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Regular Temporal Cost Fun
tionsThomas Col
ombet1, Denis Kuperberg1, Sylvain Lombardy2

1 Liafa/CNRS/Université Paris 7, Denis Diderot, Fran
e
2 Ligm - Université Paris-Est Marne-la-Vallée, Fran
eAbstra
t. Regular 
ost fun
tions have been introdu
ed re
ently as an exten-sion to the notion of regular languages with 
ounting 
apabilities, whi
h retainsstrong 
losure, equivalen
e, and de
idability properties. The spe
i�
ity of 
ostfun
tions is that exa
t values are not 
onsidered, but only estimated.In this paper, we study the stri
t sub
lass of regular temporal 
ost fun
tions.In su
h 
ost fun
tions, it is only allowed to 
ount the number of o

urren
es of
onse
utive events. For this reason, this model intends to measure the length ofintervals, i.e., a dis
rete notion of time. We provide various equivalent represen-tations for fun
tions in this 
lass, using automata, and `
lo
k based' redu
tionto regular languages. We show that the 
onversions are mu
h simpler to obtain,and mu
h more e�
ient than in the general 
ase of regular 
ost fun
tions.Our se
ond aim in this paper is to use temporal 
ost fun
tion as a test-
ase forexploring the algebrai
 nature of regular 
ost fun
tions. Following the seminalideas of S
hützenberger, this results in a de
idable algebrai
 
hara
terization ofregular temporal 
ost fun
tions inside the 
lass of regular 
ost fun
tions.1 Introdu
tionSin
e the seminal works of Kleene [Kle56℄ and Rabin and S
ott [RS59℄, the theory ofregular languages is one of the 
ornerstones in 
omputer s
ien
e. Regular languages havemany good properties, of 
losure, of equivalent 
hara
terizations, and of de
idability,whi
h makes them 
entral in many situations.Re
ently, the notion of regular 
ost fun
tion for words has been presented as a
andidate for being a quantitative extension to the notion of regular languages [Col09
℄,while retaining most of the fundamental properties of the original theory su
h as the
losure properties, the various equivalent 
hara
terizations, and the de
idability. A
ost fun
tion is an equivalen
e 
lass of the fun
tions from the domain (words in our
ase) to N∞, modulo an equivalen
e relation ≈ whi
h allows some distortion, butpreserves the boundedness property over ea
h subset of the domain. The model is anextension to the notion of languages in the following sense: one 
an identify a languagewith the fun
tion mapping ea
h word inside the language to 0, and ea
h word outsidethe language to ∞. It is a stri
t extension sin
e regular 
ost fun
tions have 
ounting
apabilities, e.g., 
ounting the number of o

urren
es of letters, measuring the lengthof intervals, et
...Related works and motivating examplesRegular 
ost fun
tions are the 
ontinuation of a sequen
e of works that have intendedto solve di�
ult questions in language theory. The prominent example is the star-height problem: given a regular language L and an integer k, de
ide whether L 
an beexpressed using a regular expression using at most k-nesting of Kleene stars. It wasraised by Eggan in 1963 [Egg63℄, but solved only 25 years later by Hashigughi using



a very intri
ate proof [Has88℄. An improved and self-
ontained proof has been morere
ently proposed by Kirsten [Kir05℄. The two proofs work along the same lines: showthat the original problem 
an be redu
ed to the existen
e of a bound over some fun
tionfrom words to integers. This fun
tion 
an be represented using an automaton that have
ounting features (a distan
e automaton for Hashigu
hi, and a nested distan
e desertautomaton for Kirsten). The proof is 
on
luded by showing that su
h boundednessproblems are de
idable.Other de
ision problems 
an also be redu
ed to boundedness questions over words:in language theory the �nite power property [Sim78,Has79℄ and the �nite substitutionproblem [Bal04,Kir04℄, and in model theory the boundedness problem of monadi
 formu-las over words [BOW09℄. Distan
e automata are also used in the 
ontext of databasesand image 
ompression. Automata similar to the ones of Kirsten have also been intro-du
ed independently in the 
ontext of veri�
ation [AKY08℄.Finally, using also ideas inspired from [BC06℄, the theory of those automata overwords has been uni�ed in [Col09
℄, in whi
h 
ost fun
tions are introdu
ed, and suitablemodels of automata, algebra, and logi
 for de�ning them are presented and shownequivalent. Corresponding de
idability results are provided. The resulting theory is aneat extension of the standard theory of regular languages to a quantitative setting.All the limitedness problems from the literature appear as spe
ial instan
es of thoseresults, as well as all the 
entral results known for regular languages.ContributionsWe introdu
e the sub
lass of regular temporal 
ost fun
tions. Regular temporal 
ostfun
tions are regular 
ost fun
tions in whi
h one 
an only 
ount 
onse
utive events: forinstan
e, over the alphabet {a, b}, the maximal length of a sequen
e of 
onse
utive let-ter a's is temporal, while the number of o

urren
es of letter a is not. This 
orrespondsto the model of desert automata introdu
ed by Kirsten [Kir04℄. We believe that thenotion of regular temporal 
ost fun
tion is of interest in the 
ontext of modelization oftime.We show that regular temporal 
ost fun
tions admit various equivalent presenta-tions. The �rst su
h representation is obtained as a synta
ti
 restri
tion of B-automataand S-automata (the automata used for des
ribing regular 
ost fun
tions [Col09
℄). Se
-ond, we provide an equivalent 
lo
k-based presentation, in whi
h the regular temporal
ost fun
tions is represented as a regular language over words labeled with the ti
ks ofa 
lo
k as an extra information. We show all the 
losure results for regular temporal
ost fun
tions (e.g., min, max, et
...) using this presentation. As opposed to the generaltheory of regular 
ost fun
tions, all those results are obtained by a translation to thetheory of regular languages. This results in 
onstru
tions of better 
omplexity, both interms of number of states of automata, and in terms of te
hni
ality of the 
onstru
tionsthemselves. Last but not least, while in the general theory of regular 
ost fun
tions theerror 
ommitted during the 
onstru
tion is bounded by a polynomial, it is linear forregular temporal 
ost fun
tions.Our se
ond 
ontribution is an algebrai
 
hara
terization of this 
lass. It is knownfrom [Col09
℄ that regular 
ost fun
tions are the one re
ognizable by stabilizationmonoids. This model of monoids extends the standard approa
h for languages. One ofour obje
tives in studying regular temporal 
ost fun
tion was to validate the interestof this algebrai
 approa
h, and show that results similar to the famous S
hützenbergertheorem on star-free languages [S
h65℄ were possible. We believe that we su

eededin this dire
tion, sin
e we are able to algebrai
ally 
hara
terize the 
lass of regulartemporal 
ost fun
tions, and furthermore that this 
hara
terization is e�e
tive.



Organisation of the paperAfter some notations, we present 
ost fun
tions and 
ost automata in Se
tion 2, andintrodu
e the sub
lass of regular temporal 
ost fun
tions. In Se
tion 3 we proposea 
lo
k-based presentation to temporal 
ost fun
tions, and advo
ate some of its ad-vantages. In Se
tion 4 we present the algebrai
 formalism and sket
h our algebrai

hara
terization for regular temporal 
ost fun
tions. We �nally 
on
lude.NotationsWe will note N the set of non-negative integers and N∞ the set N ∪ {∞}, orderedby 0 < 1 < · · · < ∞. If E is a set, EN is the set of in�nite sequen
es of elements of E(we will not use here the notion of in�nite words). Su
h sequen
es will be denoted bybold letters (a, b,...). We will work with a �xed �nite alphabet A. The set of wordsover A is A∗. The empty word ǫ, and A+ = A∗ \ {ǫ}. The 
on
atenation of words uand v is uv.The length of u is |u|. The number of o

urren
es of letter a in u is |u|a. Wewill note inf E and sup E the lower and upper bounds of a set E ⊆ N∞, in parti
ular
inf ∅ = ∞ and sup ∅ = 0.2 Regular 
ost fun
tionsThe theory of regular 
ost fun
tions has been proposed in [Col09
℄. In this se
tion, wereview some of the de�nitions useful for the present paper.2.1 Basi
s on 
ost fun
tionsThe prin
iple of 
ost fun
tions is to 
onsider fun
tions modulo an equivalen
e relation≈allowing some distortions of the values. This distortion is 
ontrolled using a parameter(α, α′, α1 . . . ) whi
h is a mapping from N to N su
h that α(n) ≥ n for all n, 
alled the
orre
tion fun
tion. For x, y ∈ N∞, x 4α y means that either x and y are in N and
x ≤ α(y), or y = ∞. It is equivalent to write that x ≤ α(y) in whi
h we impli
itlyextend α to N∞ by α(∞) = ∞. For all sets E, 4α is naturally extended to mappingsfrom E to N∞ by f4αg if f(x) 4α g(x) for all x ∈ E, or equivalently if f ≤ α◦g (usingthe same expli
it extension of α). The intuition here is to 
onsider that g dominates fup to a `stret
hing fa
tor' α. We note f ≈α g if f 4α g and g 4α f . Finally, we note
f4g (resp. f≈g) if f 4α g (resp. f ≈α g) for some α. A 
ost fun
tion (over a set E) isan equivalen
e 
lass of ≈ among the set of fun
tions from E to N∞.The relation 4 has other 
hara
terizations:Proposition 1 For all fun
tions f, g : E → N∞, the following items are equivalent:� f 4 g,� For all X ⊆ E, g bounded over X implies f bounded over X.The last 
hara
terization shows that ≈ preserves the existen
e of bounds.To ea
h subset X ⊆ E, one asso
iates its 
hara
teristi
 mapping χX from E to N∞whi
h to x asso
iates 0 if x ∈ X , and ∞ otherwise. It is easy to see that X ⊆ Yi� χX < χY . In this way, the notion of 
ost fun
tions 
an be seen as an extension tothe notion of language.



2.2 Cost-AutomataIn this se
tion, we will des
ribe how some fun
tions from A∗ to N∞ 
an be a

eptedby 
ertain forms of automata using 
ounters of value ranging in N. We name su
h 
ostfun
tions `regular'.A 
ost automaton is a tuple 〈Q, A, In,Fin , Γ, ∆〉 where Q is a �nite set of states, Ais a �nite alphabet, In and Fin are the set of initial and �nal states respe
tively, Γ isa �nite set of 
ounters, and ∆ ⊆ Q × A × ({i, r, c}∗)Γ × Q is the set of transitions.The value of ea
h 
ounter ranges over N, and evolves a

ording to atomi
 a
tions in
{i, r, c}: i in
rements the value by 1, r resets the value to 0, and c 
he
ks the value (butdoes not 
hange it). Ea
h a
tion in ({i, r, c}∗)Γ tells for ea
h 
ounter what sequen
eof atomi
 a
tions has to be performed. Hen
e, given a sequen
e of a
tions u, one 
anexe
ute it as follows: at the begining, all 
ounters share the value 0, and we read theword u letter by letter from left to right. For ea
h letter, one applies the 
orrespondingsequen
e of atomi
 a
tions on ea
h 
ounter. One sets the set C(u)⊆ N to 
ontain allvalues that are taken by a 
ounter when 
he
ked (this set 
olle
ts all the 
he
ked valuesindistin
tly: there is no distin
tion 
on
erning the 
ounter the value originates from,or the moment of the 
he
k).A run σ of a 
ost automaton over a word a1 . . . an is a sequen
e in ∆∗ of the form
(q0, a1, t1, q1)(q1, a2, t2, q2) . . . (qn−1, an, σn, qn) su
h that q0 is initial, qn is �nal (therun ε is also valid i� there exists q0, both initial and �nal). One sets C(σ)= C(t1 . . . tn),i.e., to 
olle
t the set of values 
he
ked when exe
uting the run over the 
ounters.At this point, 
ost automata are instantiated in two versions, namely B-automataand S-automata that di�ers by their dual semanti
s, [[·]]B and [[·]]S respe
tively. Thesesemanti
s are de�ned for all u ∈ A∗ by:

[[A]]B(u) = inf{supC(σ) : σ run over u} ,and [[A]]S(u) = sup{inf C(σ) : σ run over u} .(Re
all that sup ∅ = 0 and inf ∅ = ∞) One says that a B-automaton (resp. an S-automaton) a

epts [[A]]B (resp. [[A]]S).Example 1. If A is a standard non-deterministi
 automaton a

epting L ⊆ A∗, it 
anbe seen as a 
ost automaton without any 
ounter. Seen as a B-automaton, we have
[[A]]B(u) = χL, and seen as an S-automaton, [[A]]S(u) = χA∗\L.Example 2. We des
ribe the two one 
ounter 
ost automata A and A′ by drawings:

a : ic

b : r

a, b : ǫ

b : ǫ

a : i

a, b : cr

a, b : ǫ

Cir
les represent states, and a transition (p, a, t, q) is denoted by an edge from p to qlabeled a : t (the notation a, b : t abbreviates multiple transitions). Initial states areidenti�ed by unlabeled ingoing arrows, while �nal states use unlabeled outgoing arrows.One 
he
ks that [[A]]B ≈ [[A′]]S ≈ fa where fa(u) = max{n ∈ N / u = vanw}.A B-automaton is simple if it uses a
tions in {ǫ, ic, r}Γ . A S-automaton is simple if ituses a
tions in {ǫ, i, cr}Γ . The following theorem is 
entral in the theory:Theorem 2 (duality [Col09
,Col09a℄). It is equivalent for a fun
tion, up to ≈, tobe a

epted by a [simple℄ B-automaton or to be a

epted by a [simple℄ S-automaton.



Su
h 
ost fun
tions are 
alled regular. This 
omes with a de
ision pro
edure:Theorem 3 ([Col09
℄). The relations 4 and ≈ are de
idable for regular 
ost fun
-tions.2.3 Regular temporal 
ost fun
tionsThe subje
t of the paper is to study the regular temporal 
ost fun
tions, a sub
lass ofregular 
ost fun
tions. We give here a �rst de�nition of this 
lass.A B-automaton (resp. S-automaton) is temporal if it uses only a
tions in {ic, r}Γ(resp. {i, cr}Γ ). Hen
e temporal automata are simple automata in whi
h it is disallowedin an a
tion to leave 
ounters un
hanged. Intuitively, su
h automata 
an only measure
onse
utive events. We de�ne tempB (resp. tempS) to map sequen
es in {ic, r}∗ to N(resp. {i, cr}∗ to N∞ ) whi
h to u asso
iates (supC(u)) (resp. (inf C(u))). Those fun
-tions are extended to sets of 
ounters and runs as in the general 
ase of 
ost automata.We say that a 
ost fun
tion is B-temporal (resp. S-temporal) if it is a

epted by atemporal B-automaton (resp. a temporal S-automaton). We will see below that thesetwo notions 
oin
ide, up to ≈ (Theorem 7).Example 3. Over the alphabet {a, b}, the 
ost fun
tion fa from Example 2 is B-temporal (as witnessed by the example automaton).However, the fun
tion u 7→ |u|a is not B-temporal, even modulo ≈. Indeed, forthe sake of 
ontradi
tion, assume that there exists a temporal B-automaton A =
〈Q, A, In,Fin, Γ, ∆〉 a

epting g, with g ≈α | · |a for some α. Let K = |Q| + 1 and
N = α(K) + 1. Let σ be the run of A over u = (bNa)K whi
h minimizes sup C(σ) (ithas to exist sin
e g(u) ≈α |u|a < ∞). Sin
e K > |Q| + 1, one 
an de
ompose u as xvysu
h that |v|a ≥ 1, |v| ≥ N , and the run σ assumes same state p after reading both xand xv. Let σxσvσy be the 
orresponding de
omposition of the run σ. Assume �rst thatthere exists a 
ounter whi
h is never reset during σv, then we get g(u) ≥ N > α(|u|a).This 
ontradi
ts g ≈α | · |a. Hen
e all 
ounters have to be reset somewhere in σv. Con-sider the word um = xvmy. One easily 
he
ks that |um|a ≥ m sin
e |u|a ≥1. However,the run σxσm

v σy witnesses that g(um) ≤ max(g(u), |u|). Hen
e | · |a is unbounded overthe um's, while g is bounded over the same set. This is a 
ontradi
tion a

ording toProposition 1.3 Clo
k-form of temporal 
ost fun
tionsIn this se
tion, we give another 
hara
terization to B-temporal and S-temporal regular
ost fun
tions. This presentation makes use of 
lo
ks (the notion of 
lo
k should notbe 
onfused with the notion of 
lo
k used for timed automata).A 
lo
k c is a word over the alphabet { , ↓}. It should be seen as des
ribing theti
ks of a 
lo
k: the letter is  if there is no ti
k at this moment, and it is ↓ when thereis a ti
k. A 
lo
k naturally determines a fa
torization of time into intervals (we saysegments). Here, one fa
torizes c as:
c = ( n1−1 ↓)( n2−1 ↓) . . . ( nk−1 ↓) m−1 .One sets max−seg(c) to be max{n1, . . . , nk, m} ∈ N, and min−seg to be inf{n1, . . . , nk} ∈

N∞ (remark the asymmetry). A 
lo
k c has period P∈ N if n1 = n2 = · · · = nk = P ,and m ≤ P . This is equivalent to stating3 max−seg(c) ≤ P ≤ min−seg(c). Remark3 Remark that as soon as k ≥ 1, the inequalities be
ome�as one may expe
t�equalities.



that given n and P , there exists one and only one 
lo
k of length n and period P . You
an remark that max−seg(c) = tempB(hB(c))+1 in whi
h hB maps  to ic and ↓ to r.Similarly, min−seg(c) = tempS(hS(c)) + 1 in whi
h hB maps  to i and ↓ to cr.A 
lo
k on u ∈ A∗ is a 
lo
k c of length |u|, In this 
ase, one denotes by 〈u, c〉 theword over A×{ , ↓} obtained by pairing the letters in u and in c of same index. For La language in (A × { , ↓})∗, we de�ne the following fun
tions from A∗ to N∞:
〈〈L〉〉B : u 7→ inf{max−seg(c) : c 
lo
k on u, 〈u, c〉 ∈ L}

〈〈L〉〉S : u 7→ sup{min−seg(c) : c 
lo
k on u, 〈u, c〉 /∈ L} + 1Lemma 1. For all languages L ⊆ (A × { , ↓})∗, 〈〈L〉〉B ≤ 〈〈L〉〉S .Proof. Fix u. Consider the minimal P su
h that the 
lo
k c over u of period P is su
hthat 〈u, c〉 ∈ L (if there is no su
h period, 〈u,  |u|〉 /∈ L, and 〈〈L〉〉S(u) = ω). We 
learlyhave 〈〈L〉〉B(u) ≤ P . On the other hand, 〈u, c′〉 6∈ L, where c′ is the 
lo
k over u ofperiod P − 1. Hen
e 〈〈L〉〉B(u) ≤ P ≤ 〈〈L〉〉S(u). ⊓⊔The notations 〈〈·〉〉B and 〈〈·〉〉S are easily 
onvertible into temporal 
ost automata asshown by Fa
t 4.Fa
t 4 If L is regular and L (resp. ∁L) is a

epted by a non-deterministi
 automatonwith n states, then 〈〈L〉〉B − 1 (resp. 〈〈L〉〉S − 1) is a

epted by a temporal B-automaton(resp. a temporal S-automaton) with n states and one 
ounter.Proof. We have seen that max−seg = (tempB ◦ hB) + 1. Hen
e, if we repla
e in theautomaton for L ea
h transition of the form (p, (a, c), q) by a transition (p, a, hB(c), q),we immediately get the desired temporal B-automaton. The 
onstru
tion for temporalS-automata is identi
al, starting from the 
omplement automaton, and using hS. ⊓⊔The important de�nition is the following:De�nition 5 An α-
lo
k-language (or simply a 
lo
k-language if there exists su
han α) is a language L ⊆ (A × { , ↓})∗ su
h that 〈〈L〉〉B ≈α 〈〈L〉〉S . A fun
tion f hasan α-
lo
k-form if there exists an α-
lo
k-language L su
h that 〈〈L〉〉S ≤ f 4α 〈〈L〉〉B .A 
ost fun
tion has a 
lo
k-form if it 
ontains a fun
tion that has an α-
lo
k-form forsome α. We note CF the set of 
ost fun
tions that have a 
lo
k-form.One 
an remark that it is su�
ient to prove 〈〈L〉〉S 4α 〈〈L〉〉B for proving that L isan α-
lo
k-language: Lemma 1 provides indeed the other dire
tion.Example 4. For L ⊆ A∗, K = L× { , ↓}∗ is a 
lo
k-language, whi
h witnesses that χLhas an identity-
lo
k-form.Example 5. Consider again the fun
tion fa of Example 2, 
omputing the maximalnumber of 
onse
utive a's. The language M = ((a,  ) + (b, ↓))∗ veri�es 〈〈M〉〉B ≈ fa,but it is not a 
lo
k-language: for instan
e the word bam is su
h that fa(bam) = m,meanwhile, 〈〈M〉〉S(bam) = 0. This 
ontradi
ts 〈〈M〉〉S ≈ fa a

ording to Proposition 1.This 
omes from the fa
t that the 
lo
k witnessing 〈〈M〉〉B ≈ fa is 
hosen given theword (the one ti
king exa
tly over b-letters). This is in 
ontradi
tion with the importantintuition behind being in 
lo
k-form whi
h is that the 
lo
k 
an be 
hosen independentlyfrom the word.However, it is possible to 
onstru
t a rational 
lo
k-language L for fa. It 
he
ksthat ea
h segment of 
onse
utive a's 
ontains at most one ti
k of the 
lo
k, i.e.:
L = K[((b,  ) + (b, ↓))K]∗ in whi
h K = (a,  )∗ + (a,  )∗(a, ↓)(a,  )∗ .



Let u be a word, and c be a 
lo
k su
h that min−seg(c) = n and 〈u, c〉 6∈ L. Sin
e 〈u, c〉 6∈
L, there exists a fa
tor of u of the form ak in whi
h there are two ti
ks of the 
lo
k.Hen
e, k ≥ n+1. From whi
h we obtain 〈〈L〉〉S ≤ fa. Conversely, let u be a word, and cbe a 
lo
k su
h that max−seg(c) = n and 〈u, c〉 ∈ L. Let k = fa(u). This means thatthere is a fa
tor of the form ak in u. Sin
e 〈u, c〉 ∈ L, there is at most one ti
k of the
lo
k in this fa
tor ak. Hen
e, k ≤ 2n− 1. We obtain that fa < 2〈〈L〉〉B. Hen
e, L is an
α-
lo
k-language for fa, with α : n 7→ 2n.Let us turn ourselves to 
losure properties for languages in 
lo
k-form. Consider amapping f from A∗ to N∞ and a mapping h from A to B (B being another alphabet)that we extend into a monoid morphism from A∗ to B∗, the inf-proje
tion of f (resp.
sup-proje
tion ) with respe
t to h is the mapping finf,h (resp. fsup,h) from B∗ to N∞de�ned for all v ∈ B∗ by:

finf,h(v) = inf {f(u) : h(u) = v} (resp. fsup,h(v) = sup {f(u) : h(u) = v} )The following theorem shows 
losure properties of 
ost fun
tions in 
lo
k-form thatare obtained by translation to a dire
t 
ounterpart in language theory:Theorem 6 Given L, M α-
lo
k-languages over A, h from A to B and g from B to A,we have:� L ∪ M is an α-
lo
k-language and 〈〈L ∪ M〉〉B = min(〈〈L〉〉B , 〈〈M〉〉B)� L ∩ M is an α-
lo
k-language and 〈〈L ∩ M〉〉S = max(〈〈L〉〉S , 〈〈M〉〉S)� L◦g = {〈u, c〉 : 〈g(u), c〉 ∈ L} is an α-
lo
k-language and 〈〈L◦g〉〉B = 〈〈L〉〉B ◦ g� Linf,h = {〈h(u), c〉 : 〈u, c〉 ∈ L} is an α-
lo
k-language and 〈〈Linf,h〉〉B = (〈〈L〉〉B)inf,h� Lsup,h = ∁ {〈h(u), c〉 : 〈u, c〉 /∈ L} is an α-
lo
k-language and 〈〈Lsup,h〉〉S = (〈〈L〉〉S)sup,hProof. The �ve items follow all the same proof prin
iple. Let us treat the 
ase of inf-proje
tion. The equality is proved by the following sequen
e of equalities:
(〈〈Linf,h〉〉B)(v) = inf{max−seg(c) : 〈v, c〉 ∈ Linf,h}

= inf{max−seg(c) : 〈u, c〉 ∈ L, h(u) = v}

= inf{inf{max−seg(c) : 〈u, c〉 ∈ L} : h(u) = v} = (〈〈L〉〉B)inf,h(v)Assume L is an α-
lo
k-language, it remains to be shown that Linf,h is also an α-
lo
k-language. Let v be a word and c be the 
lo
k witnessing 〈〈L〉〉B(v) = n, i.e., su
hthat 〈v, c〉 ∈ Linf,h and max−seg(c) = n. Let c′ be a 
lo
k over v su
h that min−seg(c′) >
α(n), we have to show 〈v, c′〉 ∈ Linf,h. Sin
e 〈v, c〉 ∈ Linf,h, there exists u su
hthat v = h(u) and 〈u, c〉 ∈ L. Hen
e, sin
e L is an α-
lo
k-language, 〈u, c′〉 ∈ L. Itfollows that 〈v, c〉 ∈ Linf,h. ⊓⊔Lemma 2. tempB and tempS have ×2-
lo
k-forms with ×2(n) = 2n.Proof. The proof for tempB is the same as in Example 5, in whi
h one repla
es theletter a by ic and the letter b by r. The tempS side is similar. (See Appendix A.1) ⊓⊔Theorem 7 If f is a regular 
ost fun
tion, the following assertions are equivalent :1. f has a 
lo
k-form,2. f is B-temporal,3. f is 
omputed by a temporal B-automaton with only one 
ounter,4. f is S-temporal,5. f is 
omputed by a temporal S-automaton with only one 
ounter.



Proof. (1)⇒(3) follows from Fa
t 4. (3)⇒(2) is trivial.(2)⇒(1): Consider a temporal B-automaton A = 〈Q, A, In,Fin , Γ, ∆〉 using 
ounters
Γ = {γ1, . . . , γk}. A run of A is a word on the alphabet B = Q × A × {ic, r}Γ × Q. Itfollows from the de�nition of [[·]]B that for all u ∈ A∗:

[[A]]B(u) = inf
σ∈B∗

{max(χR(σ), tempB ◦ π1(σ), · · · , tempB ◦ πk(σ)) : πA(σ) = u}in whi
h R ⊆ ∆∗ is the (regular) set of valid runs; for all i ∈ [[1, k]], πi proje
tsea
h transition (p, a, t, q) to the its γth
i 
omponent of t (and is extended to words).Finally πA proje
ts ea
h transition (p, a, t, q) to a (and is also extended to words). ByExample 4, χR ∈ CF . By Lemma 2, tempB ∈ CF , and by Theorem 6, CF is stableunder 
omposition, max and inf-proje
tion. Hen
e [[A]]B ∈ CF .The equivalen
es (2)⇔(4)⇔(5) are proved in a similar way. ⊓⊔A
tually, Theorem 6 and Lemma 2 allow to state that if a fun
tion f is given by one ofthe �ve des
riptions of Theorem 7, then for any other among these des
riptions, thereexists a fun
tion g whi
h is ≈×2-equivalent to f .In the following, we will simply say that f is a temporal 
ost fun
tion instead of

B-temporal or S-temporal.Con
lusion on 
lo
k-forms, and perspe
tivesIndependently from the se
ond part of the paper, we believe that some extra 
ommentson the 
lo
k-form approa
h are interesting.First of all, let us stress the remarkable property of the 
lo
k-form presentation oftemporal 
ost fun
tions: those 
an be seen either as de�ning a fun
tion as an in�mum(〈〈·〉〉B) or as a supremum (〈〈·〉〉S). Hen
e, regular 
ost fun
tion in 
lo
k-forms 
an beseen either as B-automata or as S-automata. This presentation is in some sense `self-dual'. Nothing similar is known for general regular 
ost fun
tions.Another di�eren
e with the general 
ase is that all 
onstru
tions are in fa
t redu
-tion to 
onstru
tions for languages: This is parti
ularly obvious in the statement ofTheorem 6. Furthermore, sin
e everything is done at the level of languages, we do notrequire any spe
i�
 presentation for the languages. Those 
an be des
ribed e.g. by anyform of automata or algebra. For this reason, any spe
i�
 optimised 
onstru
tions forregular language should be reusable for regular temporal 
ost fun
tions. However, sin
etwo di�erent languages L, L′ 
an be su
h that 〈〈L〉〉B ≈ 〈〈L′〉〉B (even 〈〈L〉〉B = 〈〈L′〉〉B),one must keep aware that optimal operations performed at the level of languages�su
has minimization�will not be optimal anymore when used for des
ribing temporal 
ostfun
tions. It is a perspe
tive of resear
h to develop dedi
ated algorithmi
 for regulartemporal 
ost fun
tions.A third di�eren
e is that the error 
ommitted, whi
h is measured by the stret
hingfa
tor α, is linear. This is mu
h better than the general 
ase of 
ost fun
tions, inwhi
h, e.g., the equivalen
e between B-automata and S-automata requires a polynomialstret
hing fa
tor. However, we do not take yet full advantage of this in the present papersin
e we do not try to use this pre
ision, e.g., in new de
ision pro
edures. There arealso here resear
hes to be 
ondu
ted.In fa
t, the argument underlying temporal 
ost fun
tions in 
lo
k-forms is inter-esting per se: it 
onsists in approximating some quantitative notion, here the notionof length of intervals, using some extra unary information, here the ti
ks of the 
lo
k.Sin
e unary information 
an be handled by automata, the approximation of the quan-titative notion be
omes also available to the automaton. This is a very robust prin
iple



that 
learly 
an be reused in several other ways. For instan
e, it would be no di�erentto 
onsider ti
ks of a 
lo
k over an in�nite word (in fa
t the fa
t that words are �nite iseven entailing problems). It would be no di�erent on trees (seen as a bran
hing presen-tation of time), be they �nite or in�nite. Keeping on the same tra
k, a 
lo
k is even notrequired to 
ount the time, it 
ould 
ount some events already written on the input,su
h as the number of a's, et
. These examples show the versatility of the approa
h.4 Algebrai
 approa
hWe �rst re
all de�nitions of 
lassi
 semigroups and stabilization semigroups for thegeneral 
ase of regular 
ost fun
tions. We use them in a de
idable algebrai
 
hara
ter-ization of temporal 
ost fun
tions.4.1 Standard semigroupsDe�nition An ordered semigroup S = 〈S, ·,≤〉 is a set S endowed with an asso
iativeprodu
t · : S × S → S and a partial order ≤ over S 
ompatible with · (i.e. if a ≤ a′and b ≤ b′, then a · b ≤ a′ · b′).An idempotent element of S is an element e ∈ S su
h that e · e = e. We note E(S)the set of idempotent elements of S.Re
ognizing languages In the standard theory, the re
ognition of a language by a�nite semigroup is made through a morphism from words into the semigroup whi
h
an be de
omposed into two steps: �rst, a length-preserving morphism h : A+ → S+,where S+ is the set of words whose letters are in S, and se
ond the fun
tion π: S+ → Swhi
h maps every word on S onto the produ
t of its letters. The language L re
ognizedby the triple (S, h, P ), where P is a subset of S, is L = h−1(π−1(P ), i.e. u ∈ L i�
π(h(u)) ∈ P .It is standard that languages re
ognized by �nite semigroups are exa
tly the regularlanguages. It is also by now well known that families of regular languages 
an be 
har-a
terized by restri
tions on the semigroups whi
h re
ognize them. This is for instan
ethe 
ase in Eilenberg's variety theorem or in S
hützenberger's theorem 
hara
terizingstar-free languages as the one re
ognized by aperiodi
 semigroups [S
h65℄.4.2 Stabilization semigroupThe notion of stabilization monoid has been introdu
ed in [Col09
℄ as a quantitativeextension of standard monoids, for the re
ognition of 
ost fun
tions. Stabilization semi-group is a more 
onvenient obje
t in the present paper, sin
e the empty word playsa spe
ial role (it has length 0). The relationship between stabilization monoids andstabilization semigroups is made expli
it in [Col09b℄. A side e�e
t is that it is moreeasy to speak about regular 
ost fun
tions over non-empty words. We do it from nowfor simpli
ity.De�nition 8 A stabilization semigroup 〈S, ·,≤, ♯〉 is an ordered semigroup 〈S, ·,≤〉together with an operator ♯: E(S) → E(S) (
alled stabilization) su
h that:� for all a, b ∈ S with a · b ∈ E(S) and b · a ∈ E(S), (a · b)♯ = a · (b · a)♯ · b;� for all e ∈ E(S), (e♯)♯ = e♯ ≤ e;� for all e ≤ f in E(S), e♯ ≤ f ♯;In this paper, we only 
onsider �nite stabilization semigroups. The intuition of the
♯ operator is that e♯ represents the value that gets e `when repeated many times'. Thismay be di�erent from e if one is interested in 
ounting the number of o

urren
es of e.



4.3 Re
ognizing 
ost fun
tionsThe �rst step for re
ognizing 
ost fun
tion is to provide a `quantitative semanti
' to thestabilization semigroup S = 〈S, ·,≤, ♯〉. This is done by a mapping ρ named a 
ompatiblemapping, whi
h maps every word of S+ to an in�nite non-de
reasing sequen
e of SN(the original de�nition does not use non-de
reasing sequen
es, but is equivalent, seee.g., [Col09
℄). The prin
iple is that the ith position in the sequen
e ρ(u) tells the valueof the word u for a threshold i separating what is 
onsidered as few and as lot. This isbetter seen on an example.Example 6. Consider the following stabilization semigroup:
b a 0 ♯

b b a 0 b
a a a 0 0
0 0 0 0 0

b a 0

b

a

0

a, b

0

0, a, b

It is given both by its table of produ
t augmented by a 
olumn for the stabilization andby its Cayley graph. In the Cayley graph there is an edge labelled by y linking element xto element x · y. There is furthermore a double arrow going from ea
h idempotent toits stabilized version.The intention is to 
ount the number of a's. Words with no a's 
orrespond toelement b. Words with at least one, but few a's 
orrespond to element a. Finally, wordsthat 
ontain a lot of a's should have value 0: for instan
e, a♯ = 0 witnesses that iteratinga lot of time a word with at least one a yields a word with a lot of a's.A possible 
ompatible mapping ρ for this stabilization semigroup atta
hes to ea
hword over {b, a, 0}+ an in�nite sequen
e of values in {b, a, 0} as follows: every wordin b+ is mapped to the 
onstant sequen
e b; every word 
ontaining 0 is mapped to the
onstant sequen
e 0; every word u ∈ b∗(ab∗)+ is mapped to 0 for indi
es up to |u|a − 1and a for indi
e |u|a and beyond. The idea is that for a threshold i < |u|a, the wordis 
onsidered as having a lot of a's in front of i (hen
e value 0), while it has few a's infront of i for i ≥ |u|a (hen
e the value a). One 
an see that this sequen
e `
odes' thenumber of a's in the position in whi
h it swit
hes from value 0 to value a.A formal de�nition of a 
ompatible mapping requires to state the properties it hasto satisfy, and whi
h relate it to the stabilisation monoid. This would require mu
hmore material, and we have to stay at this informal level in this short paper (SeeAppendix A.6). The important result here is that given a �nite stabilization monoid,there exists a mapping 
ompatible with it, and furthermore that it is unique up toan equivalen
e ∼ (whi
h essentially 
orresponds to ≈) [Col09
,Col09b℄. Hen
e, in theabove example, the 
ompatible mapping des
ribed is the unique possible (up to ∼).Now that we know what the semanti
s of stabilization semigroups look like, oneuses it for re
ognizing 
ost fun
tions. Instead of 
omputing the produ
t of elementsand 
he
king whether it belongs to a subset P of the semigroup, the quantitativere
ognition 
onsists in 
onsidering the in�nite sequen
e obtained by the 
ompatiblemapping and observing the �rst moment it leaves a �xed ideal I of the semigroup (anideal is a downward ≤-
losed subset). Formally, the 
ost fun
tion f over A+ re
ognizedby (S, h, I) is f : u 7→ inf{n ∈ ω, ρ(h(u))(n) /∈ I}, where h : A+ → S+ is a length-preserving morphism, and ρ is a mapping 
ompatible with S.Typi
ally, on the above example, the ideal is {0}, and h maps ea
h letter in {a, b}to the element of same name. For all words u ∈ {a + b}+, the value 
omputed isexa
tly |u|a.



Theorem 9 [Col09
℄ A 
ost fun
tion is regular i� it is re
ognized by a stabilizationsemigroup.Like for regular languages, this algebrai
 presentation 
an be minimized.Theorem 10 If f is a regular 
ost fun
tion, there exists e�e
tively a (quotient-wise)minimal stabilization semigroup re
ognizing f .This minimal stabilization semigroup 
an be obtained from (S, h, I) by a Moore algo-rithm 
omputing the 
oarsest 
ongruen
e, 
ompatible with the semigroup and stabiliza-tion operations, whi
h separates elements of I from the other elements. This pro
edureis polynomial in the size of S. (See Appendix A.7)4.4 Temporal stabilization semigroupsLet us now 
hara
terize the regular temporal 
ost fun
tions.We say that an idempotent e is stable if e♯ = e. Otherwise it is unstable. Theintuition is that stable idempotents are not 
ounted by the stabilization semigroup (bin the example), while the iteration of unstable idempotents matters (a in the example).De�nition 11 Let S = 〈S, ·,≤, ♯〉 be a stabilization semigroup. S is temporal if for allidempotents s and e = x · s · y, if s is stable then e is also stable.For instan
e, the example stabilization semigroup is not temporal sin
e b is stablebut a = a · b · a is unstable. This is related to temporal 
ost fun
tions as follows:Theorem 12 Let f be a regular 
ost fun
tion, the following assertions are equivalent:� f is temporal� f is re
ognized by a temporal stabilization semigroup� the minimal stabilization semigroup re
ognizing f is temporalWe will brie�y give an idea on how the de�nition of temporal semigroups is related tothe intuition of 
onse
utive events. Indeed, an unstable idempotent must be seen as anevent we want to `measure', whereas we are not interested in the number of o

urren
esof a stable idempotent. But if we have e = x ·s ·y with e unstable and s stable, it meansthat we want to `
ount' the number of o

urren
es of e without 
ounting the numberof s within e. In other words, we want to in
rement a 
ounter when e is seen, but s
an be repeated a lot inside a single o

urren
e of e. To a

omplish this, we have noother 
hoi
e but doing a
tion ǫ on the 
ounter measuring e while reading all the s's,however, this kind of behaviour is disallowed for temporal automata.The two last assertions are equivalent, sin
e temporality is preserved by quotientof stabilization semigroups. On our example, the stabilization semigroup is already theminimal one re
ognizing the number of o

urren
es of a, and hen
e, this 
ost fun
tionis not temporal. We gave a dire
t proof for this fa
t in Example 3.Corollary 1. The 
lass of temporal 
ost fun
tions is de
idable.The 
orollary is obvious sin
e the property 
an be de
ided on the minimal stabilizationsemigroup, whi
h 
an be 
omputed either from a 
ost automaton or a stabilizationsemigroup de�ning the 
ost fun
tion.



5 Con
lusionWe de�ned a sub
lass of regular 
ost fun
tions 
alled the temporal 
lass. Our �rst def-inition used 
ost automata. We then 
hara
terized regular temporal 
ost fun
tions asthe ones des
ribable by 
lo
k-languages. This presentation allows to reuse all standard
onstru
tion for regular languages taken from 
lassi
 language theory. We then 
hara
-terized the 
lass in the algebrai
 framework of stabilization semigroups, the algebrai
notion allowing to des
ribe regular 
ost fun
tions. This together with the 
onstru
tionof minimal stabilization semigroups gave us a de
ision pro
edure for the temporal 
lass,and hopefully for more 
lasses in future works.The later de
idable 
hara
terization result 
alls for 
ontinuations. Temporal 
ostfun
tions 
orrespond to desert automata of Kirsten [Kir04℄, but other sub
lasses ofautomata are present in the literature su
h as distan
e automata (whi
h 
orrespond toone-
ounter no-reset B-automata) or distan
e desert automata (a spe
ial 
ase of two
ounters B-automata). Is there de
idable 
hara
terizations for the regular 
ost fun
tionsdes
ribed by those automata? More generally, what is the nature of the hierar
hy of
ounters?Referen
es[AKY08℄ Parosh Aziz Abdulla, Pavel Kr
al, andWang Yi. R-automata. In Fran
k van Breugeland Mar
ha Che
hik, editors, Pro
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ture Notes in Computer S
ien
e, pages 596�607. Springer, 2004.[BC06℄ Mikolaj Boja«
zyk and Thomas Col
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him Blumensath, Martin Otto, and Mark Weyer. Boundedness of monadi
se
ond-order formulae over �nite words. In 36th ICALP, Le
ture Notes in Com-puter S
ien
e, pages 67�78. Springer, July 2009.[Col09a℄ Thomas Col
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ost fun
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ript available online,2009.[Col09b℄ Thomas Col
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ost fun
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A AppendixA.1 Some proofs on S-automata
tempS-side of Lemma 2 We will 
onstru
t a rational language L ×2-
lo
k-form of
tempS .We will say that a 
lo
k c is 
ompatible with a word u on {i, cr}+ if u and c havethe same length and there is at most one ↓ of the 
lo
k c in some blo
k of i's ended bya cr in u. Let L = {〈u, c〉, c 
ompatible with u}

L = K[((cr,  ) + (cr, ↓))K]∗((i,  ) + (i, ↓))∗ in whi
h K = (i,  )∗ + (i,  )∗(i, ↓)(i,  )∗ .We will show that L is a ×2-
lo
k-form of tempS . We just need to show that
tempS 4 ϕB

L and 〈〈L〉〉S 4 tempS .Let u ∈ {a, b}+, and c be a 
lo
k on u su
h that 〈u, c〉 ∈ L and max−seg(c) isminimal. Let n = tempS(u) be the size of the smallest blo
k of i's in u followed bya cr. If max−seg(c) ≤ ⌊n/2⌋, there is at least two ↓ of c in the smallest (therefore inany) blo
k of i's followed by a cr in u, so c 
annot be 
ompatible with u. Hen
e wemust have 〈〈L〉〉B(u) = max−seg(c) > ⌊n/2⌋ = ⌊tempS(u)/2⌋. This is true for all u, so
tempS 4×2 〈〈L〉〉B .We now need to show that 〈〈L〉〉S 4 tempS .Let u ∈ A+, and c be a 
lo
k on u su
h that 〈u, c〉 /∈ L and min−seg(c) is maximal.
〈u, c〉 /∈ L implies that there is two ↓ in c in any blo
k of i's ended by a cr in u. Thisimplies min−seg(c) ≤ tempS(u). Hen
e by de�nition of c, 〈〈L〉〉S(u) = min−seg(c) ≤
tempS(u). It is true for all u so 〈〈L〉〉S ≤ tempS . �

S-side of Theorem 7 (4)⇒(1)Consider a S-automaton A = 〈Q, A, In,Fin, Γ, ∆〉 with Γ = {γ1, . . . , γk}.A run of A is as a word on alphabet ∆ ⊆ Q × A × {i, cr}Γ × Q.It follows from the de�nition of [[·]]S that for all u ∈ A∗:
[[A]]S(u) = sup

σ∈∆∗

{min(χ∁R(σ), tempS ◦ π1(σ), · · · , tempS ◦ πk(σ)) : πA(σ) = u}in whi
h R ⊆ ∆∗ is the (regular) set of valid runs; for all i ∈ [[1, k]], πi proje
ts ea
htransition (p, a, t, q) to the γth
i 
omponent of t (and is extended to words). Finally πAproje
ts ea
h transition (p, a, t, q) to a (and is also extended to words). By Example4, χ∁R ∈ CF . By Lemma 2, tempS ∈ CF , and by Theorem 6, CF is stable under
omposition, min and sup-proje
tion. Hen
e [[A]]S ∈ CF . �A.2 Cost sequen
esThe aim is to give a semanti
 to stabilization semigroups. Some mathemati
al prelim-inaries are required.Let (E,≤) be an ordered set, α a fun
tion from N to N, and a, b ∈ EN two sequen
es.We de�ne the relation �α by a�αb if :

∀n.∀m. α(n) ≤ m → a(n) ≤ b(m) .A sequen
e a is said α-non-de
reasing if a �α a. We de�ne ∼α as �α ∩ �α, and a�b(resp. a∼b) if a �α b (resp. a ∼α b) for some α.Remarks:



� if α ≤ α′ then a �α b implies a �α′ b,� if a is α-non-de
reasing, then it is α-equivalent to a non-de
reasing sequen
e,� a is id -non-de
reasing i� it is non-de
reasing,� let a, b ∈ EN be two non-de
reasing sequen
es, then a �α b i� a ◦ α ≤ b.The α-non-de
reasing sequen
es ordered by�α 
an be seen as a weakening of the α = id
ase. We will identify the elements a ∈ E with the 
onstant sequen
e of value a.The relations �α and ∼α are not transitives, but the following property guaranteesa 
ertain kind of transitivity.Fa
t 13 a �α b �α c implies a �α◦α c and a ∼α b ∼α c implies a ∼α◦α c.The fun
tion α is used as a "pre
ision" parameter for ∼ and �. Fa
t 13 showsthat a transitivity step 
ost some pre
ision. For any α, the relation �α 
oin
ide over
onstant sequen
es with order ≤ (up to identi�
ation of 
onstant sequen
e with their
onstant value). In 
onsequen
e, the sequen
e in EN ordered by �α form an extensionof (E,≤).In the following, while using relations �α and ∼α, we may forget the subs
ript αand verify instead that the proof has a bounded number of transitivity steps.Let(E,≤) and (F,≤) two ordered sets, a fun
tion E → F N is α-monotone if
∀a, b ∈ E. a ≤ b → f(a) �α f(b) .In parti
ular, for ea
h a ∈ E, we have a ≤ a, so f(a) �α f(a), hen
e f(a) is α-non-de
reasing. To ea
h α-monotone fun
tion f : E → F N we asso
iate f̃ : EN → F Nde�ned in the following way:for all a ∈ EN and all n ∈ N, f̃(a)(n) = f(a(n))(n) .Proposition 14 Let f : E → F N be a α-monotone fun
tion and a, b ∈ EN, then:

a �α b implies f̃(a) �α f̃(b) .In parti
ular, if f : E → F N and g : F → GN are α-monotone, then g̃◦f is α-monotone.Moreover, (̃g̃ ◦ f) = g̃ ◦ f̃ .De�nition 15 If f and g are fun
tions E → F N, we will say that f ∼α g if for all
u ∈ E, f(u) ∼α g(u). As usual, f ∼ g if there exists α su
h that f ∼α g.We will also use this notions with the produ
t order : if (E,≤) is an ordered set,the set of words in u ∈ E∗ is 
anoni
ally ordered by a1 . . . an ≤ b1 . . . bm i� m = n and
ai ≤ bi for i = 1 . . . n. We identify the elements of (EN)∗ (words of sequen
es) withsome elements of (E∗)N (sequen
es of words of the same length). Noti
e that for anysequen
es a1, . . . ,an, b1, . . . , bn ∈ EN, a1 . . . an �α b1 . . . bn i� ai �α bi for i = 1 . . . n.A.3 Ideals of an ordered setThis notion will be essential to de�ne the 
ost fun
tion re
ognized by a stabilizationsemigroup.Let (E,≤) be an ordered set, an ideal is a ≤ −closed subset I ⊆ E, i.e. if a ∈ Iand b ≤ a, then b ∈ I. let a ∈ E, the'ideal generated by a is Ia= {b ∈ E : b ≤ a}. Let
a ∈ EN and I be an ideal, we de�ne I[a]= sup{n + 1 : a(n) ∈ I}.4 Let I be an ideal,its 
omplement in E is denoted by I. Let a ∈ EN, we de�ne I[a]= inf{n : a(n) ∈ I}.4 The +1 makes the 
al
ulus smoother in the following.



Proposition 16 Let f and g be fun
tions E → SN su
h that f ∼α g and for any
u ∈ E, f(u) and g(u) are non-de
reasing. Then for any ideal I of S, the 
ost fun
tions
u 7→ I[f(u)] and u 7→ I[g(u)] are ≈α equivalent.Indeed, let u ∈ E, and n = I[f(u)]. Then g(u)(α(n)) ≥ f(u)(n) /∈ I. I is an ideal so weget g(u)(α(n)) /∈ I. g(u) is non-de
reasing so I[g(u)] ≤ α(n). By symmetry of f and gwe �nally get u 7→ I[f(u)] ≈α u 7→ I[g(u)].De�nition 17 Let a, b ∈ E and n ∈ N, we de�ne the sequen
e a|nb by:for all k ∈ N, (a|nb)(k) =

{

a if k < n,
b otherwise.A.4 Compatible fun
tionsWe now de�ne the semanti
 of a stabilization semigroup with the notion of 
ompatiblefun
tion. The idea is to generalize the notion of produ
t, by asso
iating to ea
h wordof S+, no longer an element of S, but a 
ost sequen
e in SN. this will allow us toexpress stabilization in a quantitative way. Intuitively, when n is �xed in the 
ostsequen
e, we 
an interpret the semanti
 as an automaton with limited resour
es. Toavoid ambiguities, we will write uv the 
on
atenation of u and v as words in S+ and

a · b the produ
t of a and b as elements of S.
〈S+, ,≤〉 forms a semigroup, partially ordered by the produ
t ordered betweenwords of same length des
ribed above.De�nition 18 Let S = 〈S, ·,≤, ♯〉 be stabilization semigroup. A fun
tion ρ from S+ to

SN is said 
ompatible with S if there exists α su
h that :Monotoni
ity. ρ is α-monotone,Letter. for all a ∈ S, ρ(a) ∼α a,Produ
t. for all a, b ∈ S, ρ(ab) ∼α a · b,Stabilization. for all e ∈ E(S), m ∈ N, ρ(em) ∼α (e♯|me),Substitution. for all u1, . . . , un ∈ S+, n ∈ N, ρ(u1 . . . un) ∼α ρ̃(ρ(u1) . . . ρ(un)) (re-mind : we identify sequen
e of words and word of sequen
es, see se
tion A.2)Example 7. Let S be the stabilization semigroup with 3 elements ⊥ ≤ a ≤ b, withprodu
t de�ned by : x · y = min≤(x, y) (b neutral element), and stabilization by b♯ = band a♯ = ⊥♯ = ⊥. Lett u ∈ {⊥, a, b}+, we de�ne ρ by:
ρ(u) =











b if u ∈ b+

⊥||u|aa if u ∈ b∗(ab∗)+

⊥ sinon.Then ρ is 
ompatible with S.Remark 19 When ♯ is the identity fun
tion, S be
omes a standard ordered semigroup,and the 
lassi
al extended produ
t π is 
ompatible with S.Theorem 20 ([Col09
℄) For any stabilization semigroup S, there exists a fun
tion ρ
ompatible with S. Moreover, ρ is unique up to ∼.This theorem is fundamental, sin
e it asso
iates a unique (up to ∼) semanti
 to anystabilization semigroup.



Lemma 3. Let ρ 
ompatible with a semigroup S. There exists γ su
h that for any
n ∈ N and u ∈ S+, if |u| ≤ n then for all k ≥ γ(n), ρ(u)(k) = π(u)Proof. We show this result by indu
tion on n. It is true for n = 1 by taking γ(1) = 1. Weassume γ(k) 
onstru
ted for k < n, and we want to show the result for n. Let u ∈ S+ oflength n, u = va with |v| = n−1 and a ∈ S. Letα a witness of ρ 
ompatible with S. Thesubstitution property tells us that ρ(u) ∼α ρ̃(ρ(v)a). but by indu
tion hypothesis, forall k ≥ γ(n − 1), ρ̃(ρ(v)a)(k) = ρ(ρ(v)(k)a)(k) = ρ(π(v)a)(k). Moreover, ρ(π(v)a) ∼α

π(v) · a = π(u). Hen
e we have for all k ≥ α(γ(α(n − 1))), ρ(u)(k) = π(u).We get theresult with γ(n) = α(γ(α(n − 1))). �A.5 Generalities about stabilization semigroupsStru
ture An idempotent element of S is an element e ∈ S su
h that e · e = e. Wenote E(S) the set of idempotent elements of S.In the sequel, we use a 
lassi
 Green's relation. Let a and b be in S; we denote a≤J bif there exists x and y in S ∪ {1} su
h that a = xby. The relation ≤J is a preorder.If a ≤J b and b ≤J a, then a and b are in the same J -
lass, and we denote aJ b.Obviously, ≤J indu
es an order over J -
lasses, also noted ≤J .A regular element of S is an element a su
h that there exists e ∈ E(S) with aJ e.Consequently, either all the elements of a J -
lass are regular (we say that the J -
lassis regular), either no element is (the J -
lass is irregular).We 
an extend ♯ to all regular elements of S. If a is a regular element, there exists
e ∈ E(S) and x, y ∈ S ∪ {1} su
h that x · e · y = a. We de�ne then a♯ = x · e♯ · y, whi
hdoes not depend on the 
hoi
e of the de
omposition (
f. [Kir05℄).De�nition 21 A regular J -
lass J is stable if there exists an idempotent a in J su
hthat a♯ ∈ J , otherwise J is unstable. If J is stable, then for all idempotent a in J ,
a♯ = a.De�nition 22 (Produ
t of stabilization semigroups) Let S1 = 〈S1, ·1,≤1, ♯1〉 and S2 =
〈S2, ·2,≤2, ♯2〉 be stabilization semigroups, then their produ
t S1 × S2 is the tuple
〈S1×S2, ·,≤, ♯〉 su
h that (a1, a2) ·(b1, b2) = (a1 ·b1, a2 ·b2), (a1, a2) ≤ (b1, b2) if a1 ≤ b1and a2 ≤ b2, and (e1, e2)

♯ = (e♯1
1 , e♯2

2 ).Proposition 23 If S1 and S2 are stabilization semigroups, then S1 × S2 is one too.Moreover, if ρ1 is 
ompatible with S1 and ρ2 with S2 then ρ de�ned for all u = (u1, u2) ∈
(S1 × S2)

+ and k ∈ N by ρ(u)(k) = (ρ1(u1)(k), ρ2(u2)(k)), is 
ompatible with S1 × S2.De�nition 24 A fun
tion φ from S to S
′ is a morphism of stabilization semigroups if� for all u, v in S, φ(u · v) = φ(u) · φ(v),� For all u ∈ E(S), φ(u) ∈ E(S′) and φ(u♯) = φ(u)♯.Lemma 4. Let S,S′ be stabilization semigroups, ρ and ρ′ 
ompatible with S and S

′.We assume there exists a morphism of stabilization semigroups τ from S to S
′. Let

τ+ : S
+ → S

′+ and τN : S
N → S

′N the natural extensions of τ to �nite and in�nitesequen
es. Then τN ◦ ρ ∼ ρ′ ◦ τ+.Proof. Let K = {(a, τ(a)), a ∈ S}. We 
an provide K with a stru
ture of stabilizationsemigroup, as a sub-stabilization semigroup of S× S
′.Let φ : K+ → KN de�ned by φ(u, τ+(u)) = (ρ(u), τN(ρ(u)). Let α be a witness of

ρ 
ompatible with S. We show that φ is 
ompatible with K.



� Monotoni
ity. ρ is α-monotone, so φ is too� Letter. Let a ∈ K,a = (b, τ(b)) with b ∈ S, φ(a) = (ρ(b), τ(ρ(b)) ∼α (b, τ(b)) = a� Produ
t. Let a, b ∈ K, a = (a′, τ(a′)), b = (b′, τ(b′)), φ(ab) = (ρ(a′b′), τ(ρ(a′b′))) ∼α

(a′ · b′, τ(a′ · b′)) = a · b,� Stabilization. Let e ∈ E(K), m ∈ N, e = (a, τ(a)) with a ∈ E(S), φ(em) =
(ρ(am), τN(ρ(am))) ∼α (a♯|ma, τN(a♯|ma)) = e♯|me,� Substitution. Let u1, . . . , un ∈ S+, n ∈ N, ∀i,∃vi ∈ S+, ui = (vi, τ

+(vi)), φ(u1 . . . un) =
(ρ(v1 . . . vn), τN(ρ(v1 . . . vn))) ∼α (ρ̃(ρ(v1) . . . ρ(vn)), τN(ρ̃(ρ(v1) . . . ρ(vn))). We get
φ ∼α g with
g(u1 . . . un)(k) = (ρ(ρ(v1)(k) . . . ρ(vn)(k))(k), τN(ρ(ρ(v1)(k) . . . ρ(vn)(k))(k))). To
on
lude,
φ̃(φ(u1) . . . φ(un))(k) = φ((ρ(v1), τ

N(ρ(v1))(k) . . . (ρ(vn), τN(ρ(vn))(k))(k)

= φ(ρ(v1)(k) . . . ρ(vn)(k), τ+(ρ(v1)(k) . . . ρ(vn)(k))(k)

= (ρ(ρ(v1)(k) . . . ρ(vn)(k))(k), τ+(ρ(ρ(v1)(k) . . . ρ(vn)(k))(k)))

∼α φ(u1 . . . un)(k)But (ρ, ρ′) is also 
ompatible with K, sin
e K is a sub-stabilization semigroup of
S×S′ (Proposition 23). The uniqueness (up to ∼) of the 
ompatible fun
tion (Theorem20) gives us φ ∼ (ρ, ρ′), hen
e by proje
tion on the se
ond 
omponent, we get τN ◦ ρ ∼
ρ′ ◦ τ+. �A.6 Re
ognized 
ost fun
tionsWe now have all the mathemati
al tools to de�ne how stabilization semigroups 
anre
ognize 
ost fun
tions.Let S = 〈S, ·,≤, ♯〉 be a stabilization semigroup. Let h : A → S be a morphism,
anoni
ally extended to h : A+ → S+, and I ⊆ S an ideal. Then the triplet S, h, I re
-ognizes the fun
tion f : A+ → N∞ de�ned by f(u) = I[ρ(h(u))] where ρ is 
ompatiblewith S. A 
ost fun
tion from A+ to N∞ is said re
ognizable if it is ≈-equivalent to afun
tion re
ognized by some S, h, I. By Proposition 16, the re
ognized 
ost fun
tiondoes not depend on the 
hoi
e of ρ.Example 8. Let A = {a, b}, the 
ost fun
tion | · |a is re
ognizable. We take the stabi-lization semigroup from Example 7, h de�ned by h(a) = a, h(b) = b, and I = {⊥}. Wehave then |u|a = I[ρ(h(u))] for all u ∈ A+.The following result shows the analogy with regular languages, and justify the nameof "regular" 
ost fun
tions :Theorem 25 ([Col09
℄) For a 
ost fun
tion, the following properties are equivalent: � being re
ognizable by stabilization semigroup,� being 
omputable by B-automaton,� being 
omputable by S-automaton.We 
an report [Col09
℄ for more details about stabilization semigroups, in parti
ularfor interesting de
idability results about appli
ations to regular language theory.



A.7 MinimizationWe will show that for any given S, h, I re
ognizing a regular 
ost fun
tion f , we 
anbuild a (quotient-wise) minimal stabilization semigroup re
ognizing f .If X ⊆ S, we note 〈X〉♯ the 
losure of X in S by produ
t and stabilization. We 
anassume that S only has "useful" elements i.e. S = 〈h(A)〉♯.Let ≡ be the 
oarsest equivalen
e relation on S su
h that : ∀x, y, a ∈ S,














x ≡ y ⇒ (x ∈ I ⇔ y ∈ I)
x ≡ y ⇒ a · x ≡ a · y
x ≡ y ⇒ x · a ≡ y · a
x ≡ y ⇒ x♯ ≡ y♯in other words ≡ is the 
oarsest equivalen
e relation saturating I (in parti
ular S/≡is a stabilization semigroup). This relation 
an be 
omputed e�e
tively, starting fromwhole S×S then iteratively removing 
ouples whi
h don't verify the above 
onditions.This is a kind of Moore algorithm, and its 
omplexity is polynomial in |S|.Theorem 26 S/≡ re
ognizes f .Proof. Let τ be the 
anoni
al proje
tion S −→ S/≡ naturally extended to τ+ : S+ −→

(S/≡)+, and also to τN : SN −→ (S/≡)N.We de�ne I ′ = τ(I), h′ = τ+ ◦h, and we want to show that S/≡, h′, I ′ re
ognizes f .Let ρ′ 
ompatible with S/≡. By Lemma 4, there exists α su
h that
∀u ∈ S

+, τN(ρ(u)) ∼α ρ′(τ+(u))If u ∈ A+, we have I[ρ(h(u))] = I ′[τN(ρ(h(u)))] and I ′[ρ′(h′(u))] = I ′[ρ′(τ+(h(u)))].By Proposition 16, the fun
tions u 7→ I ′[τN(ρ(h(u)))] and u 7→ I ′[ρ′(τ+(h(u)))] are thus
≈α-equivalent. We 
on
lude that S/≡, h′, I ′ re
ognizes the 
ost fun
tion f . �In order to show that S/≡ is minimal for the quotient relation, we have to buildset of words whi
h we will use as 
ounter-examples. We need for that a tool introdu
edby Hashigushi, 
alled ♯-expression.De�nition 27 (♯-expression) [Has90℄ We de�ne the ♯-expressions by indu
tion. Ev-ery letter a ∈ A is a ♯-expression, if e and e′ are ♯-expressions, ee′ and e♯ are ♯-expressions.If e is a ♯-expression and k ∈ N, we de�ne the word e(k) by indu
tion in thefollowing way : if e is a letter then e(k) = e, and if e and e′ are ♯-expressions, ee′(k) =
e(k)e′(k) and e♯(k) = e(k)k.We also de�ne an operation eval (depending on the semigroup and the morphism
h)to asso
iate a value to any ♯-expression by indu
tion : if e is a letter then eval(e) =
h(e), and if e and e′ are ♯-expressions, eval(ee′) = eval (e) · eval (e′) and eval (e♯) =
eval (e)♯ (eval (e) has to be an idempotent). A ♯-expression is well-formed if eval (e)exists. For all k ∈ N, we de�ne limk in the same way that eval ex
ept for limk(e♯) =
limk(e)k (it is a produ
t, not a 
on
atenation).De�nition 28 (Context) A 
ontext C[] is a ♯-expression with a possible o

urren
eof a free variable x. If e is a ♯-expression, C[e] is the ♯-expression obtained by repla
ing
x by e in C[].Example 9. If A = {a, b, c}, e = ab(bc♯b)♯a♯bb is a ♯-expression,
e(3) = abbcccbbcccbbcccbaaabb and eval (e) = h(a)h(b)(h(b)h(c)♯h(b))♯h(a)♯h(b)h(b).An example of 
ontext is C[] = ab(ax♯)♯, we have C[b] = ab(ab♯)♯



The following lemma shows how ♯-expression behave relatively to 
ompatible fun
-tions.Lemma 5. For all ♯-expression e, there exists a αe su
h as for all k ∈ N, ρ(h(e(k))) ∼αe

eval (e)|k limk(e).Proof. Let β be a witness of ρ 
ompatible with S. We pro
eed by indu
tion on e:� if e is a letter, then for all k ∈ N, ρ(h(e(k))) ∼β h(e) = eval (e)|k limk(e).� if e = rs, then for all k ∈ N, ρ(h(e(k))) = ρ(h(r(k))h(s(k))) ∼β ρ̃(ρ(h(r(k)))ρ(h(s(k))),but by indu
tion hypothesis, there exists αr and αs su
h as ρ(h(r(k))) ∼αr
eval (r)|k limk(r)and ρ(h(s(k))) ∼αs

eval (s)|k limk(s), so by 
hoosing αe = β ◦ max(αr, αs), we getthe result.� if e = r♯ with eval (r) idempotent, then for all k ∈ N,
ρ(h(e(k))) ∼β ρ̃(ρ(h(r(k)))k)

∼αr
ρ̃((eval (r)|klimk(r))k)

∼β◦γ eval (r)♯|klimk(r)

= eval(e)|klimk(e)We get the result with αe = β ◦ αr ◦ β ◦ γ, where γ 
omes from Lemma 3.
�Lemma 6. If S, h, I and S

′, h′, I ′ re
ognize the same 
ost fun
tion, then S/≡ and
S
′/≡′ are isomorphi
.Proof. We will 
onsider here that all elements of the semigroups are a

essible byprodu
t and stabilization from h(A).

S, h, I and S
′/≡′, h′, I ′ re
ognize f . We will show that there is a surje
tive morphism

φ from S to S
′/≡′.Let eval and eval ′ be the evaluations relatively to S, h and S

′/≡′, h′.For all ♯-expression e, let φ(eval (e)) = eval ′(e). We show that it is indeed a surje
tivemorphism.Let assume that there exist e1, e2 some ♯-expressions su
h that eval (e1) = eval (e2)but eval
′(e1) 6= eval

′(e2). By the de�nition of ≡′, eval
′(e1) and eval

′(e2) 
an be distin-guished by I ′, so there is a 
ontext C[] su
h that eval ′(C[e1]) ∈ I ′ and eval ′(C[e2]) /∈ I ′(up to reversing e1 and e2). But we have eval (C[e1]) = eval [C(e2)].If eval (C[e1]) ∈ I, let uk = C[e2](k) for all k ∈ N.Let ρ, ρ′ be 
ompatible with S,S′. By Lemma 5, there exists α su
h that ρ(h(C[e2](k))) ∼α

eval (C[e2])|k limk(C[e2]) and ρ′(h′(C[e2](k))) ∼α eval ′(C[e2])|k lim′
k(C[e2]) We have

eval (C[e2]) ∈ I so I[ρ(h(uk))] ≥α k, but eval ′(C[e2]) /∈ I, so I ′[ρ′(h′(uk))] = 0 for klarge enough. However, S, h, I and S
′, h′, I ′ re
ognize the same 
ost fun
tion. Hen
e wehave a 
ontradi
tion.In the 
ase where eval (C[e1]) /∈ I, we 
an do the symmetri
al reasoning and take

uk = C[e1](k), we also get a 
ontradi
tion. In 
on
lusion, su
h a 
ouple e1, e2 
an-not exist, hen
e φ is well de�ned. Moreover, φ is a surje
tion be
ause we limited thesemigroups to 〈h(A)〉♯ to build S′/≡′.The only thing left to 
he
k is that φ is a morphism of stabilization semigroups.Let a, b ∈ S. By hypothesis on S, there exists ea, eb su
h that a = eval(ea) and
b = eval (eb). We have φ(a · b) = φ(eval (ea) · eval (eb)) = φ(eval (eaeb)) = eval ′(eaeb) =



eval ′(ea) · eval ′(eb) = φ(a) ·φ(b), and φ(a♯) = φ(eval (ea)♯) = φ(eval (e♯
a)) = eval ′(e♯

a) =
eval ′(ea)♯ = φ(a)♯.

φ is a surje
tive morphism of stabilization semigroups from S to S
′/≡′. By reversingthe roles of S and S

′, we get that S/≡ and S
′/≡′ are isomorphi
. �A.8 Temporal fragmentProposition 29 Let S = 〈S, ·,≤, ♯〉 be a stabilization semigroup. S is a temporal semi-group if the following 
ondition holds. Let J be a stable J -
lass, for every J -
lass J ′,if J ≥J J ′, then J ′ is stable.Proof of Theorem 12 The aim is to asso
iate a temporal semigroup to any tem-poral B-automaton, in a way that both obje
ts re
ognize the same 
ost fun
tion. We�rst asso
iate a temporal semigroup. We start by building the temporal semigrouprepresenting the operations on one 
ounter in a temporal B-automaton.Let Sγ = 〈S, ·,≤, ♯〉 with S = {ic, r,⊥}. All elements are idempotent, ⊥ is a zero,

ic · r = r · ic = r = r♯, ic♯ = ⊥♯ = ⊥, and ⊥ ≤ ic ≤ r. The semigroup Sγ des
ribes thesemanti
 of the operations on one 
ounter.Let A = 〈Q, A, In,Fin, γ, ∆〉 be a temporal B-automaton (we 
an take it with one
ounter by Theorem 7). We asso
iate to it a stabilization semigroup SA in the followingway:Let SA = SQ×Q
γ .If E, F ∈ SA, we de�ne their produ
t by :
∀p, t ∈ Q, E · F (p, t) = max{E(p, q) · F (q, t), q ∈ Q},and the order by E ≤ F i� for all p, q ∈ Q, E(p, q) ≤ F (p, q). Finally, if E is anidempotent, we de�ne E♯ by:

∀p, q ∈ Q, E♯(p, q) = max{E(p, t) · E(t, t)♯ · E(t, q) / t ∈ Q}.Theorem 30 [Col09
℄ SA = 〈SA, ·,≤, ♯〉 is a stabilization semigroup, and by taking
I = {E/∀(p, q) ∈ In × Fin , E(p, q) = ⊥} and h(a)(p, q) = max{σ/(p, a, σ, q) ∈ ∆} forall a ∈ A and p, q ∈ Q, SA, h, I re
ognizes [[A]]B .We still have to show that SA is a temporal stabilization semigroup.Lemma 7. Let E be an idempotent and p, q ∈ Q, then there exists t ∈ Q su
h that
E(p, q) ≤ E(p, t) · E(t, t) · E(t, q).Proof. We 
an write E = E · · ·E, produ
t of length k, with k > |Q|. There exists asequen
e p0, a1, p1, . . . , pk su
h that p0 = p, pk = q and E(p, q) = a1 · · · ak. (it is thesequen
e realizing the max in the de�nition of the produ
t of SA). But k > |Q| so
∃(j, l), 1 < j < l < k and pj = pl = t. We have E(p, t) ≥ a1 · · · aj , E(t, t) ≥ aj + 1 · · ·aland E(t, q) ≥ al+1 · · · ak, whi
h shows the result. �Lemma 8. Let J be J -
lass of SA, then

J unstable i� there exists E ∈ J idempotent and p, q ∈ Q su
h that E(p, q) = ic.Proof. Let J be an unstable J -
lass, there exists E ∈ J idempotent with E♯ 6= E. But
E♯ ≤ E, so there exists p, q ∈ Q su
h that E♯(p, q) < E(p, q)



By Lemma 7, there is t ∈ Q su
h that E(p, q) ≤ E(p, t) · E(t, t) · E(t, q). But
E♯(p, q) ≥ E(p, t) ·E(t, t)♯ ·E(t, q), so we have E♯(p, q) < E(p, q) then E(t, t)♯ 6= E(t, t),whi
h implies E(t, t) = ic. We have shown the �rst impli
ation.Conversely, let E ∈ J idempotent and p, q ∈ Q su
h that E(p, q) = ic If we assume
J stable, we get E♯ = E so E♯(p, q) = ic. By the de�nition of E♯, there exists t ∈ Q su
hthat ic = E(p, t) ·E(t, t)♯ ·E(t, q). By the de�nition of the · operation in semigroup Sγ ,that implies E(p, t) = E(t, t)♯ = E(t, q) = ic, and in parti
ular E(t, t)♯ = ic is absurd.Hen
e J is unstable, this 
ompletes the se
ond impli
ation. �Theorem 31 A being a temporal B-automaton, SA is a temporal semigroup.Proof. Let J and J ′ bet two regular J -
lasses of SA with J ≥J J ′ and J stable. ByLemma 8, ∀E ∈ J idempotent, ∀s, t ∈ Q, E(s, t) 6= ic.Let E′ ∈ J ′, J ≥J J ′ then ∃E ∈ J, A, B ∈ SA, E′ = A ·E ·B let us assume there exists
p, q ∈ Q, E′(p, q) = ic, then there exists s, t ∈ Q, ic = A(p, s) ·E(s, t) ·B(t, q). We musthave E(s, t) = ic, this is absurd. So by Lemma 8, J ′ is a stable 
lass. SA is a temporalsemigroup. �We will now do the 
onverse : asso
iate a B-temporal automaton to any temporalsemigroup.De�nition 32 If S is a temporal semigroup, we de�ne

Unstab = {x ∈ S/∃e ∈ E(S), e♯ 6= e and e ≤J x}.

Unstab is therefore a union of unstable or irregular 
lasses. We also de�ne Stab as its
omplement (stable or irregular 
lasses).Lemma 9. Let S be a temporal semigroup, there exists η su
h that
∀u ∈ Stab+, ρ(u) ∼η π(u).This lemma expresses the fa
t that in the stable part, the stabilization semigroup isindeed a 
lassi
 semigroup, and therefore its 
ompatible fun
tion is equivalent to theprodu
t.Theorem 33 If f is a 
ost fun
tion re
ognized by S, h, I with S a temporal semigroup,then f is temporal.Proof. Let f re
ognized by S, h, I with S a temporal semigroup.Let ρ be a fun
tion 
ompatible with S, with αρ as a witness.we build a temporal B-automaton A = 〈Q, A, In,Fin, {γ}, ∆〉 whi
h will 
ompute

f . If u is the word given to the automaton, we want to �nd the unstable fa
tors u whi
hare "too long" and idempotent, in order to stabilize them as it happens in ρ. The ideais to non-deterministi
ally guess an unstable idempotent fa
tor of u, to whi
h we 
anapply the ♯ operator if it be
omes too lon.We take Q = ({1} ∪ Stab)× ({1} ∪Unstab) × ({1} ∪Unstab). The �rst 
omponentkeeps tra
k of the 
urrent stable fa
tor, the se
ond one is the unstable fa
tor we readbefore the idempotent fa
tor, and the third one is the unstable idempotent fa
tor weare 
urrently reading. We therefore de�ne :
∆ = {((s, a, 1), l, ic, (s, a · h(l), 1))/a · h(l) ∈ Unstab} (1)

∪{((s, a, b), l, ic, (s, a, b · h(l)))/a · b · h(l) ∈ Unstab} (2)
∪{((s, a, b), l, r, (s · a · (b · h(l))♯, 1, 1))/a · b · h(l) ∈ Instab, b · h(l) idempotent} (3)
∪{((s, a, b), l, r, (s · a · b · h(l), 1, 1))/a · b · h(l) ∈ Stab} (4)



We �nally 
hoose In = {(1, 1, 1)} and Fin = {(s, a, b), s · a · b /∈ I}.We start by showing f 4α [[A]]B for some α. Let u ∈ A+, and σ a valid run of Aover u �nishing in state (s, a, b). Let n = supC(σ), q = s ·a · b, and w = h(u) ∈ S+. Byde�nition of A, w 
an be split in x1y1z1 . . . xkykzk with q = π(x1y1)·π(z1)
♯ · · ·π(xkyk)·

π(zk)♯, and for all j ∈ [[1, k]], π(xj) ∈ Stab ∪ {1}, π(yj) ∈ Unstab ∪ {1}, and π(zj)unstable idempotent with |yjzj | ≤ n (we assume here without loss of generality thatthe last transition is of type (3)). The transitions used during le
ture of the xj 's areof types (1), (2) and (4); those 
orresponding to yj's are of type (1), and �nally those
orresponding to zj 's are of type (2) with one of type (3) at the end. Let γ be thefun
tion of Lemma 3, for all j and all m ≥ γ(n), ρ(yjzj)(m) = π(yjzj). Let η bethe fun
tion of Lemma 9, by 
ombining the two lemmas and using the fa
t that anyunstable fa
tor of xj has length at most n, we get that for m ≥ max(η(n), γ(n)),, pourtout j ∈ [[1, k]], ρ(xj)(m) = π(xj).Hen
e we have, for all m ≥ max(η(n), γ(n)) :
ρ(w)(αρ(m)) ≥ ρ(ρ(x1)(m)ρ(y1z1)(m) . . . ρ(xk)(m)ρ(ykzk)(m))(m)

≥ ρ(ρ(x1)(m)π(y1z1) . . . ρ(xk)(m)π(ykzk))(m)

≥ ρ(π(x1)(π(y1) · π(z1)
♯) . . . π(xk)(π(yk) · π(zk)♯))(m)

≥ q (Lemma 9)In 
on
lusion, for all run σ of value at most n over u and �nishing in (s, a, b) with
q = s ·a ·b, we get q ≤ ρ(h(u))(α(n)) with α = αρ ◦max(η, γ), but q /∈ I is the 
onditionfor (s, a, b) to be an a

epting state, so f(u) ≤ α(n). We 
an 
on
lude f 4α [[A]]B .Conversely, let us show that [[A]]B 4β f for some β. For all u ∈ A+ and n ∈ N, webuild a run σ of A over u, su
h that supC(σ) ≤ β(n), and su
h that by taking q = s·a·bwith (s, a, b)last state of σ, we have ρ(h(u))(n)) ≤ q. In this way, if f(u) ≤ n, then
ρ(h(u))(n) /∈ I hen
e q /∈ I and the run is valid, whi
h implies [[A]]B(u) ≤ β(n). Wetherefore get the result [[A]]B 4β f .We remind the Ramsey theorem : there exists αR su
h that for all t ∈ N, w ∈
S+, there exists a de
omposition of w into xv1 . . . vny with π(v1) = · · · = π(vt) = eidempotent, and αR(t) ≥ |w|.Let u ∈ A+ and n ∈ N. Let t = αρ(αρ(n + 1)). If there is in h(u) a fa
tor w with
π(w) ∈ Instab and |w| = αR(t), we apply Ramsey theorem to get w = xv1 . . . vt, y with
π(v1) = · · · = π(vt) = e idempotent. This de
omposition gives us a rune of A over u :on fa
tor w, we do transitions of type (1) over x, type (2) over the vj 's, and type (3) atthe end of vn, the rest of the run is then 
onstru
ted in the same way with y. This givesus a de
omposition h(u) = u1w1 . . . ukwkuk+1, with wj = xjv

j
1 . . . vj

t and π(vj
1) = · · · =

π(vj
t ) = ej idempotent, for all j ∈ [[1, k]]. We get a run σ verifying supC(e) ≤ αR(t),and ending in state (s, a, b) with q = s · a · b = π(u1x1) · e

♯
1 · · ·π(ukxk) · e♯

k · π(uk+1).But we have :
ρ(h(u))(n) ≤ ρ̃(ρ(u1x1)ρ(v1

1) . . . ρ(v1
t ) . . . ρ(ukxk)ρ(vk

1 ) . . . ρ(vk
t )ρ(uk+1))(αρ(n))

≤ ρ̃(π(u1x1)π(v1
1) . . . π(v1

t ) . . . π(ukxk)π(vk
1 ) . . . π(vk

t )π(uk+1))(αρ(n))

≤ ρ(π(u1x1)e
t
1 . . . π(ukxk)et

kπ(uk+1))(αρ(n))

≤ (π(u1x1) · (e
♯
1|te1) . . . π(ukxk) · (e♯

k|tek) · π(uk+1))(αρ(αρ(n)))

= q



We get the wanted result, with β(n) = αR(αρ(αρ(n + 1))).Finally, f ≈max(α,β) [[A]]B , A re
ognizes the 
ost fun
tion f . �In order to show the last item of Theorem 12 we still have to show that minimizationpreserves the temporal property of a stabilization semigroup :Theorem 34 If S is temporal, then S/≡ is temporal.Proof. Let us assume that S/≡ is not temporal. It means there is x, y ∈ E(S/≡) with
x♯ 6= x, y♯ = y, and x <J y. Let τ be the 
anoni
al proje
tion of S over S/≡, there is
a, b ∈ S su
h that τ(a) = x and τ(b) = y. We have a♯ 6≡ a so a is unstable, b♯ ≡ b and
a <J b♯ = (b♯)♯, whi
h shows that S is not temporal. �


