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The cut-tree of large recursive trees

Jean Bertoin∗

Abstract

Imagine a graph which is progressively destroyed by cutting its edges one after the other

in a uniform random order. The so-called cut-tree records key steps of this destruction

process. It can be viewed as a random metric space equipped with a natural probability

mass. In this work, we show that the cut-tree of a random recursive tree of size n,

rescaled by the factor n−1 lnn, converges in probability as n → ∞ in the sense of Gromov-

Hausdorff-Prokhorov, to the unit interval endowed with the usual distance and Lebesgue

measure. This enables us to explain and extend some recent results of Kuba and Panholzer

[15] on multiple isolation of nodes in random recursive trees.

Key words: Random recursive tree, destruction of graphs, Gromov-Hausdorff-Prokhorov

convergence, multiple isolation of nodes.

1 Introduction and main statements

Imagine that we destroy some connected graph G = (V,E) by cutting its edges one after the

other and uniformly at random. Meir and Moon initiated the study of the number of steps

required to isolate a distinguished vertex, if at each time when a cut induces a further discon-

nection, the connected component which does not contain the distinguished vertex is discarded

forever (in other words, one only takes into account the cuts occurring in the connected com-

ponent of the distinguished vertex). More precisely, Meir and Moon estimated the first and

second moments of this quantity in the cases when G is a Cayley tree [17] and a recursive

tree [18]. In the last 10 years or so, several weak limit theorems for the number of cuts have

been obtained for Cayley trees (Panholzer [19, 20]), complete binary trees (Janson [12]), simply
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Email: jean.bertoin@math.uzh.ch

1



generated trees (Janson [13]), recursive trees (Drmota et al. [5], Iksanov and Möhle [6]), binary

search trees (Holmgren [10]) and split trees (Holmgren [11]).

More recently, some authors have considered a more general version of this problem in which

one is now interested in the number of cuts needed to isolate ℓ ≥ 2 distinguished vertices, again

discarding the connected components which contain no distinguished points as soon as they are

created. See Bertoin [2] and Addario-Berry et al. [1] for Cayley trees, Bertoin and Miermont [4]

for simply generated trees, and Kuba and Panholzer [15] for recursive trees. More precisely, the

approach of [2] and [4] relies on the study of the so-called cut-tree (which will be defined below)

whereas [15] uses moment calculations. In short, the present work explains and extends some

results of Kuba and Panholzer by describing a limit theorem for the cut-tree of large recursive

trees.

The cut-tree Cut(G) is a random binary rooted tree1, whose purpose is to record key informa-

tions about the destruction of the graph G. Its nodes correspond to the blocks, i.e. connected

components of V , which appear during the destruction process. In particular Cut(G) is rooted

at the block V , and its leaves (which correspond to singleton blocks) can be identified with the

vertices in V . The basic structure is that each time a block B is split into two sub-blocks B′

and B′′ (because a pivotal edge of B is cut), then we think of B′ and B′′ as the two children of

B. Figure 1 below should provide a useful illustration of this definition.

Cut-trees can be especially useful when the graph G is itself a tree, a case on which we shall

now focus, as then each cut of an edge induces the split of some block. So assume henceforth

that G = T is a tree; it should be clear that the number of cuts required to isolate a given

vertex v in the destruction of T corresponds precisely to the height of the leaf {v} in Cut(T ).

More generally, the number of cuts required to isolate k vertices v1, . . . , vk coincides with the

total length of the cut-tree reduced to its root and the k leaves {v1}, . . . , {vk}, where the length

is measured as usual by the graph distance on Cut(T ).

We now introduce the family of (random) trees which we are interested in. Recall that a

tree T on a totally ordered set of n vertices, say [n] = {1, . . . , n}, is called increasing when the

sequence of vertices along any segment started from 1 increases. There are (n− 1)! increasing

trees on [n], and a random recursive tree of size n, Tn, is an increasing tree on [n] picked

uniformly at random. A recent result due to Kuba and Panholzer (Theorem 3 in [15]) shows

that for every fixed ℓ ≥ 1, if given Tn, we select ℓ vertices of Tn uniformly at random and

independently of the destruction process, then the number of cuts needed to isolate these ℓ

vertices, normalized by a factor n−1 lnn, converges in distribution as n → ∞ towards a beta

variable with parameter ℓ and 1. The motivation of the present work is to point out that this

1We stress that [4] uses a slight variation of the present definition.
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result can be viewed as a consequence of a more general limit theorem for the cut-tree Cut(Tn).
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Figure 1

Left: Tree T with vertices labelled a,...,i; edges are enumerated in order of the cuts.

Right: Cut-tree Cut(T ) on the set of blocks recording the destruction of T .

To give a formal statement, we consider the set of pointed metric spaces equipped with a

probability measure, and its equivalence classes induced by measure-preserving isometries. It

is well-known that this yields a polish space M when equipped the pointed Gromov-Hausdorff-

Prokhorov distance d∗
GHP. We refer to e.g. Gromov [8], Greven et al. [7], Haas and Miermont

[9] and references therein for background.

We denote by I the element of M corresponding to the unit interval [0, 1], pointed at 0 and

equipped with the usual distance and the Lebesgue measure. It is convenient to agree that, if

X is a pointed metric measured space and a > 0, then aX denotes the same space endowed

with the same measure, but with a distance rescaled by the factor a. Using naturally the graph

distance on Cut(T ) and its root V as a distinguished point, and further endowing Cut(T ) with

the uniform probability measure on its set of leaves, we view of Cut(T ) as a random variable

with values in M. The main object of interest in the present paper is the sequence of random

variables Cut(Tn) in M, with Tn a random recursive tree of size n.

It is interesting to recall from [2] that when τn is a Cayley tree of size n, then n−1/2Cut(τn)
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converges in distribution to a Brownian Continuum Random Tree, in the sense of Gromov-

Hausdorff-Prokhorov. This has been extended in [4] to a large family of simply generated trees,

except that the convergence is then only established in the sense of Gromov-Prokhorov. We

also mention that Haas and Miermont [9] have obtained deep limit theorems for a large class of

(rescaled) Markov branching trees. Even though, thanks to the splitting property, Cut(Tn) is

a Markov branching tree, the results of Haas and Miermont do not apply to the present case,

cf. the discussion in the last section of [3].

Theorem 1 As n → ∞, the sequence n−1 lnnCut(Tn) converges in probability to I, in the

sense of the pointed Gromov-Hausdorff-Prokhorov distance on M.

Remark. An informal version of Theorem 1 was alluded to in the last paragraph of [3]; more

precisely it was written there: “It is easy to deduce from the approach developed in the present

work that if we rescale the edge-lengths of Cut(Tn) by a factor n−1 lnn, then the sequence of

rescaled random trees converges in probability to a degenerate deterministic real tree which can

be identified as the unit interval [0, 1]. Details are left to the interested reader.” A couple of

years later, it seems to the author that, despite of this rather blunt claim, providing a rigorous

proof may nonetheless have some interest as the arguments are not entirely straightforward.

We now present the consequence of Theorem 1 to the number of cuts needed to isolate a fixed

number of distinguished vertices, which has motivated the present work. For a fixed integer

ℓ ≥ 1 and for each integer n, let u
(n)
1 , . . . , u

(n)
ℓ denote a sequence of i.i.d. uniform variables in

[n] = {1, . . . , n}. We write Yn,ℓ for the number of random cuts which are needed to isolate

u
(n)
1 , . . . , u

(n)
ℓ . The following corollary is a multi-dimensional extension of Theorem 3 of Kuba

and Panholzer [15].

Corollary 1 As n → ∞, the random vector

(

lnn

n
Yn,1, . . . ,

lnn

n
Yn,ℓ

)

converges in distribution to

(u1,max(u1, u2), . . . ,max(u1, . . . , uℓ))

where u1, . . . , uℓ are i.i.d. random variables with the uniform distribution on [0, 1]. In particular,
lnn
n
Yn,ℓ converges in distribution to a beta variable with parameters ℓ and 1.

Much in the same vein, Theorem 2 of Kuba and Panholzer shows that if Ln,ℓ denotes the

number of random cuts which are needed to isolate the ℓ last vertices of Tn, viz. n−ℓ+1, . . . , n,
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then lnn
n
Ln,ℓ converges in distribution to a beta variable with parameters ℓ and 1. We claim

the following multi-dimensional extension.

Corollary 2 As n → ∞, the random vector

(

lnn

n
Ln,1, . . . ,

lnn

n
Ln,ℓ

)

converges in distribution to

(u1,max(u1, u2), . . . ,max(u1, . . . , uℓ))

where u1, . . . , uℓ are i.i.d. random variables with the uniform distribution on [0, 1].

The rest of this work is organized as follows. In Section 2, as a preparatory step, we shall

describe precisely the decomposition Cut(Tn) into its trunk and its branches, which may be

viewed as the analog of the celebrated backbone decomposition for Galton-Watson trees; see

Lyons et al. [16]. Our guiding line is similar to that in [3], and relies crucially on a coupling

due to Iksanov and Möhle [6] that connects the destruction of random recursive trees with

a remarkable random walk. Then Theorem 1 and Corollaries 1 and 2 will be established in

Section 3. For the sake of clarity, we will consider the metric and the measure aspects separately.

Roughly speaking, the key point is to prove that, from the point of view of metric spaces, the

branches are small compared to the trunk when n → ∞.

2 Cut-tree, its trunk and its branches

2.1 The trunk

We start by considering the segment of Cut(Tn) from the root [n] to the leaf {1} (recall that

Tn is naturally rooted at 1). This segment is given by a nested sequence of blocks

Bn,0 := [n] ⊃ Bn,1 ⊃ · · · ⊃ Bn,ζ(n) = {1} ,

where ζ(n) is height of {1} in Cut(Tn), or equivalently the number of cuts which are needed

to isolate the vertex 1 in the destruction of Tn. At the heart of our argument lies the fact that

the statistics of the block-sizes along a main portion of that segment have a simple description

in terms of a remarkable random walk.
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In this direction, introduce first an integer-valued random variable ξ with distribution

P(ξ = k) =
1

k(k + 1)
, k = 1, 2, . . . ,

and then a random walk

Sj = ξ1 + · · ·+ ξj , j = 1, 2, . . .

where the ξi are i.i.d. copies of ξ. Introduce also the last passage time

λ(n) = max{j ≥ 1 : Sj < n} .

We shall need the following elementary features.

Lemma 1 (i) We have

lim
n→∞

lnn

n
λ(n) = 1 in probability.

(ii) Further, the random point measure

∑

1≤j≤λ(n)+1

δ lnn
n

ξj
(dx)

converges in distribution on the space of locally finite measures on (0,∞] endowed with the

vague topology towards to a Poisson random measure with intensity x−2dx.

Proof: The first claim derives immediately from Proposition 2 in [6], which provides a finer

limit theorem for λ(n) + 1, the first passage time of the random walk S above level n. The

second follows then from the law of rare events, as the number of indices j ≤ k such that

ξj > an/ lnn has the binomial distribution with parameters k and ⌈an/ lnn⌉−1. See Theorem

16.16 in Kallenberg [14]. �

Our next lemma is a consequence of a remarkable coupling by Iksanov and Möhle [6], which

they used to explain the asymptotic behavior established in [5] for number ζ(n) of random cuts

needed to isolate the root 1 of a large recursive tree. The present statement is essentially a

reformulation of Lemma 2 in [3].

Lemma 2 One can construct on the same probability space a random recursive tree Tn with

size n and its destruction process, together with a version of the random walk S such that the

following hold:

(i) The height ζ(n) of the leaf {1} in Cut(Tn) is bounded from below by λ(n),
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(ii) There is the identity

(|Bn,0|, |Bn,1|, . . . , |Bn,λ(n)|) = (n, n− S1, . . . , n− Sλ(n)) .

We shall henceforth work in the framework of this coupling, in the sense that we shall

implicitly assume that the recursive tree Tn and its destruction process are indeed coupled with

the random walk S as in Lemma 2. The segment
[

Bn,0, Bn,λ(n)−1

]

of Cut(Tn) will be called the

trunk and denoted by Trunk(Tn). We next turn our attention to the branches of Cut(Tn), i.e.

the components corresponding to the complement of the trunk.

Bn,0 = [n]

B
′

n,1 Bn,1

B
′

n,2 Bn,2

{1}

Trunk(Tn)

Bn,λ(n)−1

B
′

n,λ(n)
Bn,λ(n) = B

′

n,λ(n)+1

Figure 2

Cut(Tn), its trunk and its branches
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2.2 The branches

We introduce the blocks

B′
n,1 = Bn,0\Bn,1 , . . . , B′

n,λ(n) = Bn,λ(n)−1\Bn,λ(n)

and also agree that

B′
n,λ(n)+1 = Bn,λ(n) .

Note that there are the identities and the bound

|B′
n,j| = ξj for 1 ≤ j ≤ λ(n), and |B′

n,λ(n)+1| ≤ ξλ(n)+1. (1)

Further Bn,j and B′
n,j are the two children of Bn,j−1 in Cut(Tn); see Figure 2 above.

Plainly, the blocks B′
n,j for j = 1, . . . , λ(n) + 1 form a partition of [n] into connected com-

ponents (for the tree Tn), and we write T ′
n,j for the subtree of Tn restricted to B′

n,j. It will be

convenient to introduce the following terminology. For an arbitrary block B of [n] with size

k ≥ 1, we call canonic relabeling of vertices the bijective map from B to [k] which preserves

the order, i.e. the map which assigns to a vertex v ∈ B its rank in B. Plainly the canonic

relabeling transforms canonically an increasing tree on B into an increasing tree on [k].

The following lemma stems from the important splitting property of random recursive trees

(called also randomness preservation property in Kuba and Panholzer [15]); see Lemma 1 in

[3].

Lemma 3 Conditionally on the sizes

|B′
n,1| = k1, . . . , |B

′
n,λ(n)+1| = kλ(n)+1 ,

and upon canonic relabeling of vertices, the subtrees T ′
n,j for j = 1, . . . , λ(n)+1 are independent

random recursive trees on [k1], . . . , [kλ(n)+1], respectively.

For j = 1, . . . , λ(n) + 1, we write Cut(T ′
n,j) for the cut-tree of T ′

n,j obtained by restricting

the destruction process of Tn to T ′
n,j. Observe that during this restricted destruction process,

the edges of T ′
n,j are indeed cut in a uniform random order, so this notation is consistent with

the preceding. We think of Cut(T ′
n,j) as the j-th branch of Cut(Tn), in the sense that it is the

sub-tree that stems from the Trunk(Tn) at at height j − 1; see Figure 2 above. We also stress

that Cut(T ′
n,j) is connected to the trunk by an edge between the root B′

n,j of Cut(T
′
n,j) and its

parent Bn,j−1 ∈ Trunk(Tn).
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Lemma 4 Conditionally on the sizes

|B′
n,1| = k1, . . . , |B

′
n,λ(n)+1| = kλ(n)+1 ,

and upon canonic relabeling of vertices, the branches Cut(T ′
n,j), for j = 1, . . . , λ(n) + 1, are

independent, and each Cut(T ′
n,j) has the same distributions as the cut-tree of a random recursive

tree on [kj].

Proof: Indeed, given the subtrees T ′
n,1, . . . , T

′
n,λ(n)+1, the destruction processes restricted to

T ′
n,1, . . . , T

′
n,λ(n)+1 are independent (imagine that each edge of Tn is cut at an independent expo-

nential time with parameter 1, and then use basic properties of sequences of i.i.d. exponential

variables). The statement now follows from Lemma 3. �

3 Proofs of the main results

The purpose of this section is to prove Theorem 1 and Corollaries 1 and 2. In this direction,

we shall establish the convergence of the rescaled version of Cut(Tn) to I, first in the sense of

Gromov-Hausdorff, and then in the sense of Gromov-Prokhorov. In both cases, the key issue

is to check that the branches of Cut(Tn) are asymptotically small compared to the trunk.

3.1 Hausdorff distance

We write dH (respectively, d∗GH) for the Hausdorff (respectively, pointed Gromov-Hausdorff)

distance. We aim at showing that

lim
n→∞

d∗GH

(

lnn

n
Cut(Tn), I

)

= 0 in probability, (2)

where I = [0, 1] is equipped with the usual distance and pointed at 0. As Trunk(Tn) is merely

a segment with length λ(n), it follows immediately from Lemma 1(i) that

lim
n→∞

d∗GH

(

lnn

n
Trunk(Tn), I

)

= 0 in probability.

Therefore, in order to prove (2), it suffices to establish that the whole Cut(Tn) remains in a

relatively small neighborhood of Trunk(Tn), namely that

dH (Cut(Tn),Trunk(Tn)) = o (n/lnn) in probability.
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In turn, the former is a consequence of the fact that the branches of Cut(Tn) are asymptotically

small compared to the trunk, see Proposition 1 below.

In order to make a formal statement, it is convenient to write Depth(T ) for the depth of a

rooted tree T , that is the maximal distance from the roof to a leaf of T .

Proposition 1 We have

max
1≤j≤λ(n)+1

Depth(Cut(T ′
n,j)) = o (n/lnn) in probability.

The proof of Proposition 1 requires first the following crude estimate.

Lemma 5 For every fixed ε, a > 0 and every n ∈ N, set

p(ε, a, n) = sup
k≤an/ lnn

P (Depth(Cut(Tk)) > εn/ lnn) ,

where Tk stands for a random recursive tree on [k]. Then

lim
n→∞

p(ε, a, n) = 0

Proof: From the decomposition of Cut(Tk) along its trunk and the fact that the depth of the

cut-tree of any tree T is bounded from above by the number of edges of T , we see from (1) that

Depth(Cut(Tk)) ≤ λ(k) + max{ξj : 1 ≤ j ≤ λ(k) + 1}.

Our claim follows now easily from Lemma 1. �

We can now establish Proposition 1.

Proof: For b > 0, set

N(b, n) = Card{j ≤ λ(n) + 1 : ξj > bn/ lnn} .

Then fix ε > 0. Using again the fact that the depth of the cut-tree of any tree T cannot exceed

the number of edges of T , we see that the event that Depth(Cut(T ′
n,j)) > εn/ lnn can only

occur when |B′
n,j| > εn/ lnn. It follows from Lemma 4 that

P

(

max
1≤j≤λ(n)+1

Depth(Cut(T ′
n,j)) > εn/ lnn

)
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can be bounded from above by

mp(ε, a, n) + P (N(ε, n) > m) + P (N(a, n) ≥ 1) .

where m ∈ N and a > 0 are arbitrary.

Next fix η > 0. Thanks to Lemma 1, for every fixed ε > 0, we may find m and a sufficiently

large so that

lim
n→∞

P (N(ε, n) > m) ≤ η/2 and lim
n→∞

P (N(a, n) ≥ 1) ≤ η/2.

Then using Lemma 5, we conclude that

lim sup
n→∞

P

(

max
1≤j≤λ(n)+1

Depth(Cut(T ′
n,j)) > εn/ lnn

)

≤ η ,

which establishes our claim. �

3.2 Prokhorov distance

We now endow Cut(Tn) with the uniform probability measure µn on its leaves, I = [0, 1] with

the Lebesgue measure, and aim at proving that

lim
n→∞

d∗GP

(

lnn

n
Cut(Tn), I

)

= 0 in probability, (3)

where d∗GP stands for the pointed Gromov-Prokhorov distance and Cut(Tn) and I are pointed

respectively at [n] and 0.

In this direction, it is convenient to equip Trunk(Tn) with the probability measure

νn(Bn,j) = n−1|B′
n,j+1| for j = 0, 1, . . . , λ(n)− 2

and

νn(Bn,λ(n)−1) = n−1(|B′
n,λ(n)|+ |B′

n,λ(n)+1|).

In words, νn is the image of µn by the projection proj : Cut(Tn) → Trunk(Tn), i.e. the map

which associates to each node of Cut(Tn) its closest ancestor on the trunk. Proposition 1

shows that the maximal distance on the rescaled cut-tree lnn
n
Cut(Tn) between a leaf v and its

11



projection proj(v) tends to 0 in probability as n → ∞, and this entails that

lim
n→∞

d∗GP

(

lnn

n
Cut(Tn),

lnn

n
Trunk(Tn)

)

= 0 in probability.

The proof of (3) is now reduced to checking the following.

Proposition 2 We have

lim
n→∞

d∗GP

(

lnn

n
Trunk(Tn), I

)

= 0 in probability.

Proof: It is convenient to view the rescaled segment lnn
n
Trunk(Tn) as a (random) subset of

[0,∞), using the obvious embedding

Bn,j 7→
lnn

n
j for j = 0, 1, . . . , λ(n)− 1.

Then write Fn for the distribution function of νn, specifically,

Fn(x) =
∑

0≤j≤⌊ n
lnn

x⌋

|B′
n,j+1| when

⌊ n

lnn
x
⌋

< λ(n)− 1

and

Fn(x) = 1 when
⌊ n

lnn
x
⌋

≥ λ(n)− 1.

Next, observe from Lemma 1 that the random walk S fulfills the weak law of large numbers

lim
n→∞

n−1 lnnSn = 1 in probability.

A standard argument (cf. Theorem 15.17 in Kallenberg [14]) enables us to reinforce the pre-

ceding to uniform convergence. Namely, for every t ≥ 0

lim
n→∞

sup
0≤u≤t

∣

∣n−1 lnnS⌊nu⌋ − u
∣

∣ = 0 in probability.

It follows now readily from (1) that

lim
n→∞

sup
x≥0

|Fn(x)− x ∧ 1| = 0 in probability,

that is νn, viewed as a random probability measure on [0,∞), converges in probability to the

12



Lebesgue measure on [0, 1], on the space of probability measures on [0,∞) endowed with the

weak convergence. This yields our claim. �

3.3 Proof of Corollary 1

The proof of Corollary 1 only requires the convergence of lnn
n
Cut(Tn) to the unit interval in the

sense of Gromov-Prokhorov, that is (3).

Let u
(n)
1 , . . . , u

(n)
ℓ denote ℓ independent uniform vertices of Tn, so the singletons {u

(n)
1 }, . . . , {u

(n)
ℓ }

form a sequence of ℓ i.i.d. blocks of Cut(Tn) distributed according to µn. Let also u1, . . . , ul be

a sequence of ℓ i.i.d. uniform variables on the unit interval I. Denote by Rn,ℓ the reduction of

Cut(Tn) to the ℓ leaves {u
(n)
1 }, . . . , {u

(n)
ℓ } and its root [n], i.e. Rn,ℓ is the smallest subtree of

Cut(Tn) which connects these nodes. Similarly, write Rℓ for the reduction of I to u1, . . . , ul and

the origin 0. Both reduced trees are viewed as combinatorial trees structures with edge lengths,

and (3) implies that n−1 lnnRn,ℓ converges in distribution to Rℓ as n → ∞. In particular,

focussing on the lengths of those reduced trees, there is the weak convergence

lim
n→∞

(

lnn

n
|Rn,1|, . . . ,

lnn

n
|Rn,ℓ|

)

= (|R1|, . . . , |Rℓ|) in distribution.

It suffices then to observe that for the unit interval,

(|R1|, . . . , |Rℓ|) = (u1,max{u1, u2}, . . . ,max{u1, . . . , uℓ}).

3.4 Proof of Corollary 2

If we write v
(n)
1 , . . . , v

(n)
ℓ for the parents of n, . . . , n − ℓ + 1 in Tn, then v

(n)
1 , . . . , v

(n)
ℓ are inde-

pendent and v
(n)
j has the uniform distribution on [n − j]. The distribution of v

(n)
1 , . . . , v

(n)
ℓ is

thus close (in the sense of total variation) to that of u
(n)
1 , . . . , u

(n)
ℓ , a sequence of ℓ i.i.d. uniform

vertices in [n], and it follows that the numbers Y ′
n,ℓ of cuts needed to isolate v

(n)
1 , . . . , v

(n)
ℓ has

the same asymptotic behavior in law as Yn,ℓ.

On the other hand, the vertices n, . . . , n− ℓ+ 1 are leaves of Tn with high probability when

n is large, and in that case, the numbers Ln,ℓ of cuts required to isolate n, . . . , n − ℓ + 1 is

plainly bonded from above by Y ′
n,ℓ. According to Theorems 2 and 3 in [15], both n−1 lnnLn,ℓ

and n−1 lnnYn,ℓ converge in distribution to a beta variable with parameters ℓ and 1, and it

13



follows from the preceding observations that as a matter of fact

lim
n→∞

lnn

n

(

Y ′
n,ℓ − Ln,ℓ

)

= 0 in probability.

Thus our claim now follows from Corollary 1.
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