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NONLINEAR DIFFUSION: GEODESIC CONVEXITY IS EQUIVALENT

TO WASSERSTEIN CONTRACTION

FRANÇOIS BOLLEY AND JOSÉ A. CARRILLO

Abstract. It is well known that nonlinear diffusion equations can be interpreted as a gra-
dient flow in the space of probability measures equipped with the Euclidean Wasserstein
distance. Under suitable convexity conditions on the nonlinearity, due to R. J. McCann [10],
the associated entropy is geodesically convex, which implies a contraction type property
between all solutions with respect to this distance. In this note, we give a simple straight-
forward proof of the equivalence between this contraction type property and this convexity
condition, without even resorting to the entropy and the gradient flow structure.

We consider the nonlinear diffusion equation

∂ut
∂t

= ∆f(ut), t > 0, x ∈ R
d (1)

where f(r) is an increasing continuous function on r ∈ [0,+∞) and C2 smooth for r > 0
such that f(0) = 0. The well-posedness theory in L1(Rd) for this equation is a classical
matter in the nonlinear parabolic PDEs theory developed in the last 40 years, see [14] and
the references therein. Following [14, Chap. 9], by a solution we mean a map u = (ut)t≥0 ∈
C([0,∞), L1(Rd)), with ut ≥ 0 and mass

∫

ut(x)dx =M for all t, such that

i) for all T > 0, the function ∇(f ◦ ut) ∈ L2((0, T ) × R
d),

ii) u weakly satisfies equation (1), i.e., it satisfies the identity
∫ ∞

0

∫

Rd

{

∇(f ◦ ut) · χ− ut
∂χ

∂t

}

dx dt =

∫

Rd

u0(x)χ(0, x) dx ,

for all compactly supported functions χ ∈ C1([0,∞) × R
d)).

For all nonnegative u0 ∈ L1(Rd) ∩ L∞(Rd) with
∫

u0(x)dx = M , there exists a unique such
solution to (1) with initial datum u0, see [14, Sect. 9.8]. Let us normalize the mass M to
unity in the rest of the introduction for convenience.

Equation (1) admits the map

U(u) =

∫

Rd

U(u(x)) dx

as a Liapunov functional. Here the map U ∈ C([0,+∞))∩C3((0,+∞)) is defined in a unique
way by the relations f(r) = rU ′(r)−U(r) on (0,+∞) and U(0) = U ′(1) = 0. The map f being
increasing is equivalent to U being strictly convex, since f ′(r) = rU ′′(r), and f being positive
on (0,+∞) is equivalent to ψ : r 7→ rdU(r−d) being decreasing, since ψ′(r) = −drd−1f(r−d).
The map U can be extended to the set P2(R

d) of Borel probability measures on R
d with

finite second moment, by setting +∞ for non absolutely continuous measures with respect
to Lebesgue measure. The seminal work of R. J. McCann [10] shows that U is (geodesically)
displacement convex on the space (P2(R

d),W2) if and only if ψ is moreover convex on (0,+∞),
1



2 FRANÇOIS BOLLEY AND JOSÉ A. CARRILLO

that is, if and only if
(d− 1)f(r) ≤ d r f ′(r), r > 0, (2)

or equivalently,

r 7→ r−1+1/d f(r) is nondecreasing on (0,+∞) . (3)

We also refer to [1, Chap. 9], [7, p. 26], [12, Th. 1.3] or [15, Chap. 17] for this classical
notion. In particular, for the porous medium and fast diffusion equations when f(r) = rm,
the condition (3) writes m ≥ 1 − 1/d, which is now classical. Here, W2 is the Wasserstein
distance defined for µ, ν in P2(R

d) by

W2(µ, ν)
2 = inf

π

∫∫

R2d

|y − x|2 dπ(x, y)

where π runs over the set of measures on R
2d with marginals µ and ν, see [1, 15].

F. Otto [11] has interpreted (1) as the gradient flow of U in (P2(R
d),W2) and, for an f

satisfying (3), deduced the contraction type property

W2(ut, vt) ≤W2(u0, v0), t ≥ 0 , (4)

for positive smooth solutions of the Neumann problem for (1) on a smooth open bounded set
of Rd, see [11, Eq. (133) and Prop. 1]. This point of view has been extended by L. Ambrosio,
N. Gigli and G. Savaré [1], through the deep and very general theory of gradient flows of
geodesically convex functionals in metric spaces: in particular, for any u0 in P2(R

d) there
exists a unique so-called gradient flow solution (Stu0)t≥0 to (1)-(3); these solutions satisfy (4),
a consequence of the displacement convexity of U and the key Evolution Variational Inequality.
Moreover, Stu0 = ut if u0 ∈ P2(R

d) ∩ L∞(Rd) due to the uniqueness of the Cauchy problem
for weak solutions in [14, Chap. 9] and gradient flows in [2, Sect. 6.4].

K.-T. Sturm and M. von Renesse [13] have further proved that for the heat equation on
a Riemannian manifold, the geodesic convexity of the entropy is equivalent to (4), and to
the Ricci curvature being nonnegative. The equivalence of geodesic convexity of the internal
energy to curvature-dimension conditions was extended in [12] to nonlinear diffusions. As
shown in [12], they imply the contraction property (4) for nonlinear diffusions. In this work,
we give the proof of the reverse implication, contraction (4) for nonlinear diffusions implies (3),
for the first time to our knowledge.

Let us finally remark that the above normalization of the mass is for convenience. Actually,
the contraction property (4) holds for all weak solutions with nonnegative initial data in
L1 ∩ L∞(Rd) with finite second moment and equal initial mass. For this purpose in the rest
we extend the W2 distance to nonnegative finite measures with equal mass.

In this note, we give a simple straightforward proof of the contraction property (4) for
such f , resorting neither to the gradient flow structure, nor even to the functional U , as in
[1] or [11]. We first give the equivalence between condition (3) on the nonlinearity and the
Wasserstein contraction type property (4) for positive smooth solutions on the ball BR =
{x ∈ R

d, |x| < R} :

Theorem 1. Let f be an increasing continuous map on [0,+∞), which is C2 on (0,+∞) and
satisfies f(0) = 0 and let R > 0 be fixed. Then McCann’s displacement convexity condition

(3) holds if and only if (4) holds for all solutions u and v to the Neumann problem

∂ut
∂t

= ∆f(ut), t > 0, x ∈ BR,
∂ut
∂η

= 0, t > 0, |x| = R (5)

with C2 positive initial data u0 and v0 on {|x| ≤ R} respectively, with equal mass.
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Here, ∂ut

∂η denotes the normal derivative of ut on the sphere |x| = R. We notice that

the well-posedness theory for the Neumann problem for nonlinear diffusions is a classical
question, see [14, Chap. 11]. Moreover, the solutions corresponding to positive initial data
remain positive and bounded below for all times by a straightforward use of the maximum
principle [14, Th. 11.2], and thus the solutions we deal with in Theorem 1 are classical and
C∞ smooth for all times.

As a direct consequence of the approximation procedures developed in [11, Sect. 5.5] and
[7, Rem. 18, Prop. 13], one can derive the W2 contraction property (4) for solutions of the
Cauchy problem:

Corollary 2. Let f be as in Theorem 1 and satisfy McCann’s displacement convexity condi-

tion (3). Then the contraction property (4) holds for all solutions u and v to (1) with initial

data u0 and v0 in P2(R
d) ∩ L∞(Rd) respectively.

Of course, proving equivalence directly with the contraction property for gradient flows
in R

d would be more natural. The arguments below formally work on R
d, however, we lack

enough regularity of the solutions to turn them rigorous. The rest of this paper is devoted to
the proof of the main result in Theorem 1.

Proof of Theorem 1.

We first prove the sufficient part by adapting the strategy of [3]. Let u0, v0 be two C2

positive initial data on B̄R = {|x| ≤ R} with equal mass. Then so are the solutions u
and v of (5) at all times, by the comparison principle [14, Th. 11.2]. For all t ≥ 0, we let
ξt[u] = −∇(f ◦ut)/ut be the velocity field leading the evolution of u, written as the continuity
equation

∂ut
∂t

+∇ · (ut ξt[u]) = 0, t > 0, x ∈ BR.

We also let ϕt be a convex map on B̄R given by the Brenier Theorem such that ∇ϕt pushes
forward ut onto vt, denoted by vt = ∇ϕt#ut, and πt = (IRd × ∇ϕt)#ut is optimal in the
definition of W2(ut, vt). Here, IRd denotes the identity map. We observe that ut = ∇ϕ∗

t#vt
and πt = (∇ϕ∗

t × IRd)#vt for the Legendre transform ϕ∗
t of ϕt.

Then, for all t ≥ 0,

1

2

d

dt
W 2

2 (ut, vt) =

∫∫

BR×BR

(ξt[v](y)− ξt[u](x)) · (y − x) dπt(x, y). (6)

This follows from steps 2 and 3 in the proof of [15, Th. 23.9] since for all t ≥ 0 the solutions
ut and vt are C

2 and positive on the compact set B̄R, so that ξt[u] and ξt[v] are Lipschitz on
B̄R. By the definition of the velocity field ξt and the image measure property, this is equal to

−

∫∫

BR×BR

( 1

vt(y)
∇(f ◦ vt)(y)−

1

ut(x)
∇(f ◦ ut)(x)

)

· (y − x) dπt(x, y)

= −

∫

BR

∇(f ◦ vt)(y) · (y −∇ϕ∗
t (y)) dy +

∫

BR

∇(f ◦ ut)(x) · (∇ϕt(x)− x) dx. (7)



4 FRANÇOIS BOLLEY AND JOSÉ A. CARRILLO

Now, the probability densities ut and vt are C
0,α and bounded from below and above by

positive constants on the ball B̄R, so the maps ϕt and ϕ∗
t are C2,α on B̄R, see [6] and [15,

Th. 12.50]. Hence, by integration by parts, the term with u in (7) is

−

∫

BR

f ◦ ut(x) (∆ϕt(x)− d) dx+

∫

|x|=R
f ◦u(x) (∇ϕt(x)− x) ·

x

|x|
dx ≤ −

∫

BR

f ◦ ut (∆ϕt − d).

Here we use the fact that ∇ϕt(x) ∈ B̄R, so that ∇ϕt(x) − x points inwards B̄R if |x| = R,
and then (∇ϕt(x)− x) · x ≤ 0. Likewise, the term with v in (7) is

≤ −

∫

BR

f ◦ vt (∆ϕ
∗
t − d) = −

∫

BR

f
(

vt(∇ϕt(x))
)

vt(∇ϕt(x))
(∆ϕ∗(∇ϕt(x))− d)ut(x) dx

= −

∫

BR

det∇2ϕt(x) f
( ut(x)

det∇2ϕt(x)

)

(

∆ϕ∗
t (∇ϕt(x)) − d

)

dx

by the push forward property and the Monge-Ampère equation that holds in the classical
sense, see [6] and [15, Ex. 11.2] for instance. Hence, we deduce

1

2d

d

dt
W 2

2 (ut, vt)

≤ −

∫

BR

[

det∇2ϕt(x) f
( ut(x)

det∇2ϕt(x)

)

(∆ϕ∗
t (∇ϕt(x))

d
− 1

)

+ f(ut(x)) (
∆ϕt(x)

d
− 1)

]

dx.

Notice that for fixed x and t the bracket in the integral is

pd f(rp−d)(S − 1) + f(r)(s− 1)

where r = ut(x), p = (det∇2ϕt(x))
1/d, s = 1

d∆ϕt(x) and S = 1
d∆ϕ

∗
t (∇ϕt(x)). Observe

now that s ≥ p by the arithmetic-geometric inequality on the positive eigenvalues of the
symmetric matrix ∇2ϕt(x). Moreover ∇ϕ∗

t (∇ϕt(x)) = x so ∇2ϕ∗
t (∇ϕt(x))∇

2ϕt(x) = Id by
differentiation in x, that is, ∇2ϕ∗

t (∇ϕt(x)) = (∇2ϕt(x))
−1; hence also S ≥ p−1 for this matrix.

Finally f ≥ 0, so the expression above is

≥ pdf(rp−d)(p−1 − 1) + f(r)(p− 1) = (p− 1)(f(r)− pd−1f(rp−d)) ≥ 0

by condition (3). This concludes the proof of the sufficient part.

We now turn to the proof of the necessary part. We apply the contraction property to
two specific initial data that we build as follows. Let us explain first the strategy. A formal
argument would consist on one hand on fixing r > 0 and 0 < a < R and defining u0 by
u0(x) = r on the centered ball of radius a and u0(x) = 0 outside. On the other hand, we fix
0 < δ < (R− a)/(2a) and let v0 be the image measure ∇ϕ#u0 of u0 by the map ∇ϕ where

ϕ(x) =

∫ |x|

0
ψ(z) dz, |x| ≤ R ,

and ψ is the continuous increasing map defined on [0, R] by

ψ(z) =







(1 + δ)z if 0 ≤ z ≤ a
(z + (1 + 2δ)a)/2 if a ≤ z ≤ (1 + 2δ)a
z if (1 + 2δ)a ≤ z ≤ R.

Then, the strategy is to write the contraction type property for these initial data u0 and v0
and t close to 0, and let δ goes to 0. However, since u0 is neither positive nor smooth we need
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to proceed by approximation. The rest of this proof is devoted to show the technical details
to make this density argument possible.

Step 1: Regularizing.- To take advantage of the exact expression of the dissipation of
the Wasserstein as given in (6) for smooth positive densities we mollify u0 and ϕ (whence v0)
in the following way.

For given 0 < ε < ε0, where ε0 will depend only on a and δ, we let ũε0 be a C2 radial
map, nonincreasing on each ray, such that ũε0(x) = r if |x| ≤ a and = ε if |x| ≥ a + ε; then
we let uε0 = Mũε0/

∫

ũε0, where
∫

ũε0 is greater than M but tends to M as ε goes to 0. Here

M = cda
dr is the mass of u0, with cd being the volume of the unit ball in R

d.
We also mollify ψ into a C3 increasing map ψε on [0, R] which is equal to ψ on [0, a],

[(1 + ε)a, (1 + 2δ − ε)a], and [(1 + 2δ)a,R] and satisfies

‖ψε − ψ‖L∞[0,R] ≤ Aε

for some A = A(a, δ). Then the map

ϕε(x) =

∫ |x|

0
ψε(z) dz, |x| ≤ R

is radial, C4 and strictly convex on B̄R by composition (in particular at 0 since there it is
given by ϕε(x) = (1 + δ)|x|2/2). Moreover

∇ϕε(x) = ψε(|x|)
x

|x|

and

‖∇ϕε −∇ϕ‖L∞(BR) = ‖ψε − ψ‖L∞[0,R] ≤ Aε.

We finally let vε0 = ∇ϕε#uε0.

Step 2: Use of the Dissipation of W2.- The initial datum uε0 is C2 and positive on the
ball B̄R and all eigenvalues of all matrices ∇2ϕε(x) are in [Λ−1,Λ] for a positive constant Λ
independent of ε, as we shall use later on. This is due to the fact that the first derivative of
ψ has finite jumps and that the constructed regularization keeps this property independent
of ε. In particular, the map ∇ϕε is a C1 diffeomorphism, and vε0 is also C2 and positive on
B̄R by the change of variables

vε0(y) =
( uε0
det∇2ϕε

)

(

(∇ϕε)−1(y)
)

. (8)

Hence, (6)-(7) hold, in particular at t = 0, and the contraction property (4) for the solutions
with respective initial data uε0 and vε0, and t close to 0 ensures that

0 ≥

∫

BR

∇(f ◦ vε0)(y) · (∇ϕ
ε,∗(y)− y)dy +

∫

BR

∇(f ◦ uε0)(x) · (∇ϕ
ε(x)− x)dx (9)

for fixed a and δ, and ε > 0 small enough. Here we have let ϕε,∗ := (ϕε)∗.

Step 3: Passing to the limit ε→ 0.- We divide it into two substeps:
Step 3.1.- First of all, we claim that ∇(f ◦ vε0) weakly converges to

−f(r(1 + δ)−d)
y

|y|
µ(1+δ)a
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with µα denoting the uniform measure (with density 1) on the d − 1-dimensional sphere of
radius α > 0. Let indeed ζ be a vector test function on B̄R. Observing that by construction
vε0 is constant outside the annulus (1 + δ)a ≤ |y| ≤ (1 + 2δ)a, we obtain

∫

BR

∇(f ◦ vε0) · ζ =

∫

(1+δ)a≤|y|≤(1+2δ)a
∇(f ◦ vε0) · ζ =

∫

|y|=(1+2δ)a
f ◦ vε0(y) ζ(y) ·

y

|y|

−

∫

|y|=(1+δ)a
f◦vε0(y) ζ(y)·

y

|y|
−

∫

(1+δ)a≤|y|≤(1+δ)a+Λε
f◦vε0 ∇·ζ −

∫

(1+δ)a+Λε≤|y|≤(1+2δ)a
f◦vε0 ∇·ζ

by integration by parts.

The first integral is bounded by

f(ε)

∫

|y|=(1+2δ)a
|ζ(y)|

and f(ε) tends to 0 as ε→ 0. Hence it tends to 0. The second integral is equal to

f

(

Mr

(1 + δ)d
∫

ũε0

)
∫

|y|=(1+δ)a
ζ(y) ·

y

|y|
converging to f

(

r

(1 + δ)d

)
∫

|y|=(1+δ)a
ζ(y) ·

y

|y|
,

as ε→ 0.
To deal with the third integral, recall that uε0 ≤ r and that all eigenvalues of all matrices

∇2ϕε(x) are in [Λ−1,Λ]. Then again by (8) the regularized target densities verify vε0 ≤ rΛd.
Therefore, the third integral tends to 0 since vε0 and ∇ · ζ are bounded uniformly in ε, and
the volume of the domain of integration tends to 0 as ε→ 0.

The fourth integral also tends to 0 since the domain of integration is bounded and the
integrand is bounded by a multiple of f(εΛd): Let indeed

|y| ≥ (1 + δ)a+ Λε = |∇ϕε(a)|+ Λε .

Since all eigenvalues of all matrices ∇2ϕε(x) are in [Λ−1,Λ], then ∇ϕε is Λ-Lipschitz. Thus,
|y| ≥ |∇ϕε(a+ε)| or equivalently |(∇ϕε)−1(y)| ≥ a+ε since∇ϕε is moreover radial. Therefore,
we conclude from (8) and the definition of ψε that

vε0(y) =
uε0

(

(∇ϕε)−1(y)
)

det∇2ϕε
(

∇ϕε)−1(y)
) ≤ εΛd ,

and the claim is proved.
Step 3.2.- Using that ∇ϕε is a diffeomorphism and that ∇ϕε,∗ is also Λ-Lipschitz, we

obtain

‖∇ϕε,∗(y)−∇ϕ∗(y)‖L∞(BR) = ‖x−∇ϕ∗
(

∇ϕε(x)
)

‖L∞(BR)

= ‖∇ϕ∗
(

∇ϕ(x)
)

−∇ϕ∗
(

∇ϕε(x)
)

‖L∞(BR) ≤ Λ ‖∇ϕ −∇ϕε‖L∞(BR) ≤ ΛAε.

Hence ∇ϕε,∗ strongly converges to ∇ϕ∗ in L∞(BR).

Step 4: Conclusion.- By Steps 3.1 and 3.2, it follows that the term with vǫ0 in (9)
converges to

−f

(

r

(1 + δ)d

)
∫

|y|=(1+δ)a

(

∇ϕ∗(y)− y
)

·
y

|y|
= f

(

r

(1 + δ)d

)

δ ad(1 + δ)d−1cd
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since ∇ϕ∗(y) = (1 + δ)−1y if |y| = (1+ δ)a. We proceed likewise to prove that the term with
uε0 in (9) converges to −f(r)δ ad cd. Therefore, passing to the limit in (9) as ε→ 0, we finally
conclude

0 ≥ δ ad cd

[

(1 + δ)d−1 f

(

r

(1 + δ)d

)

− f(r)

]

for any fixed r and δ > 0. Letting δ go to 0 leads to (2) at point r, hence to the equivalent
condition (3). This concludes the proof of Theorem 1. �

Remark 3. R. J. McCann’s proof of the displacement convexity of the entropy U under
condition (3) in [10] is also based on the arithmetic-geometric inequality, though in a much
less trivial manner than here.

Remark 4. Such contraction properties, or alternatively rates of convergence to equilibrium
for the mean field equation

∂ut
∂t

= ∆f(ut) +∇ · (ut∇W ∗ ut), t > 0, x ∈ R
d (10)

have been derived in [8, 9, 5]. For W strictly convex, and uniformly at infinity only, as in
the physically motivated case of W (z) = |z|3 on R, only polynomial rates, or exponential but
depending on the initial datum, have been obtained by entropy dissipation techniques. Then,
bounding from above the (squared) Wasserstein distance between a solution and the steady
state by its dissipation along the evolution, universal exponential rates have been derived in
[4] for f(u) = u (linear diffusion).

The same strategy can be pursued for a nonlinear diffusion. Assume for instance that
d = 1, f(r) = rm with 1 < m < 2 and W is a C2 map on R for which for all R > 0 there
exists k(R) > 0 such that W ′′(x) ≥ k(R) for all |x| ≥ R. Then one can prove that for
x0 ∈ R, equation (10) admits a unique steady state u∞ in P2(R) with center of mass x0, and
a constant c > 0 such that

W2(ut, u∞) ≤ e−ctW2(u0, u∞), t ≥ 0

for all solutions (ut)t≥0 to (10) with initial datum u0 in P2(R) with center of mass x0.
As in [4], the proof is based on considering the dissipation of the Wasserstein distance.

Two key ingredients consist on one hand in bounding from below the contribution of the
(now nonlinear) diffusion term in the dissipation and on the other hand on a good knowledge
of the support of the steady state, and of the behaviour of this steady state near the boundary
of its support.
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