 49.78 97.91 110.86 219.60

Model 14.22 25.09 48.22 92.37 109.08 423.39

Measured (±1Hz) 14.00 25.00 48.00 93.00 108.00 163.00
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Figure 4: Top view of the CAD drawings of the two robot legs.
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Figure 5: Experimental setup for measuring the natural frequencies

methods and then included in a S-function solved using Matlab/Simulink.
The model includes 1041 intermediate variables and 1287 ’+’ or ’–’ and 1555
’*’ or ’/’ operators. To the best of our knowledge, there exist no works that
try to minimize the number of operators in the elastodynamic models of
parallel robots. Therefore, the efficiency of the proposed solution may be
difficult to analyze. However, for reasons of comparison, an Adams model
interfaced with Simulink via the use of the module Adams/Control is also
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created. In this model, the elastic links are modeled using discrete flexible
elements (after several tests on the Adams model accuracy, it is decided to
use 8 discrete flexible element by elastic link).

Some first experimental tests are carried out for measuring the natural
frequencies of the DualEMPS using the setup presented in Fig. 5. The ap-
plication of experimental modal testing to the DualEMPS is done through
impact hammer excitation, a 3-D accelerometer response and data post-
processing, conducted using the DataBox software developed at IRCCyN
and commercialized by MITIS company [MIT]. The impact point is near
point P and the directions of excitation are contained in the horizontal
plane in order to get the resonance frequencies that involves planar displace-
ments of the robot. Piezoelectric triaxial accelerometers with a sensitivity of
1000 mV/g are used to measure the three acceleration responses. The acqui-
sitions are performed for several robot configurations. However, the natural
frequencies of the DualEMPS are near constant anywhere in the workspace,
and all tested configurations lead to almost the same results. Therefore, only
the results for the nominal configuration q11 = q21 = 0 will be presented.
Each measurement resolution is equal to 1 Hz as the acquisition time and
the sampling time are equal to 1 s and 40 µs, respectively.

The resonance frequencies are obtained with a fast Fourier transform of
the signals given by the triaxial accelerometer. As a result, the measured
resonance frequencies between 0 and 200 Hz are given in Table 3. It is
noteworthy that the resonance frequencies of the DualEMPS amount to its
natural frequencies as the damping is considered negligible. The obtained
results show that the five first frequencies predicted with our model are very
close to the measured ones. However, as the model is made of three beam
elements only, the frequency prediction after the fifth mode is not correct
anymore. This prediction could be improved by introducing a higher number
of elements, but this will increase the computational time. Nevertheless,
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having a good prediction for all frequencies in the interval [14, 110]Hz is
already a very good result. Note that the Adams model prediction gives
almost the same result as our model for the five first frequencies and is not
correct for the sixth frequency (even if it is closer to reality than our model).

The second experimental tests are described thereafter. Some reference
trajectories are introduced in the robot controller. During the robot dis-
placements, three types of data are recorded (Fig. 6):

• the value of the input torques reference τref given by the controller to
the actuators;

• the actuator displacements qa given by the robot encoders;

• the acceleration 17ÿP of the point P (in the local y direction) measured
via the use of a uniaxial accelerometer with a sensitivity of 995mV/g.

Then, to make sure that the models give a correct estimation of the robot
input torques and elastic displacements, the real measured actuator dis-
placements are given as the model inputs, as well as the computed actuator
velocities and accelerations, estimated from differentiation and low-pass fil-
tering of the encoders data (Fig. 6). Results in terms of end-effector accel-
erations 17ÿPest and computed input torques τest are finally compared with
reality.

The first reference trajectory is a square in the joint space (Fig. 7(a)).
The resulting displacement of the end-effector is a path following the workspace
boundaries (Fig. 8). On each square edge, the velocity profile represented
in Fig. 7(b) is applied: the actuator moves during 1.8s and then stops so
that the free vibration of the robot can be observed. The measured ac-
celeration 17ÿP of point P , low-pass filtered at 100Hz in order to suppress
high-frequency noise, is plotted at Fig. 9 and compared with the acceleration
computed with our model and with Adams. There are very good correla-
tions between the measurements and the simulations (with better results for
our model), even if the damping is higher in the simulations which can be
due both to solver problems and to too large model approximation for the
dissipative terms. For the simulations, Adams gives the result after several
hours of computation while our model send the results in 6’05 min (for a
Pentium 4 2.70GHz, 8Go of RAM).

The motor torques prediction (in prismatic joint side) is also compared
with the measured actuator torques1 in Figs. 10 and 11. The torque predic-
tion is better for our model even if there are some problems of noise when
the actuator velocity is very low (mainly due to problem of Coulomb friction
modeling with the ’sign’ function).

1For the Adams model, simulations are run without taking into account the friction
effects on the actuated joints which are added by hand after the computation
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Figure 7: The first reference trajectory.
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A second reference trajectory is introduced in the robot controller. This
is a circle of radius 0.1m centered in [0.28, 0.90]m along which is applied a
constant velocity profile of 0.20m/s (Fig. 8). The predictions of the acceler-
ation 17ÿP of point P and of the input torques using our model are shown in
Figs. 12, 13 and 14. There is still a very good correlation between the mea-
surements and the simulations. Note that for this second simulation, data
provided by Adams are not presented as we have just shown that Adams
gives similar results and requires much longer computational time.

All these results show the validity and efficiency of our modeling ap-
proach.
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Figure 9: Point P acceleration for the first reference trajectory.
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Figure 10: Input torque of the first actuator for the first reference trajectory.
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Figure 11: Input torque of the second actuator for the first reference trajec-
tory.
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Figure 12: Comparison of the measured and computed acceleration of point
P for the second reference trajectory.
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6 Conclusions

This paper has presented a symbolic and recursive calculation of the dynamic
model of flexible parallel robots. Such models are useful for several different
reasons:

• In design optimization processes, optimization algorithms that test
thousands of robot parameters are used. If the computational time
required for the calculation of one iteration of the the elastodynamic
model of the robot is not minimized, several days, and even month,
can pass before the results are obtained.

• Symbolic expressions, with a minimized number of variables and op-
erators, are requested for computing the identification model, in order
to decrease the risk of error propagation due to the noisy measured
data.

In order to reduce the computational time, the number of operators dur-
ing the symbolic calculation of the model has been minimized. In order
to achieve this goal, the Newton-Euler principle was used and combined
with the principle of virtual powers. The Jacobian matrices defining the
kinematic constraints have been computed using some recursions that de-
crease the number of operators. Using such a method, both link and joint
flexibilities can be taken into account.

The proposed algorithm was used to compute the elastodynamic model of
a prototype of a planar parallel robot developed at IRCCyN: the DualEMPS.
The obtained model has been compared with a model created in Adams and
with experimental measurements. It has been shown that our model gives
correct estimations of the robot natural frequencies, end-effector displace-
ments and input torques with a computational time largely inferior to the
time required by Adams. All the obtained results have shown the validity
of our approach.

It should be finally mentioned that our model computes the solution for
a trajectory of 25 s in 6 minutes. This is due to the fact that, for estimating
the elastic deformations, velocities and accelerations, a non linear differential
equation must be solved. However, for real time control, if the values of
the deformations are fed into the model (through the measurements of the
deformations via accelerometers or any other sensor), the computational
time is compatible with real time applications.

Future works will concern the development of methodologies for the iden-
tification of the elastodynamic models of parallel robots and the decrease of
the required computational time by the use of model reduction techniques.
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Appendix

Computation of the Elastodynamic Model of the

Flexible Free Body Using the PVP

In [Boyer et al., 2007], the PVP is used for computing the elastodynamic
model of a free flexible body. This principle can be written as:

P ∗
acc = P ∗

int + P ∗
ext (45)

where P ∗
acc is the virtual power of due to the accelerations quantities, P ∗

int

is the virtual power due to the internal elastic efforts and P ∗
ext is the virtual

power of the external efforts. It is to be noticed that, in what follows in the
paper, the superscript ′∗′ stands for a virtual quantity.

By definition, the virtual power of due to the accelerations quantities is
equal to [Boyer et al., 2007],

P ∗
acc =

∫

Σj

γTj (Mj)v
∗
j (Mj)dm (46)

where Σj is the body under consideration, dm a small quantity of mass
and [Boyer et al., 2007]

γj(Mj) = γj(Aj) + Φdj q̈ej + 2ωj(Aj)× Φdj q̇ej

+ ωj(Aj)× (ωj(Aj)× rj(Mj)) + αj(Aj)× rj(Mj)
(47)

is the translational acceleration of the point Mj with respect to the base
frame, with αj(Aj) the rotational acceleration of the considered body at
point Aj with respect to the base frame. Introducing (2) into (46), it comes
that:

P ∗
acc =

(∫

Σj

γj(Mj)dm

)T

v∗
j (Aj)+

(∫

Σj

rj(Mj)× γj(Mj)dm

)T

ω∗
j (Aj)+

(∫

Σj

γTj (Mj)Φdj (M0j)dm

)
q̇∗
ej

(48)

The virtual power of the external efforts can be decomposed into two
parts

P ∗
ext = P ∗

grav + P ∗
reac (49)

where P ∗
grav =

∫
Σj

(
v∗
j (Mj)

)T
g dm is the virtual power of the gravity field

g and P ∗
reac = fTAj

v∗
j (Aj)+mT

Aj
ω∗
j (Aj)− fTBj

v∗
j (Bj)−mT

Bj
ω∗
j (Bj) the virtual
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power due to the reactions at point Aj and Bj (Fig. 2(a)), where fAj
(fBj

,
resp.) is the force applied at point Aj (Bj , resp.) and mAj

(mBj
, resp.) is

the moment applied at point Aj (Bj , resp.). Thus, introducing (2) in the
previous expressions,

P ∗
grav =

(∫

Σj

g dm

)T

v∗
j (Aj)+

(∫

Σj

rj(Mj)× g dm

)T

ω∗
j (Aj)+

(∫

Σj

gTΦdj (M0j)dm

)
q̇∗
ej

(50)

and

P ∗
reac =

(
fAj

− fBj

)T
v∗
j (Aj)+

(
mAj

−mBj
− rj(Bj)× fBj

)T
ω∗
j (Aj)−(

fTBj
Φdj (B0j) +mT

Bj
Φrj (B0j)

)
q̇∗
ej

(51)

Finally, the virtual power due to the internal elastic efforts can be written
as [Boyer et al., 2007]:

P ∗
int = −qejKeej q̇

∗
ej

(52)

where Keej is the stiffness matrix of the considered body that can be com-
puted using the expressions presented in [Shabana, 2005].

Thus, introducing (47), (48), (50), (51) and (52) into (45), developing
and simplifying the expressions, and taking into account the fact that the
virtual velocities v∗

j (Aj), ω∗
j (Aj) and q̇∗eij are independant, three sets of

equilibrium equations can be obtained:

∆fcj = mj (γj(Aj)− g) +MSdej q̈ej

−MSj × αj(Aj) + ωj(Aj)× (ωj(Aj)×MSj)

+ 2ωj(Aj)×MSdej q̇ej

(53)

∆mcj = MSj × (γj(Aj)− g) +MSrej q̈ej

+ ωj(Aj)× (Ijωj(Aj)) + 2

Nj∑

k=1

Irekjωj(Aj)q̇ekj

+ 2

Nj∑

i,k=1

Ieeikjωj(Aj)qeij q̇ekj + Ijαj(Aj)

(54)
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and

∆scj |i = MST
dej

|i (γj(Aj)− g)

+MST
rej

|i αj(Aj) +Meej |i q̈ej

+ 2

Nj∑

k=1

λkiωj(Aj)q̇ekj − ωj(Aj)
T ITreijωj(Aj)

−

Nj∑

k=1

ωj(Aj)
T Ieeikjωj(Aj)qekj +Keej |i qej

(55)

where the symbol ’|i’ denotes the line i of the considered vector or matrix,
mj is the mass of the body j and the terms MSj , MSdej , MSrej , Ij , Ireij ,
Ieeikj , ∆fcj , ∆mcj and ∆scj are defined in the following expressions:

MSj =

∫

Σj

rj(Mj)dm

=

∫

Σj

rj(M0j)dm+

∫

Σj

Φdj (M0j)dm qej

=MSrj +MSdejqej

(56)

is the global vector of the first moments of inertia (MSrj is the 3×1 constant
vector of the first moments of inertia of the rigid link and MSdej a 3 ×Nj

constant matrix),

MSrej =

∫

Σj

r̂j(Mj)Φdj (M0j)dm

=

∫

Σj

r̂j(M0j)Φdjdm

+

∫

Σj

Φdj (M0j)qej × Φdj (M0j)dm

=

Nj∑

k=1


βk +

Nj∑

i=1

λkiqeij




(57)

with r̂j the cross-product matrix associated with the vector rj and

βk =

∫

Σj

rj(M0j)× φdkj (M0j)dm (58)

and

λki =

∫

Σj

φdkj (M0j)× φdij (M0j)dm (59)
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two 3× 1 constant vectors,

Ij =

∫

Σj

r̂Tj (Mj)r̂j(Mj)dm =

∫

Σj

r̂Tj (M0j)r̂j(M0j)dm

+

∫

Σj

Nj∑

k=1

r̂Tj (M0j)φ̂dkj (M0j)qekjdm

+

∫

Σj

Nj∑

k=1

φ̂T
dkj

(M0j)r̂j(M0j)qekjdm

+

∫

Σj

Nj∑

i,k=1

φ̂T
dij

(M0j)φ̂dkj (M0j)qeijqekjdm

= Irrj +

Nj∑

k=1

(
Irekj + ITrekj

)
qekj +

Nj∑

i,k=1

Ieeikjqeijqekj

(60)

is the global matrix of the second moments of inertia (Irrj is the 3 × 3
constant matrix of the second moments of inertia of the rigid link and Irekj

and Ieeikj 3×3 constant matrices), in which φ̂dij is the cross-product matrix
associated with the vector φdij ,

∆fcj = fAj
− fBj

(61)

∆mcj = mAj
−mBj

− rj(Bj)× fBj
(62)

and
∆scj = fTBj

Φdj (B0j) +mT
Bj
Φrj (B0j) (63)

Finally, the generalized NE model of a flexible free body can be written
under the following matrix form:



∆fcj
∆ccj
∆scj


 =



mjId3 M̂S

T

j MSdej

M̂Sj Ij MSrej

MST
dej

MST
rej

Meej






γj(Aj)
αj(Aj)
q̈ej


+



finj

cinj

sinj


+




0

0

Keejqej


+



fgj
cgj
sgj


 = Mj

[
ṫj
q̈ej

]
+ cj

(64)

where
finj

= ωj(Aj)×
(
M̂S

T

j ωj(Aj) + 2MSdej q̇ej

)
(65)

cinj
=ωj(Aj)× (Ijωj(Aj)) + 2

Nj∑

k=1

Irekjωj(Aj)q̇ekj

+ 2

Nj∑

i,k=1

Ieeikjωj(Aj)qeij q̇ekj

(66)
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sinj
|i =2

Nj∑

k=1

λkiωj(Aj)q̇ekj − ωj(Aj)
T ITreijωj(Aj)

−

Nj∑

k=1

ωj(Aj)
T Ieeikjωj(Aj)qekj

(67)

fgj = −mjg, cgj = −M̂Sjg, sgj = −MST
dej

g (68)
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