N

HAL

open science

Regular Temporal Cost Functions

Thomas Colcombet, Denis Kuperberg, Sylvain Lombardy

» To cite this version:

Thomas Colcombet, Denis Kuperberg, Sylvain Lombardy. Regular Temporal Cost Functions. Inter-
national Colloquium on Automata, Languages and Programming (ICALP), 2010, Bordeaux, France.

pp.563-574. hal-00859355

HAL Id: hal-00859355
https://hal.science/hal-00859355

Submitted on 6 Sep 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-00859355
https://hal.archives-ouvertes.fr

Regular Temporal Cost Functions

Thomas Colcombet!, Denis Kuperberg!, Sylvain Lombardy?

! Liara/CNRS/Université Paris 7, Denis Diderot, France
2 LieM - Université Paris-Est Marne-la-Vallée, France

Abstract. Regular cost functions have been introduced recently as an exten-
sion to the notion of regular languages with counting capabilities, which retains
strong closure, equivalence, and decidability properties. The specificity of cost
functions is that exact values are not considered, but only estimated.

In this paper, we study the strict subclass of reqular temporal cost functions.
In such cost functions, it is only allowed to count the number of occurrences of
consecutive events. For this reason, this model intends to measure the length of
intervals, i.e., a discrete notion of time. We provide various equivalent represen-
tations for functions in this class, using automata, and ‘clock based’ reduction
to regular languages. We show that the conversions are much simpler to obtain,
and much more efficient than in the general case of regular cost functions.

Our second aim in this paper is to use temporal cost function as a test-case for
exploring the algebraic nature of regular cost functions. Following the seminal
ideas of Schiitzenberger, this results in a decidable algebraic characterization of
regular temporal cost functions inside the class of regular cost functions.

1 Introduction

Since the seminal works of Kleene [Kle56] and Rabin and Scott [RS59], the theory of
regular languages is one of the cornerstones in computer science. Regular languages have
many good properties, of closure, of equivalent characterizations, and of decidability,
which makes them central in many situations.

Recently, the notion of regular cost function for words has been presented as a
candidate for being a quantitative extension to the notion of regular languages [Col09¢],
while retaining most of the fundamental properties of the original theory such as the
closure properties, the various equivalent characterizations, and the decidability. A
cost function is an equivalence class of the functions from the domain (words in our
case) to N, modulo an equivalence relation ~ which allows some distortion, but
preserves the boundedness property over each subset of the domain. The model is an
extension to the notion of languages in the following sense: one can identify a language
with the function mapping each word inside the language to 0, and each word outside
the language to co. It is a strict extension since regular cost functions have counting
capabilities, e.g., counting the number of occurrences of letters, measuring the length
of intervals, etc...

Related works and motivating examples

Regular cost functions are the continuation of a sequence of works that have intended
to solve difficult questions in language theory. The prominent example is the star-
height problem: given a regular language L and an integer k, decide whether L can be
expressed using a regular expression using at most k-nesting of Kleene stars. It was
raised by Eggan in 1963 [Egg63], but solved only 25 years later by Hashigughi using

a very intricate proof [Has88]. An improved and self-contained proof has been more
recently proposed by Kirsten [Kir05]. The two proofs work along the same lines: show
that the original problem can be reduced to the existence of a bound over some function
from words to integers. This function can be represented using an automaton that have
counting features (a distance automaton for Hashiguchi, and a nested distance desert
automaton for Kirsten). The proof is concluded by showing that such boundedness
problems are decidable.

Other decision problems can also be reduced to boundedness questions over words:
in language theory the finite power property [Sim78,Has79] and the finite substitution
problem [Bal04,Kir04], and in model theory the boundedness problem of monadic formu-
las over words [BOWO09]. Distance automata are also used in the context of databases
and image compression. Automata similar to the ones of Kirsten have also been intro-
duced independently in the context of verification [AKY08].

Finally, using also ideas inspired from [BC06], the theory of those automata over
words has been unified in [Col09¢|, in which cost functions are introduced, and suitable
models of automata, algebra, and logic for defining them are presented and shown
equivalent. Corresponding decidability results are provided. The resulting theory is a
neat extension of the standard theory of regular languages to a quantitative setting.
All the limitedness problems from the literature appear as special instances of those
results, as well as all the central results known for regular languages.

Contributions

We introduce the subclass of regular temporal cost functions. Regular temporal cost
functions are regular cost functions in which one can only count consecutive events: for
instance, over the alphabet {a, b}, the maximal length of a sequence of consecutive let-
ter a’s is temporal, while the number of occurrences of letter a is not. This corresponds
to the model of desert automata introduced by Kirsten [Kir04]. We believe that the
notion of regular temporal cost function is of interest in the context of modelization of
time.

We show that regular temporal cost functions admit various equivalent presenta-
tions. The first such representation is obtained as a syntactic restriction of B-automata
and S-automata (the automata used for describing regular cost functions [Col09c]). Sec-
ond, we provide an equivalent clock-based presentation, in which the regular temporal
cost functions is represented as a regular language over words labeled with the ticks of
a clock as an extra information. We show all the closure results for regular temporal
cost functions (e.g., min, max, etc...) using this presentation. As opposed to the general
theory of regular cost functions, all those results are obtained by a translation to the
theory of regular languages. This results in constructions of better complexity, both in
terms of number of states of automata, and in terms of technicality of the constructions
themselves. Last but not least, while in the general theory of regular cost functions the
error committed during the construction is bounded by a polynomial, it is linear for
regular temporal cost functions.

Our second contribution is an algebraic characterization of this class. It is known
from [Col09c] that regular cost functions are the one recognizable by stabilization
monoids. This model of monoids extends the standard approach for languages. One of
our objectives in studying regular temporal cost function was to validate the interest
of this algebraic approach, and show that results similar to the famous Schiitzenberger
theorem on star-free languages [Sch65] were possible. We believe that we succeeded
in this direction, since we are able to algebraically characterize the class of regular
temporal cost functions, and furthermore that this characterization is effective.

Organisation of the paper

After some notations, we present cost functions and cost automata in Section 2, and
introduce the subclass of regular temporal cost functions. In Section 3 we propose
a clock-based presentation to temporal cost functions, and advocate some of its ad-
vantages. In Section 4 we present the algebraic formalism and sketch our algebraic
characterization for regular temporal cost functions. We finally conclude.

Notations

We will note N the set of non-negative integers and N, the set N U {oco}, ordered
by 0 <1< ---<oo. If Eis aset, BV is the set of infinite sequences of elements of £
(we will not use here the notion of infinite words). Such sequences will be denoted by
bold letters (a, b,...). We will work with a fixed finite alphabet A. The set of words
over A is A*. The empty word ¢, and AT = A* \ {e}. The concatenation of words u
and v is uv.The length of u is |u|. The number of occurrences of letter a in u is |u|,. We
will note inf £ and sup E the lower and upper bounds of a set £ C N, in particular
inf) = oo and sup) = 0.

2 Regular cost functions

The theory of regular cost functions has been proposed in [Col09c|. In this section, we
review some of the definitions useful for the present paper.

2.1 Basics on cost functions

The principle of cost functions is to consider functions modulo an equivalence relation ~
allowing some distortions of the values. This distortion is controlled using a parameter
(a, @/, 1 ...) which is a mapping from N to N such that a(n) > n for all n, called the
correction function. For z,y € Ny, £ <4 y means that either z and y are in N and
z < a(y), or y = oo. It is equivalent to write that z < a(y) in which we implicitly
extend o to Ny, by a(co) = co. For all sets F, <, is naturally extended to mappings
from F to Ny, by f<ag if f(2) <o g(z) for all x € E, or equivalently if f < cvog (using
the same explicit extension of o). The intuition here is to consider that g dominates f
up to a ‘stretching factor’ @. We note f =, g if f <o g and g <, f. Finally, we note
f=<g (resp. frg) if f <4 g (resp. f =4 g) for some a. A cost function (over a set F) is
an equivalence class of ~ among the set of functions from F to N.
The relation < has other characterizations:

Proposition 1 For all functions f,g: E — N, the following items are equivalent:

- f < g;
— For all X C E, g bounded over X implies f bounded over X.

The last characterization shows that ~ preserves the existence of bounds.

To each subset X C FE, one associates its characteristic mapping xx from F to N
which to x associates 0 if z € X, and oo otherwise. It is easy to see that X C Y
iff xx = xv. In this way, the notion of cost functions can be seen as an extension to
the notion of language.

2.2 Cost-Automata

In this section, we will describe how some functions from A* to N, can be accepted
by certain forms of automata using counters of value ranging in N. We name such cost
functions ‘regular’.

A cost automaton is a tuple (Q, A, In, Fin, I', A) where @ is a finite set of states, A
is a finite alphabet, In and Fin are the set of initial and final states respectively, I” is
a finite set of counters, and A C Q x A x ({i,r,c}*)I" x Q is the set of transitions.

The value of each counter ranges over N, and evolves according to atomic actions in
{i,r,c}: 1 increments the value by 1, r resets the value to 0, and ¢ checks the value (but
does not change it). Each action in ({i,r,c}*)! tells for each counter what sequence
of atomic actions has to be performed. Hence, given a sequence of actions u, one can
execute it as follows: at the begining, all counters share the value 0, and we read the
word u letter by letter from left to right. For each letter, one applies the corresponding
sequence of atomic actions on each counter. One sets the set C'(u)C N to contain all
values that are taken by a counter when checked (this set collects all the checked values
indistinctly: there is no distinction concerning the counter the value originates from,
or the moment of the check).

A run o of a cost automaton over a word a; ...a, is a sequence in A* of the form
(qo,a1,t1,q1)(q1,a2,t2,q2) ... (Gn-1,Gn, 0n, qn) such that gy is initial, g, is final (the
run ¢ is also valid iff there exists qo, both initial and final). One sets C(o)= C(t; .. .t,),
i.e., to collect the set of values checked when executing the run over the counters.

At this point, cost automata are instantiated in two versions, namely B-automata
and S-automata that differs by their dual semantics, [-]p and [-]s respectively. These
semantics are defined for all u € A* by:

[A]5(u) = inf{supC(c) : o run over u} ,
and [A]s(u) =sup{inf C(c) : o run over u} .

(Recall that sup® = 0 and inf() = oo) One says that a B-automaton (resp. an S-
automaton) accepts [A]p (resp. [A]s).

Example 1. If A is a standard non-deterministic automaton accepting L C A*, it can
be seen as a cost automaton without any counter. Seen as a B-automaton, we have
[Al(u) = xr, and seen as an S-automaton, [A]s(u) = xa«\L-

Ezample 2. We describe the two one counter cost automata A and A’ by drawings:

a:ic a,b:e a:i a,b:e
b:e a,b:cr

N\

b:r

Circles represent states, and a transition (p, a,t,q) is denoted by an edge from p to ¢
labeled a : t (the notation a,b : t abbreviates multiple transitions). Initial states are
identified by unlabeled ingoing arrows, while final states use unlabeled outgoing arrows.
One checks that [A]p ~ [A']s = f, where f,(u) = max{n € N / u =va"w}.

A B-automaton is simple if it uses actions in {e,ic,r}!". A S-automaton is simple if it

uses actions in {e, i, cr}!. The following theorem is central in the theory:

Theorem 2 (duality [Col09¢c,Col09al). It is equivalent for a function, up to =, to
be accepted by a [simple] B-automaton or to be accepted by a [simple] S-automaton.

Such cost functions are called regular. This comes with a decision procedure:

Theorem 3 ([Col09c]). The relations < and =~ are decidable for regular cost func-
tions.

2.3 Regular temporal cost functions

The subject of the paper is to study the regular temporal cost functions, a subclass of
regular cost functions. We give here a first definition of this class.

A B-automaton (resp. S-automaton) is temporal if it uses only actions in {ic,r}!
(resp. {i,cr}!"). Hence temporal automata are simple automata in which it is disallowed
in an action to leave counters unchanged. Intuitively, such automata can only measure
consecutive events. We define tempp (resp. tempg) to map sequences in {ic,r}* to N
(resp. {i,cr}* to N) which to u associates (sup C'(u)) (resp. (inf C(u))). Those func-
tions are extended to sets of counters and runs as in the general case of cost automata.
We say that a cost function is B-temporal (resp. S-temporal) if it is accepted by a
temporal B-automaton (resp. a temporal S-automaton). We will see below that these
two notions coincide, up to &~ (Theorem 7).

Ezample 3. Over the alphabet {a,b}, the cost function f, from Example 2 is B-
temporal (as witnessed by the example automaton).

However, the function w +— |u|, is not B-temporal, even modulo ~. Indeed, for
the sake of contradiction, assume that there exists a temporal B-automaton A =
(Q, A, In, Fin, I', A) accepting g, with g ~, |- |, for some «. Let K = |@Q| + 1 and
N = a(K) + 1. Let o be the run of A over u = (b"Va)®X which minimizes sup C (o) (it
has to exist since g(u) /4 |u|q < 00). Since K > |Q| + 1, one can decompose u as xvy
such that |v|, > 1, |v| > N, and the run o assumes same state p after reading both z
and zv. Let 0,0,0 be the corresponding decomposition of the run o. Assume first that
there exists a counter which is never reset during o, then we get g(u) > N > a(|u|q).
This contradicts g /4 |- |o. Hence all counters have to be reset somewhere in o,,. Con-
sider the word w,, = zv™y. One easily checks that |u,,|, > m since |u|, >1. However,
the run 0,070, witnesses that g(u.,) < max(g(u),|u|). Hence | - |, is unbounded over
the u,,’s, while g is bounded over the same set. This is a contradiction according to
Proposition 1.

3 Clock-form of temporal cost functions

In this section, we give another characterization to B-temporal and S-temporal regular
cost functions. This presentation makes use of clocks (the notion of clock should not
be confused with the notion of clock used for timed automata).

A clock ¢ is a word over the alphabet {_, |}. It should be seen as describing the
ticks of a clock: the letter is _ if there is no tick at this moment, and it is | when there
is a tick. A clock naturally determines a factorization of time into intervals (we say
segments). Here, one factorizes ¢ as:

e= (DL

One sets max—seg(c) to be max{ny,...,ng, m} € N, and min—seg to be inf{n;,...,ni} €
No (remark the asymmetry). A clock ¢ has period P€ Nif ny =ng =--- =ny = P,
and m < P. This is equivalent to stating® max—seg(c) < P < min—seg(c). Remark

3 Remark that as soon as k > 1, the inequalities become-as one may expect—equalities.

that given n and P, there exists one and only one clock of length n and period P. You
can remark that max—seg(c) = temp g(hp(c)) + 1 in which hp maps _ to ic and | tor.
Similarly, min—seg(c) = tempg(hs(c)) + 1 in which hp maps _ to i and | to cr.

A clock on u € A* is a clock ¢ of length |ul, In this case, one denotes by (u,c) the
word over A x {_, |} obtained by pairing the letters in v and in ¢ of same index. For L
a language in (A x {_, [})*, we define the following functions from A* to Nu:

(L) B : u — inf{max—seg(c) : ¢ clock on u, (u,c) € L}
{LYs : ur sup{min—seg(c) : cclock on u, (u,c) ¢ L} +1

Lemma 1. For all languages L C (A x {_,[})*, (L)B < {(L)s.-

Proof. Fix u. Consider the minimal P such that the clock ¢ over u of period P is such
that (u,c) € L (if there is no such period, (u, 1“!) ¢ L, and (L))s(u) = w). We clearly
have {(L))p(u) < P. On the other hand, (u,c’) ¢ L, where ¢ is the clock over u of
period P — 1. Hence (L) p(u) < P < (L) s(u). O

The notations ((-)) p and ((-))s are easily convertible into temporal cost automata as
shown by Fact 4.

Fact 4 If L is regular and L (resp. CL) is accepted by a non-deterministic automaton
with n states, then {(LY)p — 1 (resp. {L)s — 1) is accepted by a temporal B-automaton
(resp. a temporal S-automaton) with n states and one counter.

Proof. We have seen that max—seg = (tempg o hp) + 1. Hence, if we replace in the
automaton for L each transition of the form (p, (a, ¢), q) by a transition (p, a, hg(c), q),
we immediately get the desired temporal B-automaton. The construction for temporal
S-automata is identical, starting from the complement automaton, and using hg. O

The important definition is the following:

Definition 5 An a-clock-language (or simply a clock-language if there exists such
an «) is a language L C (A x {_, | })* such that {L)p ~o {(L)s. A function f has
an a-clock-form if there exists an a-clock-language L such that (L)s < f <a (L) B.
A cost function has a clock-form if it contains a function that has an a-clock-form for
some . We note CF the set of cost functions that have a clock-form.

One can remark that it is sufficient to prove (L)s <o (L))p for proving that L is
an a-clock-language: Lemma 1 provides indeed the other direction.

Ezample 4. For L C A*, K = L x {_,]}" is a clock-language, which witnesses that x,
has an identity-clock-form.

Ezxample 5. Consider again the function f, of Example 2, computing the maximal
number of consecutive a’s. The language M = ((a,.) + (b,]))* verifies (M) p ~ fa,
but it is not a clock-language: for instance the word ba™ is such that f,(ba™) = m,
meanwhile, (M) s(ba™) = 0. This contradicts (M) s =~ f, according to Proposition 1.
This comes from the fact that the clock witnessing (M))p &~ f, is chosen given the
word (the one ticking exactly over b-letters). This is in contradiction with the important
intuition behind being in clock-form which is that the clock can be chosen independently
from the word.

However, it is possible to construct a rational clock-language L for f,. It checks
that each segment of consecutive a’s contains at most one tick of the clock, i.e.:

L=K[((b,_)+ (b, 1)K]" in which K = (a,.)" + (a,.)"(a, |)(a,)" .

Let u be a word, and ¢ be a clock such that min—seg(c) = n and (u, ¢) & L. Since (u,c) &
L, there exists a factor of u of the form a* in which there are two ticks of the clock.
Hence, k > n+1. From which we obtain (L))s < f,. Conversely, let u be a word, and ¢
be a clock such that max—seg(c) = n and (u,c) € L. Let k = f,(u). This means that
there is a factor of the form a* in u. Since (u,c) € L, there is at most one tick of the
clock in this factor a*. Hence, k < 2n — 1. We obtain that f, < 2((L)) 5. Hence, L is an
a-clock-language for f,, with a: n — 2n.

Let us turn ourselves to closure properties for languages in clock-form. Consider a
mapping f from A* to Ny, and a mapping h from A to B (B being another alphabet)
that we extend into a monoid morphism from A* to B*, the inf-projection of f (resp.
sup-projection) with respect to h is the mapping fints (resp. fsup,n) from B* to Ny
defined for all v € B* by:

fing,p(v) = inf {f(u) : h(u) = v} (resp. fsup,n(v) =sup{f(u): h(u) =v})

The following theorem shows closure properties of cost functions in clock-form that
are obtained by translation to a direct counterpart in language theory:

Theorem 6 Given L, M «-clock-languages over A, h from A to B and g from B to A,
we have:

— LUM is an a-clock-language and (LU M))p = min({L)p, (M))
— LN M is an a-clock-language and (LN M)s = max({L)s, (M)s)

— Log = {{u,c) : (g(u),c) € L} is an a-clock-language and {(Log)p = (L) o g

— Lingp = {(h(u),c) : (u,c) € L} is an a-clock-language and {Lint,1)) 5 = ({L)) B)int,h

— Lsup.n = C{(h(u),c) : (u,c) ¢ L} is an a-clock-language and (Lsup n)s = ({L)s)sup.n

Proof. The five items follow all the same proof principle. Let us treat the case of inf-
projection. The equality is proved by the following sequence of equalities:

({Ling,p) B) (v) = inf{max—seg(c) : (v,¢) € Lint,n}
= inf{max—seg(c) : (u,c) € L, h(u) = v}
= inf{inf{max—seg(c) : (u,c) € L} : h(u) =v} = ({L)B)insn(v)

Assume L is an a-clock-language, it remains to be shown that Linp is also an a-
clock-language. Let v be a word and ¢ be the clock witnessing (L)) g(v) = n, i.e., such
that (v, ¢) € Lint,;, and max—seg(c) = n. Let ¢’ be a clock over v such that min—seg(c’) >
a(n), we have to show (v,¢) € Linsp. Since (v,¢) € Lingy, there exists u such
that v = h(u) and (u,c) € L. Hence, since L is an a-clock-language, (u,c’) € L. It
follows that (v,c) € Ling p- O

Lemma 2. tempp and tempg have x2-clock-forms with x2(n) = 2n.

Proof. The proof for tempp is the same as in Example 5, in which one replaces the
letter a by ic and the letter b by r. The tempg side is similar. (See Appendiz A.1) O

Theorem 7 If f is a reqular cost function, the following assertions are equivalent :

. [has a clock-form,

. [is B-temporal,

. [is computed by a temporal B-automaton with only one counter,
. f is S-temporal,

. [is computed by a temporal S-automaton with only one counter.

v A Lo o~

Proof. (1)=(3) follows from Fact 4. (3)=(2) is trivial.

(2)=-(1): Consider a temporal B-automaton A = (Q, A, In, Fin, ', A) using counters
I'={y,...,7} A run of A is a word on the alphabet B = Q x A x {ic,1}!" x Q. It
follows from the definition of [-] 5 that for all u € A*:

[Alp(w) = inf {max(xa(0). tempp o mi(0),: - tempps 0 m(0)) = m(0) = u}

in which R C A* is the (regular) set of valid runs; for all ¢ € [1,k], m; projects
each transition (p,a,t,q) to the its y** component of ¢ (and is extended to words).
Finally 7s projects each transition (p,a,t,q) to a (and is also extended to words). By
Example 4, xgp € CF. By Lemma 2, tempp € CF, and by Theorem 6, CF is stable
under composition, max and inf-projection. Hence [A]p € CF.

The equivalences (2)<(4)<(5) are proved in a similar way. O

Actually, Theorem 6 and Lemma 2 allow to state that if a function f is given by one of
the five descriptions of Theorem 7, then for any other among these descriptions, there
exists a function g which is & ys-equivalent to f.

In the following, we will simply say that f is a temporal cost function instead of
B-temporal or S-temporal.

Conclusion on clock-forms, and perspectives

Independently from the second part of the paper, we believe that some extra comments
on the clock-form approach are interesting.

First of all, let us stress the remarkable property of the clock-form presentation of
temporal cost functions: those can be seen either as defining a function as an infimum
({(-YB) or as a supremum ({-))s). Hence, regular cost function in clock-forms can be
seen either as B-automata or as S-automata. This presentation is in some sense ‘self-
dual’. Nothing similar is known for general regular cost functions.

Another difference with the general case is that all constructions are in fact reduc-
tion to constructions for languages: This is particularly obvious in the statement of
Theorem 6. Furthermore, since everything is done at the level of languages, we do not
require any specific presentation for the languages. Those can be described e.g. by any
form of automata or algebra. For this reason, any specific optimised constructions for
regular language should be reusable for regular temporal cost functions. However, since
two different languages L, L’ can be such that (L)p ~ (L") (even (L)p = (L") p),
one must keep aware that optimal operations performed at the level of languages—such
as minimization—will not be optimal anymore when used for describing temporal cost
functions. It is a perspective of research to develop dedicated algorithmic for regular
temporal cost functions.

A third difference is that the error committed, which is measured by the stretching
factor «, is linear. This is much better than the general case of cost functions, in
which, e.g., the equivalence between B-automata and S-automata requires a polynomial
stretching factor. However, we do not take yet full advantage of this in the present paper
since we do not try to use this precision, e.g., in new decision procedures. There are
also here researches to be conducted.

In fact, the argument underlying temporal cost functions in clock-forms is inter-
esting per se: it consists in approximating some quantitative notion, here the notion
of length of intervals, using some extra unary information, here the ticks of the clock.
Since unary information can be handled by automata, the approximation of the quan-
titative notion becomes also available to the automaton. This is a very robust principle

that clearly can be reused in several other ways. For instance, it would be no different
to consider ticks of a clock over an infinite word (in fact the fact that words are finite is
even entailing problems). It would be no different on trees (seen as a branching presen-
tation of time), be they finite or infinite. Keeping on the same track, a clock is even not
required to count the time, it could count some events already written on the input,
such as the number of a’s, etc. These examples show the versatility of the approach.

4 Algebraic approach

We first recall definitions of classic semigroups and stabilization semigroups for the
general case of regular cost functions. We use them in a decidable algebraic character-
ization of temporal cost functions.

4.1 Standard semigroups

Definition An ordered semigroup S = (S,-, <) is a set S endowed with an associative
product - : § x S — S and a partial order < over S compatible with - (i.e. if a < @’
and b <V, then a-b<d -bV).

An idempotent element of S is an element e € S such that e - ¢ = e. We note E(S)
the set of idempotent elements of S.

Recognizing languages In the standard theory, the recognition of a language by a
finite semigroup is made through a morphism from words into the semigroup which
can be decomposed into two steps: first, a length-preserving morphism h : AT — S+,
where S is the set of words whose letters are in .S, and second the function w: S* — S
which maps every word on S onto the product of its letters. The language L recognized
by the triple (S,h, P), where P is a subset of S, is L = h=}(7~1(P), i.e. u € L iff
7w(h(u)) € P.

It is standard that languages recognized by finite semigroups are exactly the regular
languages. It is also by now well known that families of regular languages can be char-
acterized by restrictions on the semigroups which recognize them. This is for instance
the case in Eilenberg’s variety theorem or in Schiitzenberger’s theorem characterizing
star-free languages as the one recognized by aperiodic semigroups [Sch65].

4.2 Stabilization semigroup

The notion of stabilization monoid has been introduced in [Col09c¢] as a quantitative
extension of standard monoids, for the recognition of cost functions. Stabilization semi-
group is a more convenient object in the present paper, since the empty word plays
a special role (it has length 0). The relationship between stabilization monoids and
stabilization semigroups is made explicit in [Col09b]. A side effect is that it is more
easy to speak about regular cost functions over non-empty words. We do it from now
for simplicity.

Definition 8 A stabilization semigroup (S,-, <,#) is an ordered semigroup (S,-, <)
together with an operator #: E(S) — E(S) (called stabilization) such that:

— for all a,b € S with a-b <€ E(S) andb-a € ES), (a-b)f =a-(b-a)t-b;

— for alle € E(S), (e!)f =ef <e;

— for alle < f in E(S), et < ft;

In this paper, we only consider finite stabilization semigroups. The intuition of the
operator is that ef represents the value that gets e ‘when repeated many times’. This
may be different from e if one is interested in counting the number of occurrences of e.

4.3 Recognizing cost functions

The first step for recognizing cost function is to provide a ‘quantitative semantic’ to the
stabilization semigroup S = (5, -, <,#). This is done by a mapping p named a compatible
mapping, which maps every word of ST to an infinite non-decreasing sequence of SV
(the original definition does not use non-decreasing sequences, but is equivalent, see
e.g., [Col09c]). The principle is that the ith position in the sequence p(u) tells the value
of the word u for a threshold 7 separating what is considered as few and as lot. This is
better seen on an example.

Example 6. Consider the following stabilization semigroup:

| b a 0 | ﬁ a,b O,a,b
blb a O b
ala a 0 0
0(0 0 O 0

It is given both by its table of product augmented by a column for the stabilization and
by its Cayley graph. In the Cayley graph there is an edge labelled by y linking element x
to element x - y. There is furthermore a double arrow going from each idempotent to
its stabilized version.

The intention is to count the number of a’s. Words with no a’s correspond to
element b. Words with at least one, but few a’s correspond to element a. Finally, words
that contain a lot of a’s should have value 0: for instance, a' = 0 witnesses that iterating
a lot of time a word with at least one a yields a word with a lot of a’s.

A possible compatible mapping p for this stabilization semigroup attaches to each
word over {b,a,0}" an infinite sequence of values in {b,a,0} as follows: every word
in b™ is mapped to the constant sequence b; every word containing 0 is mapped to the
constant sequence 0; every word u € b*(ab*)" is mapped to 0 for indices up to |ul, — 1
and a for indice |ul, and beyond. The idea is that for a threshold i < |u|,, the word
is considered as having a lot of a’s in front of ¢ (hence value 0), while it has few a’s in
front of ¢ for ¢ > |u|, (hence the value a). One can see that this sequence ‘codes’ the
number of a’s in the position in which it switches from value 0 to value a.

A formal definition of a compatible mapping requires to state the properties it has
to satisfy, and which relate it to the stabilisation monoid. This would require much
more material, and we have to stay at this informal level in this short paper (See
Appendiz A.6). The important result here is that given a finite stabilization monoid,
there exists a mapping compatible with it, and furthermore that it is unique up to
an equivalence ~ (which essentially corresponds to =) [Col09c,Col09b]. Hence, in the
above example, the compatible mapping described is the unique possible (up to ~).

Now that we know what the semantics of stabilization semigroups look like, one
uses it for recognizing cost functions. Instead of computing the product of elements
and checking whether it belongs to a subset P of the semigroup, the quantitative
recognition consists in considering the infinite sequence obtained by the compatible
mapping and observing the first moment it leaves a fixed ideal I of the semigroup (an
ideal is a downward <-closed subset). Formally, the cost function f over AT recognized
by (S,h,I)is f : u — inf{n € w,p(h(u))(n) ¢ I}, where h : AT — ST is a length-
preserving morphism, and p is a mapping compatible with S.

Typically, on the above example, the ideal is {0}, and h maps each letter in {a,b}
to the element of same name. For all words v € {a + b} T, the value computed is
exactly |u]q-

Theorem 9 [Col09c] A cost function is regular iff it is recognized by a stabilization
semigroup.

Like for regular languages, this algebraic presentation can be minimized.

Theorem 10 If f is a regular cost function, there exists effectively a (quotient-wise)
minimal stabilization semigroup recognizing f.

This minimal stabilization semigroup can be obtained from (S, h,) by a Moore algo-
rithm computing the coarsest congruence, compatible with the semigroup and stabiliza-
tion operations, which separates elements of I from the other elements. This procedure
is polynomial in the size of S. (See Appendix A.7)

4.4 Temporal stabilization semigroups

Let us now characterize the regular temporal cost functions.

We say that an idempotent e is stable if e = e. Otherwise it is unstable. The
intuition is that stable idempotents are not counted by the stabilization semigroup (b
in the example), while the iteration of unstable idempotents matters (a in the example).

Definition 11 Let S = (S,-, <,f) be a stabilization semigroup. S is temporal if for all
idempotents s and e = x - s -y, if s is stable then e is also stable.

For instance, the example stabilization semigroup is not temporal since b is stable
but @ = a - b- a is unstable. This is related to temporal cost functions as follows:

Theorem 12 Let f be a regular cost function, the following assertions are equivalent:

— [is temporal
— f is recognized by a temporal stabilization semigroup
— the minimal stabilization semigroup recognizing [is temporal

We will briefly give an idea on how the definition of temporal semigroups is related to
the intuition of consecutive events. Indeed, an unstable idempotent must be seen as an
event we want to ‘measure’, whereas we are not interested in the number of occurrences
of a stable idempotent. But if we have e = x-s-y with e unstable and s stable, it means
that we want to ‘count’ the number of occurrences of e without counting the number
of s within e. In other words, we want to increment a counter when e is seen, but s
can be repeated a lot inside a single occurrence of e. To accomplish this, we have no
other choice but doing action € on the counter measuring e while reading all the s’s,
however, this kind of behaviour is disallowed for temporal automata.

The two last assertions are equivalent, since temporality is preserved by quotient
of stabilization semigroups. On our example, the stabilization semigroup is already the
minimal one recognizing the number of occurrences of a, and hence, this cost function
is not temporal. We gave a direct proof for this fact in Example 3.

Corollary 1. The class of temporal cost functions is decidable.

The corollary is obvious since the property can be decided on the minimal stabilization
semigroup, which can be computed either from a cost automaton or a stabilization
semigroup defining the cost function.

5 Conclusion

We defined a subclass of regular cost functions called the temporal class. Our first def-
inition used cost automata. We then characterized regular temporal cost functions as
the ones describable by clock-languages. This presentation allows to reuse all standard
construction for regular languages taken from classic language theory. We then charac-
terized the class in the algebraic framework of stabilization semigroups, the algebraic
notion allowing to describe regular cost functions. This together with the construction
of minimal stabilization semigroups gave us a decision procedure for the temporal class,
and hopefully for more classes in future works.

The later decidable characterization result calls for continuations. Temporal cost
functions correspond to desert automata of Kirsten [Kir04], but other subclasses of
automata are present in the literature such as distance automata (which correspond to
one-counter no-reset B-automata) or distance desert automata (a special case of two
counters B-automata). Is there decidable characterizations for the regular cost functions
described by those automata? More generally, what is the nature of the hierarchy of
counters?

References

[AKYO08| Parosh Aziz Abdulla, Pavel Krcal, and Wang Yi. R-automata. In Franck van Breugel
and Marcha Chechik, editors, Proceedings of CONCUR’08, Toronto, Canada., vol-
ume 5201 of Lecture Notes in Computer Science, pages 67-81. Springer-Verlag, 2008.

[Bal04] Sebastian Bala. Regular language matching and other decidable cases of the sat-
isfiability problem for constraints between regular open terms. In STACS, volume
2996 of Lecture Notes in Computer Science, pages 596—607. Springer, 2004.

[BC06] Mikolaj Bojaticzyk and Thomas Colcombet. Bounds in w-regularity. In LICS 06,
pages 285-296, August 2006.

[BOWO09] Achim Blumensath, Martin Otto, and Mark Weyer. Boundedness of monadic
second-order formulae over finite words. In 36th ICALP, Lecture Notes in Com-
puter Science, pages 67—78. Springer, July 2009.

[Col09a] Thomas Colcombet. Regular cost functions over words. Manuscript available online,
2009.

[Col09b] Thomas Colcombet. Regular cost functions, part i: logic and algebra over words.
Submitted, 2009.

[Col09c] Thomas Colcombet. The theory of stabilization monoids and regular cost functions.
ICALP, Lecture Notes in Computer Science, 2009.

[Eggb3] L. C. Eggan. Transition graphs and the star-height of regular events. Michigan
Math. J., 10:385-397, 1963.

[Has79] Kosaburo Hashiguchi. A decision procedure for the order of regular events. Theo-
retical Computer Science, 8:69-72, 1979.

[Has88] K. Hashiguchi. Relative star height, star height and finite automata with distance
functions. In Formal Properties of Finite Automata and Applications, pages 74-88,
1988.

[Has90] K. Hashiguchi. Improved limitedness theorems on finite automata with distance
functions. Theor. Comput. Sci., 72:27-38, 1990.

[Kir04] Daniel Kirsten. Desert automata and the finite substitution problem. In STACS,
volume 2996 of Lecture Notes in Computer Science, pages 305-316. Springer, 2004.

[Kir05] Daniel Kirsten. Distance desert automata and the star height problem. RAIRO,
3(39):455-509, 2005.

[Kle56] Stephen C. Kleene. Representation of events in nerve nets and finite automata. In
C. E. Shannon and J. McCarthy, editors, Automata Studies, pages 3—42. Princeton
University Press, Princeton, New Jersey, 1956.

[RS59] Michael O. Rabin and Dana Scott. Finite automata and their decision problems.
IBM J. Res. and Develop., 3:114-125, April 1959.

[Sch65] M.-P. Schiitzenberger. On finite monoids having only trivial subgroups. Information
and Control 8, pages 190-194, 1965.

[Sim78] Imre Simon. Limited subsets of a free monoid. In FOCS, pages 143-150, 1978.

A Appendix

A.1 Some proofs on S-automata

temp g-side of Lemma 2 We will construct a rational language L x2-clock-form of
tempg.

We will say that a clock ¢ is compatible with a word u on {i,cr}" if u and ¢ have
the same length and there is at most one | of the clock ¢ in some block of i’s ended by
acr in u. Let L = {{u, c), c compatible with u}

L= K[((cr,) + (er, D))K]((,2) + (i, 1)) in which K = (2,)" + (4,)" (6, 1) (7,)" -

We will show that L is a x2-clock-form of tempg. We just need to show that
tempg < ¢f and (L)s < temps.

Let u € {a,b}", and ¢ be a clock on u such that (u,c¢) € L and max—seg(c) is
minimal. Let n = tempg(u) be the size of the smallest block of i’s in u followed by
a cr. If max—seg(c) < |n/2], there is at least two | of ¢ in the smallest (therefore in
any) block of i’s followed by a ¢r in u, so ¢ cannot be compatible with u. Hence we
must have (L)) p(u) = max—seg(c) > |n/2] = |tempg(u)/2]. This is true for all u, so
temps <z (L) -

We now need to show that (L))s < tempg.

Let uw € AT, and ¢ be a clock on u such that (u,c) ¢ L and min—seg(c) is maximal.
(u,c)y ¢ L implies that there is two | in ¢ in any block of i’s ended by a c¢r in w. This
implies min—seg(c) < tempg(u). Hence by definition of ¢, (L) g(u) = min—seg(c) <
tempg(u). It is true for all uw so (L)s < tempg. O

S-side of Theorem 7 (4)=-(1)
Consider a S-automaton A = (Q, A, In, Fin, I, A) with I' = {71, ..., }.
A run of A is as a word on alphabet A C Q x A x {i, cr}F x Q.
It follows from the definition of [-]s that for all u € A*:

[A]s(u) = Sup {min(xcr(0), tempg o mi(0), -, tempg omy(0)) : ma(o) = u}
iy
in which R C A* is the (regular) set of valid runs; for all ¢ € [1, k], m; projects each
transition (p, a,t,q) to the 7" component of ¢ (and is extended to words). Finally 7
projects each transition (p,a,t,q) to a (and is also extended to words). By Example
4, xecgp € CF. By Lemma 2, tempg € CF, and by Theorem 6, CF is stable under
composition, min and sup-projection. Hence [A]s € CF. O

A.2 Cost sequences

The aim is to give a semantic to stabilization semigroups. Some mathematical prelim-
inaries are required.

Let (E, <) be an ordered set, « a function from N to N, and a, b € EY two sequences.
We define the relation <, by a=,b if :

Yn.Vm. a(n) <m — a(n) <b(m) .
A sequence a is said a-non-decreasing if a <, a. We define ~, as <, N =4, and a=<b

(resp. a~b) if a <, b (resp. a ~, b) for some a.
Remarks:

if @ < o' then a <, b implies a < b,

— if @ is a-non-decreasing, then it is a-equivalent to a non-decreasing sequence,
— a is id-non-decreasing iff it is non-decreasing,

let a,b € EY be two non-decreasing sequences, then a <, biff aoa < b.

The a-non-decreasing sequences ordered by <, can be seen as a weakening of the a = id
case. We will identify the elements a € F with the constant sequence of value a.

The relations <, and ~, are not transitives, but the following property guarantees
a certain kind of transitivity.

Fact 13 a <, b <X, c implies a <00 € and a ~, b ~, ¢ implies a ~qo0q C.

The function « is used as a "precision" parameter for ~ and <. Fact 13 shows
that a transitivity step cost some precision. For any «, the relation <, coincide over
constant sequences with order < (up to identification of constant sequence with their
constant value). In consequence, the sequence in EV ordered by <, form an extension
of (E, <).

In the following, while using relations <, and ~,, we may forget the subscript «
and verify instead that the proof has a bounded number of transitivity steps.

Let(F, <) and (F, <) two ordered sets, a function E — FY is a-monotone if

Va,be E. a<b— f(a) =4 f(b) .

In particular, for each a € E, we have a < a, so f(a) = f(a), hence f(a) is a-non-
decreasing. To each a-monotone function f : £ — FN we associate f : EN — FN
defined in the following way:

for all @ € EN and all n € N, fla)(n) = f(a(n))(n) .
Proposition 14 Let f : E — FY be a a-monotone function and a,b € EN, then:
a=,b implies f(a) <4 f(b) .

In particular, if f : E — FN and g : F — G are a-monotone, then go f is a-monotone.

Moreover, (go f) =go f.

Definition 15 If f and g are functions E — F~, we will say that f ~q g if for all
u€ E, f(u) ~y g(u). As usual, f ~ g if there exists a such that f ~4 g.

We will also use this notions with the product order : if (F, <) is an ordered set,
the set of words in v € E* is canonically ordered by a; ...a, < by ...b,, iff m =n and
a; < b; for i = 1...n. We identify the elements of (EN)* (words of sequences) with
some elements of (E*)Y (sequences of words of the same length). Notice that for any
sequences ai,...,an,b1,...,b, € EN ai...a, <o b1...b, iffa; <o b;fori=1...n.

A.3 Ideals of an ordered set

This notion will be essential to define the cost function recognized by a stabilization
semigroup.

Let (E,<) be an ordered set, an ideal is a < —closed subset I C E, i.e.if a € T
and b < a, then b € I. let a € E, the’ideal generated by a is I,={b€ E : b < a}. Let
a € EY and I be an ideal, we define I[a]=sup{n+1 : a(n) € I}.* Let I be an ideal,
its complement in E is denoted by I. Let a € EN, we define I[a]= inf{n : a(n) € I}.

* The +1 makes the calculus smoother in the following.

Proposition 16 Let f and g be functions E — SN such that f ~o g and for any
u € E, f(u) and g(u) are non-decreasing. Then for any ideal I of S, the cost functions
u— I[f(uw)] and u— I[g(u)] are =, equivalent.

Indeed, let w € E, and n = I[f(u)]. Then g(u)(a(n))
get g(u)(a(n)) ¢ I. g(u) is non-decreasing so I[g(u)]
we finally get u — I[f(u)] ~q u — I[g(u)].

(u)(n) ¢ I.Iis an ideal so we

>
< a(n). By symmetry of f and ¢

Definition 17 Let a,b € E and n € N, we define the sequence a|,b by:

if k
forallkeN, (alub)(i) = 4@ TR<m
b otherwise.

A.4 Compatible functions

We now define the semantic of a stabilization semigroup with the notion of compatible
function. The idea is to generalize the notion of product, by associating to each word
of S, no longer an element of S, but a cost sequence in SY. this will allow us to
express stabilization in a quantitative way. Intuitively, when n is fixed in the cost
sequence, we can interpret the semantic as an automaton with limited resources. To
avoid ambiguities, we will write uv the concatenation of v and v as words in ST and
a - b the product of a¢ and b as elements of S.

(ST, ,<) forms a semigroup, partially ordered by the product ordered between
words of same length described above.

Definition 18 Let S = (S, -, <.#) be stabilization semigroup. A function p from ST to
SN is said compatible with S if there exists a such that :

Monotonicity. p is a-monotone,

Letter. for all a € S, p(a) ~ a,

Product. for all a,b € S, p(ab) ~, a-b,

Stabilization. for all e € E(S), m € N, p(e™) ~q (€*|e),

Substitution. for all ui,...,u, € ST, n €N, pluy...un) ~ao plp(ur)...pluy)) (re-
mind : we identify sequence of words and word of sequences, see section A.2)

Ezample 7. Let S be the stabilization semigroup with 3 elements | < a < b, with
product defined by : x -y = min< (z,y) (b neutral element), and stabilization by b* = b
and af = 1¥ = 1. Lett u € {1,a,b}", we define p by:

b ifuebt
p(u) = Lljy.a if ued*(ab*)™
L sinon.

Then p is compatible with S.

Remark 19 When ! is the identity function, S becomes a standard ordered semigroup,
and the classical extended product m is compatible with S.

Theorem 20 ([Col09c]) For any stabilization semigroup S, there exists a function p
compatible with S. Moreover, p is unique up to ~.

This theorem is fundamental, since it associates a unique (up to ~) semantic to any
stabilization semigroup.

Lemma 3. Let p compatible with a semigroup S. There exists v such that for any
n €N and u € ST, if |u| < n then for all k > v(n), p(u)(k) = m(u)

Proof. We show this result by induction on n. It is true for n = 1 by taking v(1) = 1. We
assume (k) constructed for k£ < n, and we want to show the result for n. Let u € ST of
length n, u = va with |[v]| =n—1and a € S. Letar a witness of p compatible with S. The
substitution property tells us that p(u) ~, p(p(v)a). but by induction hypothesis, for
all k > ~(n—1), p(p(v)a)(k) = p(p(v)(k)a)(k) = p(r(v)a)(k). Moreover, p(m(v)a) ~a
7w(v) - a = 7(u). Hence we have for all £k > a(y(a(n — 1)), p(u)(k) = w(u).We get the
result with v(n) = a(y(a(n — 1))). O

A.5 Generalities about stabilization semigroups

Structure An idempotent element of S is an element e € S such that e-e = e. We
note F(S) the set of idempotent elements of S.

In the sequel, we use a classic Green’s relation. Let a and b be in S; we denote a< 7b
if there exists « and y in S U {1} such that a = zby. The relation < is a preorder.
If a <7 band b <7 a, then a and b are in the same J-class, and we denote aJb.
Obviously, <7 induces an order over J-classes, also noted <.

A regular element of S is an element @ such that there exists e € E(S) with aJe.
Consequently, either all the elements of a J-class are regular (we say that the J-class
is regular), either no element is (the J-class is irregular).

We can extend f to all regular elements of S. If a is a regular element, there exists
e € E(S) and z,y € SU{1} such that x - ey = a. We define then a* = 2 - e - y, which
does not depend on the choice of the decomposition (cf. [Kir05]).

Definition 21 A regular J-class J is stable if there exists an idempotent a in J such

that a* € J, otherwise J is unstable. If .J is stable, then for all idempotent a in J,
B —

at = a.

Definition 22 (Product of stabilization semigroups) LetS; = (51,1, <1,1) and Sy =
(S2, 2, <o,f2) be stabilization semigroups, then their product S; x So is the tuple

<51 X SQ, ‘y S, ﬂ> such that (al, CLQ) . (bl, bg) = (a1 'bl, ag'bg), (al, CLQ) S (bl, bg) z'fal S b1

and az < by, and (ey,e2)* = (egl,egz).

Proposition 23 If S; and So are stabilization semigroups, then S1 X Sy is one too.
Moreover, if p1 is compatible with S1 and pa with Sy then p defined for allu = (u1,us) €
(S1 x S2)T and k € N by p(u)(k) = (p1(u1)(k), p2(u2)(k)), is compatible with S; x So.

Definition 24 A function ¢ from S to S’ is a morphism of stabilization semigroups if

— for all u,v in S, ¢(u-v) = ¢(u) - p(v),
— For all u € E(S), ¢(u) € E(S') and ¢(uf) = ¢(u)?.

Lemma 4. Let S, S’ be stabilization semigroups, p and p’ compatible with S and S’.
We assume there exists a morphism of stabilization semigroups 7 from S to S’. Let
T 8t — 8 and ™V : SN — SN the natural extensions of T to finite and infinite
sequences. Then TN op ~ p' o1,

Proof. Let K = {(a,7(a)),a € S}. We can provide K with a structure of stabilization
semigroup, as a sub-stabilization semigroup of S x S'.

Let ¢ : KT — K defined by ¢(u, 7 (u)) = (p(u), 7™N(p(u)). Let o be a witness of
p compatible with S. We show that ¢ is compatible with K.

— Monotonicity. p is a-monotone, so ¢ is t00

— Letter. Let a € K,a = (b,7(b)) with b € S, ¢(a) = (p(b), 7(p(b)) ~q (b,7(b)) = a

— Product. Let a,b € K,a = (a/,7(a’)),b = (b, 7(V')), p(ab) = (p(a’'b), 7(p(a
(@ -V,7(a b)) =a-b,

— Stabilization. Let e € E(K), m € N, e = (a,7(a)) with a € E(S), ¢(e™) =
(p(a™), 7(p(a™))) ~a (a*|ma, T(a¥|ma)) = €¥|me,

— Substitution. Let uy, ..., up, € ST,n € N, Vi, Jv; € ST u; = (v, 77 (v1)), (11 - .. up) =
Ebp(vl : vnfl m(p(v1 ... vn))) ~a ((p(v1) .. p(vn)), 7 (A(p(v1) .. p(vn))). We get

~a g Wit

glur...un)(k) = (p(p(v1)(k) ... p(vn)(k))(k), 7 (p(p(v1)(K) - .. p(vn)(k))(K))). To

\
<
=
=
=
=
2
Q

conclude,
A(d(ur) - .. P(un)) (k) = d((p(v1), 7 (p(01)) (k) - - (p(vn), T (p(v2)) (K)) (k)
= d(p(v1) (k) .. p(vn) (k) 7 (p(v1) (k) - . . p(vn) (k) (k)
= (plp(1) (k) .. p(va) () (k), 7 (p(p(v1) () - . . pvn) (k) (K)))

But (p, p’) is also compatible with K, since K is a sub-stabilization semigroup of

S xS’ (Proposition 23). The uniqueness (up to ~) of the compatible function (Theorem

20) gives us ¢ ~ (p, p'), hence by projection on the second component, we get 7 o p ~
ot

poTT.]

A.6 Recognized cost functions

We now have all the mathematical tools to define how stabilization semigroups can
recognize cost functions.

Let S = (S,-, <,#) be a stabilization semigroup. Let h : A — S be a morphism,
canonically extended to h : AT — ST, and I C S an ideal. Then the triplet S, h, I rec-
ognizes the function f: AT — N, defined by f(u) = I[p(h(u))] where p is compatible
with S. A cost function from AT to N, is said recognizable if it is ~-equivalent to a
function recognized by some S,h,I. By Proposition 16, the recognized cost function
does not depend on the choice of p.

Ezample 8. Let A = {a, b}, the cost function |- |, is recognizable. We take the stabi-
lization semigroup from Example 7, h defined by h(a) = a,h(b) =b,and I = {L}. We
have then |u|, = I[p(h(u))] for all u € AT.

The following result shows the analogy with regular languages, and justify the name
of "regular" cost functions :

Theorem 25 ([Col09c]) For a cost function, the following properties are equivalent

— being recognizable by stabilization semigroup,
— being computable by B-automaton,
— being computable by S-automaton.

We can report [Col09c] for more details about stabilization semigroups, in particular
for interesting decidability results about applications to regular language theory.

A.7 Minimization

We will show that for any given S, h, I recognizing a regular cost function f, we can
build a (quotient-wise) minimal stabilization semigroup recognizing f.

If X C S, we note (X)¥ the closure of X in S by product and stabilization. We can
assume that S only has "useful" elements i.e. S = (h(A))*.

Let = be the coarsest equivalence relation on S such that : Vz,y,a € S,

r=y=>(relsyel)
rT=yYy=>a-z=a-y
r=y=>r-a=y-a
r=y=af =yt

in other words = is the coarsest equivalence relation saturating I (in particular S/=
is a stabilization semigroup). This relation can be computed effectively, starting from
whole S x S then iteratively removing couples which don’t verify the above conditions.
This is a kind of Moore algorithm, and its complexity is polynomial in |S|.

Theorem 26 S/= recognizes f.

Proof. Let T be the canonical projection S — S/= naturally extended to 7+ : ST —
(S/=)*, and also to 7 : SN — (S/=)N.
We define I’ = 7(I), h’ = 77 oh, and we want to show that S/=, h’, I’ recognizes f.
Let p' compatible with S/=. By Lemma, 4, there exists a such that

Vu € ST, ™V (p(u)) ~o p' (77 (u))

Ifu € A%, we have I[p(h())] = I'[™ (p(h(u)))] and I'[o! (W' (u))] = I'l§/ (~* (h()].
By Proposition 16, the functions u — I'[7N(p(h(w)))] and u — I'[p’ (77 (h(u)))] are thus
~q-equivalent. We conclude that S/=,h’, I’ recognizes the cost function f.]

In order to show that S/= is minimal for the quotient relation, we have to build
set of words which we will use as counter-examples. We need for that a tool introduced
by Hashigushi, called f-expression.

Definition 27 (f-expression) [Has90] We define the f-expressions by induction. Ev-
ery letter a € A is a f§-expression, if e and ¢’ are f-expressions, ee’ and e' are §-
exTpressions.

If e is a f-expression and k € N, we define the word e(k) by induction in the
following way : if e is a letter then e(k) = e, and if e and €' are §-expressions, ee’ (k) =
e(k)e' (k) and et (k) = e(k)".

We also define an operation eval (depending on the semigroup and the morphism
h)to associate a value to any -expression by induction : if e is a letter then eval(e) =
h(e), and if e and ¢’ are 4-expressions, eval(ee’) = eval(e) - eval(e’) and eval(ef) =
eval(e)* (eval(e) has to be an idempotent). A f-expression is well-formed if eval(e)
exists. For all k € N, we define limy, in the same way that eval except for limy(e?) =
limg(e)* (it is a product, not a concatenation,).

Definition 28 (Context) A context C[] is a f-expression with a possible occurrence
of a free variable x. If e is a §-expression, C|e] is the f-expression obtained by replacing
x by e in CJ].

Ezample 9. If A = {a,b,c}, e = ab(bcfb)fa’bb is a f-expression,
e(3) = abbcecebbeceebbeccbaaabb and eval(e) = h(a)h(b)(h(b)h(c) h(b))th(a)th(b)h (D).
An example of context is C[] = ab(ax?)*, we have C[b] = ab(ab®)*

The following lemma shows how f#-expression behave relatively to compatible func-
tions.

Lemma 5. For all §-expression e, there exists a ae such as for allk € N, p(h(e(k))) ~a.
eval(e)|x limg (e).

Proof. Let (be a witness of p compatible with S. We proceed by induction on e:

— if e is a letter, then for all k € N, p(h(e(k))) ~g h(e) = eval(e)|x limg (e).

— ife = rs, then for all k € N, p(h(e(k))) = p(h(r(k))h(s(k))) ~p p(p(h(r(k)))p(h(s(K))),
but by induction hypothesis, there exists a,- and a, such as p(h(r(k))) ~aq,. eval(r)| limg (r)
and p(h(s(k))) ~a. eval(s)|klimg(s), so by choosing a. = (o max(a,., as), we get
the result.

— if e = r# with eval(r) idempotent, then for all k € N,

p(h(e(k)) ~5 B(p(h(r(k)")
~a, p((eval(r)|ilimg (r))*)
~goy eval (r)*|limy (r)

= eval(e)|klimg(e)

We get the result with a, = § 0 a,. o 8 0~, where v comes from Lemma 3.

O

Lemma 6. If S,h, I and S',h',I' recognize the same cost function, then S/= and
S’/=' are isomorphic.

Proof. We will consider here that all elements of the semigroups are accessible by
product and stabilization from h(A).

S,h,I and S’/=', 1/, I' recognize f. We will show that there is a surjective morphism
¢ from S to S'/=".

Let eval and eval’ be the evaluations relatively to S, h and S'/=', h'.

For all f-expression e, let ¢(eval(e)) = eval’ (). We show that it is indeed a surjective
morphism.

Let assume that there exist ey, e some f-expressions such that eval(eq) = eval(es)
but eval’(e;) # eval’(e3). By the definition of =/, eval’(e1) and eval’(e2) can be distin-
guished by I, so there is a context C[] such that eval’(Cle1]) € I’ and eval’(Cles]) ¢ I’
(up to reversing e; and ez). But we have eval(Cle1]) = eval[C(e2)].

If eval(Cle1]) € I, let uy, = Cles](k) for all k € N.

Let p, p’ be compatible with S, S’. By Lemma 5, there exists a such that p(h(Clez2](k))) ~a
eval (Clea])|x limg (Clea]) and p' (' (Clea)(k))) ~a eval (Clez])|x lim},(Cle2]) We have
eval(Clea]) € I so I[p(h(u))] >a k, but eval (Clez2]) & I, so I'[p(h'(ux))] = O for k
large enough. However, S, h, I and S’, i/, I’ recognize the same cost function. Hence we
have a contradiction.

In the case where eval(Cle1]) ¢ I, we can do the symmetrical reasoning and take
ur = Cle1](k), we also get a contradiction. In conclusion, such a couple e, ey can-
not exist, hence ¢ is well defined. Moreover, ¢ is a surjection because we limited the
semigroups to (h(A))¥ to build S’/=".

The only thing left to check is that ¢ is a morphism of stabilization semigroups.
Let a,b € S. By hypothesis on S, there exists e,,ep such that a = eval(e,) and
b = eval(ep). We have ¢(a -b) = ¢(eval(e,) - eval(ey)) = ¢(eval(eqep)) = eval’ (eqep) =

eval’ (e,) - eval(ep) = ¢(a) - #(b), and ¢(a*) = d(eval(eq)?) = ¢(eval(el)) = eval'(ef) =
eval’ (eq)! = ¢(a)t.

¢ is a surjective morphism of stabilization semigroups from S to S’/='. By reversing
the roles of S and S’, we get that S/= and S’/=’ are isomorphic. O

A.8 Temporal fragment

Proposition 29 Let S = (S, -, <, t) be a stabilization semigroup. S is a temporal semi-
group if the following condition holds. Let J be a stable J-class, for every J-class J’,
if J >4 J', then J' is stable.

Proof of Theorem 12 The aim is to associate a temporal semigroup to any tem-
poral B-automaton, in a way that both objects recognize the same cost function. We
first associate a temporal semigroup. We start by building the temporal semigroup
representing the operations on one counter in a temporal B-automaton.

Let Sy = (S,-, <,t) with S = {ic,r, L}. All elements are idempotent, L is a zero,
ic-r=r-ic=r=rt ict = 1* = 1, and L < ic < r. The semigroup S. describes the
semantic of the operations on one counter.

Let A=(Q, A, In, Fin,~, A) be a temporal B-automaton (we can take it with one
counter by Theorem 7). We associate to it a stabilization semigroup S_4 in the following
way':

Let S4 = Sg? xQ

If £, F € S4, we define their product by :

Vpat S Q7E F(pat) = maX{E(p)Q) : F(qat)vq c Q}a

and the order by E < F iff for all p,q € Q,E(p,q) < F(p,q). Finally, if E is an
idempotent, we define E* by:

Vp,q € QvEﬁ(p7 Q) = max{E(p,t) ’ E(tat)ﬁ ’ E(t7Q) / te Q}

Theorem 30 [Col09c] Sa = (Sa,-,<,f) is a stabilization semigroup, and by taking
I ={E/¥(p,q) € In x Fin, E(p,q) = L} and h(a)(p,q) = max{o/(p,a,0,q) € A} for
all a € A and p,q € Q, Sa, h,I recognizes [A]p.

We still have to show that S 4 is a temporal stabilization semigroup.

Lemma 7. Let E be an idempotent and p,q € Q, then there exists t € @Q such that
E(p,q) < E(p.t)- E(t,t) - E(t,q).

Proof. We can write F = E--- E, product of length k, with k& > |@Q|. There exists a
sequence po, a1, p1,---,pr such that po = p, pr = ¢ and E(p,q) = a1 ---ag. (it is the
sequence realizing the max in the definition of the product of S4). But & > |Q] so
3(4,0),1 <j<l<kandp; =p =t. Wehave E(p,t) >ai---a;, E(t,t) > a;+1---q
and E(t,q) > aj41 - - ag, which shows the result. O

Lemma 8. Let J be J-class of S4, then
J unstable iff there exists E € J idempotent and p,q € Q such that E(p,q) = ic.

Proof. Let J be an unstable J-class, there exists E € J idempotent with Ef # E. But
E* < E, so there exists p,q € Q such that E¥(p,q) < E(p,q)

By Lemma 7, there is ¢t € @ such that E(p,q) < E(p,t) - E(t,t) - E(q). But
Ef(p,q) > E(p,t)-E(t,t)t-E(t,q), so we have E¥(p,q) < E(p, q) then E(t,t)* # E(t,t),
which implies E(t,t) = ic. We have shown the first implication.

Conversely, let F € J idempotent and p, ¢ € Q such that E(p, q) = ic If we assume
J stable, we get E* = F so E*(p, q) = ic. By the definition of E*, there exists ¢ € @ such
that ic = E(p,t)- E(t,t)*- E(t, q). By the definition of the - operation in semigroup S.,,
that implies E(p,t) = E(t,t)* = E(t,q) = ic, and in particular E(t,t)* = ic is absurd.

Hence J is unstable, this completes the second implication. O

Theorem 31 A being a temporal B-automaton, S 4 is a temporal semigroup.

Proof. Let J and J’ bet two regular J-classes of S4 with J >4 J' and J stable. By
Lemma 8, VE € J idempotent, Vs,t € Q, E(s,t) # ic.

Let ' € J',J>7 J then3E € J,A,B € Sy, E' = A-E- B let us assume there exists
p,q € Q, E'(p, q) = ic, then there exists s,t € Q,ic = A(p,s) - E(s,t) - B(t,q). We must
have E(s,t) = ic, this is absurd. So by Lemma 8, J’ is a stable class. S 4 is a temporal
semigroup. O

We will now do the converse : associate a B-temporal automaton to any temporal
semigroup.

Definition 32 If S is a temporal semigroup, we define
Unstab = {z € S/3e € E(S),e* # e and e <7 x}.

Unstab is therefore a union of unstable or irreqular classes. We also define Stab as its
complement (stable or irregular classes).

Lemma 9. Let S be a temporal semigroup, there exists 1 such that
Yu € Stab™, p(u) ~, m(u).

This lemma, expresses the fact that in the stable part, the stabilization semigroup is
indeed a classic semigroup, and therefore its compatible function is equivalent to the
product.

Theorem 33 If f is a cost function recognized by S, h, I with S a temporal semigroup,
then f is temporal.

Proof. Let f recognized by S, h,I with S a temporal semigroup.

Let p be a function compatible with S, with o, as a witness.

we build a temporal B-automaton A = (Q, A, In, Fin,{v}, A) which will compute
f- If uis the word given to the automaton, we want to find the unstable factors u which
are "too long" and idempotent, in order to stabilize them as it happens in p. The idea
is to non-deterministically guess an unstable idempotent factor of u, to which we can
apply the f operator if it becomes too lon.

We take Q = ({1} U Stab) x ({1} U Unstab) x ({1} U Unstab). The first component
keeps track of the current stable factor, the second one is the unstable factor we read
before the idempotent factor, and the third one is the unstable idempotent factor we
are currently reading. We therefore define :

={((s,a,1),l,ic,(s,a-h(l),1))/a- h(l) € Unstab}
U{((s,a,b),l,ic, (s,a,b- h(l)))/a b-h(l) € Unstab}
U{((s,a,b),l,7,(s-a- (b-h(l))*,1,1))/a-b- h(l) € Instab,b- h(l) idempotent }
l

1
2
3
U{((s,a,b),l,r,(s-a-b-h(l),1))/a b-h(l) € Stab} 4

NN S N
—_— — — ~—

We finally choose In = {(1,1,1)} and Fin = {(s,a,b),s-a-b ¢ I}.

We start by showing f <. [A]p for some a. Let u € AT, and o a valid run of A
over u finishing in state (s, a,b). Let n = supC(c), ¢ = s-a-b, and w = h(u) € ST. By
definition of A, w can be split in z1y1 21 . .. Tpyrzr With ¢ = w(z1y1)-7(21)t - T (TRyr) -
7(z,)¥, and for all j € [1,k],n(z;) € Stab U {1},7(y;) € Unstab U {1}, and 7(z;)
unstable idempotent with |y;z;| < n (we assume here without loss of generality that
the last transition is of type (3)). The transitions used during lecture of the xz;’s are
of types (1), (2) and (4); those corresponding to y;’s are of type (1), and finally those
corresponding to z;’s are of type (2) with one of type (3) at the end. Let y be the
function of Lemma 3, for all j and all m > v(n), p(y;z;)(m) = w(y;z;). Let n be
the function of Lemma 9, by combining the two lemmas and using the fact that any
unstable factor of x; has length at most n, we get that for m > max(n(n),y(n)),, pour
tout j € [1,k], p(z;)(m) = 7(z;).

Hence we have, for all m > max(n(n),y(n)) :

p(w)(ep(m)) = p(p(z1)(m)p(yrz1)(m) plax)(m)p(yrzx) (m))(m)
> plp(zr)(m)m(yrz1) .- plaw)(m)m(yr2x)) (m)

> pr(z1)(m(yr) - w(z0)F) - w(ae) (i) - w(2)F)) (m)
>q (Lemma 9)

In conclusion, for all run ¢ of value at most n over w and finishing in (s, a,b) with
qg=s-a-b, we get ¢ < p(h(u))(a(n)) with a = a,omax(n,), but ¢ ¢ I is the condition
for (s,a,b) to be an accepting state, so f(u) < a(n). We can conclude f <, [A] 5.

Conversely, let us show that [A]p < f for some 3. For all u € AT and n € N, we
build a run o of A over u, such that sup C(c) < B(n), and such that by taking ¢ = s-a-b
with (s, a,b)last state of o, we have p(h(u))(n)) < ¢. In this way, if f(u) < n, then
p(h(u))(n) ¢ I hence g ¢ I and the run is valid, which implies [A]g(u) < B(n). We
therefore get the result [A]p <3 f.

We remind the Ramsey theorem : there exists ar such that for all ¢ € Nyw €
ST, there exists a decomposition of w into zv; ...v,y with 7(v1) = -+ = 7(vy) = e
idempotent, and ag(t) > |w|.

Let uw € AT and n € N. Let ¢ = a,(a,(n + 1)). If there is in h(u) a factor w with
7m(w) € Instab and |w| = ar(t), we apply Ramsey theorem to get w = xv ... v,y with
m(vy) =+ = mw(v;) = e idempotent. This decomposition gives us a rune of 4 over u :
on factor w, we do transitions of type (1) over x, type (2) over the v;’s, and type (3) at
the end of vy, the rest of the run is then constructed in the same way with 3. This gives
us a decomposition h(u) = uywy . .. ugwruks1, with w; = zjv! .. vl and 7w(v]) =+ =

m(v]) = e; idempotent, for all j € [1,k]. We get a run o verifying sup C(e) < ag(t),
and ending in state (s,a,b) with ¢ =s-a-b=m(urx1) - e§ coem(ugxy) - eﬁk 7 (Ug1)-

But we have :

1

plurz)p(o)) ... p(}) . .. plura)p(v}) ... p(oF) plus1)) ety ()

k

(
< plr(wz)n(o)) .. w(v]) .. g)w(oF) w0 () (@ ()
< plr(wrz1)e} ... w(upar) e (upsn))(ap(n))

< (w(urz) - (elver) ... m(ugan) - (ehleen) - m(unsr))(ap(a,(n)))

We get the wanted result, with 5(n) = ar(a,(a,(n + 1))).

Finally, f ~max(a.3) [AlB, A recognizes the cost function f. O

In order to show the last item of Theorem 12 we still have to show that minimization
preserves the temporal property of a stabilization semigroup :

Theorem 34 If S is temporal, then S/= is temporal.

Proof. Let us assume that S/= is not temporal. It means there is z,y € E(S/=) with
x* # 2z, y* =y, and z <7 y. Let 7 be the canonical projection of S over S/=, there is
a,b € S such that 7(a) = = and 7(b) = y. We have a! # a so a is unstable, b* = b and
a <z bt = (b*)!, which shows that S is not temporal. O

