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Harmonic oscillator with power-law increasing time-dependent effective mass∗

M. Vubangsi† and M. Tchoffo‡

University of Dschang
P.O. Box 96, Dschang - Cameroon

(Dated: September 9, 2013)

With the aid of the dynamical invariant method, we determine the exact eigenstates of of the
power-law increasing time-dependent effective mass harmonic oscillator. Dueling on the thermo-
dynamic properties of the system we have determined its time-dependent specific heat, energy
fluctuation and entropy. The effect on thermodynamic properties of considering a finite number of
quantum states involved with evaluating the time-dependent partition function is analyzed. The
measure of quantum decoherence and classical correlation is determined for the system.

PACS numbers: 03.65.-w, 03.65.Ge, 03.65.Fd

I. INTRODUCTION

The study of quantum systems with time dependent
mass has a wide range of applications in areas like
plasma physics, gravitaion and quantum optics. The
quantum mechanical time-dependent harmonic oscillator
has been solved under various circumstances such as
damping and a time-dependent mass or frequency or
both Ref. [1 and 2]. This problem has been worked out
in terms of time-dependent Green functions using a path
integral method Ref. [3]. Other techniques have also
been used such as the timespace rescaling or transforma-
tion method and the time-dependent invariant method.
Ref. [4].

Invariants in mechanical systems with explicitly
time-dependent Hamiltonians are constants of motion of
central importance in the study of dynamical systems
Ref. [5 and 6]. Among the procedures developed for
obtaining invariants, a straightforward derivation for
the classical time-dependent harmonic oscillator has
been presented which leads directly to the orthogonal
functions invariant, also called the Lewis invariant
Ref. [7 and 8].

Given a time-dependent Hamiltonian, one can ob-
tain the corresponding time-dependent Schrdinger
equation. However, there is no certainty as to whether
or not this Schrdinger equation represents quantum
mechanical dissipative system unless the measure of
quantum decoherence and classical correlation tells so.
Ref. [9 and 10].

It has been shown that the classical limit of the
specific heat of the one dimensional harmonic oscillator
is attained at moderate temperatures if a relatively small
number of quantum levels (n << 100) is considered

∗ This is the Caldirolla-Kanai model in which the exponential func-
tion is replaced by a power-law function.
† Also at Physics Department, University of Dschang.
‡ vmercel@gmail.com

Ref. [11]. Our interest is centered on analyzing the
dissipative properties and the effect of time-dependent
effective mass on the specific heat, energy fluctuation,
entropy and quantum coherence of the 1D harmonic
oscillator.

II. HAMILTONIAN, INVARIANT OPERATOR
AND WAVE FUNCTION

The power law suppressed harmonic oscillator Hamil-
tonian is given by;

Ĥ(t) = X(t)p̂2 + Y (t)x̂2 (1)

With

X(t) = (1 + st)−γ
1

2m
(2)

and

Y (t) = (1 + st)γ
mω2

2
(3)

It has the following classical equation of motion;

d2x(t)

dt2
+

γs

(1 + st)

dx(t)

dt
+ ω2x(t) = 0 (4)

We assume that the quantum theory of this system is
prescribed by the time-dependent Schrdinger equation;

i~
∂

∂t
ψ(x, t) = Ĥ(t)ψ(x, t) (5)

Lewis and Riesenfeld showed that the invariant operator
satisfying the quantum Liouville-Von Neumann equation;

i~
∂

∂t
Î(t) +

[
Î(t), Ĥ(t)

]
= 0 (6)

provides the exact quantum states of the Schrdinger
equation as its eigenstates up to time-dependent phase
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factors. Proceeding as in [9 and 10] we introduce a pair
of first order invariant operators

âu(t) =
i√
~

[
u∗(t)p̂− 1

X(t)
(
d

dt
u∗(t))x̂

]
(7)

And

â†(t)u = − i√
~

[
u(t)p̂− 1

X(t)
(
d

dt
u(t))x̂

]
(8)

We require these operators to obey the quantum
Liouville-Von Neumann equations;

i~
∂

∂t
âu(t) +

[
âu(t), Ĥ(t)

]
= 0 (9)

and

i~
∂

∂t
â†u(t) +

[
â†u(t), Ĥ(t)

]
= 0 (10)

Where u(t) is a complex solution to the classical equation

of motion eq. (4) The Invariant Î(t) is given by

Î(t) = ~Ω

[
â†u(t)âu(t) +

1

2

]
(11)

with

Ω =
X(t)

2r(t)2k2
(12)

Where k is a constant that normalizes the complex so-
lution u(t) to satisfy the Wronskian condition eq. (17)
and r(t) is the amplitude of the solution. The solution
to eq. (4) is found in the form of first and second kind
Bessel functions;

x(t) = C1t
1−γ
2 J γ−1

2
(tω) + C2t

1−γ
2 Y γ−1

2
(tω) (13)

By selecting the arbitrary constants C1 and C2 as 1
and i respectively, and using the substitutions f(t) =

t
1−γ
2 J γ−1

2
(tω) and g(t) = t

1−γ
2 Y γ−1

2
(tω), we express the

complex solution u(t) as;

u(t) = kr(t) exp(iθ(t)) (14)

Where;

θ(t) = arctan(
g(t)

f(t)
) (15)

And

r(t) =
[
f(t)2 + g(t)2

] 1
2 (16)

By normalizing the complex solution to satisfy the Wron-
skian condition;

Wr(u, u
∗) =

1

X

[
u(t)

d

dt
u∗(t)− u∗(t) d

dt
u(t)

]
= i (17)

We find the integral constant k;

k =
i

r(t)

√
X

2θ̇(t)
(18)

With eq. (17) satisfied, it turns out that the standard
commutation relation for the first order operators

[
âu(t), â†u(t)

]
= 1 (19)

Is guaranteed for all times. The number operator defined
as;

N̂(t) = â†u(t)âu(t) (20)

Also satisfies eq. (9) and eq. (10) and yields the number
state as an exact quantum state;

N̂(t)|n, t〉 = n|n, t〉 (21)

Operating eq. (7) to the ground eigenstate φ0(x, t) yields
the ground state wave function;

φ0(x, t) =

[
θ̇(t)

π~X

] 1
4

exp

[
− x2

4X(t)~

(
θ̇ + i

ṙ(t)

r(t)

)]
(22)

The nth eigenstate is obtained by acting the raising
operator eq. (8) n times to the ground state.

φn(x, t) =
1√
n!
â†u(t)φ0(x, t) (23)

We obatain;

φn(x, t) =
1√

2nn!

[
θ̇(t)

π~X(t)

] 1
4

Hn

( θ̇(t)

4X(t)~

) 1
2

x

 exp

[
− x2

4X(t)~

(
θ̇ + i

ṙ(t)

r(t)

)]
(24)

The eigen states of the invariant operator differ from the solution to the Schrodinger equation only by a time
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dependent phase factor eiη(t) such that the solution to
the Schrodinger equation is given by;

ψn(x, t) = φn(x, t)eiη(t) (25)

substituting eq.(25) into the Schrodinger equation, we
obtain;

d

dt
η(t) =

〈
n, t

∣∣∣∣i ∂∂t − 1

~
Ĥ(t)

∣∣∣∣n, t〉 (26)

From the real part, the time dependent phase factor is
obtained;

η(t) = −1

~

∫
En(t)dt (27)

Where En(t) is the expectation value of the hamiltonian
operator determinded later.

Using eq. (7,8 and 17), the position and momen-
tum operators are expressed respectively as;

x̂ =
√
~
[
â†u(t)u∗(t) + âu(t)u(t)

]
(28)

And

p̂ =

√
~

X(t)

[
â†u(t)u̇∗(t) + âu(t)u̇(t)

]
(29)

It follows that the average momentum and position of
the particle are both zero. The wave function has the
dispersion relations;

〈
x̂2
〉

= ~u∗(t)u(t)(2n+ 1) =
~X(t)

˙θ(t)
(n+

1

2
) (30)

And

〈
p̂2
〉

=
~
X2

u̇∗(t)u̇(t)(2n+ 1) =
~
X
θ̇(t)(n+

1

2
)

[
1 +

π2γ−2ṙ(t)2(st+ 1)γ

sθ̇(t)

]
(31)

From eq. (30 and 31). the uncertainty relation follows;

∆x∆p = ~
(
n+

1

2

)[
1 +

π2γ−2ṙ(t)2(st+ 1)γ

sθ̇(t)

] 1
2

(32)

It can be seen that;

∆x∆p ≥ ~
2

(33)

The expectation value for the mechanical energy of the
system is given by;

〈n, t |E|n, t〉 = X
〈
n, t
∣∣p2
∣∣n, t〉+ Y

〈
n, t
∣∣x2
∣∣n, t〉 (34)

We obtain

〈n, t |E|n, t〉 = ~ω(n+
1

2
)

[
π2γ−2ṙ(t)2(st+ 1)γ

ωs
+
θ̇(t)

ω
+

ω

4θ̇(t)

]
(35)

III. SPECIFIC HEAT

To determine the partition function, we re-write
eq. (35) as follows;

En = ~ω(n+
1

2
)ζ(t) (36)

Where

ζ(t) =

[
π2γ−2ṙ(t)2(st+ 1)γ

ωs
+
θ̇(t)

ω
+

ω

4θ̇(t)

]
(37)

The partition function is given by;

Z =

∞∑
n=0

exp

[
− En
KBT

]
=

∞∑
n=0

exp

[
−(n+

1

2
)ζ(t)y

]
(38)
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Where

y =
~ω
KBT

(39)

The sum to infinity of eq. (38) yields;

Z =
1

2
csc
[
ζ(t)

y

2

]
(40)

The specific heat at constant volume normalized to
the Boltzmann constant KB is related to the partition
function by;

Cv
KB

= y2 ∂
2 ln(Z)

∂y2
(41)

We find;

Cv
KB

=
ζ(t)2y2

4
csc2

[
ζ(t)

y

2

]
(42)

For a finite number of quantum states, we consider
the sum in eq.(38) to the first c quantum states. The
resulting normalized specific heat is eq.(43).

Cc
KB

=
y2ζ(t)2(

eyζ(t) − 1
)2 (

e(c+1)yζ(t) − 1
)2 (43)

×
[
(c+ 1)2

(
−e(c+1)yζ(t)

)
− (c+ 1)2e(c+3)yζ(t) + 2c(c+ 2)e(c+2)yζ(t) + e(2c+3)yζ(t) + eyζ(t)

]

Figure 1 shows a plot of Cc
KB

against KBT
~ω . We find

that at c = 120, the curve does not fully trace the path
of c = ∞. In contrast, it is reported for the case of
quantum harmonic oscillator of canstant mass Ref. [11]
that the c = 50 curve coincides with that of c = ∞.
Figure 2 shows a plot of Cc

KB
against t All three curves

in Figure 2 coincide. This is indicative of the fact that
the number of quantum states considered has no effect
on the time evolution of specific heat.

FIG. 1. Cc
KB

vs KBT
~ω at t = 5. We used γ = 2, s = ~ = m =

ω = 1

IV. ENERGY FLUCTUATION

The root mean square energy fluctuation of the system
f , defined as;

f =

√
〈E2〉 − 〈E〉2

〈E〉
(44)

measures the thermal stability of the system. f is related
to the specific heat by;

f =
KBT

√
Cv

〈E〉
(45)

FIG. 2. Cc
KB

vs t at KBT
~ω = 5. We used γ = 2, s = ~ = m =

ω = 1

.
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Substituting eq. (36), eq. (39) and eq. (42) into eq. (45)
yields;

f =
~ω
y

1

(n+ 1
2 )ζ(t)~ω

[
y2ζ(t)2

4 sinh2(ζ(t) r2 )

] 1
2

(46)

eq. (46) simplifies to;

f =
1

(n+ 1
2 )

[
1

exp(ζ(t)y) + exp(−ζ(t)y)− 2

]
(47)

Figure 3 shows a 3D surface plot of eq(47)

V. ENTROPY

The entropy normalized to Boltzmann constant is re-
lated to the partition function as follows;

S

KB
= ln(Z) + y

∂

∂y
ln(Z) (48)

Substituting eq. (40) in eq. (48), we have;

S

KB
= ζ(t)

y

2
coth(ζ(t)

y

2
)− ln

[
2 sinh(ζ(t)

y

2
)
]

(49)

The high temperature limit of eq. (49), corresponds to
y → 0, yields;

S

KB
→ 1− ln(ζ(t)y) = Sh (50)

The low temperature limit of eq. (49) corresponding to
y →∞, yields;

S

KB
→ ζ(t)y exp(ζ(t)y) = Sl (51)

Figure 4 shows a 3D surface plot of eq. (51)

FIG. 3. r.m.s energy fluctuation f against KBT
~ω and t, i.e.

eq. (47). Parameters used are s = 1, γ = 2, ~ = m = ω = 1

VI. DECOHERENCE

The probability density matrix ρn(x′, x, t) of the Gaus-
sian wave function eq. (24) is given by;

ρn(x′, x, t) = ψn(x′, t)ψ∗n(x, t) (52)

For the ground state n = 0, we obtain

ρ0(x′, x, t) = C exp

[
− b

2
(x′2 + x2)− id

2
(x′2 − x2)

]
(53)

Where

C =

√
θ̇(t)

π~X
, b =

θ̇(t)

~X
, d =

1

~X
ṙ(t)

r(t)
(54)

Using the substitution;

xc =
1√
2

(x′ + x) (55)

And

xδ =
1√
2

(x′ − x) (56)

Such that

xx′ =
1

2
(x2
c − x2

δ) (57)

eq. (53) is written in the form

ρ0(x′, x, t) = Ce−Γµxcxδ−Γcx
2
c−Γδx

2
δ (58)

With Γc, Γδ and Γµ given respectively as;

Γc =
b

2
, Γδ =

b

2
, Γµ = −id (59)

FIG. 4. Low temperature approximation of entropy Sl
KB

against KBT
~ω and t, i.e. eq(48). We have used s = 1, γ = 2,

~ = m = ω = 1



6

The coefficient of x2
δ gives the degree of quantum de-

coherence with the representation-independent measure
of quantum decoherence given by;

δQD =
1

2

√
Γc
Γδ

=
1

2
(60)

It is clear that the condition for quantum decoherence
δCC << 1 is not satisfied for this system. The measure
of classical correlation is given by;

δCC =

√
Γ2
cΓ

2
δ

Γ∗µΓµ
=

t−2α

π2~X
1

r(t)3ṙ(t)
(61)

The system shows classical correlation conditioned by
(δCC << 1) only for (γ < 0)

VII. CONCLUDING REMARKS

The following conclusions are drawn;

1) The specific heat initially increases rapidly to
its high temperature limit of 1 then remains constant.
When a finite number of quantum states is considered

at moderate temperature, the specific heat peaks, then
drops to a limiting value 6= 0

2) The classical limit of specific heat for this sys-
tem is attained for a larger number of quantum states
(n > 100) as opposed to (n << 100) for an oscillator of
constant mass.

3) The evolution of thermal capacity with time at
a given temperature is independent of the number of
quantum states considered. Fig. (2)

4) Thermal instability of the system increases with
temperature and with time but levels out at a maximum
after a period of time for a given temperature. Fig. (3)
shows that the system spends more time in the unstable
region at any given temperature

5) The entropy of the system increases to a maxi-
mum with time then decreases to a limiting value but
does not attain zero

6) The oscillator with time-dependent effective mass
as power-law function preserves quantum coherence,
however, classical correlation is satisfied only for (γ < 0)
which corresponds to decreasing mass or to an amplified
oscillator.

[1] M. Fern, M. Iztapalapa, and A. Postal, Revista Mexicana
de Fisica 53, 42 (2007).

[2] C. M. A. Dantas, I. A. Pedrosa, and B. Baseia, Brazilian
Journal of Physics. 22 (1992).

[3] S. Pepore, P. Winotai, T. Osotchan, and U. Robkob,
ScienceAsia 32, 173 (2006).

[4] J.-R. Choi, Pramana 61, 7 (2003); J.-r. Choi, ibid. 62,
13 (2004); 65, 165 (2005).

[5] R. Cordero-soto, E. Suazo, and S. K. Suslov, , 1 (2010),
arXiv:arXiv:0912.4900v9.

[6] R. S. Kaushal, International Journal Of Theoretical
Physics 37, 1793 (1998).

[7] H. Moya-Cessa and M. Fernandez-Guasti, Physics Let-
ters A 311, 1 (2003).

[8] H. Bo-wen, G. U. Zhi-yu, and Q. Shang-wu, Commun.
Theor. Phys. (Beijing, China) 39, 155 (2003).

[9] S. P. Kim, A. E. Santana, and F. C. Khanna, , 9 (2002),
arXiv:0202089 [quant-ph].

[10] S. P. Kim and D. N. Page, , 5 (2002), arXiv:0205006
[quant-ph].

[11] S. H. Aly, Egypt. J. Sol. 23, 217 (2000).
[12] M. Fern, J. Phys. A: Math. Gen 36, 2069 (2003).
[13] G. T. F. Kyu Hwang Yeon and C. I. Um, Office Of Naval

Research (1991).
[14] C.-i. Um, K.-h. Yeon, and T. F. George, Physics Reports

362, 63 (2002).
[15] C. I. Um, I. H. Kim, and S. K. Hong, 30, 1 (1997).


