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ON THE HOCHSCHILD HOMOLOGY OF OPEN FROBENIUS

ALGEBRAS

HOSSEIN ABBASPOUR

Abstract. We prove that the Hochschild homology (and cohomology) of a
symmetric open Frobenius algebra A has a natural coBV and BV structure.
The underlying coalgebra and algebra structure may not be resp. counital
and unital. Moreover we prove that the product and coproduct satisfy the
Frobenius compatibility condition i.e. the coproduct on HH∗(A) is a map
of left and right HH∗(A)-modules. If A is commutative, we also introduced

a natural BV structure on the relative Hochschild homology H̃H∗(A) after
a shift in degree. We anticipate that the product of this BV structure to

be related to the Goresky-Hingston product on the cohomology of free loop
spaces.
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1. Introduction

There have been many attempts in finding an algebraic model for the string
topology operations introduced by Chas-Sullivan ([CS, CS04]) and Cohen-Godin
([CG04]). One approach is to use the Hochschild cohomology of (closed) Frobenius
algebras [CJ02, Mer04, Tra08, TZ06, Kau07, Kau08, Men09, WW]. In particular
Félix-Thomas [FT08] proved that over rationals and for any closed simply connected
manifold M the Chas-Sullivan BV-algebra H∗(LM) is isomorphic to HH∗(A,A∨)
where A is a finite dimensional model (i.e. Frobenius algebra) for the cochains
algebra M .

In [KS09] Kontsevich-Soibelman constructed an action of the chains of moduli
spaces of Riemann surfaces on the Hochschild complex of a Frobenius algebras. This
is a special of Constello’s theorem [Cos07] for Calabi-Yau categories and induces a
natural BV and coBV structure on the the Hochschild homology and the Frobenius
compatibility between the BV product and coBV coproduct.
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2 HOSSEIN ABBASPOUR

In this paper we assume that A is a symmetric open Frobenius algebra (unital)
therefore A is no endowed with a (homotopic) non-degenerate scaler product. In-
stead A is equipped with a compatible pair of product and coproduct. We prove
that the Hochschild homology HH∗(A,A) is a coBV (Section 3) and BV algebra
(Section 4). As a result, the Hochschild cohomology HH∗(A,A∨) is also BV and
coBV. Moreover, in Section 6 we prove that the product and coproduct satisfy the
Frobenius compatibility as well. Such a compatibility was expected in the light of
Cohen-Godin work for free loop spaces (of not necessarily closed manifolds).

It is worth mentioning that HH∗(A,A) is generally not a unital algebra (or
equivalently HH∗(A,A∨) is not counital), reflecting the fact (in the geometric side)
the free loop spaces are infinite dimensional manifolds thus their homology are not
conunital. Similarly HH∗(A,A) is not counital (or equivalently HH∗(A,A∨) is not
unital) because the underlying manifold of the cochain complex A may not be a
closed compact one. We reall that a unit for the Chas-Sullivan algebra on H ∗(LM)
exist if anf only if the underlying manifold is closed manifold in which case the cycle
consisting of constant loops is the unit.

We also identify a natural BV-product on the relative Hochschild homology after
a shift in degree. We believe that this product should be an algebraic model of the
Goresky-Hingston [GH09] product on the relative cohomology H∗(LM,M). As far
as we know this product was not known even for (closed) Frobenius algebras.

Our results can potentially be used to give an algebraic model for the string
topology of not necessarily closed manifolds. That would require generalizing our
results to an appropriate homotopic setting.

Convention: Here, for the sake of simplicity, we work over Z2. Readers interested
in sign discussion are referred to [WW, Tra08]. Throughout this paper k is a
commutative ring and A = k ⊕ Ā is an augmented unital differential associative
k-algebra with deg dA = +1, Ā = A/k i.e. Ā is the kernel of the augmentation
ǫ : A → k.

Acknowledgment: I am grateful to Nathalie Wahl for many helpful communi-
cations. I would like to thank Alexandre Quesney who read the first draft and
proposed one of the homotopies in Section 5.

2. Open Frobenius algebras and BV-Algebras

Definition 2.1. (DG open Frobenius algebra). A differential graded open Frobenius
k-algebra of degree m is a triple (A, ·, δ) such that:

(1) (A, ·) is a unital differential graded associative algebra whose product has
degree zero,

(2) (A, δ) is differential graded coassociative coalgebra whose coproduct has
degree m,

(3) δ : A → A ⊗ A is a right and left A-module map which using (simplified)
Sweedler’ notation reads

∑

(x.y)

(x.y)′ ⊗ (xy)′′ =
∑

(y)

x.y′ ⊗ y′′ =
∑

(x)

(−1)m|x|x′ ⊗ x′′.y

Here we have simplified Sweedler’s notation for the coproduct δx =
∑

i x
′
i ⊗ x′′

i , to
δx =

∑
(x) x

′ ⊗ x′′ where (x) should be thought of as the index set for i’s. We shall

say (A, ·, δ) is symmetric if
∑

(1) 1
′ ⊗ 1′′ =

∑
(1) 1

′′ ⊗ 1′.
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We recall that an ordinary (DG) Frobenius algebra, sometimes called closed
Frobenius (DG) algebra, is a unital associative differential graded algebra equipped
with a nondegenerate symmetric inner product 〈−,−〉 which is invariant i.e

〈xy, z〉 = 〈x, yz〉.

In particular the inner product allows us to identify A with its dual A∨ =
Homk(A,k) (as right and left A-modules) and defines a coproduct on A by

A ≃ A∨ dual of product
−→ (A⊗A)∨ ≃ A∨ ⊗A∨ ≃ A⊗A.

The coproduct is coassociative and satisfies condition (3) of the definition above,
in other words a closed Frobenius algebra is also an open Frobenius algebra. More-
over, η : A → k defined by η(x) = 〈x|1〉 is a counit (trace), that is

(2.1)
∑

(x)

η(x′)x′′ = x.

As a consequence we have the following identities

(2.2)
∑

(x)

η(x′y)x′′ =
∑

(x)

(−1)|x
′|mη(x′′y)x′ = xy.

Example: An important example of symmetric open Frobenius algebra is the
cohomology with compact support H∗

c (M) of an oriented n-dimensional manifold
M (not necessarily closed). Note that H∗

c (M) is naturally equipped with the usual
cup product and using the Poincaré duality (see [Hat02] Theorem 3.35),

H∗
c (M) ≃ H∗−n(M)

one can transfer the natural coproduct ∆ onH∗(M) toH∗
c (M). Then (H∗

c (M),∪,∆)
is a symmetric open Frobenius algebra whose differential is identically zero. The
Frobenius compatibility condition is satisfied because the Poincaré duality isomor-
phism above is a map ofH∗

c (M)-modules. Over rationals,H∗(M) ≃ Hom(H∗
c (M),Q)

thus H∗(M) is an open Frobenius algebra as well. Therefore lifting this open Frobe-
nius algebra structure to the cochain level and a modification of our work to a
homotopic setting, would provide a new algebraic model for the string topology
operation on H∗(LM). Some works in this direction have been done by Wilson
[Wil] and Chen [Che12].

If M is a closed then H∗(M) = H∗
c (M) is indeed a closed Frobenius manifold

since H∗(M) has a counit given by
∫
: H∗(M) → Z be evaluation on the fundamen-

tal class of M and the Poincaré duality is given by capping with the fundamental
class. The non-degenrate inner product is defined by 〈x, y〉 :=

∫
[M ] x ∪ y. Over

the rationals it is possible to lift this Frobenius algebra structure to the cochains
level. By a result of Lambrechts and Stanley [LS08], there is a connected finite
dimensional commutative DG algebra A which is quasi-isomorphic to C∗(M) the
cochains of a given n-dimensional manifold M and is equipped with a bimodule
isomorphism A → A∨ inducing the Poincaré duality H∗(M) → H∗−n(M).

Proposition 2.2. (1) A closed Frobenius algebra is finite dimensional and
symmetric.
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(2) An open Frobenius algebra with a counit is indeed a closed Frobenius algebra,
in particular it is finite dimensional.

(3) A symmetric and commutative open Frobenis algebra is cocommutative.

(4) For any z in a symmetric open Frobenius A,
∑

(z) z
′′z′ belongs to the center

of A.

Proof. 1) The finite dimensionality follows from the identity x =
∑

(1) 1
′〈x|1′′〉

where δ(1) =
∑

(1) 1
′ ⊗ 1′′. Being symmetric is a consequence of the inner product

being symmetric. We have

(2.3) 〈y, z〉 = 〈1, yz〉 =
∑

〈1′, y〉〈1′′, z〉,

left hand side being symmetric in terms of y and z implies that
∑

(1) 1
′ ⊗ 1′′ =∑

(1) 1
′′ ⊗ 1′.

2) The inner product can be defined using the counit by setting 〈x, y〉 = η(xy).
It is clearly invariant and the nondegeneracy follows from the identity (2.2) for
x = 1: If 〈y, z〉 = 0 for all z, then

y =
∑

(x)

(−1)|x
′|mη(1′′y)1′ = 0.

3)
∑

x′ ⊗ x′′ =
∑

x1′ ⊗ 1′′ =
∑

x1′′ ⊗ 1′ =
∑

1′′x⊗ 1′ =
∑

x′′ ⊗ x′.
4)

x
∑

(z)

z′′z′ =
∑

(z)

xz′′z′ =
∑

(1)

x1′′z1′ =
∑

(1)

x1′z1′′ =
∑

(x)

x′zx′′ =
∑

(1)

1′z1′′x

=
∑

(1)

1′′z1′x =
∑

(z)

z′′z′x.

�

Let us explain how the Frobenius algebras give rise to BV-algebra, but before we
recall the definition of the BV-algebras and the definition of Hochschild homology
and cohomology.

Definition 2.3. (Batalin-Vilkovisky algebra) A BV-algebra is a Gerstenhaber al-
gebra (V ∗, ·, [−,−]) with a degree one operator ∆ : V ∗ → V ∗+1 whose deviation
from being a derivation for the product · is the bracket [−,−], i.e.

[a, b] := (−1)|a|∆(ab)− (−1)|a|∆(a)b − a∆(b),

and ∆2 = 0.

There are very interesting examples using the differential forms of Riemannian
or symplectic manifolds, which are essentially due to Kozsul [Kos85]. The inspiring
example for us is the homology of the free loop space LM := C0(S1,M) of an ori-
ented manifold [CS] for which an algebraic model can be obtained using Hochschild
cohomology of cochains algebras of M [Jon87]. Let us recall the definition of the
Hochschild complex.

A differential graded (A, d)-module, or A-module for short, is a k-complex (M,d)
together with an (left) A-module structure · : A ×M → M such that dM (am) =
dA(a)m+ (−1)|a|adM (m). The multiplication map is of degree zro i.e. deg(am) =
deg a + degm. In particular, the identity above implies that the differential of M
has to be of degree 1.
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Similarly for a (M,dM ) a graded differential (A, d) − bimodule, we have

dM (amb) = dA(a)mb− (−1)|a|adM (m)b + (−1)|a|+|m|amdAb,

or equivalently, M is a (Ae := A⊗Aop, dA⊗1+1⊗dA) DG-module where Aop is the
algebra whose underlying graded vector space is A with the opposite multiplication

ofA, i.e. a
op
· b = (−1)|a|.|b|b·a. From now onMod(A) denotes the category of (left or

right) (differential) A-modules and Mod(Ae) denotes the category of differential A-
bimodules. All modules considered in this article are differential modules. We will
also drop the indices from the differential when there is no possibility of confusion.
The (normalized) Hochschild chain complex with coefficients in M is defined to be

(2.4) C∗(A,M) := M ⊗ T (sĀ)

and comes equipped with a degree +1 differential D = d0 + d1. We recall that
TV = ⊕n≥0V

⊗n denotes the tensor algebra of a k-module V .
The internal differential is given by

d0(m[a1, · · · , an]) =
n−1∑

i=1

(−1)ǫim[a1, · · · , dAai, . . . an]

− (−1)ǫndMm[a1, · · · , an],

(2.5)

and the external differential is

d1(m[a1, · · · , an]) = ma1[a2, · · · , an]+

n−1∑

i=1

(−1)ǫim[a1, · · ·aiai+1 · · · an]

− (−1)ǫnanm[a1, · · · , an−1],

(2.6)

with ǫi = |a1|+· · · |ai|−i. Note that the degree ofm[a1, · · · , an] is
∑n

i=1 |ai|−n+|m|.
When M = A, by definition (C∗(A), D = d0 + d1) := (C∗(A,A), D = d0 + d1) is

theHochschild chain complex of A andHH∗(A,A) := kerD/ imD is the Hochschild
cohomology of A.

Similarly we define the M -valued Hochschild cochain of A to be

C∗(A,M) := Homk(T (sĀ),M).

For a homogenous cochain complexf ∈ Cn(A,M), the degree |f | is defined to be
the degree of the linear map f : (sĀ)⊗n → M . In the case of Hochschild cochains,
the external differential of f ∈ Hom(sĀ⊗n,M) is

d1(f)(a1, · · · , an) = −(−1)(|a1|+1)|f |a1f(a2, · · · , an)+

−

n∑

i=2

(−1)ǫif(a1, · · · , ai−1ai, · · · an) + (−1)ǫnf(a1, · · · , an−1)an,

(2.7)

where ǫi = |f |+ |a1|+ · · ·+ |ai−1|− i+1. The internal differential of f ∈ C∗(A,M)
is

d0f(a1, · · · , an) = dMf(a1, · · · , an)−

n∑

i=1

(−1)ǫif(a1, · · · dAai · · · , an).(2.8)
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WhenM = A∨ the k-dual ofA, by definition (C∗(A), D = d0+d1) := (C∗(A,A
∨), D =

d0 + d1) is the Hochschild cochain complex of A and HH∗(A,A) := kerD/ imD is
the Hochschild cohomology of A. Note that C∗(A) is k-dual of C∗(A).

Gerstenhaber bracket and cup product: When M = A, for x ∈ Cm(A,A) and y ∈
Cn(A,A) one defines the cup product x ∪ y ∈ Cm+n(A,A) and the Gerstenhaber
bracket [x, y] ∈ Cm+n−1(A,A) by

(2.9)

(x ∪ y)(a1, · · · , am+n) := (−1)|y|(
∑

i≤m
|ai|+1)x(a1, · · · , am)y(an+1, · · · , am+n),

and

(2.10) [x, y] := x ◦ y − (−1)(|x|+1)(|y|+1)y ◦ x,

where

(x◦jy)(a1, · · · , am+n−1) = (−1)(|y|+1)
∑

i≤j
(|ai|+1)x(a1, · · · , aj, y(aj+1, · · · , aj+m), · · · ).

and

(2.11) x ◦ y =
∑

j

x ◦j y

Note that this is not an associative product. It turns out that the operations
∪ and [−,−] are chain maps, hence they define two well-defined operations on
HH∗(A,A). Moreover,

Theorem 2.4. (Gerstenhaber [Ger63]) Let A be a differential graded associative
algebra. (HH∗(A,A),∪, [−,−]) is a Gerstenhaber algebra that is:

(1) ∪ is an associative and graded commutative product,
(2) [x, y ∪ z] = [x, y] ∪ z + (−1)(|x|−1)|y|y ∪ [x, z] (Leibniz rule),
(3) [x, y] = (−1)(|x|−1)(|y|−1)[y, x],
(4) [[x, y], z] = [x, [y, z]]− (−1)(|x|−1)(|y|−1)[y, [x, z]] (Jacobi identity).

The homotopy for the commutativity of the cup product x ∪ y is given by x ◦ y.

The following theorem how a Frobenius algebra gives rise to a BV-algebra.

Theorem 2.5. (Tradler [Tra08]) The Hochschild cohomology HH∗(A,A) of a
Frobenius algebra A is naturally a BV-algebra whose underlying Gerstenhaber struc-
ture is the standard one [Ger63]. The BV-operator corresponds to Connes’ oper-
ator B∨ using the natural isomorphism HH∗(A,A∨) ≃ HH∗(A,A). Dually, the
Hochschild homology HH∗(A,A) is a coBV-algebra.

The main idea here is that we try to identify the (co)BV-structures directly on
HH∗(A,A) and it dual theory HH∗(A,A∨) rather than HH∗(A,A).

3. coBV structure on Hochschild homology

In this section we present a natural coBV-structure on the Hochschild homology
of a symmetric open Frobenius algebra. The natural candidate for the coBV op-
erator on HH∗(A,A) the Connes operator B, so we just need a coproduct on the
Hochshild chains C∗(A,A). This is given by
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(3.1) θ(a0[a1, · · · , an]) =
∑

(a0),0≤i≤n

+(a′0[a1, · · · , ai−1, ai])
⊗

(a′′0 [ai+1, · · · , an])

This gives rise to a product for Hochschild cochains as follows: For f, g ∈
C∗(A,A∨) = Hom(A⊗ T (sĀ),k) we set

(f ∗ g)(x) := µ(f ⊗ g)θ(x)

where µ : k⊗ k → k is the multiplication. More explicitly

(f ∗ g)(a0[a1, · · · , an]) =
∑

(a0),0≤i<n

+f(a′0[a1, · · · , ai−1, ai])g(a
′′
0 [ai+1, · · · , an]).

In the case of a closed Froebnius algbera this product corresponds to the standard
cup product on HH∗(A,A) using the isomorphism

HH∗(A,A) ≃ HH∗(A,A∨)

induced by the inner product on A. More explicitly we identify A with A∨ using the
map a 7→ (a∨(x) := 〈a, x〉). Therefore to a cochain f ∈ C∗(A,A), f : A⊗n → A,

corresponds a cochain f̃ ∈ C∗(A) = C∗(A,A∨) given by f̃ ∈ Hom(A⊗n, A∨) ≃
Hom(A⊗(n+1),k),

f̃(a0, a1, · · · an) := 〈f(a1, · · · an), a0〉.

The inverse of this isomorphism is given by

f(a1, · · · an) :=
∑

(1)

f̃(1′, a1, · · · an)1
′′.

For two cochain f : A⊗p → A and g : A⊗q → A in C∗(A,A) we have

f̃ ∪ g(a0, a1, · · · ap+q) = 〈(f ∪ g)(a1, · · · ap+q), a0〉 = 〈f(a1, · · · ap)g(ap+1, · · ·ap+q), a0〉

= 〈f(a1, · · · ap), g(ap+1, · · · ap+q)a0〉

=
∑

(a0)

〈f(a1, · · · ap), 〈g(ap+1, · · ·ap+q), a
′′
0 〉a

′
0〉

=
∑

(a0)

〈f(a1, · · · ap), 〈g(ap+1, · · ·ap+q), a
′′
0 〉a

′
0〉

=
∑

(a0)

〈f(a1, · · · ap), a
′
0〉〈g(ap+1, · · · ap+q), a

′′
0〉

= (f̃ ∗ g̃)(a0[a1, · · ·ap+q])

Theorem 3.1. For a symmetric open Frobenius algebra A, (HH∗(A,A), θ, B) is a
coBV-algebra. As a consequence (HH∗(A,A∨), θ∨, B∨) is a BV-algebra. In partic-
ular if A is closed Frobenius algebra, then using the natural isomorphism

(3.2) (CC∗(A,A∨), θ∨) ≃ (CC∗(A,A),∪),

(HH∗(A,A),∪) is naturally a BV-algebra whose BV-operator is image of the Connes
operators B under the isomorphism (3.2). This recovers Tradler’s [Tra08], Theorem
2.5 result for closed Frobenius algebras.
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Proof. To prove the theorem we show that (C∗(A,A), θ, B) is a homotopy coBV
coalgebra. It is a direct check that θ is co-associative. Just like the computation
above, we transfer the homotopy for commutative of the cup product a to C∗(A,A∨)
and then dualize it. It turns out that the obtained formula only depends on the
product and coproduct, so it makes also sense for open Frobenius algebras. The
homotopy for co-commutativity is given by

h(a0[a1, · · · , an]) :=
∑

(1),0≤i<j≤n+1

(a0[a1, · · · , ai, 1
′′, aj , · · ·an])

⊗
(1′[ai+1, · · · , aj−1]).

(3.3)

where for j = n+ 1 and i = 0 the correspondings terms are respectively

(a0[a1, · · · , ai, 1
′′])

⊗
(1′[ai+1, · · · , an]).

and

(a0[1
′′, aj , · · ·an])

⊗
(1′[a1, · · · , aj−1]).

It is a direct check that hd−(d⊗1+1⊗d)h= θ−τ ◦θ where τ : C∗(A)⊗C∗(A) →
C∗(A)⊗ C∗(A) is given by τ(α1 ⊗ α2) = +α2 ⊗ α1.

To prove that the 7-term (coBV) relation holds, we use the Chas-Sullivan [CS]
idea (see also [Tra08]) in the case of the free loop space adapted to the combinatorial
(simplicial) situation. First we identify the Gerstenhaber co-bracket explicitly. Let

S := h− τ ◦ h

Once proven S is, up to homotopy, the deviation of B from being a coderivation
for θ, the 7-term homotopy coBV relation is equivalent to the homotopy co-Leibniz
identity for S.

Co-Leibniz identity: The idea of the proof is identical to Lemma 4.6 [CS]. We prove
that up to some homotopy we have

(3.4) (θ ⊗ id)S = (id⊗ τ)(S ⊗ id)θ + (id⊗ S)θ

It is a direct check that

(id⊗ τ)(h⊗ id)θ + (id⊗ h)θ = (θ ⊗ id)h,

so to prove (3.4) we should prove that up to some homotopy

(3.5) (id⊗ τ)(τh ⊗ id)θ + (id⊗ τh)θ = (θ ⊗ id)τh.

The homotopy is given by H : C∗(A) → (C∗(A))⊗3

H(a0[a1, · · · , an]) =
∑

0≤l<i≤j<k

∑

(1),(1)

(1′′[al, · · · ai−1])
⊗

(1′′[aj , · · · ak−1])

⊗
a0[a1, . . . , al, 1

′, ai · · · aj−1, 1
′, ak, · · · , an].

Note that in the sum above the sequence ai · · · aj−1 can be empty. The identity

(d⊗id⊗id+id⊗d⊗id+id⊗id⊗d)H−Hd = (id⊗τ)(τh⊗id)θ+(id⊗τh)θ−(θ⊗id)τh

can be checked directly.
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Compatibility of B and S: The final step is to prove that S = θB+(B⊗id+id⊗B)θ
up to homotopy. To that end we prove that h is homotopic to (θB)2 − (B ⊗ id)θ
and similarly τh ≃ (θB)1 − (id⊗B)θ where θB = (θB)1 + (θB)2, with

(θB)1(a0[a1, · · · , an]) =
∑

0≤i≤j≤n

∑

(1)

(1′[ai, · · · , aj ])
⊗

(1′′[aj+1, · · · , an, a0 · · · , ai−1]).

and

(θB)2(a0[a1, · · · , an]) =
∑

0<j<i≤n

∑

(1)

(1′[ai, · · · , an, a0, a1 · · · , aj ])
⊗

(1′′[aj+1, · · · , ai−1]).

It can be easily checked that

H(a0[a1, · · · , an]) =
∑

0≤k<j≤i≤n

∑

(ai)

(1[ai, · · · an, a0, a1, · · · , ak, 1
′, aj , · · ·ai−1])

⊗
(1′′[ak+1, · · · , aj−1]),

is a homotopy between h and (θB)2 − (B⊗ id)θ. In the formulae describing H , the
sequence aj , · · · , ai−1 can be empty.

While computing dH we encounter, the terms corresponding to k = 0 is exactly

(B ⊗ 1)θ(a0[a1, · · · , an]) =
∑

(1[aj, · · · , ai, a
′
0, a1, · · · , aj−1])

⊗
(a′′0 [ai+1, · · · , an]).

Similarly one proves that τh ≃ (θB)1 − (id⊗B)θ. �

Remark 3.2. By Félix-Thomas [Fél] theorem, this cup product on HH∗(A,A∨)
provides an algebraic model for the Chas-Sullivan product on H∗(LM) the homol-
ogy of the free loop space of closed oriented manifold M . Here one must work
over a field of characteristic zero and for A one can take the closed (commutative)
Frobenius algebra provided by Lambreschts-Stanley result [LS08] on the existence
of an algebraic model with Poincaré duality for the cochains of a closed oriented
maniflold.

4. BV structure on Hochschild homology

Although there is no action of the chains of the moduli space of Riemann surfaces
on the Hochschild complex of an open Frobenius algebra, some parts of such action
in the case of (closed) Frobenius algebras can be formulated using the product
and coproduct of the underlying algebra (see also [WW]). Therefore one can write
downvarious operations in the Hochschild homology of an open Frobenius algebra,
but the desired identities have to be proved directly by giving explicitly the required
homotopies. Here is one example.

Theorem 4.1. For A a symmetric open Frobenius algebra, HH∗(A,A) can be
naturally equipped with a BV-structure whose BV-operator is Connes’ operator and
the product at the chain level is given by

(4.1) a0[a1, · · · , an] ◦ b0[b1, · · · , bm] =

{
0 if n > 0

a′′0a
′
0b0[b1, · · · bm]
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Proof. Using Proposition 2.2 (4), it is easily checked that ◦ is a chain map. The
product ◦ is strictly associative. We only have to check this for x = a[ ], y = b[ ]
and z = c[c1, · · · , cn]. We have

(x ◦ y) ◦ z =
∑

(a′′0a
′
0b0)

′′(a′′0a
′
0b0)

′c0[c1, · · · , cn] =
∑

b′′0a
′′
0a

′
0b

′
0c0[c1, · · · , cn]

which by Proposition 2.2 (4) is equal to
∑

a′′0a
′
0b

′′
0b

′
0c0[c1, · · · , cn] = x ◦ (y ◦ z).

Next we prove that the product is commutative up to homotopy. Indeed the ho-
motopy for x = a0[a1, · · · , am] and y = b0[b1, · · · , bn] is given by

(4.2) K(x, y) =





∑
(a) a

′
0b0[b1, · · · , bn, a

′′
0 ] if m = 0 & n ≥ 0∑

(a) b
′′
0 [b

′
0a0, a1, · · · , am, ] if m ≥ 0 & n = 0

0 otherwise

The proof of this fact relies on the following identities,
∑

a′0b0[b1, · · · , bna
′′
0 ] =

∑
a01

′b0[b1, · · · , bn1
′′] =

∑
a01

′′b0[b1, · · · , bn1
′]

=
∑

a0b
′′
nb0[b1, · · · , b

′
n] =

∑
a01

′′bnb0[b1, · · · , 1
′]

=
∑

a01
′bnb0[b1, · · · , 1

′′] =
∑

a′0bnb0[b1, · · · , a
′′
0 ].

(4.3)

In the particular case of x = a[ ] and y = b[ ] and for the external differential
we have

d1K(x, y) =
∑

(a′ba′′−a′′a′b) =
∑

a1′b1′′−x◦y =
∑

a1′′b1′−x◦y =
∑

ab′′b′−x◦y

which by Proposition 2.2 (4) is,
∑

b′′b′a− x y = y ◦ x− x ◦ y.

Since we have also d0K(x, y) = K(dx, y) +K(x, dy), therefore

dK(x, y) = K(dx, y) +K(x, dy) + y ◦ x− x ◦ y.

The Gerstenhaber bracket is naturally defined to be

(4.4) {x, y} := K(x, y)−K(y, x).

Next we prove that the identity

(4.5) {x, y} = ∆(x ◦ y) + ∆x ◦ y + x ◦∆y

holds up to homotopy. If n > 0 and m > 0 then all the involved are homotopically
zero and there is nothing to prove. We prove the claim for the case of m = 0 and
n > 0, the other case is similar. Since ∆x ◦ y and x ◦∆y are respectively zero and
homotopique to zero, we only have to show that ∆(x ◦ y) is homotopic to {x, y}.
We have

∆(x ◦ y) =
n∑

i=1

∑

(a)

1[bi, · · · , bn, a
′′
0a

′
0b0, b1, · · · bi−1] + 1[a′′0a

′
0b0, b1, · · · bn]

and

{x, y} =
∑

(a)

a′0b0[b1, · · · , bn, a
′′
0 ] +

∑

(a)

a′′0 [a
′
0b0, b1, · · · , bn, ].
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The desired homotopy is given by

H(x, y) :=
∑

i

∑

(a)

1[bi · · · , a
′′
0 , a

′
0b0, b1, · · · , bi−1].

Finally we prove the Leibniz identity

{x ◦ y, z} = x ◦ {y, z}+ {x, z} ◦ z

holds up to homotopy. Note that the {y, z} is either zero or it belongs to ⊕n>1A
⊗n

therefore the right hand side is always zero, so we need to prove that the left hand
side is always homotopic to zero which is clear if one of x or y belongs to ⊕n>1A

⊗n.
Using the identity (up to homotopy) (4.5) we know that {x ◦ y, z} is homotopic to
∆(x ◦ y ◦ z) which is homotopic to zero if z ∈ ⊕n>1A

⊗n. So we may assume that
x = a[ ] and y = b[ ] and z = c[ ], and we have

∆(x ◦ y ◦ z) = ∆((a′′ab)′′(a′′a′b)′c) = ∆(b′′a′′a′b′c).

Since a′′a′ is central, we get ∆(x ◦ y ◦ z) = 1[a′′a′b′′b′c] which is homotopic to zero.
The homotopy is given by H(a, b, c) = 1[a′′a′, b′′b′c] whose boundary is

a′′a′[b′′b′c] + 1[a′′a′b′′b′c] + b′′b′c[a′′a′].

In fact a′′a′[b′′b′c] = b′′b′c[a′′a′] (up to signs) because
∑

a′′a′[b′′b′c] =
∑

1′′a1′[1′′b1′c] =
∑

1′a1′[1′′b1′′c] =
∑

c′ab′[b′′c′′]

=
∑

c1′a1′[1′′b1′′] =
∑

c1′ab′[b′′1′′] =
∑

c1′ab1′[1′′1′′]

=
∑

c1′′ab1′[1′′1′] =
∑

ca′′b1′[1′′a′] =
∑

c1′′b1′[1′′a1′]

=
∑

cb′′b′[a′′a′] =
∑

b′′bc′[a′′a′]..

�

Corollary 4.2. For a cocommutative open Frobenius algebra the Gerstenhaber
bracket defined by (4.4) on HH∗(A,A) is identically zero. In particular for a
commutative symmetric open Frobenius algebra the Gerstenhaber bracket defined
by (4.4) vanishes.

Proof. We know that at the homology level {x, y} = ∆(x ◦ y). The latter is zero
unless x = a[ ] and y = b[ ] for some a and b in A, in which case

∆(x ◦ y) = 1[a′′a′b] = d(1[a′′, a′b]).

Note that the two terms a′′[a′b] and a′b[a′′] in d(1[a′′, a′b]) cancel each other since

a′b[a′′] = a′′b[a′] = (ab)′′[(ab)′] = (ab)′[(ab)′′] = a′[a′′b] = a′′[a′b].

�

5. Frobenius compatibilty of the product and coproduct

As we mentionned previously we are inspired by the algebraic structures of the
homology of free loop spaces. Cohen-Godin [CG04] result holds even for the mani-
folds which are not closed. The only difference with the closed case would be that
there won’t be a counit for the underlying algebra structure. The coalgebra struc-
ture generically has no counit, othewise the homology of the free loop space would
have the homotopy type of a finite dimensional manifold which is true for very
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special kind of aspherical manifolds. Therefore it is natural to expect a Frobenius
compatibility condintion (Definition 2.1, (3)) between the product and coproduct.

Theorem 5.1. Let A be a symmetric open Frobenius algebra. The product (4.1)
and coproduct (3.1) satisfy the Frobenius compatibility condition, Definition 2.1,
(3).

Proof. We only have to prove that θ is a map of left and right HH∗(A)-modules.
First we consider the right HH∗(A)-module structure. Let x = a0[a1, · · · , am] and
y = b0[b1, · · · , bn] ∈ C∗(A,A). If m ≥ 1, then θ(x ◦ y) = 0, and

θx · y = (
∑

(a0),1≤k≤m

a′0[a1, · · · , ak]⊗ a′′0 [ak+1, · · · am]) · y

= (
∑

(a0),1≤k≤m

a′0[a1, · · · , ak]⊗ (a′′0 [ak+1, · · ·am] ◦ y)

=
∑

(a0),(a′′
0
)

a′0[a1, · · · , am]⊗ (a′′0 )
′′(a′′0)

′b0[b1, · · · , bn]

=
∑

(a0),(1)

a′0[a1, · · · , am]⊗ 1′′a′′01
′b0[b1, · · · , bn].

(5.1)

So we have to prove the latter is homotopic to zero, in fact the homotopy is given
by

H(x, y) =
∑

(a0)

a′0[a1, · · · , am]⊗ a′′01
′b0[b1, · · · , bn, 1

′′]

=
∑

(1),(1)

1′[a1, · · · , am]⊗ 1′′a01
′b0[b1, · · · , bn, 1

′′]

=
∑

(1),(1)

1′′[a1, · · · , am]⊗ 1′a01
′b0[b1, · · · , bn, 1

′′].

(5.2)

If m = 0, then

θ(x ◦ y) = θ(
∑

(a0)

a′′0a
′
0b0[b1, · · · , bn])

=
∑

(a0),(a
′′
0
a′
0
b0)

0≤k≤n

(a′′0a
′
0b0)

′[b1, · · · , bk]⊗ (a′′0a
′
0b0)

′′[bk+1, · · · , bn]

=
∑

(a0),(1)
0≤k≤n

1′[b1, · · · , bk]⊗ 1′′a′′0a
′
0b0[bk+1, · · · , bn]

=
∑

(1),(1)
0≤k≤n

1′[b1, · · · , bk]⊗ 1′′1′′a01
′b0[bk+1, · · · , bn]

=
∑

(1),(1)
0≤k≤n

a01
′[b1, · · · , bk]⊗ 1′′1′′1′b0[bk+1, · · · , bn]

=
∑

(1),(1)
0≤k≤n

a0b01
′[b1, · · · , bk]⊗ 1′′1′1′′[bk+1, · · · , bn].

(5.3)
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On the other hand,

θ(x) ◦ y =
∑

(a0)

a′0[ ]⊗ (a′′0 [ ] ◦ y)

=
∑

(a0),(a′′
0
)

a′0[ ]⊗ (a′′0 )
′′(a′′0)

′b0[b1, · · · , bn]

=
∑

(a0),(1)

a′0[ ]⊗ 1′′a′′01
′b0[b1, · · · , bn]

=
∑

(1),(1)

a01
′[ ]⊗ 1′′1′′1′b0[b1, · · · , bn]

=
∑

(1),(1)

a0b01
′[ ]⊗ 1′′1′1′′[b1, · · · , bn].

(5.4)

So it remains to prove that

(5.5)
∑

(1),(1)
1≤k≤n

a0b01
′[b1, · · · , bk]⊗ 1′′1′1′′[bk+1, · · · , bn],

is homotopic to zero. Here is the desired homotopy:

K(x, y) :=
∑

(1),(1)
1≤k≤n

a0b01
′[b1, · · · , bk]⊗ 1′1′′[bk+1, . . . , bn, 1

′′]

+
∑

(1),(1)

a0b01
′[b1, · · · , bn, 1

′′]⊗ 1′1′′[ ],

(5.6)

if x = a[ ] and y = b0[b1 · · · , bm]; and K(x, y) := 0 if x = a0[a1, · · · , am] with
m > 0.

The left HH∗(A)-module structure is simpler to prove. The only non trivial case
is when m = 0, otherwise both x · θ(y) and θ(x ◦ y) are zero. For x = a0[ ] we have,

x · θ(y) =
∑

(b0)
0≤k≤n

(x ◦ b′0[b1, · · · , bk])⊗ b′′0 [bk+1, · · · , bn]

=
∑

(b0),(a0)
0≤k≤n

a′′0a
′
0b

′
0[b1, · · · , bk]⊗ b′′0 [bk+1, · · · , bn].

(5.7)

On the other hand,

θ(x ◦ y) = θ(
∑

(a0)

a′′0a
′
0b0[b1, · · · , bn])

=
∑

(a0),(a
′′
0
a′0b0)

0≤k≤n

(a′′0a
′
0b0)

′[b1, · · · , bk]⊗ (a′′0a
′
0b0)

′′[bk+1, · · · , bn]

=
∑

(a0),(b0)
0≤k≤n

a′′0a
′
0b

′
0[b1, · · · , bk]⊗ b′′0 [bk+1, · · · , bn].

(5.8)

�
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6. BV structure on the relative Hochschild homology of

commutative Frobenius algebras

In this section we exhibit a BV structure on the relative Hochschild homology
of a symmetric commutative open Frobenius algebra. In particular we introduce
a product on the shifted relative Hochschild homology of symmetric commutative
Frobenius algebras whose dual could be an algebraic model for Chas-Sullivan [CS04]
/ Goresky-Hingston [GH09] coproduct on H∗(LM,M). One should mention that

Chas-Sullivan worked with an equivariant version of this produc on HS1

∗ (LM,M)
which is a generalization of Turavev co-Lie bracket [Tur91].

For a commutative DG-algebra A the relative Hochschild chains are defined to
be

(6.1) C̃C∗(A) = ⊕n≥1A⊗ Ā⊗n.

equiped with the Hochschild differential. Since A is commutative, C̃C∗(A) is sta-
ble under the Hochschild differential and fits in the split short exact sequence of
complexes,

(6.2) 0 // (A, dA) // CC∗(A,A) // C̃C∗(A)

The homology of C̃C∗(A) is denoted H̃H∗(A) and is called the relative Hochschild
homology of A.

Theorem 6.1. The shifted relative Hochschild homology H̃H∗(A)[1−m] of a degree
m symmetric commutative open Frobenius algebra A is a BV algebra whose BV-
operator is the Connes operator and the product is given by

x · y =
∑

(a0b0)

+(a0b0)
′[a1, . . . , am, (a0b0)

′′, b1, . . . , bn]

=
∑

a0)

+a′0[a1, . . . , am, a′′0b0, b1, . . . , bn]

=
∑

b0

+a0b
′
0[a1, . . . , am, b′′0 , b1, . . . , bn]

(6.3)

for x = a0[a1, · · · , am] and y = b0[b1, · · · , bn] ∈ C̃C∗(A).

Proof. Note that the identities above hold because A is an open Frobenius algebra.
The product defined above is a chain map and strictly associative, but commutative
only up to homotopy, and the homotopy being given by

H1(x, y) =
∑

(a0b0)

+1[a1, · · · , an, (a0b0)
′, b1, · · · , bm, (a0b0)

′′]

+

n∑

i=1

∑

(a0b0)

+1[ai+1, · · · , an, (a0b0)
′, b1, · · · , bm, (a0b0)

′′, a1, · · · , ai].

(6.4)

To prove that the 7-term relation holds, we adapt once again Chas-Sullivan’s [CS]
idea to a simplicial situation. First we identify the Gerstenhaber bracket directly.
Let
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x ◦ y :=

m∑

i=0

∑

(a0)

b0[b1, · · · bi, a
′
0, a1, · · · an, a

′′
0 , bi+1, · · · bm],(6.5)

and then define {x, y} := x ◦ y + y ◦ x. Next we prove that the bracket {−,−} is
homotopic to the deviation of the BV-operator from being a derivation. For that
we decompose ∆(x ◦ y) in two pieces:

B1(x, y) :=
m∑

j=1

∑

(a0b0)

+1[bj+1, . . . bm, (a0b0)
′, a1, . . . , an, (a0b0)

′′, b1, . . . , bj ],

B2(x, y) :=
m∑

j=1

∑

(a0b0)

+1[aj+1, . . . an, (a0b0)
′, b1, . . . , bm, (a0b0)

′′, a1, . . . , aj ],

so that B = B1+B2. Then x◦y is homotopic B1(x, y)−x.By. In fact the homotopy
is given by

H2(x, y) =
∑

0≤j≤i≤m

∑

(a0)

1[bj+1, · · · , bi, (a0)
′, a1, · · ·an, (a0)

′′, bi+1, · · · , bm, b0, · · · bj ].

Similarly for y◦x and B2(x·y)−Bx·y. Therefore we have proved that onHH∗(A,A)
the following identity holds:

{x, y} = B(x · y)− Bx · y + x · By.

Now proving the 7-term relation is equivalent to prove the Leibniz rule for the
bracket and the product, i.e.

{x, y · z} = {x, y} · z + y · {x, z}.

It is a direct check that x ◦ (y · z) = (x ◦ y) · z + y · (x ◦ z). On the other hand
(y · z) ◦ x is homotopic to (y ◦ x) · z − y · (z ◦ x) using the homotopy

H3(x, y, z) =
∑

a0[a1, . . . , ai, b
′
0, b1, . . . , bn, b

′′
0 , ai+1 . . . , aj , c

′
0, c1, . . . , cm, c′′0 , aj+1, . . . , ap].

Here z = c0[c1, . . . , cp]. This proves that the Leibniz rule holds up to homotopy. �
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