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Abstract: In this paper we study the interaction between natural convection and heat explosion

in porous media. The model consists of the heat equation with a nonlinear source term describing

heat production due to an exothermic chemical reaction coupled with the Darcy law. Stationary

and oscillating convection regimes and oscillating heat explosion are observed. The models with

quasi-stationary and unstationary Darcy equation are compared.

Keywords: heat explosion, natural convection, porous medium, numerical simulations

1 Introduction

The theory of heat explosion began from the classical works by Semenov [1] and Frank-Kame-

netskii [2]. In Semenov’s theory, the temperature distribution in the vessel is supposed to be

uniform. An average temperature in the vessel is described by the ordinary differential equation

dθ

dt
= eθ − λθ. (1.1)

The first term in the right-hand side corresponds to heat production due to an exothermic chemical

reaction, the second term to heat loss through the boundary of the vessel. In Frank-Kamenetskii’s

theory, spatial temperature distribution is taken into account. The model consists of the reaction-

diffusion equation,

dθ

dt
= ∆θ + FKe

θ, (1.2)

where the first term in the right-hand side describes heat diffusion, FK is called the Frank-Kame-

netskii parameter. This equation is considered in a bounded domain with the zero boundary con-

dition for the dimensionless temperature.

In both models, heat explosion was treated as an unbounded growth of temperature (blow-up

solution). Thus, the problem of heat explosion was reduced to investigation of existence, stability

1Corresponding author. E-mail: allali@fstm.ac.ma

1



and bifurcations of stationary solutions of differential equations. These questions initiated a big

body of physical and mathematical literature (see [3] and the references therein).

The effect of natural convection on heat explosion was first studied in [4, 5]. It was shown that

the critical value of the Frank-Kamenetskii parameter increases with the Rayleigh number and ex-

plosion can be prevented by vigorous convection. These works were continued by [6, 7, 8, 9] where

new stationary and oscillating regimes were found. The authors showed how complex regimes ap-

peared through successive bifurcations leading from a stable stationary temperature distribution

without convection to a stationary symmetric convective solution, stationary asymmetric convec-

tion, periodic in time oscillations, and finally aperiodic oscillations. Oscillating heat explosion,

where the temperature grows and oscillates, was discovered. The effects of natural convection and

consumption of reactants on heat explosion in a closed spherical vessel were studied in [10]. The

influence of stirring on the limit of thermal explosion was investigated in [11]. Heat explosion with

convection in a horizontal cylinder was considered in [12].

All these works study heat explosion in a gaseous or liquid medium with its motion described

by the Navier-Stokes equations under the Boussinesq approximation. Thermal ignition in a porous

medium is investigated in [13]. The Darcy law in a quasi-stationary form under the Boussinesq

approximation is used to describe fluid motion. It is shown that convection decreases the maximal

temperature and increases the critical value of the Frank-Kamenetskii parameter. The interaction

of free convection and exothermic chemical is studied in [14]. The authors consider zero-order

exothermic reaction in a rectangular domain and find the onset of convection by an approximate

analytical method. Similar problem with depletion of reactants is investigated in [16]. Ignition

time of heat explosion in a porous medium with convection is found in [15]. Heat explosion in

one-dimensional flow in a porous medium is studied in [17].

In this work we continue to study interaction of natural convection with thermal explosion in

porous media. The reaction-diffusion equation for the temperature distribution will be coupled

with Darcy’s law describing fluid motion in porous media. Along with stationary regimes with and

without convection, we will show the existence of oscillating convective regimes and oscillating

heat explosion, which were not yet observed for this problem. We will also compare two models,

with quasi-stationary approximation and complete Darcy equation.

The paper is organized as follows. The first problem with a quasi-stationary Darcy equation

is formulated in Section 2, followed in Section 3 by numerical simulations. Section 4 is devoted

to the second model with the complete Darcy equation. Short conclusions are given in the last

section.

2 Governing equations

We consider the first order reaction,

A
K(T )
−→ B, (2.1)

and the temperature dependence of the reaction rate K(T ) given by the Arrhenius law:
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K(T ) = k0exp

(

−
E

RT

)

, (2.2)

where E is the activation energy, T the temperature, R the universal gas constant and k0 the pre-

exponential factor. The model consists of the reaction-diffusion equation with convective terms

and of Darcy’s law in the quasi-stationary approximation for an incompressible fluid:

∂T

∂t
+ v.∇T = κ∆T + qK(T ) (2.3)

v +
K

µ
∇p =

gβK

µ
ρ(T − T0)γ (2.4)

∇.v = 0. (2.5)

Here v denotes the fluid velocity field, p is the pressure, κ the coefficient of thermal diffusivity, µ
the kinematic viscosity, ρ the density, q the heat release, g is the acceleration due to gravity, γ a unit

vector in the vertical direction, T0 the characteristic value of the temperature, K the permeability.

Depletion of reactants in the heat balance equation is neglected. It is a conventional assumption

in the theory of heat explosion. This system is considered in a 2D square domain, 0 ≤ x ≤ 2ℓ,
0 ≤ y ≤ 2ℓ. The boundary conditions will be specified below.

Equations of motion (2.4), (2.5) are written under the Boussinesq approximation and quasi-

stationary approximation. The former signifies that the density of the fluid is everywhere constant

except for the buoyancy term (right-hand side in (2.4)). Quasi-stationary approximation in the

Darcy law, though often used for fluids in porous medium, should be verified for the problem of

heat explosion. We return to this question in Section 4.

In order to write the dimensionless model, we introduce new spatial variables x′ = x/ℓ, y′ =

y/ℓ, time t′ =
κ

ℓ2
t, velocity

ℓ

κ
v and pressure

K

µκ
p. Denoting θ =

E(T − T0)

RT 2
0

and keeping for

convenience the same notation for the other variables, we obtain:

∂θ

∂t
+ u

∂θ

∂x
+ v

∂θ

∂y
=
∂2θ

∂x2
+
∂2θ

∂y2
+ FKe

θ (2.6)

u+
∂p

∂x
= 0 (2.7)

v +
∂p

∂y
= Rpθ (2.8)

∂u

∂x
+
∂v

∂y
= 0. (2.9)

Here FK =
Eqk0αe

−
E

RT0 ℓ2

RT 2
0 κ

is the Frank-Kemenetskii parameter, Rp =
KρRa

ℓ2
, Ra =

gβRT 2
0 ℓ

3

Eκµ
is the Rayleigh number, (u, v) is the velocity vector. Under the assumptions of large activation
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energy, RT0/E << 1, we can perform the Frank-Kamenetskii transform, so that the nonlinear

reaction rate in the equation (2.6) is taken to be FKexp(θ) [2, 3].

Let us note that the characteristic thermal diffusion time scale, κ/l2, which enters the dimen-

sionless variables, is related to the rate of heat loss through the boundary. Competition of heat

loss with heat production due to chemical reaction determines conditions of heat explosion. The

presence of convection, which intensifies heat loss, provides an additional factor that can influence

heat explosion.

The system of equations (2.6)-(2.9) is supplemented by the boundary conditions:

x = 0, 2 :
∂θ

∂x
= u = 0, (2.10)

y = 0, 2 : θ = v = 0. (2.11)

3 Numerical simulations

3.1 Numerical method

To describe the numerical method, we first introduce the stream function ψ using incompressibility

of the fluid:

(

u
v

)

=







∂ψ

∂y

−
∂ψ

∂x






. (3.1)

We apply the rotational operator to equations (2.7)-(2.8) in order to eliminate the pressure. The

equation for the stream function writes

−∆Ψ = Rp∂xθ. (3.2)

From the boundary conditions for the velocity we obtain the boundary conditions for the stream

function:

x, y = 0, 2 : Ψ = 0.

This problem is solved by the fast Fourier transform taking into account the Dirichlet boundary

conditions. Equation (3.2) is coupled to equation (2.6). The latter is solved using an implicit finite

difference scheme and alternative direction method. It is a simple and robust method often used

for reaction-diffusion problems.

3.2 Results

If the fluid velocity in the porous medium is zero, u = v = 0, then system of equations (2.6)-(2.9)

is reduced to the single reaction-diffusion equation (1.2). If the Frank-Kamenetskii parameter is
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Figure 1: Numerical simulations reveal four different regions in the parameter plane (Rp, FK). In

the lower region, there are stationary regimes without convection. In the upper region, they do

not exist and solution blows up. In the intermediate region from the right, the solution remains

bounded (no explosion). It can be stationary or oscillating with convection.
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Figure 2: Stationary convective regimes. Level lines of the stream function for FK = 1, Rp = 100
(left), for FK = 1, Rp = 1000 (middle) and for FK = 3.2, Rp = 1000 (right).

less than the critical value FK = 1, then there are two stationary solutions which depends only

on the vertical variable. If FK > 1, then stationary solutions do not exist, and the solution of the

evolution problem grows to infinity. This case corresponds to heat explosion.

Convection can change conditions of heat explosion. Figure 1 shows four domains in the plane

of parameters (FK , Rp): stationary regimes without convection, bounded (stationary or oscillating)

solutions with convection, blow-up solutions (explosion).

If the Rayleigh number is sufficiently small, then there is no convection and the critical value

of the Frank-Kamenetskii parameter is independent of Rp. If we fix FK and increase Rp, then

the stationary solution without convection loses its stability resulting in appearance of stationary

convective regimes.

We note that convection increases heat exchange through the boundary. Therefore, the critical

value of FK , for which explosion occurs, grows when Rp increases. If FK is sufficiently large, the

temperature becomes unbounded, which corresponds to heat explosion. Qualitatively this diagram
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Figure 3: Stationary and Oscillating convective regimes. Level lines of the stream function for

Rp = 3500 and for FK = 0.2 (left), FK = 1 (middle) and for FK = 3.75 (right).
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Figure 4: Oscillating convective regimes. Maximum of the stream function as a function of time

for Rp = 4× 103 and for different values of FK , (a)FK = 2.2, (b)FK = 3.7.

is similar to the case of heat explosion with convection in fluids [5, 8].

Figure 2 shows level lines of the stream function for different values of parameters in the case of

stationary convection. The maximum of the stream function grows significantly with the increase

of the Rayleigh number. It is about 2× 10−3 for Rp = 100 and about 4.5 for Rp = 1000. Besides,

in the second case the vortices are located closer to the upper boundary (Figure 2, left and middle).

For higher values of FK (Figure 2, right), the maximal temperature increases, convection becomes

more vigourous and there are additional four vortices located below the two main ones.

Convective patterns depend on the values of parameters. Figures 3 show level lines of the

stream function for different values of Rp and FK . If we put Rp = 3500 and chose small Frank-

Kamenetskii parameter, then we first observe two vortex regimes similar to those shown in Figure

2. The center of the two vortex move to the corners by increasing the Frank-Kamenetskii parameter

(the two first cases correspond to the stationary convective regime). For larger values ofFK = 3.75,

more vortices appear. They compress each other and pack vertically. This case correspond to the

oscillatory convective regime.

Figure 4 shows the maximum of the stream function as a function of time for Rp = 4 × 103

and for different values of the Frank-Kamenetskii parameter. For Fk > 2, instead of a stationary

solution, we observe periodic oscillations. Figure 5 shows the mean value of the temperature as

a function of the mean value of the stream function. The solution forms closed curves which

correspond to periodic oscillations. The structure of these curves changes with the increase of FK .
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Figure 5: Oscillating convective regimes. Mean of temperature as function of the mean value of

the stream function for Rp = 4 × 103 and for different values of FK , (a)FK = 2, (b)FK = 2.2,

(c)FK = 3.5, (d)FK = 3.7.

For small values, it is a simple ∞-shape curve. For large values, it becomes double ∞-shape. The

transition from one to the other shown in Figure 5 b), c) where additional loops appear at upper

corners. More complex structure of these curves for large FK canbe related to more complex

convective regimes with more vortices.

If we increase the Frank-Kamenetskii parameter even more and cross the boundary separat-

ing convection and explosion domains in Figure 1, the maximum of the temperature and of the

stream function oscillate during some time and then begin unlimited growth (Figure 6). It is os-

cillating heat explosion similar to that found before in the case where fluid motion was described

by the Navier-Stokes equations [8]. Thus, along with usual heat explosion where temperature

monotonically increases, there exists oscillating heat explosion where temperature oscillates be-

fore explosion. This effect is due to the interaction of heat release and natural convection.

4 The model with non-stationary Darcy equation

4.1 The new model setting

In this section, we will consider the following model:
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Figure 6: Maximum of the stream function (left) and of the temperature (right) as functions of time

for Rp = 4× 103 and for FK = 3.757.

∂T

∂t
+ v.∇T = κ∆T + qK(T )φ(α), (4.1)

∂v

∂t
+
µ

K
v +∇p = gβρ(T − T0)γ, (4.2)

∇.v = 0. (4.3)

The difference in comparison with the model studied above is that we do not consider here the

quasi-stationary approximation for Darcy’s law. Introducing vorticity

ω = curl v, (4.4)

multiplying the equation (4.2) by
K

µ
and following the same steps as in Sections 2 and 3, we obtain

the system of equations:

∂θ

∂t
+
∂ψ

∂y

∂θ

∂x
−
∂ψ

∂x

∂θ

∂y
=
∂2θ

∂x2
+
∂2θ

∂y2
+ FKe

θ, (4.5)

σ
∂ω

∂t
+ ω = Rp

∂θ

∂x
, (4.6)

ω = −∆ψ, (4.7)

where the parameter σ =
1

Va
stands for the inverse of Vadasz number, Va = Pr/Da, Pr =

µ

κ
is the

Prandtl number and Da =
K

ℓ2
is the Darcy number.
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Figure 7: Mean of temperature as function of mean of stream function for Rp = 4 × 103 and

for different values of σ. Solution of the complete Darcy’s law converges to the solution under

quasi-stationary approximation as σ decreases.

4.2 Numerical method and results

As before, we use the alternative direction finite difference method to solve equation (4.5) and the

fast Fourier transform to solve equation (4.7). Equation (4.6) is solved by an explicit Euler method.

Figure 7 shows the mean value of the temperature as a function of the mean value of the stream

function for Rp = 4 × 103 and for different values of σ. When using the first model (Section 4),

we obtain a small "butterfly" in the bottom of the box (cf. Figure 5 (a)). This model is a particular

case of the model introduced in Section 4.1 if we formally put σ = 0. Numerical results in Figure

7 show the convergence of solutions of system (4.5)-(4.7) to the solution of system (2.6)-(2.9) as

σ → 0.

5 Discussion

In this work, we study the influence of convection on thermal explosion in a porous medium. We

begin with the model where a nonlinear reaction-diffusion equation is coupled to Darcy’s law writ-

ten under the quasi-stationary approximation. Stationary and oscillating convective regimes are

observed. Conditions of explosion are determined and oscillating heat explosion is found. We

next consider the complete equations of motion without quasi-stationary approximation. Numer-

ical simulations show the convergence of the solution to the solution under the quasi-stationary

approximation as the Vadasz number increases.

Let us note that stationary convective regimes in the problem of heat explosion in a porous

medium were already observed in literature [13], [14]. We show in this work that the structure
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of convective solutions depend on the intensity of heat release. When the Frank-Kamenetskii

parameter increases, a second range of vortices appears in the lower part of the domain.

It is interesting that interaction of heat release with convection can result in oscillating convec-

tive regimes. Some indication to this was done in [14] where linear stability analysis showed that

Hopf bifurcation could occur. The authors interpreted it as a possible transition to heat explosion

and not to oscillating convective regimes. On the other hand, we have also found oscillating heat

explosion where the temperature oscillates before it starts unlimited growth. Such regimes can be

observed if we increase FK starting from periodically oscillating convective solutions.

Finally, we analyzed applicability of quasi-stationary Darcy law used in all previous works

devoted to heat explosion in a porous medium. It appears that it is a good approximation for

large values of the Vadasz number. However, it may not be valid for certain parameter ranges. In

particular, we can expect that in some cases the quasi-stationary approximation modifies conditions

of heat explosion and ignition time.
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