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ON THE HOCHSCHILD HOMOLOGY OF OPEN FROBENIUS ALGEBRAS

We prove that the shifted Hochschild chain complex C * (A, A)[m] of a symmetric open Frobenius algebra A of degree m has a natural homotopy coBV-algebra structure. As a consequence HH * (A, A)[m] and HH * (A, A ∨ )[-m] are respectively coBV and BV algebras. The underlying coalgebra and algebra structure may not be resp. counital and unital. We also introduce a natural homotopy BV-algebra structure on C * (A, A)[m] hence a BV-structure on HH * (A, A)[m]. Moreover we prove that the product and coproduct on HH * (A, A)[m] satisfy the Frobenius compatibility condition i.e. HH * (A, A)[m] is an open Frobenius algebras. If A is commutative, we also introduce a natural BV structure on the shifted relative Hochschild homology HH * (A)[m-1]. We conjecture that the product of this BV structure is identical to the Goresky-Hingston[GH09a] product on the cohomology of free loop spaces when A is a commutative cochain algebra model for M . Contents 1. Introduction 1 2. Open Frobenius algebras and BV-Algebras 2 3. coBV structure on Hochschild homology 10 4. BV structure on Hochschild homology 15 5. Frobenius compatibility of the product and coproduct 18 6. Suspended BV structure on the relative Hochschild homology of commutative open Frobenius algebras 21 Appendix A. Ten commandments for signs 24 References 26

Introduction

There have been many important works on providing algebraic models for the string topology operations introduced by Chas-Sullivan ( [START_REF] Chas | String topology[END_REF][START_REF]Closed string operators in topology leading to Lie bialgebras and higher string algebra[END_REF]) and ). One approach is to use the Hochschild cohomology of closed Frobenius algebras [CJ02, Mer04, Tra08, TZ06, Kau07, Kau08, Men09, WW]. In particular Félix-Thomas [START_REF] Félix | Rational BV-algebra in string topology[END_REF] proved that over rationals and for any closed simply connected manifold M the Chas-Sullivan BV-algebra H * (LM ) is isomorphic to HH * (A) := HH * (A, A ∨ ) where A is a finite dimensional model (i.e. closed Frobenius algebra) for the cochains algebra M .

In [START_REF] Kontsevich | Notes on A∞-algebras, A∞-categories and noncommutative geometry[END_REF] Kontsevich-Soibelman constructed an action of the chains of moduli spaces of Riemann surfaces on the Hochschild complex of a closed Frobenius algebras. This is a special of Constello's theorem [START_REF] Costello | Topological conformal field theories and Calabi-Yau categories[END_REF] for Calabi-Yau categories and induces a natural BV and coBV structure on the the Hochschild homology and the Frobenius compatibility between the BV product and coBV coproduct.

In this paper we assume that A is a symmetric open Frobenius algebra (unital) therefore A is not necessarily endowed with a non-degenerate scaler product. Instead A is equipped with a compatible pair of product and coproduct of degree m. First we prove that the shifted Hochschild chain C * (A, A)[m] is naturally a homotopy coBV-algebra (Section 3) therefore HH * (A, A)[m] is a BV-algebra. Also as a consequence C * (A, A)[-m] and HH * (A, A ∨ ) are respectively homotopy BV-algebra and BV-algebra thus we recover Tradler's [START_REF] Tradler | The Batalin-Vilkovisky algebra on Hochschild cohomology induced by infinity inner products[END_REF] result for the closed Frobenius algebras. In Section 4 we prove that C * (A, A)[m] has a natural homotopy BV-structure and H * (A, A)[m] is a BV-algebra. Moreover, in Section 5 we prove that the product and coproduct on HH * (A, A)[m] satisfy the Frobenius compatibility as well. Such a compatibility was expected in the light of Cohen-Godin work for the free loop spaces (of not necessarily closed manifolds).

It is worth mentioning that HH * (A, A) is generally not a unital algebra (or equivalently HH * (A, A ∨ ) is not counital), reflecting the fact (in the geometric side) the free loop spaces are infinite dimensional manifolds thus their homology are not conunital. We recall that a unit for the Chas-Sullivan algebra on H * (LM ) exist if and only if the underlying manifold is closed manifold in which case the cycle consisting of constant loops is the unit. Similarly HH * (A, A) is not counital (or equivalently HH * (A, A ∨ ) is not unital) because the underlying manifold of the cochain complex A may not be a closed compact one.

We also identify a natural BV-product on the shifted relative Hochschild homology HH * (A, A)[m -1] . We believe that this product is an algebraic model of the Goresky-Hingston [START_REF]Loop products and closed geodesics[END_REF] product on the relative cohomology H * (LM, M ). As far as we know this product was not known even for closed Frobenius algebras.

Our results can potentially be used to give an algebraic model for the string topology of not necessarily closed manifolds. That would require generalizing our results to an appropriate homotopic setting.

Throughout this paper k is a commutative ring and A = k ⊕ Ā is a positively graded augmented unital differential associative k-algebra with deg d A = +1, Ā = A/k i.e. Ā is the kernel of the augmentation ǫ : A → k. See the appendix for the sing conventions.

Acknowledgment: I am grateful to Nathalie Wahl for many helpful communications.

Open Frobenius algebras and BV-Algebras

We use the sing conventions explained in the appendix. A differential graded (A, d)-module, or A-module for short, is a k-complex (M, d) together with an (left)

A-module structure • : A × M → M such that d M (ax) = d A (a)x + (-1) |a| ad M (x).
The multiplication map is of degree zro i.e. deg(ax) = deg a + deg x. In particular, the identity above implies that the differential of M has to be of degree 1.

Similarly for a (M, d M ) a differential graded (A, d) -bimodule, we have

d M (axb) = d A (a)xb + (-1) |a| ad M (x)b + (-1) |a|+|m| axd A b,
or equivalently, M is a (A e := A⊗A op , d A ⊗1+1⊗d A ) DG-module where A op is the algebra whose underlying graded vector space is A with the opposite multiplication of A, i.e. a (1) (A, •) is a unital differential graded associative algebra whose product has degree zero, (2) (A, δ) is a differential graded coassociative coalgebra of degree m that is 

(δ ⊗ 1)δ = (-1) m (1 ⊗ δ)δ and δ is chain map of degree m, i.e. δd = (-1) m (d ⊗ 1 + 1 ⊗ d)δ . (3) δ : A → A ⊗ A is
(xy) ′ ⊗ (xy) ′′ = (y) (-1) m|x| xy ′ ⊗ y ′′ = (x)
x ′ ⊗ x ′′ y.

Here we have simplified Sweedler's notation for the coproduct δx

= i x ′ i ⊗ x ′′ i , to δx = (x) x ′ ⊗ x ′′
where (x) should be thought of as the index set for i's. Since the coproduct is assumed to have degree m therefore deg

x ′ + deg x ′′ = m.
In particular we have

(dx) (dx) ′ ⊗ (dx) ′′ = (-1) m ( (x) (dx ′ ⊗ x ′′ + (-1) |x ′ | x ′ ⊗ dx ′′ )) and (x ′ ) ′ ⊗ (x ′ ) ′′ ⊗ x ′′ = (-) m|x ′ |+m x ′ ⊗ (x ′′ ) ′ ⊗ (x ′′ ) ′′ We shall say (A, •, δ) is symmetric if (1) 1 ′ ⊗ 1 ′′ = (1) (-1) |1 ′ ||1 ′′ |+m 1 ′′ ⊗ 1 ′ .
We recall that a closed (DG) Frobenius algebra is a finite dimensional unital associative differential graded k-algebra A = ⊕ i≥0 A i equipped with a symmetric inner product -, -such that the map α : x → (y → α x (y) := (-1) |x|+m x, y = (-1) |y| x, y ), from A to A ∨ is a degree m isomorphism of differential graded Abimodules.

We recall that symmetric means

x, y = (-1) |x||y| y, x = (-1) |x|(m-|x|) x, y .

Notice that α is of degree m therefore α being A-biequivarant must take into account the degree. We spell this out in details since it is important to get the signs right.

Let L : A ⊗ A ∨ → A ∨ and R : A ∨ ⊗ A → A ∨ be respectively the left and right action of A on A ∨ We will use the same notation for the action of A on itself. Then α being A-biequivariant means We can now define a coproduct δ :

L(1 ⊗ α) = α • L and R(α ⊗ 1) = α • R,
A → A ⊗ A by requiring that the diagram (2.2) A α / / δ A ∨ dual of the product / / (A ⊗ A) ∨ A ∨ ⊗ A ∨ iA,A 5 5 l l l l l l l l l l l l l A ⊗ A α⊗α 9 9 r r r r r r r r r r
to be commutative. Note that in the diagram above α, α ⊗ α and i A ⊗ i A (because dimA < ∞) are isomorphisms therefore δ exists and is unique because of the nondegeneracy of the inner product. The coproduct δx = (x) x ′ ⊗ x ′′ is characterized by the identity

(2.3) x, ab = (x) (-1) m|x ′ | x ′′ , a x ′ , b
Since the inner product has degree m, we obtain

(2.4) x, ab = (-1) m|b|+m (x)
x ′′ , a x ′ , b , which in the special case x = 1 it reads,

(2.5) a, b = 1, ab = (-1) m|b|+m

(1)

1 ′′ , a 1 ′ , b
The coproduct δ is coassociative of degree m and satisfies condition (3) of Definition 2.1 because all the other maps in the diagram (2.2) are morphisms of Abimodules. We can also check this directly,

(-1) m|(xy) ′ | (xy) ′′ , a (xy) ′ , b = xy, ab = x, yab = (-1) m|x ′ | x ′′ , ya x ′ , b = (-1) m|x ′ | x ′′ y, a x ′ , b (2.6) 
which together with the non-degeneracy of the inner product imply 

(-1) m|x ′ | x ′′ , a x ′ , 1 = (x) (-1) m|x ′ | x ′ , 1 x ′′ , a .
which implies

(2.8) x = (x) (-1) m|x ′ | x ′ , 1 x ′′ .
Similarly by taking for a = 1, we obtain

x, b = (-1) m|x ′ | x ′′ , 1 x ′ , b .
The non-degeneracy of the inner product implies that (2.9)

x = (x) (-1) m|x ′ | x ′′ , 1 x ′ In other words η(x) = x, 1 is a counit that is (2.10) x = (x) (-1) m|x ′ | η(x ′ )x ′′ = (x) (-1) m|x ′ | η(x ′′ )x ′
Again using the Frobenius property (or a diret computation) we have (2.11) x =

(1)

(-1) m|1 ′ | η(x1 ′ )1 ′′ = (1) (-1) m|1 ′ | η(1 ′′ x)1 ′

and

(2.12) x =

(1) 

(-1) |1 ′ | η(1 ′ x)1 ′′ = (1) (-1) |1 ′ | η(x1
If M is closed then H * (M, Z) = H * c (M, Z
) is indeed a closed Frobenius algebra since H * (M, Z) has a counit given by : H * (M ) → Z, the evaluation on the fundamental class of M , while Poincaré duality is given by capping with the fundamental class. The non-degenerate inner product is defined by x, y := [M] x ∪ y. Over the rationals it is possible to lift this Frobenius algebra structure to the level of cochains. By a result of Lambrechts and Stanley [START_REF] Lambrechts | Poincaré duality and commutative differential graded algebras[END_REF], over rationals there is a connected finite dimensional commutative DG algebra A which is quasi-isomorphic to the singular cochain algebra C * (M, Q) on a given n-dimensional manifold M , equipped with a bimodule isomorphism A → A ∨ inducing the Poincaré duality Proof. 1) It follows from the characterization (2.5). Indeed,

H * (M ) → H n- * (M ).
(-1) m|b|+m (1) (-1) |1 ′ ||1 ′′ |+m 1 ′ , a 1 ′′ , b = (-1) m|b| (1) (-1) (m-|a|)(m-|b|) 1 ′ , a 1 ′′ , b = (-1) |a||b|+m|a|+m (1) 1 ′ , a 1 ′′ , b = (-1) |a||b| b, a = a, b therefore (1) (-1) |1 ′ ||1 ′′ |+m 1 ′′ ⊗ 1 ′ = (1) 1 ′ ⊗ 1 ′′ .
2) The inner product is defined by

x, y = η(xy). It is clearly invariant. The identity x = (-1) m|x ′ | η(x ′′ )x ′ = (-1) m|1 ′ | η(x1 ′′ )1 ′ proves that A = Span k {1 ′ s} hence the finite dimensionality of A.
Now we must prove that -, -is symmetric. By the identity (2.10) we can write

xy = (-1) m|x ′ | η(x ′′ )x ′ y = (-1) m|1 ′ | η(1 ′′ x)1 ′ y,
therefore for all x and y

x, y = (-1)

m|1 ′ | η(1 ′′ x)η(1 ′ y).
Since A is symmetric, we have

x, y = (-1) m|1 ′ | η(1 ′′ x)η(1 ′ y) = (-1) m|1 ′′ |+|1 ′ ||1 ′′ |+m η(1 ′ x)η(1 ′′ y) = (-1) m(m-|1 ′ |)+(m-|x|)(m-|y|))+m η(1 ′ x)η(1 ′′ y) = (-1) m|1 ′ |+|x||y| η(1 ′ x)η(1 ′′ y) = (-1) |x||y| y, x
3)

x ′ ⊗ x ′′ = (-1) m|x| x1 ′ ⊗ 1 ′′ = (-1) m|x|+|1 ′′ ||1 ′ |+m x1 ′′ ⊗ 1 ′ = (-1) m|x|+|1 ′′ ||1 ′ |-|x||1 ′′ |+m 1 ′′ x ⊗ 1 ′ = (-1) m|x|+(|x ′′ |-|x|)|x ′ |-|x|(|x ′′ |-|x|)+m x ′′ ⊗ x ′ = (-1) |x ′ ||x ′′ |+|x|(m+|x|-|x ′ |-|x ′′ |)+m x ′′ ⊗ x ′ = (-1) |x ′ ||x ′′ |+m x ′′ ⊗ x ′ .
(2.13) 4)

x (z) (-1) |z ′′ ||z ′ | z ′′ z ′ = (z) (-1) |z ′′ ||z ′ | xz ′′ z ′ = (1) (-1) (|1 ′′ |+|z|)|1 ′ | x1 ′′ z1 ′ = (1) (-1) (|1 ′ |+|z|)|1 ′′ |+|1 ′ ||1 ′′ |+m x1 ′ z1 ′′ = (1) (-1) |z||1 ′′ |+m x1 ′ z1 ′′ = (x) (-1) m|x|+|z||x ′′ |+m x ′ zx ′′ = (x) (-1) m|x|+|z|(|1 ′′ |-|x|)+m 1 ′ z1 ′′ x = (1) (-1) m|x|+|z|(|1 ′ |-|x|)+|1 ′ ||1 ′′ | 1 ′′ z1 ′ x = (1) (-1) m|x|+|z|(|z ′ |-|x|)+|z ′ |(|z ′′ |-|z|) z ′′ z ′ x = (-1) (m+|z|)|x| ( (z) (-1) |z ′′ ||z ′ | z ′′ z ′ )x.
We recall that (z) (-1)

|z ′′ ||z ′ | z ′′ z ′ is of degree m + |z|.
Before explaining how an open Frobenius algebras gives rise to a (co)BV-algebra, we recall the definition of the BV-algebras and the definition of Hochschild homology and cohomology.

Definition 2.3. (Batalin-Vilkovisky algebra) A BV-algebra is a Gerstenhaber algebra (V * , •, [-, -]) with a degree one operator ∆ : V * → V * +1 whose deviation from being a derivation for the product • is the Gerstenhaber bracket [-, -], i.e. There are very interesting examples using the differential forms of Riemannian or symplectic manifolds, which are essentially due to Kozsul [START_REF] Koszul | Crochet de Schouten-Nijenhuis et cohomologie[END_REF]. The inspiring example for us is the homology of the free loop space LM := C 0 (S 1 , M ) of an oriented manifold [CS] for which an algebraic model can be obtained using Hochschild cohomology of cochains algebras of M [START_REF] John | Cyclic homology and equivariant homology[END_REF]. Let us recall the definition of the Hochschild complex.

The (normalized) Hochschild chain complex with coefficients in M is defined to be

(2.15) C * (A, M ) := M ⊗ T (s Ā)
and comes equipped with a degree +1 differential D Hoch = d 0 + d 1 . We recall that T V = ⊕ n≥0 V ⊗n denotes the tensor algebra of a k-module V . The internal differential is given by

d 0 (m[a 1 , • • • , a n ]) = d M m[a 1 , • • • , a n ] - n i=1 (-1) ǫi m[a 1 , • • • , d A a i , . . . a n ] (2.16)
and the external differential is

d 1 (m[a 1 , • • • , a n ]) =(-1) |m| ma 1 [a 2 , • • • , a n ] + n i=2 (-1) ǫi m[a 1 , • • • , a i-1 a i , • • • , a n ] -(-1) ǫn(|an|+1) a n m[a 1 , • • • , a n-1 ],
(2.17) Similarly we define the M -valued Hochschild cochain of A to be

with ǫ 0 = |m| and ǫ i = |m| + |a 1 | + • • • |a i-1 | -i + 1 for i ≥ 1. Note that the degree of m[a 1 , • • • , a n ] is |m| + n i=1 |a i | -n. When M = A,
C * (A, M ) := Hom k (T (s Ā), M ).
For a homogenous cochain complexf ∈ C n (A, M ), the degree |f | is defined to be the degree of the linear map f : (s Ā) ⊗n → M . In the case of Hochschild cochains, the external differential of f ∈ Hom(s Ā⊗n , M ) is

d 1 (f )(a 1 , • • • , a n ) = -(-1) (|a1|+1)|f | a 1 f (a 2 , • • • , a n )+ - n i=2 (-1) ǫi f (a 1 , • • • , a i-1 a i , • • • , a n ) + (-1) ǫn f (a 1 , • • • , a n-1 )a n , (2.18) 
where

ǫ i = |f | + |a 1 | + • • • + |a i-1 | -i + 1. The internal differential of f ∈ C * (A, M ) is d 0 f (a 1 , • • • , a n ) = d M f (a 1 , • • • , a n ) + n i=1 (-1) ǫi f (a 1 , • • • , d A a i , • • • , a n ). (2.19)
The Hochschild cohomology of A with coefficient in M is by definition HH * (A, M ) := ker D Hoch / im D Hoch .

Remark 2.5. Naturally one can consider k-dual Hom k (C * (A, A), k), D ∨ Hoch ) and its cohomology ker

D ∨ Hoch / im D ∨ Hoch . The result is isomorphic to (C * (A, A ∨ ), D Hoch ). In fact the isomorphism : (C * (A, A ∨ ), D Hoch ) → Hom k (C * (A, A), k), D ∨ Hoch ) is given by f → f , (2.20) f (a 0 , a 1 , • • • , a n ) = (-1) (|a0|+1)|f | f (a 1 , a 2 , • • • , a n )(a 0 ) Therefore HH * (A, A ∨ ) ≃ H * (Hom k (C * (A), k), D ∨ Hoch )
). All over this article C * (A, A ∨ ) is identified with Hom(C * (A, A), k) using the isomorphism above.

Gerstenhaber bracket and cup product:

When M = A, for x ∈ C m (A, A) and y ∈ C n (A, A) one defines the cup product x ∪ y ∈ C m+n (A, A) and the Gerstenhaber bracket [x, y] ∈ C m+n-1 (A, A) by (2.21) (x ∪ y)(a 1 , • • • , a m+n ) := (-1) |y|( i≤m |ai|+1) x(a 1 , • • • , a m )y(a n+1 , • • • , a m+n ), and 
(2.22) [x, y] := x • y -(-1) (|x|+1)(|y|+1) y • x,
where

(x• j y)(a 1 , • • • , a m+n-1 ) = (-1) (|y|+1) i≤j (|ai|+1) x(a 1 , • • • , a j , y(a j+1 , • • • , a j+m ), • • • ).

and

(2.23)

x • y = j x • j y
It turns out that the operations ∪ and [-, -] are chain maps, hence they define two well-defined operations on HH * (A, A). Moreover, ∪ is commutative up to homotopy which is given by -• -.

Theorem 2.6. (Gerstenhaber [START_REF] Gerstenhaber | The cohomology structure of an associative ring[END_REF]) Let A be a differential graded associative algebra. (HH * (A, A), ∪, [-, -]) is a Gerstenhaber algebra that is for all x, y and z ∈ HH * (A, A) we have:

(1) ∪ is an associative and graded commutative product,

(2) [x, y ∪ z] = [x, y] ∪ z + (-1) (|x|-1)|y| y ∪ [x, z] (Leibniz rule), (3) [x, y] = -(-1) (|x|-1)(|y|-1) [y, x], (4) [[x, y], z] = [x, [y, z]] -(-1) (|x|-1)(|y|-1) [y, [x, z]] (Jacobi identity).
The Hochschild homology and cohomology of an algebra have an extra feature, which is the existence of the Connes operators B, respectively B ∨ ( [START_REF] Connes | Noncommutative differential geometry[END_REF]). On the chains we have

(2.24) B(a 0 [a 1 , a 2 • • • , a n ]) = n+1 i=1 (-1) ǫi 1[a i+1 • • • a n , a 0 , • • • , a i ]
and on the dual theory C * (A) = Hom k (T (s Ā), A ∨ ) = Hom(A ⊗ T (s Ā), k) we have

(B ∨ φ)(a 0 [a 1 , a 2 • • • , a n ]) = (-1) |φ| n+1 i=1 (-1) ǫi φ(1[a i • • • a n , a 0 , • • • , a i-1 ]), where φ ∈ C n+1 (A) = Hom(A ⊗ (s Ā) ⊗n+1 , k) and ǫ i = (|a 0 | + . . . |a i-1 | -i)(|a i | + . . . |a n | -n + i -1).
In other words

B ∨ (φ) = (-1) |φ| φ • B.
Note that deg(B) = -1 and deg B ∨ = +1. The following theorem shows how a closed Frobenius algebra gives rise to a BV-algebra.

Theorem 2.7. (Tradler [Tra08]) The Hochschild cohomology HH * (A, A) of a Frobenius algebra A has natural a BV-structure whose underlying Gerstenhaber structure is the standard one [START_REF] Gerstenhaber | The cohomology structure of an associative ring[END_REF]. The BV-operator corresponds to the Connes operator B ∨ using the natural isomorphism

HH * (A, A) ≃ HH * (A, A ∨ )[m].
The main idea here is that we try to identify the homotopy (co)BV-structures directly on C * (A, A) (and its dual) rather than C * (A, A).

coBV structure on Hochschild homology

In this section we present a natural homotopy coBV-structure on the shifted Hochschild chain complex C * (A, A)[m] of a symmetric open Frobenius algebra (A, •, δ) of degree m. The natural candidate for the coBV operator is the Connes operator B, so we just need a degree m coproduct on the Hochshild chains C * (A, A). This is given by formula (before the shift)

(3.1) θ(a 0 [a 1 , • • • , a n ]) = (a0),0≤i≤n +(-1) |a ′ 0 |σi (a ′′ 0 [a 1 , • • • , a i-1 , a i ]) ⊗ (a ′ 0 [a i+1 , • • • , a n ])
where

σ i = a ′′ 0 + a 1 + a 2 + • • • a i + i.
This coproduct is of degree m and is a chain map i.e.

θD Hoch = (-1) m (D Hoch ⊗ 1 + 1 ⊗ D Hoch )
The proof that θ is a chain map, uses A being symmetric. The most nontrivial part of the proof is that

(a0) (-1) |a ′ 0 |(|a ′′ 0 |+|a1|+•••|ap|+p)+(|ap|+1)(|a ′′ 0 |+|a1|+•••|ap-1|+p-1) a p a ′′ 0 [a 1 , • • • , a p-1 ] ⊗ a ′ 0 [a p+1 , • • • , a n ] = (a0) (-1) |a ′ 0 |(|a ′′ 0 |+|a1|+•••|ap-1|+p-1)+|a ′′ 0 |+|a1|+•••+|ap-1|+p-1+|a ′ 0 | a ′′ 0 [a 1 , • • • , a p-1 ] ⊗ a ′ 0 a p [a p+1 , • • • , a n ].
appears in (D Hoch ⊗ 1 + 1 ⊗ D Hoch ) twice but with opposite signs. The proof of the identity above is as follows:

(a0) (-1) |a ′ 0 |(|a ′′ 0 |+|a1|+•••|ap|+p)+(|ap|+1)(|a ′′ 0 |+|a1|+•••|ap-1|+p-1) a p a ′′ 0 [a 1 , • • • , a p-1 ] ⊗ a ′ 0 = (a0) (-1) |1 ′ |(|1 ′′ |+|a0|+•••|ap|+p)+(|ap|+1)(|1 ′′ |+|a0|+•••|ap-1|+p-1) a p 1 ′′ a 0 [a 1 , • • • , a p-1 ] ⊗ 1 ′ = (a0) (-1) |1 ′′ |(|a0|+•••|ap|+p)+(|ap|+1)(|1 ′ |+|a0|+•••|ap-1|+p-1)+m a p 1 ′ a 0 [a 1 , • • • , a p-1 ] ⊗ 1 ′′ = (a0) (-1) m|ap|+|a ′′ p |(|a0|+•••|ap|+p)+(|ap|+1)(|a ′ p |+|a0|+•••|ap|+p-1)+m a ′ p a 0 [a 1 , • • • , a p-1 ] ⊗ a ′′ p = (a0) (-1) m|ap|+(|1 ′′ |+|ap|)(|a0|+•••|ap|+p)+(|ap|+1)(|1 ′ |+|a0|+•••|ap|+p-1)+m 1 ′ a 0 [a 1 , • • • , a p-1 ] ⊗ 1 ′′ a p = (a0) (-1) |1 ′′ ||1 ′ |+m|ap|+(|1 ′ |+|ap|)(|a0|+•••|ap|+p)+(|ap|+1)(|1 ′′ |+|a0|+•••|ap|+p-1) 1 ′′ a 0 [a 1 , • • • , a p-1 ] ⊗ 1 ′ a p = (a0) (-1) (|a ′′ 0 |+|a0|)|a ′ 0 |+m|ap|+(|a ′ 0 |+|ap|)(|a0|+•••|ap|+p)+(|ap|+1)(|a ′′ 0 |+|a1|+•••|ap|+p-1) a ′′ 0 [a 1 , • • • , a p-1 ] ⊗ a ′ 0 a p = (a0) (-1) |a ′ 0 |(|a ′′ 0 |+|a1|+•••|ap-1|+p-1)+|a ′′ 0 |+|a1|+•••+|ap-1|+p-1+|a ′ 0 | a ′′ 0 [a 1 , • • • , a p-1 ] ⊗ a ′ 0 a p .
This gives rise to a product on Hochschild cochains as follows: For f , g ∈ Hom(A ⊗ T (s Ā), k) we set

f • g = µ(θ ∨ ( f ⊗ g)) = (-1) m(| f|+|g|) µ( f ⊗ g) • θ
where µ : k ⊗ k → k is the multiplication. Note that this product is of degree -m, therefore in order to obtain a product of degree zero we should shift the grading by -m. The new degree zero product on Hom(C * (A, A), k)[-m] is (see the appendix)

f ⊙ g = (-1) m| f| f • g More explicitly, for f and g ∈ Hom(C * (A, A), k)[-m] we have ( f ⊙g)(a 0 [a 1 , • • • , a n ]) = (a0),1≤i≤n (-1) m|g|+a ′ 0 σi+(m+|g|)σi f (a ′′ 0 [a 1 , • • • , a i-1 , a i ])g(a ′ 0 [a i+1 , • • • , a n ]).
In the case of a closed Froebnius algebra this product corresponds to the standard cup product on HH * (A, A) using the isomorphism

HH * (A, A) ≃ HH * (A, A ∨ )[-m] ≃ H * (Hom(C * (A, A))[-m]
induced by the inner product on A. More explicitly we identify A with A ∨ , as bimodules, using the map x → (α x := (-1) x x, -) which identifies C * (A, A) with C * (A, A ∨ ). The latter itself is identified with Hom(C * (A, A), k) using the isomorphism (2.20). Overall we have an isomorphism of cochain complexes which

sends f ∈ C * (A, A), f : (sA) ⊗n → A to the cochain f ∈ Hom(A ⊗ (sA) ⊗n , k)[m], f (a 0 , a 1 , • • • , a n ) := (-1) (a0+1)f a 0 , f (a 1 , • • • , a n ) .
Using the identity

x = (-1) m|x ′ | η(x ′′ )x ′ = (-1) m|1 ′ | η(1 ′′ x)1 ′ we can write f (a 1 , • • • , a n ) := (1) (-1) | f |(1+|1 ′′ |) f (1 ′′ , a 1 , • • • , a n )1 ′ .
which is an explicit formula for the inverse of the isomorphism f → f . Let f : (s Ā) ⊗p → A and g : (s Ā) ⊗q → A in C * (A, A) be two cochains. First note that the degrees of f and g as elements of Hom(C * (A, A), k)[m] are respectively equal to |f | and |g|.

f ∪ g(a 0 , a 1 , • • • , a p+q ) = (-1) (a0+1)(|f |+|g|) a 0 , (f ∪ g)(a 1 , • • • , a p+q ) = (a0) (-1) (a0+1)(|f |+|g|)+m(1+|a ′ 0 |)+|g|(σp-|a ′′ 0 |) a ′′ 0 , f (a 1 , • • • , a p ) a ′ 0 , g(a p+1 , • • • , a p+q ) = (a0) (-1) (a0+1)(|f |+|g|)+m(1+|a ′ 0 |)+|g|(σp-|a ′′ 0 |)+(1+|a ′′ 0 |)|f |+(1+|a ′ 0 |)|g| f (a ′′ 0 , a 1 , • • • , a p )g(a ′ 0 , a p+1 , • • • , a p+q ).
Since In particular if A is a closed Frobenius algebra, then using the natural isomorphism

σ p = |f | + m it follows that f ∪ g = f * g,
(3.2) (C * (A, A ∨ )[m], ⊙) ≃ (C * (A, A), ∪),
HH * (A, A) is endowed with a BV-algebra whose underling Gerstenhaber algebra is the standard one and the BV-operator is the image of the Connes operator B ∨ under the isomorphism (3.2). This recovers Tradler's result [START_REF] Tradler | The Batalin-Vilkovisky algebra on Hochschild cohomology induced by infinity inner products[END_REF], Theorem 2.7 for closed Frobenius algebras.

Proof. The homotopy for co-commutativity is given by

h(a 0 [a 1 , • • • , a n ]) := (1),0≤i<j≤n+1 (-1) ti a 0 [a 1 , • • • , a i , 1 ′′ , a j , • • • , a n ] ⊗ 1 ′ [a i+1 , • • • , a j-1 ].
where

t i = (|1 ′′ | + 1)(|a 0 | + • • • + |a i | + i) + |1 ′ |(|a 0 | + |a 1 | + • • • + |a i | + i + |1 ′′ |) (|1 ′ | + |a i+1 | + • • • + |a j-1 | + j -i -1)(|a j | + • • • + |a n | + n -j + 1) = |1 ′′ ||1 ′ | + (m + 1)(|a 0 | + • • • + |a i | + i) + (|1 ′ | + |a i+1 | + • • • + |a j-1 | + j -i -1)(|a j | + • • • + |a n | + n -j + 1)
and for j = n + 1 and i = 0 the corresponding terms are respectively

±a 0 [a 1 , • • • , a i , 1 ′′ ] ⊗ 1 ′ [a i+1 , • • • , a n ]. and ±a 0 [1 ′′ , a j , • • • , a n ] ⊗ 1 ′ [a 1 , • • • , a j-1 ]. We have (3.3) (D Hoch ⊗ 1 + 1 ⊗ D Hoch )h -(-1) m+1 hD Hoch = (-1) m τ • θ -θ where τ : C * (A, A) ⊗2 → C * (A, A) ⊗2 is given by τ (α 1 ⊗ α 2 ) = (-1) |α1||α2| α 2 ⊗ α 1 .
To see this, note that in (D Hoch ⊗ 1 + 1 ⊗ D Hoch )h the term corresponding to the last term of the external part of the Hochchsild differential of the first factor of ±a

0 [a 1 , • • • , a i , 1 ′′ ] ⊗ 1 ′ [a i+1 , • • • , a n ] is ±1 ′′ a 0 [a 1 , • • • , a i ] ⊗ 1 ′ [a i+1 , • • • , a n ] = ±a ′′ 0 [a 1 , • • • , a i ] ⊗ a ′ 0 [a i+1 , • • • , a n ]
which is precisely θ; and the term corresponding to the first term of the external Hochchsild differential of the first factor of ±a 0

[1 ′′ , a j , • • • , a n ] ⊗ 1 ′ [a 1 , • • • , a j-1 ] is ±a 0 1 ′′ [a j , • • • , a n ] ⊗ 1 ′ [a 1 , • • • , a j-1 ] = ±a 0 1 ′ [a j , • • • , a n ] ⊗ 1 ′′ [a 1 , • • • , a j-1 ] = ±a ′ 0 [a j , • • • , a n ] ⊗ a ′′ 0 [a 1 , • • • , a j-1
] which is (-1) m τ θ. To prove that the 7-term (coBV) relation holds, we use the Chas-Sullivan [CS] idea (see also [START_REF] Tradler | The Batalin-Vilkovisky algebra on Hochschild cohomology induced by infinity inner products[END_REF]) in the case of the free loop space adapted to the combinatorial (simplicial) situation. First we identify the Gerstenhaber co-bracket explicitly. Considert the operation

S := h + (-1) m τ • h
on the Hochschild complex before the shift of degree of m. Once proven that S is, up to homotopy, the deviation of B from being a coderivation for θ, the 7-term homotopy coBV relation is equivalent to the homotopy co-Leibniz identity for S.

Compatibility of B and S:

We prove that S = θB -(-1) m (B ⊗ id + id ⊗ B)θ up to homotopy. To this end, we prove that h is homotopic to (θB

) 2 -(-1) m (B ⊗ id)θ and similarly τ h ≃ (θB) 1 -(id ⊗ B)θ where θB = (θB) 1 + (θB) 2 , with (θB) 1 (a 0 [a 1 , • • • , a n ]) = 0≤i≤j≤n (1) ±(1 ′′ [a i , • • • , a j ]) ⊗ (1 ′ [a j+1 , • • • , a n , a 0 • • • , a i-1 ]). and (θB) 2 (a 0 [a 1 , • • • , a n ]) = 0<i<j≤n (1) ±(1 ′′ [a j , • • • , a n , a 0 , a 1 , • • • , a i ]) ⊗ (1 ′ [a i+1 , • • • , a j-1 ]).
The homotopy between h and (θB) 2 -(-1) m (B ⊗ id)θ is given by

H(a 0 [a 1 , • • • , a n ]) = 0≤k≤i<j≤n+1 (ai) ((-1) ν k,i,j 1[a k+1 , • • • a i , 1 ′′ , a j , • • • , a n , a 0 , • • • a k ]) ⊗ (1 ′ [a i+1 , • • • , a j-1 ]), where ν k,i,j = (|a i+1 | + • • • + |a j-1 | + j -i + 1)(|a j | + • • • |a n | + n -j + 1)+ (|a 0 | + • • • + |a k | + k + 1)(|a k+1 | + • • • + |a i | + |a j | + • • • + |a n | + n -j + i -k + 1)+ |1 ′ |(|1 ′′ | + |a 0 | + • • • + |a i | + |a j | + • • • + |a n | + n -j + i) + (|1 ′′ | + 1)(|a k+1 | + • • • + |a i | + i -k).
In the formulae describing H, the sequence a j , • • • , a i-1 can be empty. In D Hoch H + (-1) m-2 H(D Hoch ⊗ id + id ⊗ D Hoch ), the terms corresponding to k = 0, k = i and j = n + 1 are respectively h, -(θB) 2 and

(-1) m (B ⊗ 1)θ(a 0 [a 1 , • • • , a n ]) = (-1) m ±(1[a k+1 , • • • , a i , a ′ 0 , a 1 , • • • , a k ]) ⊗ (a ′′ 0 [a i+1 , • • • , a n ]).
Similarly one proves that τ h ≃ (θB) 1 -(-1) m (id ⊗ B)θ.

Co-Leibniz identity: The idea of the proof is identical to Lemma 4.6 [CS]. We prove that up to some homotopy we have

(3.4) (θ ⊗ id)S = (id ⊗ τ )(S ⊗ id)θ + (id ⊗ S)θ
At the chain level, we have

(θ ⊗ id)h = (id ⊗ τ )(h ⊗ id)θ + (id ⊗ h)θ,
so to prove (3.4) we should prove that up to some homotopy

(θ ⊗ id)τ h = (id ⊗ τ )(τ h ⊗ id)θ + (id ⊗ τ h)θ.
The homotopy is given by G :

C * (A) → (C * (A)) ⊗3 G(a 0 [a 1 , • • • , a n ]) = 0≤l<i≤j<k (1), (1) 
± (1 ′′ 1 [a l+1 , • • • , a i ]) ⊗ (1 ′′ 2 [a j+1 , • • • , a k ]) ⊗ a 0 [a 1 , • • • , a l , 1 ′ 1 , a i+1 , . . . , a j , 1 ′ 2 , a k+1 • • • a n , a 0 , • • • , a l-1 ], that is GD Hoch + (-1) m-2 (D Hoch ⊗ id ⊗ id + id ⊗ D Hoch ⊗ id + id ⊗ id ⊗ D Hoch )G = (θ ⊗ id)τ h -(id ⊗ τ )(τ h ⊗ id)θ -(id ⊗ τ h)θ.
The signs in G are determined using Koszul sign rule just like the previous examples As for the last part of the theorem, we have already proved that ⊙ corresponds to the cup. It only remains to prove that underlying Gerstenharber bracket of the BV-structure of (C * (A, A), ∪) is the standard one. To that end, it suffices to prove that :

(C * (A, A)[m], ∪) → (C * (A, A ∨ )[m], ⊙) (see (2.20
)) sends the homotopy of the commutativity • of ∪ to the homotopy of the commutativity (-⊗ -)h of ⊙: Let x ∈ Hom((sA) ⊗p , A) and y ∈ Hom((sA) ⊗q , A). Then the degrees of x and ỹ as element of Hom(C * (A, A), k)[m] are respectively |x| and |y|. Similarly to the definition of ⊙, the homotopy for the commutativity of x and ỹ is given Ψ(x, ỹ) = (-1) (m-1)|ỹ| µ(x ⊗ ỹ)h where µ : k ⊗ k → k is the product of the ground ring:

Ψ(x, ỹ)(a 0 , a 1 , • • • , a p+q-1 ) = i,(1) ±x(a 0 , a 1 , • • • , a i , 1 ′′ , a i+q+1 , • • • a p+q-1 )ỹ(1 ′ , a i+1 , • • • a i+q )
and on the other hand (see (2.22)):

x • y(a 0 , a 1 , • • • a p+q-1 ) = (-1) (|a0|+1)(|x|+|y|-1) a 0 , (x • y)(a 1 , • • • a p+q-1 ) = i ± a 0 , x(a 1 , • • • , a i , y(a i+1 , • • • y i+q ), a i+q+1 , • • • a p+q-1 ) = i ± a 0 , x(a 1 , • • • , a i , (1) 
1 ′′ 1 ′ , y(a i+1 , • • • a i+q ) , a i+q+1 , • • • a p+q-1 ) = i,(1) ± a 0 , x(a 1 , • • • , a i , 1 ′′ , a i+q+1 , • • • a p+q-1 ) 1 ′ , y(a i+1 , • • • a i+q ) = i,(1) (-1) |(|y|+1)((|a0|+|1 ′ |+|a1|+•••+|ai|+i)+|1 ′ | x(a 0 , • • • , a i , 1 ′′ , a i+q+1 , • • • a p+q-1 )ỹ(1 ′ , a i+1 , • • • a i+q )
A comparison of the signs by using the identity |y|

+ |1 ′ | + |a i+1 | • • • + |a i+q| | = m, finishes the proof.
Remark 3.2. By Félix-Thomas [Fél] theorem, this cup product on HH * (A, A ∨ ) provides an algebraic model for the Chas-Sullivan product on H * (LM ) the homology of the free loop space of closed oriented manifold M . Here one must work over a field of characteristic zero and for A one can take the closed (commutative) Frobenius algebra provided by Lambreschts-Stanley result [START_REF] Lambrechts | Poincaré duality and commutative differential graded algebras[END_REF] on the existence of an algebraic model with Poincaré duality for the rational singular cochain algebra of a closed oriented maniflold.

BV structure on Hochschild homology

Although there is no action of the chains of the moduli space of Riemann surfaces on the Hochschild complex of an open Frobenius algebra, some parts of such action in the case of closed Frobenius algebras can be formulated using the product and coproduct of the underlying algebra (see also [WW]). Therefore one can write down various operations in the Hochschild homology of an open Frobenius algebra, but the desired identities have to be proved directly by giving explicitly the required homotopies. Here is one example.

Theorem 4.1. For A a symmetric open Frobenius algebra, the shifted Hochschild homology HH * (A, A)[m] can be naturally equipped with a BV-structure whose BVoperator is the Connes operator and the product at the chain level (before the shift of degree) is given by degree m -1

(4.1) a 0 [a 1 , • • • , a p ] • b 0 [b 1 , • • • , b q ] = 0 if p > 0 (-1) |a ′ 0 ||a ′′ 0 | a ′′ 0 a ′ 0 b 0 [b 1 , • • • , b q ].
Proof. Proposition 2.2 (4)implies that • is a chain map (of degree m). The product • is strictly associative. We only have to check this for x = a[ ], y = b[ ] and

z = c[c 1 , • • • , c n ].
Using Proposition 2.2, we have

(x • y) • z = (-1) |a ′ ||a ′′ |+|(a ′′ a ′ b) ′′ ||(a ′′ a ′ b) ′ | (a ′′ a ′ b) ′′ (a ′′ a ′ b) ′ c 0 [c 1 , • • • , c n ] = = (-1) |a ′ ||a ′′ |+m(|a ′ |+|a ′′ |)+|b ′′ |(|b ′ |+|a ′ |+|a ′′ |) b ′′ a ′′ a ′ b ′ c 0 [c 1 , • • • , c n ] = (-1) |a ′ ||a ′′ |+m(|a ′ |+|a ′′ |)+|b ′′ ||b ′ |+|b ′′ |(|a ′ |+|a ′′ |)+|b ′′ |(|a ′ |+|a ′′ |) a ′′ a ′ b ′′ b ′ c 0 [c 1 , • • • , c n ] = (-1) |a ′ ||a ′′ |+m(|a ′ |+|a ′′ |)+|b ′′ ||b ′ |) a ′′ a ′ b ′′ b ′ c 0 [c 1 , • • • , c n ] = (-1) |a ′ ||a ′′ |+m|a|+m 2 +|b ′′ ||b ′ | a ′′ a ′ b ′′ b ′ c 0 [c 1 , • • • , c n ]
On the other hand

x • (y • z) = (-1) |a ′ ||a ′′ |+|b ′′ ||b ′ | a ′′ a ′ b ′′ b ′ c 0 [c 1 , • • • , c n ] = (-1) |a ′ ||a ′′ |+|b ′′ ||b ′ | a ′′ a ′ b ′′ b ′ c 0 [c 1 , • • • , c n ] = (-1) m|x|+m (x • y) • z
Next we prove that the product is commutative up to homotopy. Indeed the homotopy for

x = a 0 [a 1 , • • • , a p ] and y = b 0 [b 1 , • • • , b q ] is given by K(x, y) = (a0) (-1) (|a ′ 0 |+1)(|a ′′ 0 |+|a1|+•••+|ap|+p) a ′′ 0 [a 1 , . . . , a p , a ′ 0 b 0 , b 1 , . . . , b q ],
that is

D Hoch K -(-1) m-1 K(D Hoch ⊗ 1 + 1 ⊗ D Hoch ) = x • y -(-1) |y||x|+m y • x.
Note that deg K = m -1. It is instructive to verify the case p = 0. The most nontrivial case of cancellation in D Hoch K -(-1) m-1 K(D Hoch ⊗ 1 + 1 ⊗ D Hoch ) follows from the identity

(-1) (|a ′ 0 |+1)|a ′′ 0 |+(|bq|+1)(|a ′′ 0 |+|a ′ 0 |+|b0|+•••+|bq-1|+q) b q a ′′ 0 [a ′ 0 b 0 , • • • , b q-1 ] = (-1) m-1 (-1) |a0|+|a ′′ 0 |(|a ′ 0 |+1)+(|bq|+1)(|b0|+•••+|bq-1|+q-1) a ′′ 0 [a ′ 0 b q b 0 , • • • , b q-1 ]
whose proof is as follows:

(-1)

(|a ′ 0 |+1)|a ′′ 0 |+(|bq|+1)(|a ′′ 0 |+|a ′ 0 |+|b0|+•••+|bq-1|+q) b q a ′′ 0 [a ′ 0 b 0 , • • • , b q-1 ] = (-1) (|1 ′ |+1)(|1 ′′ |+|a0|)+(|bq|+1)(|1 ′′ |+|1 ′ |+|a0|+|b0|+•••+|bq-1|+q) b q 1 ′′ a 0 [1 ′ b 0 , • • • , b q-1 ] = (-1) (|1 ′ |+1)(|1 ′′ |+|a0|)+(|bq|+1)(m+|a0|+|b0|+•••+|bq-1|+q) b q 1 ′′ a 0 [1 ′ b 0 , • • • , b q-1 ] = (-1) m+|1 ′′ ||1 ′ |+(|1 ′′ |+1)(|1 ′ |+|a0|)+(|bq|+1)(m+|a0|+|b0|+•••+|bq-1|+q) b q 1 ′ a 0 [1 ′′ b 0 , • • • , b q-1 ] = (-1) m+m|bq|+|b ′′ q |(|b ′ q |+|bp|)+(|b ′′ q |+1)(|b ′ q |+|bp|+|a0|)+(|bp|+1)(m+|a0|+|b0|+•••+|bq-1|+q) b ′ q a 0 [b ′′ q b 0 , • • • , b q-1 ] = (-1) m+m|bq|+(|1 ′′ |+|bq|)(|1 ′ |+|bq|)+(|1 ′′ |+|bq|+1)(|1 ′ |+|bq|+|a0|)+(|bq|+1)(m+|a0|+•••|bq-1|+q) 1 ′ a 0 [1 ′′ b q b 0 , • • • , b q-1 ] = (-1) m+|1 ′′ ||1 ′ |+|bp|+(|1 ′′ |+|bp|+1)(|1 ′ |+|bp|+|a0|)+(|bp|+1)(m+|a0|+•••+|bp-1|+q) 1 ′ a 0 [1 ′′ b q b 0 , • • • , b q-1 ] = (-1) |bq|+(|1 ′ |+|bq|+1)(|1 ′′ |+|bq|+|a0|)+(|bq|+1)(m+|a0|+|b0|+•••+|bq-1|+q) 1 ′′ a 0 [1 ′ b q b 0 , • • • , b q-1 ] = (-1) |bq|+(|a ′ 0 |+|bq|+1)(|a ′′ 0 |+|bq|)+(|bq|+1)(m+|a0|+|b0|+•••+|bq-1|+q) a ′′ 0 [a ′ 0 b q b 0 , • • • , b q-1 ] = (-1) m-1+|a0|+|a ′′ 0 |(|a ′ 0 |+1)+(|bq|+1)(|b0|+•••+|bq-1|+q-1) a ′′ 0 [a ′ 0 b q b 0 , • • • , b q-1 ]
Let us examine the case of p = q = 0. For x = a[ ] and y = b[ ]: for the external differential we have

d 1 K(x, y) = (-1) |a ′′ |+(|a ′ |+1)|a ′′ | a ′′ a ′ b[ ] + (-1) |a ′′ |(|a ′ |+|b|+1)+1+(|a ′ |+1)|a ′′ | a ′ ba ′′ [ ] = x • y - (-1) |a ′′ ||b| a ′ ba ′′ [ ] = x • y - (-1) (|1 ′′ |+|a|)|b| 1 ′ b1 ′′ a[ ] = x • y - (-1) (|1 ′ |+|a|)|b|+|1 ′ ||1 ′′ |+m 1 ′′ b1 ′ a[ ] = x • y - (-1) (|b ′ |+|a|)|b|+|b ′ |(|b ′′ |+|b|)+m b ′′ b ′ a[ ] = x • y -(-1) |a||b|+m (-1) (|b ′ ||b ′ | b ′′ b ′ a[ ] = x • y -(-1) |x||y|+m y • x
As for the internal differential d 0 , we have

d 0 K(x, y) = (-1) m-1 K(d 0 ⊗ 1 + 1 ⊗ d 0 )(x ⊗ y), therefore D Hoch K -(-1) m-1 K(D Hoch ⊗ 1 + 1 ⊗ D Hoch )(x • y) = x • y -(-1) |x||y|+m y • x.
The Gerstenhaber bracket is naturally defined to be (4.2) {x, y} := K(x, y) + (-1) |x||y|+m K(y, x).

Next we prove that the identity

(4.3) {x, y} = B(x • y) -(-1) m (Bx • y -(1) |x| x • By)
holds up to homotopy. First note that Bx • y = 0 for all x and y. A homotopy between all the remaining three terms is given by H + (-1) 1+m K(1 ⊗ B) where and

y • K(x, z) = (-1) |b ′′ ||b ′ |+(|a ′ 0 |+1)(|a ′′ 0 |+|a1|•••+|ap|+p) b ′′ b ′ a ′′ 0 [a 1 , . . . , a p , a ′ 0 c 0 , c 1 • • • , c q ]
The claimed equality is proved as follows:

(-1) |b ′′ ||b ′ |+(|a ′ 0 |+1)(|a ′′ 0 |+|a1|•••+|ap|+p) a ′′ 0 [a 1 , . . . , a ′ 0 b ′′ b ′ c 0 , • • • , c q ] = (-1) m|a0|+|b ′′ ||b ′ |+(|a0|+|1 ′ |+1)(|1 ′′ |+|a1|•••+|ap|+p) 1 ′′ [a 1 , . . . , a 0 1 ′ b ′′ b ′ c 0 , • • • , c q ] (-1) m|a0|+|b ′′ ||b ′ |+|1 ′ ||1 ′′ |+m+(|a0|+|1 ′′ |+1)(|1 ′ |+|a1|•••+|ap|+p) 1 ′ [a 1 , . . . , a 0 1 ′′ b ′′ b ′ c 0 , • • • , c q ] = (-1) m|a0|+|b ′′ ||b ′ |+|(b ′′ b ′ ) ′ |(|(b ′′ b ′ ) ′′ |+|b ′′ b ′ |)+m+(|a0|+|(b ′′ b ′ ) ′′ |+|b ′′ b ′ |+1)(|(b ′′ b ′ ) ′ |+|a1|•••+|ap|+p) (b ′′ b ′ ) ′ [a 1 , . . . , a 0 (b ′′ b ′ ) ′′ c 0 , • • • , c q ] = = (-1) m|a0|+m(m+|b|)+|b ′′ ||b ′ |+(|b ′′ b ′ |+|1 ′ |)(|1 ′′ |+|b ′′ b ′ |)+m+(|a0|+|1 ′′ |+|b ′′ b ′ |+1)(|1 ′ |+|b ′′ b ′ |+|a1|•••+|ap|+p) b ′′ b ′ 1 ′ [a 1 , . . . , a 0 1 ′′ c 0 , • • • , c q ] = (-1) m|a0|+m(m+|b|)+|b ′′ ||b ′ |+(m+|b|+|1 ′ |)(|1 ′′ |+m+|b|)+m+(|a0|+|1 ′′ |+|b|+m+1)(|1 ′ |+m+|b|+|a1|•••+|ap|+p) b ′′ b ′ 1 ′ [a 1 , . . . , a 0 1 ′′ c 0 , • • • , c q ] = (-1) m|a0|+|b ′′ ||b ′ |+|1 ′ ||1 ′′ |+m+|b|+m+(|a0|+|1 ′′ |+|b|+m+1)(|1 ′ |+m+|b|+|a1|•••+|ap|+p) b ′′ b ′ 1 ′ [a 1 , . . . , a 0 1 ′′ c 0 , • • • , c q ] = (-1) m|a0|+|b ′′ ||b ′ |+|b|+m+(|a0|+|1 ′ |+|b|+m+1)(|1 ′′ |+m+|b|+|a1|•••+|ap|+p) b ′′ b ′ 1 ′′ [a 1 , . . . , a 0 1 ′ c 0 , • • • , c q ] = (-1) |b ′′ ||b ′ |+|b|+m+(|a ′ 0 |+|b|+m+1)(m+|b|+|a ′′ 0 |+|a1|•••+|ap|+p) b ′′ b ′ a ′′ 0 [a 1 , . . . , a ′ 0 c 0 , • • • , c q ] = (-1) m|x|+(m-1+|x|)|y|+|b ′′ ||b ′ |+(|a ′ 0 |+1)(|a ′′ 0 |+|a1|•••+|ap|+p) b ′′ b ′ a ′′ 0 [a 1 , . . . , a p , a ′ 0 c 0 , c 1 • • • , c q ].

Frobenius compatibility of the product and coproduct

As we mentioned previously we are inspired by the algebraic structures of the homology of free loop spaces. Cohen-Godin [START_REF] Cohen | A polarized view of string topology, Topology, geometry and quantum field theory[END_REF] result holds even for the manifolds which are not closed. The difference with the closed case would be that there won't be a counit for the underlying algebra structure. The coalgebra structure generically has no counit, otherwise the homology of the free loop space would have the homotopy type of a finite dimensional manifold which is not true except for very special kind of aspherical manifolds. Therefore it is natural to expect a Frobenius compatibility condition (Definition 2.1, (3)) between the product and coproduct. 

(-1) m+σm|a ′ 0 |+|a ′ 0 ||(a ′′ 0 ) ′ | (a ′′ 0 ) ′′ [a 1 , • • • , a m ] ⊗ (a ′′ 0 ) ′ a ′ 0 b 0 [b 1 , • • • , b n ] = (a0), (1) 
(-1) m+σm|a ′ 0 |+|a ′ 0 |(|1 ′′ |+|a ′′ 0 |) 1 ′′ a ′′ 0 [a 1 , • • • , a m ] ⊗ 1 ′ a ′ 0 b 0 [b 1 , • • • , b n ].
So we have to prove the latter is homotopic to zero. The homotopy is given by H(x, y) = (a0),(1)

(-1) m+σm(|a ′ 0 |+1)+|a ′ 0 |(|1 ′′ |+|a ′′ 0 |)+|1 ′ | 1 ′′ a ′′ 0 [a 1 , • • • , a m ] ⊗ 1 ′ [a ′ 0 b 0 , b 1 , • • • , b n ]
Two non-trivial cancellations occur in computing D Hoch H -(-1) 2m H(D Hoch ⊗ 1 + I ⊗ D Hoch )) as consequences of the follow identities (we omit the signs for the sake of simplicity):

a m 1 ′′ a ′′ 0 [a 1 , • • • , a m-1 ] ⊗ 1 ′ a ′ 0 b 0 [b 1 , • • • , b n ] = a m 1 ′ a ′′ 0 [a 1 , • • • , a m-1 ] ⊗ 1 ′′ a ′ 0 b 0 [b 1 , • • • , b n ] = a ′ m a ′′ 0 [a 1 , • • • , a m-1 ] ⊗ a ′′ m a ′ 0 b 0 [b 1 , • • • , b n ] = 1 ′ a ′′ 0 [a 1 , • • • , a m-1 ] ⊗ 1 ′′ a m a ′ 0 b 0 [b 1 , • • • , b n ] = 1 ′ (a m a 0 ) ′′ [a 1 , • • • , a m-1 ] ⊗ 1 ′′ (a m a 0 ) ′ b 0 [b 1 , • • • , b n ] and 1 ′′ a ′′ 0 [a 1 , • • • , a m ] ⊗ b n 1 ′ [a ′ 0 b 0 , b 1 , • • • , b n-1 ] = b ′′ n a ′′ 0 [a 1 , • • • , a m ] ⊗ b ′ n [a ′ 0 b 0 , b 1 , • • • , b n-1 ] = 1 ′′ b n a ′′ 0 [a 1 , • • • , a m ] ⊗ 1 ′ [a ′ 0 b 0 , b 1 , • • • , b n-1 ] = 1 ′′ b n 1 ′′ [a 1 , • • • , a m ] ⊗ 1 ′ [a 0 1 ′ b 0 , b 1 , • • • , b n-1 ] = 1 ′′ b n 1 ′ [a 1 , • • • , a m ] ⊗ 1 ′ [a 0 1 ′′ b 0 , b 1 , • • • , b n-1 ] = 1 ′′ b ′ n [a 1 , • • • , a m ] ⊗ 1 ′ [a 0 b ′′ n b 0 , b 1 , • • • , b n-1 ] = 1 ′′ 1 ′ [a 1 , • • • , a m ] ⊗ 1 ′ [a 0 1 ′′ b n b 0 , b 1 , • • • , b n-1 ] = 1 ′′ 1 ′′ [a 1 , • • • , a m ] ⊗ 1 ′ [a 0 1 ′ b n b 0 , b 1 , • • • , b n-1 ] = 1 ′′ a ′′ 0 [a 1 , • • • , a m ] ⊗ 1 ′ [a ′ 0 b n b 0 , b 1 , • • • , b n-1 ] If m = 0, then for x = a[ ] θ(x • y) = θ( (a) 
(-1) (-1)

|a ′ ||a ′′ | a ′′ a ′ b 0 [b 1 , • • • , b n ]) = (a),(a ′′ a ′ b0) 0≤k≤n (-1) |a ′ ||a ′′ |+|(a ′′ a ′ b0) ′ |(|(a ′′ a ′ b0) ′′ |+|b1|+•••|b k |+k)) (a ′′ a ′ b 0 ) ′′ [b 1 , • • • , b k ] ⊗ (a ′′ a ′ b 0 ) ′ [b k+1 , • • • , b n ] = ( 
|a ′ ||a ′′ |+m|a ′′ |+(|1 ′ |+|a ′′ |)(|1 ′′ |+|a ′ |+|b0|+|b1|+•••|b k |+k) 1 ′′ a ′ b 0 [b 1 , • • • , b k ] ⊗ a ′′ 1 ′ [b k+1 , • • • , b n ]
Using the same argument the equations defining a degree m (right and left) counit for δ are id =∼ •(η ⊗ 1)δ ′ =∼ •(1 ⊗ η)δ ′ where ∼ stands for the natural isomorphisms A ⊗ k k ≃ A and k ⊗ k A ≃ A. Said explicitly x = (x) (-1) m|x ′ | η(x ′ )x ′′ = (x) (-1) m|x ′ | η(x ′′ )x ′ .

The cocommutativity condition for δ ′ becomes δ = (-1) m τ δ. 

op•

  b = (-1) |a|.|b| b•a. All modules considered in this article are differential modules. We will also drop the indices from the differential when there is no possibility of confusion. Definition 2.1. (DG open Frobenius algebra). A differential graded open Frobenius k-algebra of degree m is a triple (A, •, δ) such that:

  which after applying to elementa x, y ∈ A, it reads (-1) m|y| y • α x = α yx and α x • y = α xy . It follows from the definition of closed Frobenius algebras that the inner product is invariant xy, z = x, yz , and symmetric and(2.1) dx, y = -(-1) |x| x, dy .

  ′ ⊗ (xy) ′′ = (y) x ′ ⊗ x ′′ y, Similarly (-1) m|(xy) ′ | (xy) ′′ , a (xy) ′ , b = xy, ab = (-1) |x|(m-|x|) y, abx = (-1) |x|(m-|x|) (-1) m|y ′ | y ′′ , a y ′ , bx = (-1) m|y ′ | y ′′ , a xy ′ , b = (-1) m|x| (-1) m|xy ′ | y ′′ , a xy ′ , b ′ ⊗ (xy) ′′ = (y) (-1) m|x| xy ′ ⊗ y ′′In other words a closed Frobenius algebra over a field is also an open Frobenius algebra.By replacing b = 1 in (2.3), we obtainx, a = x, a1 = (x)

Example 2 :

 2 It is known that the homology of the free loop space of a closed oriented manifolds is an open Frobenius algebra [CG04]. Similarly the Hochschild cohomology HH * (A) of a closed Frobenius algebra is an open Frobenius algebra [TZ06]. Proposition 2.2. (1) A closed Frobenius algebra is a symmetric open Frobenius algebra. (2) A symmetric open Frobenius algebra A with a counit is finite dimensional and in fact is a closed Frobenius algebra. (3) A symmetric and commutative open Frobenius algebra is cocommutative. (4) For all z in a symmetric open Frobenius algebra A, (z) (-1) |z ′′ ||z ′ | z ′′ z ′ belongs to the center of A.

  [a, b] := (-1) |a| ∆(ab) -(-1) |a| ∆(a)b -a∆(b), and ∆ 2 = 0. It follows from ∆ 2 = 0 that ∆ is a derivation for the bracket. In fact the Leibniz identity for [-, -] is equivalent to the 7-term relation [Get94] ∆(abc) = ∆(ab)c + (-1) |a| a∆(bc) + (-1) (|a|-1)|b| b∆(ac) -∆(a)bc -(-1) |a| a∆(b)c -(-1) |a|+|b| ab∆c. (2.14) Definition 2.3 is equivalent to the following one: Definition 2.4. A BV-algebra is a graded commutative associative algebra (A * , •) equipped with a degree one operator ∆ : A * → A * +1 which satisfies the 7-term relation (2.14) and ∆ 2 = 0. It follows from the 7-term relation that [a, b] := (-1) |a| ∆(ab) -(-1) |a| ∆(a)b -a∆(b) is a Gerstenhaber bracket for the graded commutative associative algebra (A * , •).

  by definition (C * (A, A), D Hoch = d 0 + d 1 ) is the Hochschild chain complex of A and the Hochschild homology of A is by definition HH * (A, A) := ker D/ im D is the Hochschild cohomology of A.

  therefore (HH * (A, A), ∪) and (H * (A, A ∨ )[m], ⊙) are isomorphic as algebras. Theorem 3.1. For a symmetric open Frobenius algebra (A, •, δ) of degree m, the shifted Hochschild chain complex (C * (A, A)[m], θ, D Hoch ) is a homotopy co-BV algebra. As a consequence (HH * (A, A)[m], θ, B) and (HH * (A, A ∨ )[m], ⊙, B ∨ ) are respectively BV-algebra and coBV-coalgebra.

Theorem 5. 1 .

 1 Let A be a symmetric open Frobenius algebra. The product • (4.1) and coproduct θ (3.1) on HH * (A, A)[m] satisfy the Frobenius compatibility conditions, Definition 2.1, (3).

Proof.

  We have to prove that θ is a map of (degree m) left and rightHH * (A, A)modules, that is (-1) m (1⊗•)•(θ⊗1) = θ•• at homology level. First we consider the right HH * (A)-module structure. Let x = a 0 [a 1 , • • • , a m ] and y = b 0 [b 1 , • • • , b n ] ∈ C * (A, A). If m ≥ 1, then θ(x • y) = 0, and θx • y = ( (a0),1≤k≤m (-1) σ k |a ′ 0 | a ′′ 0 [a 1 , • • • , a k ] ⊗ a ′ 0 [a k+1 , • • • , a m ]) • y = ( (a0),1≤k≤m (-1) σ k |a ′ 0 | a ′′ 0 [a 1 , • • • , a k ] ⊗ (a ′ 0 [a k+1 , • • • , a m ] • y) = (a0),(a ′ 0 ) (-1) σm|a ′ 0 |+|(a ′ 0 ) ′ ||(a ′ 0 ) ′′ | a ′′ 0 [a 1 , • • • , a m ] ⊗ (a ′ 0 ) ′′ (a ′ 0 ) ′ b 0 [b 1 , • • • , b n ] = (a0),(1)

  a),(1) 0≤k≤n(-1) |a ′ ||a ′′ |+m|a ′′ |+(|(a ′ b0) ′ |+|a ′′ |)(|(a ′ b0) ′′ |+|b1|+•••|b k |+k) (a ′ b 0 ) ′′ [b 1 , • • • , b k ] ⊗ a ′′ (a ′ b 0 ) ′ [b k+1 , • • • , b n ] =(a),(1) 0≤k≤n

( 10 )

 10 Grading shift and derivations A degree |D| derivation D : A → A for a degree m bilinear map µ : A ⊗ A → is k-linear map which satisfies the identityDµ = (-1) |D||µ| µ(D ⊗ 1 + 1 ⊗ D)After a shift of degree to the right, D is a still derivation of degree |D| on A[m] with respect to the degree zero binary operation µ m . In particular if |D| = 1, D 2 = 0 and µ is associative then (A[m], µ m , D) is a differential graded associative algebra.

  a right and left differential A-module map. Using (simplified) Sweedler's notation, this reads

	(xy)

  The analogue of this result for open manifolds is still not known. It is more reasonable to expect a kind of homotopy open Frobenius model for open manifolds rather than an open Frobenius algebra model. This also suggests the result of this paper need to be generalized to the homotopy Frobenius algebra, a notion to be defined.

H(x, y) = (a),1≤k≤q+1

with

). First notice that [D Hoch , K • (1 ⊗ B)](x ⊗ y) is exactly x • By. To analyse the rest we have to consider two cases:

• Case p ≥ 1: In this case B(x • y) = 0. In computing [D Hoch , H](x ⊗ y) only two term survives. Those are the ones corresponding to k = 1 and k = q + 1. The one corresponding to k = q + 1 gives us exactly K(x, y) and for k = 1 we obtain (-1) m+|x||y| K(y, x). This terms is produced when we compute the last term of the external part of D Hoch H:

• Case p = 0: In this case, comparing to the previous case, an extra term in [D Hoch , H](x ⊗ y) shows up. This is the term where a ′′ 0 and a ′ 0 b 0 are multiplied. This is precisely

which is not necessarily zero if p = 0. Finally we prove the that Leibniz identity (before the shift of the grading)

holds up to homotopy. We prove that it in fact it holds strictly. First note that if y ∈ ⊕ n>0 (A ⊗ (sA) ⊗n ) then all the terms vanish. Therefore we suppose that y = b[ ]. Since {x, y} ∈ ⊕ n>0 (A ⊗ (sA) ⊗n ), it suffices to prove that {x, y • z} = (-1) (m-1+|x|)|y| y • {x, z}, and to that end we check the follow identities

). We prove the first identity, the second one is similar. For

On the other hand,

The homotopy between (-1) m (1 ⊗ •) • (θ ⊗ 1)(x ⊗ y) and θ • •(x ⊗ y) is given by G(x, y) :=

(1),(1) 0≤k≤n

The left

actually holds at the chain level. The only nontrivial case is when m = 0, otherwise both x • θ(y) and θ(x • y) are zero. For x = a[ ] we have,

On the other hand,

6. Suspended BV structure on the relative Hochschild homology of commutative open Frobenius algebras

In this section we exhibit a BV structure on the relative Hochschild homology of a commutative symmetric open Frobenius algebra. In particular we introduce a product on the shifted relative Hochschild homology of symmetric commutative Frobenius algebras which should be an algebraic model for Goresky-Hingston [START_REF]Loop products and closed geodesics[END_REF] product on H * (LM, M ).

For a commutative DG-algebra A the relative Hochschild chains are defined to be

equipped with the Hochschild differential. Since A is commutative, C * (A, A) is stable under the Hochschild differential and fits in the split short exact sequence of complexes,

The homology of C * (A, A) is denoted HH * (A, A) and is called the relative Hochschild homology of A. 

Proof. Note that the identities above hold because A is an open Frobenius algebra. Before the shift, the product is degree is a chain map and strictly associative of degree m -1, that is

and

It is noteworthy to mention that commutativity is used in proving that * is a chain map and associative, as it is shown below. For instance, the term corresponding to first term of the external part of the Hochschild differential D Hoch (x * y) is

This is precisely the term which corresponds to first terms corresponding to the external part of the differential in D Hoch x * y. The commutativity and cocommutativity (or equivalently, commutativity and being symmetric) of A is required for the associativity of * as well: We have

On the other hand

After comparing the coefficient the associativity follows.

However the commutative holds only up to homotopy, and the homotopy is given by

where

By doing the computation we see that for i = 0, the first term of the external differential of D Hoch T (x, y) is precisely x * y, and for i = q the last term of the external differential D Hoch T (x, y) is -(-1) |x||y|+m-1 y * x. For the latter, one has to use the commutativity and cocommutativity.

To prove that the 7-term relation holds, we adapt once again Chas-Sullivan's [CS] idea to a simplicial situation. First we define the Gerstenhaber bracket directly {x, y} := T (x, y) + (-1) m-1+|x||y| T (y, x)

Next we prove that the bracket {-, -} is homotopic B(x * y) -(-1) m-1 (Bx * y + (-1) |x| x * By). For that we decompose B(x * y) in two pieces:

so that B = B 1 +B 2 . The homotopy between T (x, y) and B 1 (x, y)-(-1) m-1+|x| x * By is given by

where

The terms in D Hoch H -(1) m H(D Hoch ⊗ 1 + 1 ⊗ D Hoch ) corresponding to j = 0, j = i and i = q are respectively, T (x, y), (-1) m-1+|x| x * By and -B 1 (x, y). Similarly for (-1) m-1+|x||y| T (y, x) and B 2 (x • y) -(-1) m-1 Bx * y. Therefore we have proved that on HH * (A, A) the bracket {-, -} is the deviation of B from being a derivation for * .

Now proving the 7-term relation is equivalent to proving the Leibniz rule for the bracket and the product * , i.e. {x, y * z} = {x, y} * z + (-1) (m+|x|)|y| y * {x, z}.

It turns out that at the chain level T (x, (y * z)) = T (x, y) * z+(-1) (m+|x|)|y| y * T (x, z) and T ((y * z), x) is homotopic to (-1) |x|(|z|+m-1) T (y, x) * z + (-1) m(|x|-|y|)+|x| y * T (z, x) using the homotopy

Here z = c 0 [c 1 , . . . , c p ]. This proves that the Leibniz rule holds up to homotopy.

Appendix A. Ten commandments for signs

(1) Morphism: A k-linear map f of degree |f | between differential k-modules A and B is said to be a morphism of differential graded k-modules if (A.1)

(2) Tensor product of morphisms: We use the following sign rule for the tensor product of graded maps f ∈ Hom k (A ⊗p , M ) and g ∈ Hom k (A ⊗q , N )

So as a result the associativity condition µ(µ ⊗ 1) = µ(1 ⊗ µ) for a binary operator µ : A ⊗2 → A of degree m means that

(3) Tensor product of algebra:

If A and B are differential graded algebras then A ⊗ B is also a differential graded algebra whose product is defined by

An important case is when B = A op . The differential A ⊗ A op -modules are precisely differential A-bimodules.

(4) Differential of the dual: The dual k-module A ∨ = hom k (A, k) is negatively graded i.e. A ∨ -i = Hom k (A i , k) and equipped with the differential d ∨ which is defined by

and also of degree one. Our choice of sign makes the evaluation map ev : A ⊗ A ∨ → k a chain map of degree zero. We apply the same rule for a general A-bimodule M . That is M The commutativity condition for µ ′ is equivalent to µ = (-1) m µ • τ where t : A ⊗ A → A ⊗ A is given by τ (x ⊗ y) = (-1) |x||y| y ⊗ x.

Similarly the coassociativity rule for coprodcut δ of degree m is obtained by writing down the usual associative rules of the the degree zero coproduct δ ′ = (s -m ⊗ s -m )δs -1 -m , which translates to (δ ⊗ 1)δ = (-1) m (1 ⊗ δ)δ.