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We develop a pathwise theory for scalar conservation laws with quasilinear multiplicative rough path dependence, a special case being stochastic conservation laws with quasilinear stochastic dependence. We introduce the notion of pathwise stochastic entropy solutions, which is closed with the local uniform limits of paths, and prove that it is well posed, i.e., we establish existence, uniqueness and continuous dependence, in the form of pathwise L 1 -contraction, as well as some explicit estimates. Our approach is motivated by the theory of stochastic viscosity solutions, which was introduced and developed by two of the authors, to study fully nonlinear first-and second-order stochastic pde with multiplicative noise. This theory relies on special test functions constructed by inverting locally the flow of the stochastic characteristics. For conservation laws this is best implemented at the level of the kinetic formulation which we follow here.

Introduction

We are putting forward a theory of pathwise weak solutions for scalar conservation laws in R N with quasilinear multiplicative rough path dependence. Since a special case is scalar conservation laws with quasilinear multiplicative stochastic dependence, we call the equations we consider and their weak solutions stochastic scalar conservation laws (SSCL for short) and stochastic entropy solutions respectively. Our approach is based on the concepts and methods introduced by Lions and Souganidis [START_REF] Lions | Fully nonlinear stochastic partial differential equations[END_REF][START_REF] Lions | Fully nonlinear stochastic partial differential equations: nonsmooth equations and applications[END_REF] and extended by the same authors in [START_REF] Lions | Viscosity solutions of fully nonlinear stochastic partial differential equations, Viscosity solutions of differential equations and related topics (Japanese) Kyoto[END_REF][START_REF] Lions | Fully nonlinear stochastic pde with semilinear stochastic dependence[END_REF][START_REF] Lions | Uniqueness of weak solutions of fully nonlinear stochastic partial differential equations[END_REF][START_REF] Lions | Équations aux dérivées partielles stochastiques nonlinéaires et solutions de viscosité, Seminaire: Équations aux Dérivées Partielles[END_REF] for the theory of pathwise stochastic viscosity solution of fully nonlinear first-and second-order stochastic pde including stochastic Hamilton-Jacobi equations. One of the fundamental tools of this theory is the class of test functions constructed by inverting locally, and at the level of test functions, the flow of the characteristics corresponding to the stochastic first-order part of the equation and smooth initial data. Such approach is best implemented for conservation laws using the kinetic formulation which we follow here.

Let A = (A 1 , ..., A N ) ∈ C 2 (R; R N ) (1)
be the flux and consider a continuous path

W = (W 1 , ..., W N ) ∈ C([0, ∞); R N ), (2) 
a special case being W = (W 1 , ..., W N ) is an N -dimensional Brownian motion.

(

) 3 
We are interested in the SSCL

     du + N i=1 (A i (u)) x i • dW i = 0 in R N × (0, ∞), u = u 0 on R N × {0}. (4) 
Throughout the paper we adopt the notation and terminology of stochastic calculus. In general du denotes some kind of time differential, while in the case of ( 3) is the usual stochastic differential.

Similarly in the general setting • does not have any particular meaning and can be ignored, while in the stochastic setting it denotes the Stratonovich differential. The need to use the latter stems from the fact that we are developing a theory which is closed (stable) on paths in the local uniform topology. It is well known, even in the context of stochastic differential equations, that ordinary differential equations with time dependence converging local uniformly to Brownian paths give rise to sde's the Stratonovich differential. That a pathwise theory is more appropriate to study (4) is also justified from the fact that in the actual stochastic case, taking expectations leads, in view of the properties of the Ito calculus, to terms that are not possible to handle by the available estimates. We discuss this issue further in the last section of this paper.

If we are using a single rough path, i.e., if W = W i for all i = 1, ..., N , then (4) becomes

   du + divA(u) • dW = 0 in R N × (0, ∞), u = u 0 on R N × {0}. (5) 
In the case of ( 5) even for a smooth path it is tempting to say that u(x, t) = v(x, W (t)) where v solves the time homogenous problem

   v t + divA(v) = 0 in R N × (0, ∞), u = u 0 on R N × {0}. (6) 
Indeed a formal calculation implies this fact, which, of course, cannot be true since the solutions of (6) develop shocks, which are not time-reversible, and the W is not a monotone.

It is worth reminding the reader the connection between stochastic Hamilton-Jacobi and conservation laws for N = 1. Indeed consider the stochastic Hamilton-Jacobi equation

     dv + N i=1 A i (v x ) • dW i = 0 in R × (0, ∞), v = v 0 on R N × {0}. (7) 
and observe that it is immediate at least formally (actually this can be made rigorous but leave the details to the reader) that u = v x solves the SSCL (4).

It may be possible to use less regular fluxes by increasing the regularity of the paths but will leave this for future investigation. Such an analysis has been performed in detail for stochastic viscosity solutions. It is also possible to consider x-dependent fluxes (we plan to pursue this problem in a future work), i.e., initial value problems of the form

     du + N i=1 (A i (x, u)) x i • dW i = 0 in R N × (0, ∞), u = u 0 on R N × {0}. (8) 
If, instead of (2), we assume that W ∈ C 1 ((0, ∞); R N ), then (4) is a "classical" problem with a well known theory, see, for example, the books by Dafermos [2] and Serre [START_REF] Serre | Systems of conservation laws, Hyperbolicity, entropies, shock waves[END_REF]. The solution can develop singularities in the form of shocks (discontinuities). Hence it is necessary to consider entropy solutions which, although not regular, satisfy the L 1 -contraction property established by Kruzkov that yields uniqueness.

The goal here is to give a sense to these concepts for general rough paths W. We base the theory on the kinetic formulation which we review in Section 2. Then, following the ideas introduced in [START_REF] Lions | Fully nonlinear stochastic partial differential equations[END_REF][START_REF] Lions | Fully nonlinear stochastic partial differential equations: nonsmooth equations and applications[END_REF] for stochastic Hamilton-Jacobi equations, we define the notion of pathwise stochastic entropy solutions and state our main stability and intrinsic uniqueness result (pathwise L 1 -contraction) in Section 3.

The proofs are presented in Sections 4 and 5. We also introduce without proofs the notion of pathwise dissipative solutions.

Our interest to study SCCL is twofold. Given the theory of stochastic viscosity solutions and the connection between conservation laws and Hamilton-Jacobi equations, it is very natural from the mathematical point of view to ask whether there is such a theory for the former. In addition, SCCL like (4) arise as models in the theory of mean field games developed by Lasry and Lions (see [START_REF] Lasry | Jeux des champ moyen. I. Le cas stationnaire[END_REF], [START_REF] Lasry | Jeux des champ moyen. II. Horizon fini et controle optimal[END_REF], [START_REF] Lasry | Mean field games[END_REF]). Next we discuss a concrete example.

Consider, for i = 1, ..., L, the system of stochastic differential equations

dX i t = σ(X i t , 1 L -1 j =i δ X j t ) • dW t ,
where δ y denotes the Dirac mass at y, W = (W 1 , ..., W N ) is a N -dimensional Brownian motion and the N × N matrix σ is Lipschitz continuous on R N × P (R N ), where P (X) is the space of probability measures on the metric space X endowed with the usual 2-Wasserstein metric.

It turns out that, as L → ∞, the law, Law(X 1 t , ., ., ., X L t ), of the (X 1 t , ., ., ., X L t ) converges in the sense of measures to some π t ∈ P (P (R N )), which evolves in time according to

U (m)dπ t (m) = E[U (m t )] for all U ∈ C(P (R N )),
where E is the expectation with respect to the probability space associated with W and, for σ * the adjoint of σ, m t solves the SSCL

dm = - N i=1 (σ * (x, m)m) x i • dW i .
Solutions of deterministic non-degenerate conservation laws have remarkable regularizing effects in Sobolev spaces of low order. It is an interesting question to see if they are still true in the present case. This is certainly possible with somehow different exponents in view of the case of kinetic equations where stochastic averaging lemmas are established [START_REF] Lions | Stochastic averaging lemmas for kinetic equations[END_REF].

It is natural to ask whether the approach we are putting forward for (5) also applies to SSCL with semilinear rough path dependence like

     du + N i=1 (A i (u)) x i • dW i = Φ(u) • d W in R N × (0, ∞), u = u 0 on R N × {0}, (9) 
for Φ = (Φ 1 , ..., Φ m ) ∈ C 2 (R; R m ) and another m-dimensional path W = ( W 1 , ..., W m ).
Recently Debussche and Vovelle [START_REF] Debussche | Scalar conservation laws with stochastic forcing[END_REF] (see also Feng and Nualart [START_REF] Feng | Stochastic scalar conservation laws[END_REF] and Chen, Ding and Karlsen [START_REF] Chen | Existence and continuous dependence of BV solutions to multidimensional conservation laws with random source[END_REF], Debussche, Hofmanova and Vovelle [START_REF] Debussche | Degenerate parabolic stochastic partial differential equations: Quasilinear case[END_REF], Hofmanova [START_REF] Hofmanova | Bhatnagar-Gross-Krook approximation to stochastic scalar conservation laws[END_REF][START_REF] Hofmanova | Degenerate parabolic stochastic partial differential equations[END_REF]) put forward a theory of weak entropy solutions of scalar conservation laws with Ito-type semilinear (but no stochastic quasilinear dependence), which in our setting take the form

     du + N i=1 (A i (u)) x i dt = Φ(u)d W in R N × (0, ∞), u = u 0 on R N × {0}, (10) 
with Phi as above and W an m-dimensional Brownian motion.

The main results of [START_REF] Debussche | Scalar conservation laws with stochastic forcing[END_REF][START_REF] Debussche | Degenerate parabolic stochastic partial differential equations: Quasilinear case[END_REF][START_REF] Hofmanova | Bhatnagar-Gross-Krook approximation to stochastic scalar conservation laws[END_REF][START_REF] Hofmanova | Degenerate parabolic stochastic partial differential equations[END_REF], which also rely on the kinetic theory, is a well posed theory of solutions which satisfy a contraction principle in space and probability. In Section 6 we explain the problem, we present a specific example showing that the approach taken in this paper cannot be used in the semilinear setting, and we discuss why the properties of the stochastic integral yield that a pathwise approach is not possible for [START_REF] Lasry | Jeux des champ moyen. II. Horizon fini et controle optimal[END_REF].

It remains an interesting open question to study the well posedness of (5) in view of the fact that they approaches for (4) and (9) appear to be incompatible.

Review of the kinetic formulation

We review here the basic concepts of the kinetic theory of scalar conservation laws. We are going to show that it allows us to define a global change of variable along the "kinetic" characteristics, a very convenient tool for our purpose. Recall that for the conservation laws in the physical space the characteristics are only defined for short times (before crossing) and the method is not so convenient. Such a conclusion was also drawn in [START_REF] Debussche | Scalar conservation laws with stochastic forcing[END_REF] but for a different reason. There the kinetic setting keeps better track of the entropy dissipation (due to the noise).

Although we use the notation of the Introduction, throughout the discussion in this section we assume that

W ∈ C 1 ((0, ∞); R N ), (11) 
in which case du stands for the usual derivative and • is the usual multiplication and, hence, should be ignored.

The entropy inequality (see [2,[START_REF] Serre | Systems of conservation laws, Hyperbolicity, entropies, shock waves[END_REF]), which guarantees the uniqueness of the weak solutions, is

         dS(u) + N i=1 (A S i (u)) x i • dW i ≤ 0 in R N × (0, ∞), S(u) = S(u 0 ) on R N × {0}, (12) 
for all C 2 convex functions S and entropy fluxes A S defined by

A S (u) ′ = a(u)S ′ (u) for a = A ′ .
In view of these inequalities, it appears that a pathwise theory is more appropriate to study [START_REF] Debussche | Scalar conservation laws with stochastic forcing[END_REF]. Indeed it easily follows, when the paths are smooth, that (4) satisfies an L 1 (R N )-contraction property.

If in the stochastic setting, i.e., when W is actually a Brownian motion, we wanted a theory involving expectations, then Ito-calculus creates terms -for simplicity here we take N = 1-of the form

E( t 0 S ′′ (u)(f ′ (u)) 2 (u x ) 2 dt,
which cannot be handled due to the lack of appropriate estimates. It is by now well established that the simplest way to handle conservation laws is through their kinetic formulation developed through a series of papers -see Perthame and Tadmor [START_REF] Perthame | A kinetic equation with kinetic entropy functions for scalar conservation laws[END_REF], Lions, Perthame and Tadmor [START_REF] Lions | A kinetic formulation of multidimensional scalar conservation laws and related equations[END_REF], Perthame [START_REF] Perthame | Uniqueness and error estimates in first order quasilinear conservation laws via the kinetic entropy defect measure[END_REF][START_REF] Perthame | Kinetic formulation of conservation laws[END_REF], and Lions, Perthame and Souganidis [START_REF] Lions | Existence of entropy solutions for the hyperbolic systems of isentropic gas dynamics in Eulerian and Lagrangian coordinates[END_REF]. The basic idea is to write a linear equation on the nonlinear function

χ(x, ξ, t) = χ(u(x, t), ξ) =        +1 if 0 ≤ ξ ≤ u(x, t), -1 if u(x, t) ≤ ξ ≤ 0, 0 otherwise. ( 13 
)
The kinetic formulation states that using the entropy inequalities [START_REF] Lions | Existence of entropy solutions for the hyperbolic systems of isentropic gas dynamics in Eulerian and Lagrangian coordinates[END_REF] for all convex entropies S is equivalent to χ solving, in the sense of distributions,

         dχ + N i=1 a i (ξ)χ x i • dW i = m ξ dt in R N × R × (0, ∞), χ = χ(u 0 (•), •) on R N × R × {0}, (14) 
where

m is a nonnegative bounded measure in R N × R × (0, ∞). ( 15 
)
One direction of this equivalence can be seen, at least formally, easily. Indeed since, for all (x, t) ∈ R N × (0, ∞), S u(x, t) -S(0) = S ′ (ξ)χ u(x, t), ξ dξ, multiplying ( 14) by S ′ (ξ) and integrating in ξ leads to [START_REF] Lions | Existence of entropy solutions for the hyperbolic systems of isentropic gas dynamics in Eulerian and Lagrangian coordinates[END_REF]. For the converse see [START_REF] Lions | A kinetic formulation of multidimensional scalar conservation laws and related equations[END_REF][START_REF] Perthame | Uniqueness and error estimates in first order quasilinear conservation laws via the kinetic entropy defect measure[END_REF][START_REF] Perthame | Kinetic formulation of conservation laws[END_REF]. We recall next some basic estimates from the kinetic theory which hold for smooth paths and are, actually, independent of the paths. They are the usual L p (R N × (0, T )) and BV (R N × (0, T )) bounds (for all T > 0) for the solutions, as well as the bounds on the kinetic defect measures m, which imply that the latter are weakly continuous in ξ as measures on R N × (0, ∞).

We summarize these properties in the next two propositions which we state without proof.

Proposition 2.1. Assume ( 1) and [START_REF] Lasry | Mean field games[END_REF]. The entropy solutions to (4) satisfy, for all t > 0,

u(•, t) L p (R N ) ≤ u 0 L p (R N ) for all p ∈ [1, ∞], (16) 
and

Du(•, t) L 1 (R N ) ≤ Du 0 L 1 (R N ) . ( 17 
)
Proposition 2.2. Assume ( 1) and [START_REF] Lasry | Mean field games[END_REF]. Then entropy solutions to (4) satisfy, for all t > 0,

|ξ| ≤ |u| ≤ u 0 ∞ in {(x, ξ, t) ∈ R n × R × (0, ∞) : |χ(x, ξ, t) > 0}, ∞ 0 R N R m(x, ξ, t)dx dξ dt ≤ 1 2 u 0 2 L 2 (R N ) , (18) 
∞ 0 R N m(x, ξ, t)dx dt ≤ u 0 L 1 (R N ) for all ξ ∈ R, (19) 
and, for all smooth test functions ψ,

d dξ ∞ 0 R N ψ(x, t)m(x, ξ, t)dx dt ≤ D x,t ψ L ∞ (R N+1 ) + ψ(•, 0) L ∞ (R N ) u 0 L 1 (R N ) . (20) 
The next observation is the backbone for our approach for the SSCL. Its origin goes back to [START_REF] Lions | Fully nonlinear stochastic pde with semilinear stochastic dependence[END_REF][START_REF] Lions | Uniqueness of weak solutions of fully nonlinear stochastic partial differential equations[END_REF][START_REF] Lions | Fully nonlinear stochastic partial differential equations[END_REF][START_REF] Lions | Fully nonlinear stochastic partial differential equations: nonsmooth equations and applications[END_REF], where similar arguments for stochastic Hamilton-Jacobi equations form the basis of the theory of stochastic viscosity solutions. Since the flux in (4) is independent of x, we can use the characteristics associated with [START_REF] Lions | Stochastic averaging lemmas for kinetic equations[END_REF] to derive an identity which is equivalent to solving [START_REF] Lions | Stochastic averaging lemmas for kinetic equations[END_REF] in the sense of distributions. Indeed consider

ρ 0 ∈ D(R N ) such that ρ 0 ≥ 0 and R N ρ 0 (x)dx = 1, (21) 
and observe that ρ(y, x, ξ, t)

= ρ 0 y -x + a(ξ)W(t) , (22) 
where

a(ξ)W(t) := (a 1 (ξ)W 1 (t), a 2 (ξ)W 2 (t), ..., a N (ξ)W N (t)), (23) 
solves the linear transport equation (recall that in this section we are assuming that W is smooth)

dρ + N i=1 a i (ξ)ρ x i • dW i = 0 in R N × R × (0, ∞),
and, hence,

d(ρ(y, x, ξ, t)χ(x, ξ, t)) + N i=1 a i (ξ)(ρ(y, x, ξ, t)χ(x, ξ, t)) x i • dW i = ρ(y, x, ξ, t)m ξ (x, ξ, t)dt. (24) 
Integrating [START_REF] Perthame | Uniqueness and error estimates in first order quasilinear conservation laws via the kinetic entropy defect measure[END_REF] with respect to x (recall that ρ 0 has compact support) yields that, in the sense of distributions in R × (0, ∞),

d dt R N χ(x, ξ, t)ρ(y, x, ξ, t)dx = R N ρ(y, x, ξ, t)m ξ (x, ξ, t)dx. (25) 
We remark that although the regularity of the path was used to derive (25) the actual conclusion does not need it. In particular [START_REF] Perthame | Kinetic formulation of conservation laws[END_REF] holds for paths which are only continuous. Notice also that ( 25) is basically equivalent to the kinetic formulation if the measure m satisfies [START_REF] Lions | A kinetic formulation of multidimensional scalar conservation laws and related equations[END_REF]. Finally we point out that (25) makes sense only after integrating with the respect to ξ against a test function. This requires that a ′ ∈ C 1 (R; R N ) as long as we only use that m is a measure. Indeed, integrating against a test function Ψ, we find

R N+1 Ψ(ξ)ρ(y, x, ξ, t)m ξ (x, ξ, t) dxdξ = = -R N+1 Ψ ′ (ξ)ρ(y, x, ξ, t) m(x, ξ, t) dxdξ + R N+1 Ψ(ξ)( N i=1 ρ x i (y, x, ξ, t)a ′ i (ξ)W i (t)) m(x, ξ, t
) dxdξ and all the terms make sense as continuous functions tested against a measure. We present next some (new) estimates and identities which are needed for the proof of the main results of the paper and are derived from [START_REF] Perthame | Kinetic formulation of conservation laws[END_REF]. In the statement and later in the paper we write δ for the Dirac mass at the origin. We have: Proposition 2.3. Assume (1), [START_REF] Lasry | Mean field games[END_REF] and

u 0 ∈ (L 1 ∩ L ∞ ∩ BV )(R N ).
Then, for all t > 0,

d dt R N+1 |χ(x, ξ, t)|dx dξ = -2 R N m(x, 0, t)dx, (26) 
and

R N+1 R 2N δ(ξ -u(z, t)) ρ(y, z, ξ, t)ρ(y, x, ξ, t) m(t, x, ξ)dxdydzdξ = 1 2 d dt R N+1 [ R N χ(x, ξ, t)ρ(y, x, ξ, t)dx 2 -|χ(y, ξ, t)|]dydξ. (27) 
Proof. The first identity is obtained (see [START_REF] Perthame | Uniqueness and error estimates in first order quasilinear conservation laws via the kinetic entropy defect measure[END_REF][START_REF] Perthame | Kinetic formulation of conservation laws[END_REF]) multiplying (4) by sgn(ξ) and using that sgn(ξ)χ(x, ξ, t) = |χ(x, ξ, t)|. Notice that taking the value ξ = 0 in m is allowed by the Lipschitz regularity in Proposition 2.2.

To prove [START_REF] Perthame | A kinetic equation with kinetic entropy functions for scalar conservation laws[END_REF], we use the regularization kernel along the characteristics [START_REF] Lions | Stochastic viscosity solutions[END_REF]. Indeed [START_REF] Perthame | Kinetic formulation of conservation laws[END_REF] and the fact that

χ ξ (z, ξ, t) = δ(ξ) -δ(ξ -u(z, t)) yield 1 2 d dt R N+1 R N χ(x, ξ, t)ρ(y, x, ξ, t)dx 2 dydξ = R N+1 R N χ(z, ξ, t)ρ(y, z, ξ, t)dz R N ρ(y, x, ξ, t)m ξ (x, ξ, t) dx dydξ = -R N+1 R 2N [δ(ξ) -δ(ξ -u(z, t))]ρ(y, z, ξ, t)ρ(y, x, ξ, t) m(x, ξ, t)dzdxdydξ = -R N m(x, 0, t)dx + R N+1 R 2N δ(ξ -u(z, t))ρ(y, z, ξ, t)ρ(y, x, ξ, t) m(x, ξ, t)dzdxdydξ. (28) 
An important step in the calculation above is that, for all ξ ∈ R,

R N R 2N χ(z, ξ, t)[D y ρ(y, z, ξ, t)ρ(y, x, ξ, t) + ρ(y, z, ξ, t)D y ρ(y, x, ξ, t)] m(t, x, ξ)dzdxdy = 0,
which follows from the observation that the integrand is an exact derivative with respect to y.

Using [START_REF] Perthame | Dissipative and entropy solutions to non-isotropic degenerate parabolic balance laws[END_REF] in [START_REF] Serre | Systems of conservation laws, Hyperbolicity, entropies, shock waves[END_REF] we get [START_REF] Perthame | A kinetic equation with kinetic entropy functions for scalar conservation laws[END_REF].

We conclude recalling the notion of dissipative solutions which were studied by Perthame and Souganidis [START_REF] Perthame | Dissipative and entropy solutions to non-isotropic degenerate parabolic balance laws[END_REF] and are equivalent to the entropy solutions. The interest in them is twofold. Firstly the definition resembles and enjoys the same flexibility as the one for viscosity solutions in, of course, the appropriate function space. Secondly in defining them, it is not necessary to talk at all about entropies, shocks, etc..

We say that u ∈ L ∞ ((0, T ), (L 1 ∩ L ∞ )(R N )) is a dissipative solution of (4), provided that (11) holds, if, for all Ψ ∈ C([0, ∞), C ∞ c (R N )) and all ψ ∈ C ∞,+ c (R)
, where the subscript c means compactly supported, and in the sense of distributions,

d dt R N R ψ(k)(u-k -Ψ) + dxdk ≤ R N R ψ(k)sgn + (u-k -Ψ)(-Ψ t - N i=1 (A i (u)) x i •dW i )dxdk, ( 29 
)
where (•) + and sgn + denote respectively the positive part and its derivative, and

To provide an equivalent definition which will allow us to go around the difficulties with inequalities mentioned earlier in this section, we need to take a small detour to recall the classical fact that, under our regularity assumptions on the flux and paths, for any φ ∈ C ∞ c (R N ) and any t 0 > 0, there exists h > 0, which depends on φ, such that the problem

     d Ψ + N i=1 (A i ( Ψ)) x i • dW i = 0 in R N × (t 0 -h, t 0 + h), Ψ = φ on R N × {t 0 }, (30) 
has a smooth solution given by the method of characteristics.

We leave it up to the reader to check that the definition of the dissipative solution is equivalent to saying that, for

φ ∈ C ∞ c (R N ), ψ ∈ C ∞,+ c
(R) and any t 0 > 0, there exists h > 0, which depends on φ, such that in the sense of distributions

d dt R N R ψ(k)(u -k -Ψ) + dxdk ≤ 0 in (t 0 -h, t 0 + h), (31) 
where Ψ and h > 0 are as in (30).

Pathwise stochastic entropy solutions

Neither the notions of entropy and dissipative solutions nor the kinetic formulation can be used to study (4), since both involve either inequalities or quantities with sign which do not make sense for equations/expressions with, in principle, are nowhere differentiable functions. We refer to [START_REF] Lions | Fully nonlinear stochastic pde with semilinear stochastic dependence[END_REF][START_REF] Lions | Uniqueness of weak solutions of fully nonlinear stochastic partial differential equations[END_REF][START_REF] Lions | Fully nonlinear stochastic partial differential equations[END_REF][START_REF] Lions | Fully nonlinear stochastic partial differential equations: nonsmooth equations and applications[END_REF] for a general discussion about the difficulties encountered when attempting to use the classical weak solution approaches to study fully nonlinear stochastic pde.

Motivated by the theory of stochastic viscosity solutions ( [START_REF] Lions | Fully nonlinear stochastic pde with semilinear stochastic dependence[END_REF][START_REF] Lions | Uniqueness of weak solutions of fully nonlinear stochastic partial differential equations[END_REF][START_REF] Lions | Fully nonlinear stochastic partial differential equations[END_REF][START_REF] Lions | Fully nonlinear stochastic partial differential equations: nonsmooth equations and applications[END_REF]) and ( 25) we introduce next the notion of pathwise stochastic entropy solutions for SSCL. The key fact is the observation in the middle of the previous section.

The basic idea of [START_REF] Lions | Uniqueness of weak solutions of fully nonlinear stochastic partial differential equations[END_REF][START_REF] Lions | Fully nonlinear stochastic partial differential equations[END_REF][START_REF] Lions | Fully nonlinear stochastic partial differential equations: nonsmooth equations and applications[END_REF] is to invert locally the characteristics of the stochastic Hamilton-Jacobi equations to eliminate the stochastic part at the level of the test functions. In our context this is done using the ρ's a fact which leads to [START_REF] Perthame | Kinetic formulation of conservation laws[END_REF], which does not have any stochastic terms.

We have:

Definition 3.1. Assume (1) and (2). Then u ∈ (L 1 ∩ L ∞ )(R N × (0, ∞)
) is a pathwise stochastic entropy solution to (4), if there exists a nonnegative bounded measure m on R N × R × (0, ∞) such that, for all test functions ρ given by ( 22) with ρ 0 satisfying (21), we have, in the sense of distributions in R × (0, ∞),

d dt R N χ(x, ξ, t)ρ(y, x, ξ, t)dx = R N ρ(y, x, ξ, t)m ξ (x, ξ, t)dx. ( 32 
)
The main result is:

Theorem 3.2. Assume (1), (2) and u 0 ∈ (L 1 ∩ L ∞ )(R N ).
There exists a unique patwise stochastic entropy solution

u ∈ C [0, ∞); L 1 (R N ) ∩ L ∞ (R N × (0, T ))
, for all T > 0, to ( 4) and ( 16), ( 17), ( 18), ( 19) and ( 20) hold. In addition any stochastic entropy solutions

u 1 , u 2 ∈ C [0, ∞); L 1 (R N ) to (4)
satisfy, for all t > 0, the "contraction" property

u 2 (•, t) -u 1 (•, t) L 1 (R N ) ≤ u 0 2 -u 0 1 L 1 (R N ) . (33) 
Moreover there exists a uniform constant C > 0 such that, if, for i = 1, 2, u i is the stochastic entropy solution of (4) with path W i and u 0 i ∈ BV (R N ), then u 1 and u 2 satisfy, for all t > 0, the "contraction' property"

u 2 (•, t) -u 1 (•, t) L 1 (R N ) ≤ u 0 2 -u 0 1 L 1 (R N ) + C[ a (|u 0 1 | BV (R N ) + |u 0 2 | BV (R N ) )|(W 1 -W 2 )(t)| +(sup s∈(0,t) |(W 1 -W 2 )(s)| a ′ [ u 0 1 2 L 2 (R N ) + u 0 2 2 L 2 (R N ) ]) 1/2 ]. (34) 
We remark that, looking carefully into the proof of the (34) for smooth paths, it is possible to establish, after some approximations, an estimate similar to (34), for non BV -data, with a rate that depends on the modulus of continuity in L 1 of the initial data. It is also possible to obtain an error estimate for different fluxes. We leave the details for both to the interested reader.

We conclude stating the definition of the pathwise dissipative solution. We leave it to the reader to check that it is equivalent to the one of pathwise entropy solution.

As in Section 3 we need to consider local time pathwise smooth in x solutions of the SSCL (30) which can be constructed, for each φ ∈ C ∞ c (R N ) and t 0 > 0, using the classical method of characteristics -see [START_REF] Lions | Uniqueness of weak solutions of fully nonlinear stochastic partial differential equations[END_REF][START_REF] Lions | Fully nonlinear stochastic partial differential equations[END_REF][START_REF] Lions | Fully nonlinear stochastic partial differential equations: nonsmooth equations and applications[END_REF]. Of course, here the h is now "random".

With this in mind we have:

Definition 3.3. Assume (1) and (2). Then u ∈ (L ∞ ∩L ∞ )(R N ×(0, ∞))
) is a pathwise stochastic dissipative solution to (4), if (31) holds for any solution Ψ of (30) given by the method of characteristics in R N × (t 0 -h, t 0 + h) for any φ ∈ C ∞ c (R N ) and t 0 > 0.

Estimates for regular paths

Following ideas in [START_REF] Lions | Fully nonlinear stochastic partial differential equations[END_REF][START_REF] Lions | Fully nonlinear stochastic partial differential equations: nonsmooth equations and applications[END_REF], we think of the solution operator of (4) as the unique extension of the solution operators of ( 4) with regular paths. Therefore we begin the study of ( 4) with smooth paths. We obtain estimates that allow us to prove that the solutions corresponding to any regularization of the same path converge to the same limit which is a stochastic entropy solution. Then we prove an intrinsic uniqueness for the latter.

The key step is a new estimate, which depends only on the sup-norm of W and yields compactness with respect to time.

We have:

Theorem 4.1. Assume (1) and, for i = 1, 2,

u 0 i ∈ (L 1 ∩ L ∞ ∩ BV )(R N ).
Consider two smooth paths W 1 and W 2 and the corresponding solutions u 1 and u 2 to (4). There exists a uniform constant C > 0 such that, for all t > 0, (34) holds.

Proof. We combine the uniqueness proof for scalar conservation laws based on the kinetic formulation of [START_REF] Perthame | Uniqueness and error estimates in first order quasilinear conservation laws via the kinetic entropy defect measure[END_REF][START_REF] Perthame | Kinetic formulation of conservation laws[END_REF] and the regularization method along the characteristics introduced for Hamilton-Jacobi equations in [START_REF] Lions | Fully nonlinear stochastic pde with semilinear stochastic dependence[END_REF][START_REF] Lions | Uniqueness of weak solutions of fully nonlinear stochastic partial differential equations[END_REF][START_REF] Lions | Fully nonlinear stochastic partial differential equations[END_REF][START_REF] Lions | Fully nonlinear stochastic partial differential equations: nonsmooth equations and applications[END_REF]. To this end we fix ρ 0 satisfying (21), we consider the kernels ρ 1 and ρ 2 corresponding to the paths W 1 and W 2 , and we write (32) for (χ 1 , ρ 1 , m 1 ) and (χ 2 , ρ 2 , m 2 ). After subtracting the two equations we find

d dt R N [χ 2 (x, ξ, t)ρ 2 (y, x, ξ, t) -χ 1 (x, ξ, t)ρ 1 (y, x, ξ, t)]dx = R N [ρ 2 (y, x, ξ, t)m 2,ξ (x, ξ, t) -ρ 1 (y, x, ξ, t)m 1,ξ (x, ξ, t)]dx.
Multiplying the above expression by R N [χ 2 (x, ξ, t)ρ 2 (y, x, ξ, t) -χ 1 (x, ξ, t)ρ 1 (y, x, ξ, t)]dx and integrating in y and ξ we obtain

1 2 d dt R N+1 R N [χ 2 (x, ξ, t)ρ 2 (y, x, ξ, t) -χ 1 (x, ξ, t)ρ 1 (y, x, ξ, t)]dx 2 dydξ = R N+1 R 2N [χ 2 (z, ξ, t)ρ 2 (y, z, ξ, t) -χ 1 (z, ξ, t)ρ 1 (y, z, ξ, t)]
[ρ 2 (y, x, ξ, t)m 2,ξ (x, ξ, t) -ρ 1 (y, x, ξ, t)m 1,ξ (x, ξ, t)]dzdxdy dξ.

(
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The next step is to integrate by parts with respect to ξ in (35). This gives rise to several terms depending on whether the ξ derivative hits either χ 1 (x, ξ, t) and χ 2 (x, ξ, t) or ρ 2 (y, z, ξ, t), ρ 1 (y, z, ξ, t), ρ 2 (y, x, ξ, t) and ρ 2 (y, x, ξ, t). We denote the expressions involving these two groups of derivatives by I and II respectively and we analyze them separately. We begin with the first term where the integration by parts hits the χ-terms. We find

I = -R N+1 R 2N [χ 2,ξ (z, ξ, t) ρ 2 (y, z, ξ, t) -χ 1,ξ (z, ξ, t)ρ 1 (y, z, ξ, t)] [ρ 2 (y, x, ξ, t) m 2 (x, ξ, t) -ρ 1 (y, x, ξ, t) m 1 (x, ξ, t)]dzdxdydξ = R N+1 R 2N [δ(ξ -u 2 (z, t))ρ 2 (y, z, ξ, t) -δ(ξ -u 1 (z, t))ρ 1 (y, z, ξ, t)] [ρ 2 (y, x, ξ, t) m 2 (x, ξ, t) -ρ 1 (y, x, ξ, t) m 1 (x, ξ, t)]dzdxdydξ,
since the term containing the Dirac masses at ξ = 0 vanishes because

R N [ρ 2 (y, z, 0, t) -ρ 1 (y, z, 0, t)]dz = 0.
Observe that, since ρ 0 ≥ 0, the two cross-terms containing δ(ξ -u i (z, t)) m j (x, ξ, t) with i = j are non-positive.

Therefore we end up with

I ≤ R N+1 R 2N [δ(ξ -u 2 (z, t))ρ 2 (y, z, ξ, t)ρ 2 (y, x, ξ, t) m 2 (x, ξ, t) +δ(ξ -u 1 (z, t))ρ 1 (y, z, ξ, t)ρ 1 (y, x, ξ, t) m 1 (x, ξ, t)]dzdxdydξ,
and, in view of ( 27),

I ≤ 1 2 d dt R N+1 R N χ 1 (x, ξ, t)ρ 1 (y, x, ξ, t)dx 2 -|χ 1 (y, ξ, t)| dydξ + 1 2 d dt R N+1 R N χ 2 (x, ξ, t)ρ 2 (y, x, ξ, t)dx 2 -|χ 2 (y, ξ, t)| dydξ. (36) 
We continue with the other term where the integrations by parts hit the ρ-terms. Recalling [START_REF] Lyons | Systems controlled by rough paths[END_REF] we have

II = -R N+1 R 2N [χ 2 (z, ξ, t)(a ′ (ξ)W 2 (t)) • Dρ 2 (y, z, ξ, t) -χ 1 (z, ξ, t)(a ′ (ξ)W 1 (t)) • Dρ 1 ( y, z, ξ, t)] [ρ 2 (y, x, ξ, t) m 2 (x, ξ, t) -ρ 1 (y, x, ξ, t) m 1 (x, ξ, t)]dzdxdydξ 
-R N+1 R 2N [χ 2 (z, ξ , t)ρ 2 (y, z, ξ, t) -χ 1 (z, ξ, t)ρ 1 (y, z, ξ, t)] 
[(a ′ (ξ)W 2 (t)) • Dρ 2 (y, x, ξ, t) m 2 (x, ξ, t) -(a ′ (ξ)W 1 (t)) • Dρ 1 (y, x, ξ, t) m 1 (x, ξ, t)]dzdxdydξ.
To simplify the representation next we use the notation

W = W 2 + W 1 2 , δW = W 2 -W 1 2 , W 1 = W + δW and W 2 = W -δW,
write II = IIa + IIb, and analyze each term separately.

We begin with

IIa = -R N+1 a ′ (ξ)δW(t) • R 2N [χ 2 (z, ξ, t)Dρ 2 (y, z, ξ, t) + χ 1 (z, ξ, t)Dρ 1 (y, z, ξ, t)] [ρ 2 (y, x, ξ, t) m 2 (x, ξ, t) -ρ 1 (y, x, ξ, t) m 1 (x, ξ, t)]dzdxdydξ -R N+1 a ′ (ξ)δW(t) • R 2N [χ 2 (z, ξ, t)ρ 2 (y, z, ξ, t) -χ 1 (z, ξ, t)ρ 1 (y, z, ξ, t)] [Dρ 2 (y, x, ξ, t) m 2 (x, ξ, t) + Dρ 1 (y, x, ξ, t) m 1 (x, ξ, t)]dzdxdydξ,
which can be reorganized as

IIa = R 3N+1 a ′ (ξ)δW(t)• -χ 2 (z, ξ, t)[Dρ 2 (y, z, ξ, t)ρ 2 (y, x, ξ, t) + ρ 2 (y, z, ξ, t)Dρ 2 (y, x, ξ, t)]m 2 (x, ξ, t) +χ 1 (z, ξ, t)[Dρ 1 (y, z, ξ, t)ρ 1 (y, x, ξ, t) + ρ 1 (y, z, ξ, t)Dρ 1 (y, x, ξ, t)]m 1 (x, ξ, t) +χ 2 (z, ξ, t)[Dρ 2 (y, z, ξ, t)ρ 1 (y, x, ξ, t) -ρ 2 (y, z, ξ, t)Dρ 1 (y, x, ξ, t)]m 1 (x, ξ, t) -χ 1 (z, ξ, t)[Dρ 1 (y, z, ξ, t)ρ 2 (y, x, ξ, t) -ρ 1 (y, z, ξ, t)Dρ 2 (y, x, ξ, t)]m 2 (x, ξ, t) dzdxdydξ.
Interpreting the D as a derivative in y, for i = 1, 2, we have y∈R N

[D y ρ i (y, z, ξ, t)ρ i (y, x, ξ, t) + ρ i (y, z, ξ, t)D y ρ i (y, x, ξ, t)]dy = 0, and, for the same reason, after integrating by parts in the two remaining lines, we get

IIa = 2 R 3N+1 a ′ (ξ)δW(t) • χ 2 (z, ξ, t)D y ρ 2 (y, z, ξ, t)ρ 1 (y, x, ξ, t)m 1 (x, ξ, t)
+χ 1 (z, ξ, t)D y ρ 1 (y, z, ξ, t)ρ 2 (y, x, ξ, t)m 2 (x, ξ, t)] dxdydzdξ.

Thus |IIa| ≤ 2|δW(t)| a ′ ∞ Dρ 0 1 ρ 0 1 R N+1 m 1 (x, ξ, t) + m 2 (x, ξ, t) dxdξ. (37) 
We turn next to

IIb = -R N+1 a ′ (ξ) W(t) • R 2N [χ 2 (z, ξ, t)Dρ 2 (y, z, ξ, t) -χ 1 (z, ξ, t)Dρ 1 (y, z, ξ, t)] [ρ 2 (y, x, ξ, t) m 2 (x, ξ, t) -ρ 1 (y, x, ξ, t) m 1 (x, ξ, t)]dz dx dy dξ -R N+1 a ′ (ξ) W(t) • R 2N [χ 2 (z, ξ, t)ρ 2 (y, z, ξ, t) -χ 1 (z, ξ, t)ρ 1 (y, z, ξ, t)]
[Dρ 2 (y, x, ξ, t) m 2 (x, ξ, t) -Dρ 1 (y, x, ξ, t) m 1 (x, ξ, t)]dzdxdydξ.

As before the integrals involving χ 2 m 2 and χ 1 m 1 vanish because they are exact y-derivatives. In addition the terms involving χ 2 m 1 and χ 1 m 2 cancel after integration by parts in y. Hence we conclude that IIb = 0.

Combining ( 35), (36), (37) and (38) we arrive at the estimate

d dt R N+1 R N χ 2 (x, ξ, t)ρ 2 (y, x, ξ, t) -χ 1 (x, ξ, t)ρ 1 (y, x, ξ, t) dx 2 dydξ ≤ d dt R N+1 R N χ 1 (x, ξ, t)ρ 1 (y, x, ξ, t)dx 2 -|χ 1 (y, ξ, t)| dydξ + d dt R N+1 R N χ 2 (x, ξ, t)ρ 2 (y, x, ξ, t)dx 2 -|χ 2 (y, ξ, t)| dydξ +4|δW(t)| a ′ ∞ Dρ 1 Dρ 0 1 R N+1 , m 1 (x, ξ, t) + m 2 (x, ξ, t) dxdξ, (39) 
which is the fundamental inequality that allows us to control the differences between u 1 and u 2 . It remains to "eliminate" the convolution terms in (39) in order to prove (34). To this end, we use the families of (ρ η ) η>0 and (ρ η i ) η>0 given by

ρ η (z) = η -N ρ 0 (η -1 z) and ρ η i (y, x, ξ, t) = ρ η y -x -a(ξ)W i (t) ,
The BV bounds on u 0 1 and u 0 2 yield the existence of a uniform constant C > 0 such that, for i = 1, 2 and all t > 0,

R N+1 R N χ i (x, ξ, t)ρ η i (y, x, ξ, t)dx 2 -|χ i (y, ξ, t)| dydξ = R N+1 R N χ i (x, ξ, t)ρ η (y -x)dx 2 -(χ i (y, ξ, t)) 2 dydξ ≤ C|u 0 i | BV (R N ) η.
For some other uniform constant C 2 > 0, which depends only on the flux, we also have

R N+1 R N χ 2 (x, ξ, t)ρ η 2 (y, x, ξ, t) -χ 1 (x, ξ, t)ρ η 1 (y, x, ξ, t) dx 2 dydξ = R N+1 R N χ 2 (x, ξ, t)ρ η (y -x) -χ 1 (x, ξ, t)ρ η (y -x -a(ξ)δW(t)) dx 2 dydξ = R N+1 [ R N ([χ 2 (x, ξ, t) -χ 2 (y, ξ, t)]ρ η (y -x) -[χ 1 (x, ξ, t) -χ 1 (y, ξ, t)]ρ η (y -x -a(ξ)δW(t)) +[χ 2 (y, ξ, t)ρ η (y -x) -χ 1 (y, ξ, t)ρ η (y -x -a(ξ)δW(t))])dx] 2 dydξ ≥ R N+1 |χ 2 (y, ξ, t) -χ 1 (y, ξ, t)]| 2 dydξ -C R N+1 R N |χ 2 (x, ξ, t) -χ 2 (y, ξ, t)|ρ η (y -x)dxdydξ -C R N+1 R N |χ 1 (x, ξ, t) -χ 1 (y, ξ, t)|ρ η (y -x -a(ξ)δW(t))dxdydξ.
A straightforward integration yields

R N+1 |χ 2 (y, ξ, t) -χ 1 (y, ξ, t)| 2 dydξ = (u 1 -u 2 )(t) L 1 (R N ) ,
while, by a standard convolution estimate, we have

R N+1 R N |χ 2 (x, ξ, t) -χ 2 (y, ξ, t)|ρ η (y -x)dxdydξ ≤ Cη |u 0 2 | BV (R N ) ,
and

R N+1 ( R N |χ 1 (x, ξ, t) -χ 1 (y, ξ, t)|ρ η (y -x -a(ξ)δW(t))dxdydξ = R N+1 R N |χ 1 y -ηz -a(ξ)δW(t), ξ, t -χ 1 (y, ξ, t)|ρ(z)dzdydξ ≤ C(η + a ∞ |δW(t)|) |u 0 1 | BV (R N ) .
Finally it is immediate that

R N+1 R N χ 2 (x, ξ, 0)ρ η 2 (y, x, ξ, 0) -χ 1 (x, ξ, t)ρ η 1 (y, x, ξ, 0) dx 2 dydξ = R N+1 R N (χ 2 (x, ξ, 0) -χ 1 (x, ξ, 0))ρ η (y -x)dx 2 dydξ ≤ (u 1 -u 2 )(0) L 1 (R N )
Integrating (39) with respect to t and using the previous estimates as well as ( 18) we find, for some uniform constant C > 0 which may change from line to line,

(u 1 -u 2 )(t) L 1 (R N ) ≤ (u 1 -u 2 )(0) L 1 (R N ) +C[(η + a |δW(t)|)(|u 0 1 | BV (R N ) + |u 0 2 | BV (R N ) ) +η -1 a ′ t 0 |δW(s)| R N+1 , m 1 (x, ξ, s) + m 2 (x, ξ, s) dxdξ] ≤ (u 1 -u 2 )(t) L 1 (R N ) ≤ (u 1 -u 2 )(0) L 1 (R N ) + C[(η + a |δW(t)|)(|u 0 1 | BV (R N ) + |u 0 2 | BV (R N ) )+ (sup s∈(0,t) |δW|) a ′ [ u 0 1 2 L 2 (R N ) + u 0 2 2 L 2 (R N ) ]]. ( 40 
) Choosing η 2 = sup s∈(0,t) |δW| a ′ [ u 0 1 2 L 2 (R N ) + u 0 2 2 L 2 (R N )
] completes the proof of (34).

5 The proof of Theorem 3.2

In this section we present the

The proof of Theorem 3.2. The existence of a stochastic entropy solution follows easily. Indeed, the estimate of Theorem 4.1 implies that, for every u 0 ∈ (L 1 ∩ L ∞ ∩ BV )(R N ) and for every T > 0, the mapping

W ∈ C([0, T ]; R N ) → u ∈ C [0, T ]; L 1 (R N )
is well defined and uniformly continuous with the respect to the norm of C([0, T ]; R N ). Therefore it has a unique extension to C([0, T ]) by density. Passing to the limit we recover the "contraction" properties (33) and (34) as well as (3.1). Once ( 33) is available for initial data in BV (R N ), the extension to general data is immediate by density.

Next we show that stochastic entropy solutions satisfying (3.1) are intrinsically unique in a stronger sense. The contraction property only proves uniqueness of the solution built by the above regularization process but we can prove that property (32) ensures uniqueness. Indeed, for BV -data the estimates performed in the proof of Theorem 4.1 only use the equality of Definition 3.1. From there the only nonlinear manipulation performed is to say that

1 2 d dt R N+1 R N χ(x, ξ, t)ρ(y, x, ξ, t)dx 2 = R N+1 R N χ(x, ξ, t)ρ(y, x, ξ, t)dx d dt R N+1
R N χ(x, ξ, t)ρ(y, x, ξ, t)dx . This is well justified after time regularization by convolution because we have assumed that solutions belong to C [0, T ); L 1 (R N ) for all T > 0. This fact also allows to justify that the right hand side

R N+1 R N χ(x, ξ, t)ρ(y, x, ξ, t)dx R N+1 R N χ(z, ξ, t)ρ(y, z, ξ, t)dz R N ρ(y, x, ξ, t)m ξ (x, ξ, t) dx
can be analyzed by usual integration by parts because it is possible to add a convolution in ξ before forming the square. All these technicalities are standard and have been detailed in [START_REF] Perthame | Uniqueness and error estimates in first order quasilinear conservation laws via the kinetic entropy defect measure[END_REF][START_REF] Perthame | Kinetic formulation of conservation laws[END_REF]. The uniqueness for general data requires one more layer of approximation.

The semilinear problem

It is natural to expect that the approach developed earlier will also be applicable to the semilinear problem [START_REF] Lasry | Jeux des champ moyen. I. Le cas stationnaire[END_REF] to yield a pathwise theory of stochastic entropy solutions. It turns out however, as we explain below, that this not the case.

To keep things simple here we assume that W = t and W = W ∈ C([0, ∞); R) is a single rough path, and consider, for Φ ∈ C 2 (R; R), the problem

   du + divA(u)dt = Φ(u) • dW in R N × (0, ∞), u = u 0 on R N × {0}. ( 41 
)
Following the earlier considerations as well as analogous problem for Hamilton-Jacobi equations ( [START_REF] Lions | Fully nonlinear stochastic pde with semilinear stochastic dependence[END_REF] we assume that, for each v ∈ R and T > 0, the initial value problem    dΨ = Φ(Ψ) • d W in (0, ∞), 

Ψ(0) = v, (42) 
According to [START_REF] Lions | Fully nonlinear stochastic pde with semilinear stochastic dependence[END_REF], to study (41) it is natural to consider a change of unknown given by the Doss-Sussman-type transformation u(x, t) := Ψ(v(x, t), t).

Assuming for a moment that W and, hence, Ψ are smooth with respect to t and (41) and ( 42) have classical solutions we find, after a straightforward calculation, that

   v t + div Ã(v, t) = 0 in R N × (0, T ), v = u 0 on R N × {0}, (45) 
where à ∈ C 1,0 (R × [0, T ]) is given by Ã′ (v, t) = A ′ (Ψ(v, t)).

Under the above assumptions on the flux and the forcing term, the theory of entropy solutions of scalar conservation applies to (45) and yields the existence of a unique entropy solution.

Hence, exactly as in [START_REF] Lions | Fully nonlinear stochastic pde with semilinear stochastic dependence[END_REF], it is tempting to define u ∈ (L 1 ∩ L ∞ )(R N × (0, T )), for all T > 0, to be a pathwise stochastic entropy solution of (41) if v ∈ (L 1 ∩ L ∞ )(R N × (0, T )) defined, for all T > 0, by (44) is an entropy solution of (45). We show next that this is not the case. We begin explaining the difficulty which is best seen when adding a small viscosity ν to (41), and, hence, considering the approximate equation

u t + divA(u) = Φ(u) • dW + ν∆u,
and, after the transformation (44), the problem v t + a Ψ(v(x, t), t) .∇v = ν Ψ v (v(x, t), t) ∆Ψ(v(x, t), t)

= ν∆v + ν( Ψ vv Ψ v )(v(x, t), t)|∇v| 2 .
If the approach based on (44) were correct, one would expect to get, after letting ν → 0, (rigorously) (45). This, however, does not seem to be the case due to the lack of the necessary a priori bounds to pass in the limit. The problem is, however, not just a technicality but something deeper. Indeed the transformation (44) does not, in general, preserve the shocks unless, as an easy calculation shows, the forcing is linear.
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  admits a unique solutionΨ(v; •) ∈ C([0, T ]; R) such that, for all t ∈ [0, T ], Ψ(•, t) ∈ C 1 (R; R).

Indeed assume that N = 1 and W (t) = t and consider the semilinear Burger's equation

with Φ such that Φ(0) = 0, Φ(1) = 0, and Φ(u

It is easily seen that the entropy solution of (47) is

Next we perform the transformation u = Ψ(v, t) with

Since, in view of (48),

we find that the flux for the equation for v is

and the entropy solution with initial data u 0 is v(x, t) = H(x -x(t)) with the Rankine-Hugoniot condition

It is, therefore, clear that the shock waves are not preserved.

We conclude with another reason why it is more natural to consider contractions in L 1 (R N ×Ω) instead of L 1 (R N ) a.s. in ω for [START_REF] Lasry | Jeux des champ moyen. I. Le cas stationnaire[END_REF]. To fix the ideas we take A = 0 and we consider the initial value problem (stochastic de)

It u 1 , u 2 are solutions to (49) with initial data u 0 2 , u 0 2 respectively, then, subtracting the two equations, multiplying by sign ± (u 1 -u 2 ), taking expectations and using Ito-calculus, we find, for some C > 0 depending on bounds on Φ and its derivatives,

while it is not possible, in general, to get an almost sure inequality on | u 1 (•, t; ω) -u 2 (•, t, ω)|.