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Regular Temporal Cost FuntionsThomas Colombet1, Denis Kuperberg1, Sylvain Lombardy2

1 Liafa/CNRS/Université Paris 7, Denis Diderot, Frane
2 Ligm - Université Paris-Est Marne-la-Vallée, FraneAbstrat. Regular ost funtions have been introdued reently as an exten-sion to the notion of regular languages with ounting apabilities, whih retainsstrong losure, equivalene, and deidability properties. The spei�ity of ostfuntions is that exat values are not onsidered, but only estimated.In this paper, we study the strit sublass of regular temporal ost funtions.In suh ost funtions, it is only allowed to ount the number of ourrenes ofonseutive events. For this reason, this model intends to measure the length ofintervals, i.e., a disrete notion of time. We provide various equivalent represen-tations for funtions in this lass, using automata, and `lok based' redutionto regular languages. We show that the onversions are muh simpler to obtain,and muh more e�ient than in the general ase of regular ost funtions.Our seond aim in this paper is to use temporal ost funtion as a test-ase forexploring the algebrai nature of regular ost funtions. Following the seminalideas of Shützenberger, this results in a deidable algebrai haraterization ofregular temporal ost funtions inside the lass of regular ost funtions.1 IntrodutionSine the seminal works of Kleene [Kle56℄ and Rabin and Sott [RS59℄, the theory ofregular languages is one of the ornerstones in omputer siene. Regular languages havemany good properties, of losure, of equivalent haraterizations, and of deidability,whih makes them entral in many situations.Reently, the notion of regular ost funtion for words has been presented as aandidate for being a quantitative extension to the notion of regular languages [Col09℄,while retaining most of the fundamental properties of the original theory suh as thelosure properties, the various equivalent haraterizations, and the deidability. Aost funtion is an equivalene lass of the funtions from the domain (words in ourase) to N∞, modulo an equivalene relation ≈ whih allows some distortion, butpreserves the boundedness property over eah subset of the domain. The model is anextension to the notion of languages in the following sense: one an identify a languagewith the funtion mapping eah word inside the language to 0, and eah word outsidethe language to ∞. It is a strit extension sine regular ost funtions have ountingapabilities, e.g., ounting the number of ourrenes of letters, measuring the lengthof intervals, et...Related works and motivating examplesRegular ost funtions are the ontinuation of a sequene of works that have intendedto solve di�ult questions in language theory. The prominent example is the star-height problem: given a regular language L and an integer k, deide whether L an beexpressed using a regular expression using at most k-nesting of Kleene stars. It wasraised by Eggan in 1963 [Egg63℄, but solved only 25 years later by Hashigughi using



a very intriate proof [Has88℄. An improved and self-ontained proof has been morereently proposed by Kirsten [Kir05℄. The two proofs work along the same lines: showthat the original problem an be redued to the existene of a bound over some funtionfrom words to integers. This funtion an be represented using an automaton that haveounting features (a distane automaton for Hashiguhi, and a nested distane desertautomaton for Kirsten). The proof is onluded by showing that suh boundednessproblems are deidable.Other deision problems an also be redued to boundedness questions over words:in language theory the �nite power property [Sim78,Has79℄ and the �nite substitutionproblem [Bal04,Kir04℄, and in model theory the boundedness problem of monadi formu-las over words [BOW09℄. Distane automata are also used in the ontext of databasesand image ompression. Automata similar to the ones of Kirsten have also been intro-dued independently in the ontext of veri�ation [AKY08℄.Finally, using also ideas inspired from [BC06℄, the theory of those automata overwords has been uni�ed in [Col09℄, in whih ost funtions are introdued, and suitablemodels of automata, algebra, and logi for de�ning them are presented and shownequivalent. Corresponding deidability results are provided. The resulting theory is aneat extension of the standard theory of regular languages to a quantitative setting.All the limitedness problems from the literature appear as speial instanes of thoseresults, as well as all the entral results known for regular languages.ContributionsWe introdue the sublass of regular temporal ost funtions. Regular temporal ostfuntions are regular ost funtions in whih one an only ount onseutive events: forinstane, over the alphabet {a, b}, the maximal length of a sequene of onseutive let-ter a's is temporal, while the number of ourrenes of letter a is not. This orrespondsto the model of desert automata introdued by Kirsten [Kir04℄. We believe that thenotion of regular temporal ost funtion is of interest in the ontext of modelization oftime.We show that regular temporal ost funtions admit various equivalent presenta-tions. The �rst suh representation is obtained as a syntati restrition of B-automataand S-automata (the automata used for desribing regular ost funtions [Col09℄). Se-ond, we provide an equivalent lok-based presentation, in whih the regular temporalost funtions is represented as a regular language over words labeled with the tiks ofa lok as an extra information. We show all the losure results for regular temporalost funtions (e.g., min, max, et...) using this presentation. As opposed to the generaltheory of regular ost funtions, all those results are obtained by a translation to thetheory of regular languages. This results in onstrutions of better omplexity, both interms of number of states of automata, and in terms of tehniality of the onstrutionsthemselves. Last but not least, while in the general theory of regular ost funtions theerror ommitted during the onstrution is bounded by a polynomial, it is linear forregular temporal ost funtions.Our seond ontribution is an algebrai haraterization of this lass. It is knownfrom [Col09℄ that regular ost funtions are the one reognizable by stabilizationmonoids. This model of monoids extends the standard approah for languages. One ofour objetives in studying regular temporal ost funtion was to validate the interestof this algebrai approah, and show that results similar to the famous Shützenbergertheorem on star-free languages [Sh65℄ were possible. We believe that we sueededin this diretion, sine we are able to algebraially haraterize the lass of regulartemporal ost funtions, and furthermore that this haraterization is e�etive.



Organisation of the paperAfter some notations, we present ost funtions and ost automata in Setion 2, andintrodue the sublass of regular temporal ost funtions. In Setion 3 we proposea lok-based presentation to temporal ost funtions, and advoate some of its ad-vantages. In Setion 4 we present the algebrai formalism and sketh our algebraiharaterization for regular temporal ost funtions. We �nally onlude.NotationsWe will note N the set of non-negative integers and N∞ the set N ∪ {∞}, orderedby 0 < 1 < · · · < ∞. If E is a set, EN is the set of in�nite sequenes of elements of E(we will not use here the notion of in�nite words). Suh sequenes will be denoted bybold letters (a, b,...). We will work with a �xed �nite alphabet A. The set of wordsover A is A∗. The empty word ǫ, and A+ = A∗ \ {ǫ}. The onatenation of words uand v is uv.The length of u is |u|. The number of ourrenes of letter a in u is |u|a. Wewill note inf E and sup E the lower and upper bounds of a set E ⊆ N∞, in partiular
inf ∅ = ∞ and sup ∅ = 0.2 Regular ost funtionsThe theory of regular ost funtions has been proposed in [Col09℄. In this setion, wereview some of the de�nitions useful for the present paper.2.1 Basis on ost funtionsThe priniple of ost funtions is to onsider funtions modulo an equivalene relation≈allowing some distortions of the values. This distortion is ontrolled using a parameter(α, α′, α1 . . . ) whih is a mapping from N to N suh that α(n) ≥ n for all n, alled theorretion funtion. For x, y ∈ N∞, x 4α y means that either x and y are in N and
x ≤ α(y), or y = ∞. It is equivalent to write that x ≤ α(y) in whih we impliitlyextend α to N∞ by α(∞) = ∞. For all sets E, 4α is naturally extended to mappingsfrom E to N∞ by f4αg if f(x) 4α g(x) for all x ∈ E, or equivalently if f ≤ α◦g (usingthe same expliit extension of α). The intuition here is to onsider that g dominates fup to a `strething fator' α. We note f ≈α g if f 4α g and g 4α f . Finally, we note
f4g (resp. f≈g) if f 4α g (resp. f ≈α g) for some α. A ost funtion (over a set E) isan equivalene lass of ≈ among the set of funtions from E to N∞.The relation 4 has other haraterizations:Proposition 1 For all funtions f, g : E → N∞, the following items are equivalent:� f 4 g,� For all X ⊆ E, g bounded over X implies f bounded over X.The last haraterization shows that ≈ preserves the existene of bounds.To eah subset X ⊆ E, one assoiates its harateristi mapping χX from E to N∞whih to x assoiates 0 if x ∈ X , and ∞ otherwise. It is easy to see that X ⊆ Yi� χX < χY . In this way, the notion of ost funtions an be seen as an extension tothe notion of language.



2.2 Cost-AutomataIn this setion, we will desribe how some funtions from A∗ to N∞ an be aeptedby ertain forms of automata using ounters of value ranging in N. We name suh ostfuntions `regular'.A ost automaton is a tuple 〈Q, A, In,Fin , Γ, ∆〉 where Q is a �nite set of states, Ais a �nite alphabet, In and Fin are the set of initial and �nal states respetively, Γ isa �nite set of ounters, and ∆ ⊆ Q × A × ({i, r, c}∗)Γ × Q is the set of transitions.The value of eah ounter ranges over N, and evolves aording to atomi ations in
{i, r, c}: i inrements the value by 1, r resets the value to 0, and c heks the value (butdoes not hange it). Eah ation in ({i, r, c}∗)Γ tells for eah ounter what sequeneof atomi ations has to be performed. Hene, given a sequene of ations u, one anexeute it as follows: at the begining, all ounters share the value 0, and we read theword u letter by letter from left to right. For eah letter, one applies the orrespondingsequene of atomi ations on eah ounter. One sets the set C(u)⊆ N to ontain allvalues that are taken by a ounter when heked (this set ollets all the heked valuesindistintly: there is no distintion onerning the ounter the value originates from,or the moment of the hek).A run σ of a ost automaton over a word a1 . . . an is a sequene in ∆∗ of the form
(q0, a1, t1, q1)(q1, a2, t2, q2) . . . (qn−1, an, σn, qn) suh that q0 is initial, qn is �nal (therun ε is also valid i� there exists q0, both initial and �nal). One sets C(σ)= C(t1 . . . tn),i.e., to ollet the set of values heked when exeuting the run over the ounters.At this point, ost automata are instantiated in two versions, namely B-automataand S-automata that di�ers by their dual semantis, [[·]]B and [[·]]S respetively. Thesesemantis are de�ned for all u ∈ A∗ by:

[[A]]B(u) = inf{supC(σ) : σ run over u} ,and [[A]]S(u) = sup{inf C(σ) : σ run over u} .(Reall that sup ∅ = 0 and inf ∅ = ∞) One says that a B-automaton (resp. an S-automaton) aepts [[A]]B (resp. [[A]]S).Example 1. If A is a standard non-deterministi automaton aepting L ⊆ A∗, it anbe seen as a ost automaton without any ounter. Seen as a B-automaton, we have
[[A]]B(u) = χL, and seen as an S-automaton, [[A]]S(u) = χA∗\L.Example 2. We desribe the two one ounter ost automata A and A′ by drawings:

a : ic

b : r

a, b : ǫ

b : ǫ

a : i

a, b : cr

a, b : ǫ

Cirles represent states, and a transition (p, a, t, q) is denoted by an edge from p to qlabeled a : t (the notation a, b : t abbreviates multiple transitions). Initial states areidenti�ed by unlabeled ingoing arrows, while �nal states use unlabeled outgoing arrows.One heks that [[A]]B ≈ [[A′]]S ≈ fa where fa(u) = max{n ∈ N / u = vanw}.A B-automaton is simple if it uses ations in {ǫ, ic, r}Γ . A S-automaton is simple if ituses ations in {ǫ, i, cr}Γ . The following theorem is entral in the theory:Theorem 2 (duality [Col09,Col09a℄). It is equivalent for a funtion, up to ≈, tobe aepted by a [simple℄ B-automaton or to be aepted by a [simple℄ S-automaton.



Suh ost funtions are alled regular. This omes with a deision proedure:Theorem 3 ([Col09℄). The relations 4 and ≈ are deidable for regular ost fun-tions.2.3 Regular temporal ost funtionsThe subjet of the paper is to study the regular temporal ost funtions, a sublass ofregular ost funtions. We give here a �rst de�nition of this lass.A B-automaton (resp. S-automaton) is temporal if it uses only ations in {ic, r}Γ(resp. {i, cr}Γ ). Hene temporal automata are simple automata in whih it is disallowedin an ation to leave ounters unhanged. Intuitively, suh automata an only measureonseutive events. We de�ne tempB (resp. tempS) to map sequenes in {ic, r}∗ to N(resp. {i, cr}∗ to N∞ ) whih to u assoiates (supC(u)) (resp. (inf C(u))). Those fun-tions are extended to sets of ounters and runs as in the general ase of ost automata.We say that a ost funtion is B-temporal (resp. S-temporal) if it is aepted by atemporal B-automaton (resp. a temporal S-automaton). We will see below that thesetwo notions oinide, up to ≈ (Theorem 7).Example 3. Over the alphabet {a, b}, the ost funtion fa from Example 2 is B-temporal (as witnessed by the example automaton).However, the funtion u 7→ |u|a is not B-temporal, even modulo ≈. Indeed, forthe sake of ontradition, assume that there exists a temporal B-automaton A =
〈Q, A, In,Fin, Γ, ∆〉 aepting g, with g ≈α | · |a for some α. Let K = |Q| + 1 and
N = α(K) + 1. Let σ be the run of A over u = (bNa)K whih minimizes sup C(σ) (ithas to exist sine g(u) ≈α |u|a < ∞). Sine K > |Q| + 1, one an deompose u as xvysuh that |v|a ≥ 1, |v| ≥ N , and the run σ assumes same state p after reading both xand xv. Let σxσvσy be the orresponding deomposition of the run σ. Assume �rst thatthere exists a ounter whih is never reset during σv, then we get g(u) ≥ N > α(|u|a).This ontradits g ≈α | · |a. Hene all ounters have to be reset somewhere in σv. Con-sider the word um = xvmy. One easily heks that |um|a ≥ m sine |u|a ≥1. However,the run σxσm

v σy witnesses that g(um) ≤ max(g(u), |u|). Hene | · |a is unbounded overthe um's, while g is bounded over the same set. This is a ontradition aording toProposition 1.3 Clok-form of temporal ost funtionsIn this setion, we give another haraterization to B-temporal and S-temporal regularost funtions. This presentation makes use of loks (the notion of lok should notbe onfused with the notion of lok used for timed automata).A lok c is a word over the alphabet { , ↓}. It should be seen as desribing thetiks of a lok: the letter is  if there is no tik at this moment, and it is ↓ when thereis a tik. A lok naturally determines a fatorization of time into intervals (we saysegments). Here, one fatorizes c as:
c = ( n1−1 ↓)( n2−1 ↓) . . . ( nk−1 ↓) m−1 .One sets max−seg(c) to be max{n1, . . . , nk, m} ∈ N, and min−seg to be inf{n1, . . . , nk} ∈

N∞ (remark the asymmetry). A lok c has period P∈ N if n1 = n2 = · · · = nk = P ,and m ≤ P . This is equivalent to stating3 max−seg(c) ≤ P ≤ min−seg(c). Remark3 Remark that as soon as k ≥ 1, the inequalities beome�as one may expet�equalities.



that given n and P , there exists one and only one lok of length n and period P . Youan remark that max−seg(c) = tempB(hB(c))+1 in whih hB maps  to ic and ↓ to r.Similarly, min−seg(c) = tempS(hS(c)) + 1 in whih hB maps  to i and ↓ to cr.A lok on u ∈ A∗ is a lok c of length |u|, In this ase, one denotes by 〈u, c〉 theword over A×{ , ↓} obtained by pairing the letters in u and in c of same index. For La language in (A × { , ↓})∗, we de�ne the following funtions from A∗ to N∞:
〈〈L〉〉B : u 7→ inf{max−seg(c) : c lok on u, 〈u, c〉 ∈ L}

〈〈L〉〉S : u 7→ sup{min−seg(c) : c lok on u, 〈u, c〉 /∈ L} + 1Lemma 1. For all languages L ⊆ (A × { , ↓})∗, 〈〈L〉〉B ≤ 〈〈L〉〉S .Proof. Fix u. Consider the minimal P suh that the lok c over u of period P is suhthat 〈u, c〉 ∈ L (if there is no suh period, 〈u,  |u|〉 /∈ L, and 〈〈L〉〉S(u) = ω). We learlyhave 〈〈L〉〉B(u) ≤ P . On the other hand, 〈u, c′〉 6∈ L, where c′ is the lok over u ofperiod P − 1. Hene 〈〈L〉〉B(u) ≤ P ≤ 〈〈L〉〉S(u). ⊓⊔The notations 〈〈·〉〉B and 〈〈·〉〉S are easily onvertible into temporal ost automata asshown by Fat 4.Fat 4 If L is regular and L (resp. ∁L) is aepted by a non-deterministi automatonwith n states, then 〈〈L〉〉B − 1 (resp. 〈〈L〉〉S − 1) is aepted by a temporal B-automaton(resp. a temporal S-automaton) with n states and one ounter.Proof. We have seen that max−seg = (tempB ◦ hB) + 1. Hene, if we replae in theautomaton for L eah transition of the form (p, (a, c), q) by a transition (p, a, hB(c), q),we immediately get the desired temporal B-automaton. The onstrution for temporalS-automata is idential, starting from the omplement automaton, and using hS. ⊓⊔The important de�nition is the following:De�nition 5 An α-lok-language (or simply a lok-language if there exists suhan α) is a language L ⊆ (A × { , ↓})∗ suh that 〈〈L〉〉B ≈α 〈〈L〉〉S . A funtion f hasan α-lok-form if there exists an α-lok-language L suh that 〈〈L〉〉S ≤ f 4α 〈〈L〉〉B .A ost funtion has a lok-form if it ontains a funtion that has an α-lok-form forsome α. We note CF the set of ost funtions that have a lok-form.One an remark that it is su�ient to prove 〈〈L〉〉S 4α 〈〈L〉〉B for proving that L isan α-lok-language: Lemma 1 provides indeed the other diretion.Example 4. For L ⊆ A∗, K = L× { , ↓}∗ is a lok-language, whih witnesses that χLhas an identity-lok-form.Example 5. Consider again the funtion fa of Example 2, omputing the maximalnumber of onseutive a's. The language M = ((a,  ) + (b, ↓))∗ veri�es 〈〈M〉〉B ≈ fa,but it is not a lok-language: for instane the word bam is suh that fa(bam) = m,meanwhile, 〈〈M〉〉S(bam) = 0. This ontradits 〈〈M〉〉S ≈ fa aording to Proposition 1.This omes from the fat that the lok witnessing 〈〈M〉〉B ≈ fa is hosen given theword (the one tiking exatly over b-letters). This is in ontradition with the importantintuition behind being in lok-form whih is that the lok an be hosen independentlyfrom the word.However, it is possible to onstrut a rational lok-language L for fa. It heksthat eah segment of onseutive a's ontains at most one tik of the lok, i.e.:
L = K[((b,  ) + (b, ↓))K]∗ in whih K = (a,  )∗ + (a,  )∗(a, ↓)(a,  )∗ .



Let u be a word, and c be a lok suh that min−seg(c) = n and 〈u, c〉 6∈ L. Sine 〈u, c〉 6∈
L, there exists a fator of u of the form ak in whih there are two tiks of the lok.Hene, k ≥ n+1. From whih we obtain 〈〈L〉〉S ≤ fa. Conversely, let u be a word, and cbe a lok suh that max−seg(c) = n and 〈u, c〉 ∈ L. Let k = fa(u). This means thatthere is a fator of the form ak in u. Sine 〈u, c〉 ∈ L, there is at most one tik of thelok in this fator ak. Hene, k ≤ 2n− 1. We obtain that fa < 2〈〈L〉〉B. Hene, L is an
α-lok-language for fa, with α : n 7→ 2n.Let us turn ourselves to losure properties for languages in lok-form. Consider amapping f from A∗ to N∞ and a mapping h from A to B (B being another alphabet)that we extend into a monoid morphism from A∗ to B∗, the inf-projetion of f (resp.
sup-projetion ) with respet to h is the mapping finf,h (resp. fsup,h) from B∗ to N∞de�ned for all v ∈ B∗ by:

finf,h(v) = inf {f(u) : h(u) = v} (resp. fsup,h(v) = sup {f(u) : h(u) = v} )The following theorem shows losure properties of ost funtions in lok-form thatare obtained by translation to a diret ounterpart in language theory:Theorem 6 Given L, M α-lok-languages over A, h from A to B and g from B to A,we have:� L ∪ M is an α-lok-language and 〈〈L ∪ M〉〉B = min(〈〈L〉〉B , 〈〈M〉〉B)� L ∩ M is an α-lok-language and 〈〈L ∩ M〉〉S = max(〈〈L〉〉S , 〈〈M〉〉S)� L◦g = {〈u, c〉 : 〈g(u), c〉 ∈ L} is an α-lok-language and 〈〈L◦g〉〉B = 〈〈L〉〉B ◦ g� Linf,h = {〈h(u), c〉 : 〈u, c〉 ∈ L} is an α-lok-language and 〈〈Linf,h〉〉B = (〈〈L〉〉B)inf,h� Lsup,h = ∁ {〈h(u), c〉 : 〈u, c〉 /∈ L} is an α-lok-language and 〈〈Lsup,h〉〉S = (〈〈L〉〉S)sup,hProof. The �ve items follow all the same proof priniple. Let us treat the ase of inf-projetion. The equality is proved by the following sequene of equalities:
(〈〈Linf,h〉〉B)(v) = inf{max−seg(c) : 〈v, c〉 ∈ Linf,h}

= inf{max−seg(c) : 〈u, c〉 ∈ L, h(u) = v}

= inf{inf{max−seg(c) : 〈u, c〉 ∈ L} : h(u) = v} = (〈〈L〉〉B)inf,h(v)Assume L is an α-lok-language, it remains to be shown that Linf,h is also an α-lok-language. Let v be a word and c be the lok witnessing 〈〈L〉〉B(v) = n, i.e., suhthat 〈v, c〉 ∈ Linf,h and max−seg(c) = n. Let c′ be a lok over v suh that min−seg(c′) >
α(n), we have to show 〈v, c′〉 ∈ Linf,h. Sine 〈v, c〉 ∈ Linf,h, there exists u suhthat v = h(u) and 〈u, c〉 ∈ L. Hene, sine L is an α-lok-language, 〈u, c′〉 ∈ L. Itfollows that 〈v, c〉 ∈ Linf,h. ⊓⊔Lemma 2. tempB and tempS have ×2-lok-forms with ×2(n) = 2n.Proof. The proof for tempB is the same as in Example 5, in whih one replaes theletter a by ic and the letter b by r. The tempS side is similar. (See Appendix A.1) ⊓⊔Theorem 7 If f is a regular ost funtion, the following assertions are equivalent :1. f has a lok-form,2. f is B-temporal,3. f is omputed by a temporal B-automaton with only one ounter,4. f is S-temporal,5. f is omputed by a temporal S-automaton with only one ounter.



Proof. (1)⇒(3) follows from Fat 4. (3)⇒(2) is trivial.(2)⇒(1): Consider a temporal B-automaton A = 〈Q, A, In,Fin , Γ, ∆〉 using ounters
Γ = {γ1, . . . , γk}. A run of A is a word on the alphabet B = Q × A × {ic, r}Γ × Q. Itfollows from the de�nition of [[·]]B that for all u ∈ A∗:

[[A]]B(u) = inf
σ∈B∗

{max(χR(σ), tempB ◦ π1(σ), · · · , tempB ◦ πk(σ)) : πA(σ) = u}in whih R ⊆ ∆∗ is the (regular) set of valid runs; for all i ∈ [[1, k]], πi projetseah transition (p, a, t, q) to the its γth
i omponent of t (and is extended to words).Finally πA projets eah transition (p, a, t, q) to a (and is also extended to words). ByExample 4, χR ∈ CF . By Lemma 2, tempB ∈ CF , and by Theorem 6, CF is stableunder omposition, max and inf-projetion. Hene [[A]]B ∈ CF .The equivalenes (2)⇔(4)⇔(5) are proved in a similar way. ⊓⊔Atually, Theorem 6 and Lemma 2 allow to state that if a funtion f is given by one ofthe �ve desriptions of Theorem 7, then for any other among these desriptions, thereexists a funtion g whih is ≈×2-equivalent to f .In the following, we will simply say that f is a temporal ost funtion instead of

B-temporal or S-temporal.Conlusion on lok-forms, and perspetivesIndependently from the seond part of the paper, we believe that some extra ommentson the lok-form approah are interesting.First of all, let us stress the remarkable property of the lok-form presentation oftemporal ost funtions: those an be seen either as de�ning a funtion as an in�mum(〈〈·〉〉B) or as a supremum (〈〈·〉〉S). Hene, regular ost funtion in lok-forms an beseen either as B-automata or as S-automata. This presentation is in some sense `self-dual'. Nothing similar is known for general regular ost funtions.Another di�erene with the general ase is that all onstrutions are in fat redu-tion to onstrutions for languages: This is partiularly obvious in the statement ofTheorem 6. Furthermore, sine everything is done at the level of languages, we do notrequire any spei� presentation for the languages. Those an be desribed e.g. by anyform of automata or algebra. For this reason, any spei� optimised onstrutions forregular language should be reusable for regular temporal ost funtions. However, sinetwo di�erent languages L, L′ an be suh that 〈〈L〉〉B ≈ 〈〈L′〉〉B (even 〈〈L〉〉B = 〈〈L′〉〉B),one must keep aware that optimal operations performed at the level of languages�suhas minimization�will not be optimal anymore when used for desribing temporal ostfuntions. It is a perspetive of researh to develop dediated algorithmi for regulartemporal ost funtions.A third di�erene is that the error ommitted, whih is measured by the strethingfator α, is linear. This is muh better than the general ase of ost funtions, inwhih, e.g., the equivalene between B-automata and S-automata requires a polynomialstrething fator. However, we do not take yet full advantage of this in the present papersine we do not try to use this preision, e.g., in new deision proedures. There arealso here researhes to be onduted.In fat, the argument underlying temporal ost funtions in lok-forms is inter-esting per se: it onsists in approximating some quantitative notion, here the notionof length of intervals, using some extra unary information, here the tiks of the lok.Sine unary information an be handled by automata, the approximation of the quan-titative notion beomes also available to the automaton. This is a very robust priniple



that learly an be reused in several other ways. For instane, it would be no di�erentto onsider tiks of a lok over an in�nite word (in fat the fat that words are �nite iseven entailing problems). It would be no di�erent on trees (seen as a branhing presen-tation of time), be they �nite or in�nite. Keeping on the same trak, a lok is even notrequired to ount the time, it ould ount some events already written on the input,suh as the number of a's, et. These examples show the versatility of the approah.4 Algebrai approahWe �rst reall de�nitions of lassi semigroups and stabilization semigroups for thegeneral ase of regular ost funtions. We use them in a deidable algebrai harater-ization of temporal ost funtions.4.1 Standard semigroupsDe�nition An ordered semigroup S = 〈S, ·,≤〉 is a set S endowed with an assoiativeprodut · : S × S → S and a partial order ≤ over S ompatible with · (i.e. if a ≤ a′and b ≤ b′, then a · b ≤ a′ · b′).An idempotent element of S is an element e ∈ S suh that e · e = e. We note E(S)the set of idempotent elements of S.Reognizing languages In the standard theory, the reognition of a language by a�nite semigroup is made through a morphism from words into the semigroup whihan be deomposed into two steps: �rst, a length-preserving morphism h : A+ → S+,where S+ is the set of words whose letters are in S, and seond the funtion π: S+ → Swhih maps every word on S onto the produt of its letters. The language L reognizedby the triple (S, h, P ), where P is a subset of S, is L = h−1(π−1(P ), i.e. u ∈ L i�
π(h(u)) ∈ P .It is standard that languages reognized by �nite semigroups are exatly the regularlanguages. It is also by now well known that families of regular languages an be har-aterized by restritions on the semigroups whih reognize them. This is for instanethe ase in Eilenberg's variety theorem or in Shützenberger's theorem haraterizingstar-free languages as the one reognized by aperiodi semigroups [Sh65℄.4.2 Stabilization semigroupThe notion of stabilization monoid has been introdued in [Col09℄ as a quantitativeextension of standard monoids, for the reognition of ost funtions. Stabilization semi-group is a more onvenient objet in the present paper, sine the empty word playsa speial role (it has length 0). The relationship between stabilization monoids andstabilization semigroups is made expliit in [Col09b℄. A side e�et is that it is moreeasy to speak about regular ost funtions over non-empty words. We do it from nowfor simpliity.De�nition 8 A stabilization semigroup 〈S, ·,≤, ♯〉 is an ordered semigroup 〈S, ·,≤〉together with an operator ♯: E(S) → E(S) (alled stabilization) suh that:� for all a, b ∈ S with a · b ∈ E(S) and b · a ∈ E(S), (a · b)♯ = a · (b · a)♯ · b;� for all e ∈ E(S), (e♯)♯ = e♯ ≤ e;� for all e ≤ f in E(S), e♯ ≤ f ♯;In this paper, we only onsider �nite stabilization semigroups. The intuition of the
♯ operator is that e♯ represents the value that gets e `when repeated many times'. Thismay be di�erent from e if one is interested in ounting the number of ourrenes of e.



4.3 Reognizing ost funtionsThe �rst step for reognizing ost funtion is to provide a `quantitative semanti' to thestabilization semigroup S = 〈S, ·,≤, ♯〉. This is done by a mapping ρ named a ompatiblemapping, whih maps every word of S+ to an in�nite non-dereasing sequene of SN(the original de�nition does not use non-dereasing sequenes, but is equivalent, seee.g., [Col09℄). The priniple is that the ith position in the sequene ρ(u) tells the valueof the word u for a threshold i separating what is onsidered as few and as lot. This isbetter seen on an example.Example 6. Consider the following stabilization semigroup:
b a 0 ♯

b b a 0 b
a a a 0 0
0 0 0 0 0

b a 0

b

a

0

a, b

0

0, a, b

It is given both by its table of produt augmented by a olumn for the stabilization andby its Cayley graph. In the Cayley graph there is an edge labelled by y linking element xto element x · y. There is furthermore a double arrow going from eah idempotent toits stabilized version.The intention is to ount the number of a's. Words with no a's orrespond toelement b. Words with at least one, but few a's orrespond to element a. Finally, wordsthat ontain a lot of a's should have value 0: for instane, a♯ = 0 witnesses that iteratinga lot of time a word with at least one a yields a word with a lot of a's.A possible ompatible mapping ρ for this stabilization semigroup attahes to eahword over {b, a, 0}+ an in�nite sequene of values in {b, a, 0} as follows: every wordin b+ is mapped to the onstant sequene b; every word ontaining 0 is mapped to theonstant sequene 0; every word u ∈ b∗(ab∗)+ is mapped to 0 for indies up to |u|a − 1and a for indie |u|a and beyond. The idea is that for a threshold i < |u|a, the wordis onsidered as having a lot of a's in front of i (hene value 0), while it has few a's infront of i for i ≥ |u|a (hene the value a). One an see that this sequene `odes' thenumber of a's in the position in whih it swithes from value 0 to value a.A formal de�nition of a ompatible mapping requires to state the properties it hasto satisfy, and whih relate it to the stabilisation monoid. This would require muhmore material, and we have to stay at this informal level in this short paper (SeeAppendix A.6). The important result here is that given a �nite stabilization monoid,there exists a mapping ompatible with it, and furthermore that it is unique up toan equivalene ∼ (whih essentially orresponds to ≈) [Col09,Col09b℄. Hene, in theabove example, the ompatible mapping desribed is the unique possible (up to ∼).Now that we know what the semantis of stabilization semigroups look like, oneuses it for reognizing ost funtions. Instead of omputing the produt of elementsand heking whether it belongs to a subset P of the semigroup, the quantitativereognition onsists in onsidering the in�nite sequene obtained by the ompatiblemapping and observing the �rst moment it leaves a �xed ideal I of the semigroup (anideal is a downward ≤-losed subset). Formally, the ost funtion f over A+ reognizedby (S, h, I) is f : u 7→ inf{n ∈ ω, ρ(h(u))(n) /∈ I}, where h : A+ → S+ is a length-preserving morphism, and ρ is a mapping ompatible with S.Typially, on the above example, the ideal is {0}, and h maps eah letter in {a, b}to the element of same name. For all words u ∈ {a + b}+, the value omputed isexatly |u|a.



Theorem 9 [Col09℄ A ost funtion is regular i� it is reognized by a stabilizationsemigroup.Like for regular languages, this algebrai presentation an be minimized.Theorem 10 If f is a regular ost funtion, there exists e�etively a (quotient-wise)minimal stabilization semigroup reognizing f .This minimal stabilization semigroup an be obtained from (S, h, I) by a Moore algo-rithm omputing the oarsest ongruene, ompatible with the semigroup and stabiliza-tion operations, whih separates elements of I from the other elements. This proedureis polynomial in the size of S. (See Appendix A.7)4.4 Temporal stabilization semigroupsLet us now haraterize the regular temporal ost funtions.We say that an idempotent e is stable if e♯ = e. Otherwise it is unstable. Theintuition is that stable idempotents are not ounted by the stabilization semigroup (bin the example), while the iteration of unstable idempotents matters (a in the example).De�nition 11 Let S = 〈S, ·,≤, ♯〉 be a stabilization semigroup. S is temporal if for allidempotents s and e = x · s · y, if s is stable then e is also stable.For instane, the example stabilization semigroup is not temporal sine b is stablebut a = a · b · a is unstable. This is related to temporal ost funtions as follows:Theorem 12 Let f be a regular ost funtion, the following assertions are equivalent:� f is temporal� f is reognized by a temporal stabilization semigroup� the minimal stabilization semigroup reognizing f is temporalWe will brie�y give an idea on how the de�nition of temporal semigroups is related tothe intuition of onseutive events. Indeed, an unstable idempotent must be seen as anevent we want to `measure', whereas we are not interested in the number of ourrenesof a stable idempotent. But if we have e = x ·s ·y with e unstable and s stable, it meansthat we want to `ount' the number of ourrenes of e without ounting the numberof s within e. In other words, we want to inrement a ounter when e is seen, but san be repeated a lot inside a single ourrene of e. To aomplish this, we have noother hoie but doing ation ǫ on the ounter measuring e while reading all the s's,however, this kind of behaviour is disallowed for temporal automata.The two last assertions are equivalent, sine temporality is preserved by quotientof stabilization semigroups. On our example, the stabilization semigroup is already theminimal one reognizing the number of ourrenes of a, and hene, this ost funtionis not temporal. We gave a diret proof for this fat in Example 3.Corollary 1. The lass of temporal ost funtions is deidable.The orollary is obvious sine the property an be deided on the minimal stabilizationsemigroup, whih an be omputed either from a ost automaton or a stabilizationsemigroup de�ning the ost funtion.



5 ConlusionWe de�ned a sublass of regular ost funtions alled the temporal lass. Our �rst def-inition used ost automata. We then haraterized regular temporal ost funtions asthe ones desribable by lok-languages. This presentation allows to reuse all standardonstrution for regular languages taken from lassi language theory. We then hara-terized the lass in the algebrai framework of stabilization semigroups, the algebrainotion allowing to desribe regular ost funtions. This together with the onstrutionof minimal stabilization semigroups gave us a deision proedure for the temporal lass,and hopefully for more lasses in future works.The later deidable haraterization result alls for ontinuations. Temporal ostfuntions orrespond to desert automata of Kirsten [Kir04℄, but other sublasses ofautomata are present in the literature suh as distane automata (whih orrespond toone-ounter no-reset B-automata) or distane desert automata (a speial ase of twoounters B-automata). Is there deidable haraterizations for the regular ost funtionsdesribed by those automata? More generally, what is the nature of the hierarhy ofounters?Referenes[AKY08℄ Parosh Aziz Abdulla, Pavel Kral, andWang Yi. R-automata. In Frank van Breugeland Marha Chehik, editors, Proeedings of CONCUR'08, Toronto, Canada., vol-ume 5201 of Leture Notes in Computer Siene, pages 67�81. Springer-Verlag, 2008.[Bal04℄ Sebastian Bala. Regular language mathing and other deidable ases of the sat-is�ability problem for onstraints between regular open terms. In STACS, volume2996 of Leture Notes in Computer Siene, pages 596�607. Springer, 2004.[BC06℄ Mikolaj Boja«zyk and Thomas Colombet. Bounds in ω-regularity. In LICS 06,pages 285�296, August 2006.[BOW09℄ Ahim Blumensath, Martin Otto, and Mark Weyer. Boundedness of monadiseond-order formulae over �nite words. In 36th ICALP, Leture Notes in Com-puter Siene, pages 67�78. Springer, July 2009.[Col09a℄ Thomas Colombet. Regular ost funtions over words. Manusript available online,2009.[Col09b℄ Thomas Colombet. Regular ost funtions, part i: logi and algebra over words.Submitted, 2009.[Col09℄ Thomas Colombet. The theory of stabilization monoids and regular ost funtions.ICALP, Leture Notes in Computer Siene, 2009.[Egg63℄ L. C. Eggan. Transition graphs and the star-height of regular events. MihiganMath. J., 10:385�397, 1963.[Has79℄ Kosaburo Hashiguhi. A deision proedure for the order of regular events. Theo-retial Computer Siene, 8:69�72, 1979.[Has88℄ K. Hashiguhi. Relative star height, star height and �nite automata with distanefuntions. In Formal Properties of Finite Automata and Appliations, pages 74�88,1988.[Has90℄ K. Hashiguhi. Improved limitedness theorems on �nite automata with distanefuntions. Theor. Comput. Si., 72:27�38, 1990.[Kir04℄ Daniel Kirsten. Desert automata and the �nite substitution problem. In STACS,volume 2996 of Leture Notes in Computer Siene, pages 305�316. Springer, 2004.[Kir05℄ Daniel Kirsten. Distane desert automata and the star height problem. RAIRO,3(39):455�509, 2005.[Kle56℄ Stephen C. Kleene. Representation of events in nerve nets and �nite automata. InC. E. Shannon and J. MCarthy, editors, Automata Studies, pages 3�42. PrinetonUniversity Press, Prineton, New Jersey, 1956.
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A AppendixA.1 Some proofs on S-automata
tempS-side of Lemma 2 We will onstrut a rational language L ×2-lok-form of
tempS .We will say that a lok c is ompatible with a word u on {i, cr}+ if u and c havethe same length and there is at most one ↓ of the lok c in some blok of i's ended bya cr in u. Let L = {〈u, c〉, c ompatible with u}

L = K[((cr,  ) + (cr, ↓))K]∗((i,  ) + (i, ↓))∗ in whih K = (i,  )∗ + (i,  )∗(i, ↓)(i,  )∗ .We will show that L is a ×2-lok-form of tempS . We just need to show that
tempS 4 ϕB

L and 〈〈L〉〉S 4 tempS .Let u ∈ {a, b}+, and c be a lok on u suh that 〈u, c〉 ∈ L and max−seg(c) isminimal. Let n = tempS(u) be the size of the smallest blok of i's in u followed bya cr. If max−seg(c) ≤ ⌊n/2⌋, there is at least two ↓ of c in the smallest (therefore inany) blok of i's followed by a cr in u, so c annot be ompatible with u. Hene wemust have 〈〈L〉〉B(u) = max−seg(c) > ⌊n/2⌋ = ⌊tempS(u)/2⌋. This is true for all u, so
tempS 4×2 〈〈L〉〉B .We now need to show that 〈〈L〉〉S 4 tempS .Let u ∈ A+, and c be a lok on u suh that 〈u, c〉 /∈ L and min−seg(c) is maximal.
〈u, c〉 /∈ L implies that there is two ↓ in c in any blok of i's ended by a cr in u. Thisimplies min−seg(c) ≤ tempS(u). Hene by de�nition of c, 〈〈L〉〉S(u) = min−seg(c) ≤
tempS(u). It is true for all u so 〈〈L〉〉S ≤ tempS . �

S-side of Theorem 7 (4)⇒(1)Consider a S-automaton A = 〈Q, A, In,Fin, Γ, ∆〉 with Γ = {γ1, . . . , γk}.A run of A is as a word on alphabet ∆ ⊆ Q × A × {i, cr}Γ × Q.It follows from the de�nition of [[·]]S that for all u ∈ A∗:
[[A]]S(u) = sup

σ∈∆∗

{min(χ∁R(σ), tempS ◦ π1(σ), · · · , tempS ◦ πk(σ)) : πA(σ) = u}in whih R ⊆ ∆∗ is the (regular) set of valid runs; for all i ∈ [[1, k]], πi projets eahtransition (p, a, t, q) to the γth
i omponent of t (and is extended to words). Finally πAprojets eah transition (p, a, t, q) to a (and is also extended to words). By Example4, χ∁R ∈ CF . By Lemma 2, tempS ∈ CF , and by Theorem 6, CF is stable underomposition, min and sup-projetion. Hene [[A]]S ∈ CF . �A.2 Cost sequenesThe aim is to give a semanti to stabilization semigroups. Some mathematial prelim-inaries are required.Let (E,≤) be an ordered set, α a funtion from N to N, and a, b ∈ EN two sequenes.We de�ne the relation �α by a�αb if :

∀n.∀m. α(n) ≤ m → a(n) ≤ b(m) .A sequene a is said α-non-dereasing if a �α a. We de�ne ∼α as �α ∩ �α, and a�b(resp. a∼b) if a �α b (resp. a ∼α b) for some α.Remarks:



� if α ≤ α′ then a �α b implies a �α′ b,� if a is α-non-dereasing, then it is α-equivalent to a non-dereasing sequene,� a is id -non-dereasing i� it is non-dereasing,� let a, b ∈ EN be two non-dereasing sequenes, then a �α b i� a ◦ α ≤ b.The α-non-dereasing sequenes ordered by�α an be seen as a weakening of the α = idase. We will identify the elements a ∈ E with the onstant sequene of value a.The relations �α and ∼α are not transitives, but the following property guaranteesa ertain kind of transitivity.Fat 13 a �α b �α c implies a �α◦α c and a ∼α b ∼α c implies a ∼α◦α c.The funtion α is used as a "preision" parameter for ∼ and �. Fat 13 showsthat a transitivity step ost some preision. For any α, the relation �α oinide overonstant sequenes with order ≤ (up to identi�ation of onstant sequene with theironstant value). In onsequene, the sequene in EN ordered by �α form an extensionof (E,≤).In the following, while using relations �α and ∼α, we may forget the subsript αand verify instead that the proof has a bounded number of transitivity steps.Let(E,≤) and (F,≤) two ordered sets, a funtion E → F N is α-monotone if
∀a, b ∈ E. a ≤ b → f(a) �α f(b) .In partiular, for eah a ∈ E, we have a ≤ a, so f(a) �α f(a), hene f(a) is α-non-dereasing. To eah α-monotone funtion f : E → F N we assoiate f̃ : EN → F Nde�ned in the following way:for all a ∈ EN and all n ∈ N, f̃(a)(n) = f(a(n))(n) .Proposition 14 Let f : E → F N be a α-monotone funtion and a, b ∈ EN, then:

a �α b implies f̃(a) �α f̃(b) .In partiular, if f : E → F N and g : F → GN are α-monotone, then g̃◦f is α-monotone.Moreover, (̃g̃ ◦ f) = g̃ ◦ f̃ .De�nition 15 If f and g are funtions E → F N, we will say that f ∼α g if for all
u ∈ E, f(u) ∼α g(u). As usual, f ∼ g if there exists α suh that f ∼α g.We will also use this notions with the produt order : if (E,≤) is an ordered set,the set of words in u ∈ E∗ is anonially ordered by a1 . . . an ≤ b1 . . . bm i� m = n and
ai ≤ bi for i = 1 . . . n. We identify the elements of (EN)∗ (words of sequenes) withsome elements of (E∗)N (sequenes of words of the same length). Notie that for anysequenes a1, . . . ,an, b1, . . . , bn ∈ EN, a1 . . . an �α b1 . . . bn i� ai �α bi for i = 1 . . . n.A.3 Ideals of an ordered setThis notion will be essential to de�ne the ost funtion reognized by a stabilizationsemigroup.Let (E,≤) be an ordered set, an ideal is a ≤ −closed subset I ⊆ E, i.e. if a ∈ Iand b ≤ a, then b ∈ I. let a ∈ E, the'ideal generated by a is Ia= {b ∈ E : b ≤ a}. Let
a ∈ EN and I be an ideal, we de�ne I[a]= sup{n + 1 : a(n) ∈ I}.4 Let I be an ideal,its omplement in E is denoted by I. Let a ∈ EN, we de�ne I[a]= inf{n : a(n) ∈ I}.4 The +1 makes the alulus smoother in the following.



Proposition 16 Let f and g be funtions E → SN suh that f ∼α g and for any
u ∈ E, f(u) and g(u) are non-dereasing. Then for any ideal I of S, the ost funtions
u 7→ I[f(u)] and u 7→ I[g(u)] are ≈α equivalent.Indeed, let u ∈ E, and n = I[f(u)]. Then g(u)(α(n)) ≥ f(u)(n) /∈ I. I is an ideal so weget g(u)(α(n)) /∈ I. g(u) is non-dereasing so I[g(u)] ≤ α(n). By symmetry of f and gwe �nally get u 7→ I[f(u)] ≈α u 7→ I[g(u)].De�nition 17 Let a, b ∈ E and n ∈ N, we de�ne the sequene a|nb by:for all k ∈ N, (a|nb)(k) =

{

a if k < n,
b otherwise.A.4 Compatible funtionsWe now de�ne the semanti of a stabilization semigroup with the notion of ompatiblefuntion. The idea is to generalize the notion of produt, by assoiating to eah wordof S+, no longer an element of S, but a ost sequene in SN. this will allow us toexpress stabilization in a quantitative way. Intuitively, when n is �xed in the ostsequene, we an interpret the semanti as an automaton with limited resoures. Toavoid ambiguities, we will write uv the onatenation of u and v as words in S+ and

a · b the produt of a and b as elements of S.
〈S+, ,≤〉 forms a semigroup, partially ordered by the produt ordered betweenwords of same length desribed above.De�nition 18 Let S = 〈S, ·,≤, ♯〉 be stabilization semigroup. A funtion ρ from S+ to

SN is said ompatible with S if there exists α suh that :Monotoniity. ρ is α-monotone,Letter. for all a ∈ S, ρ(a) ∼α a,Produt. for all a, b ∈ S, ρ(ab) ∼α a · b,Stabilization. for all e ∈ E(S), m ∈ N, ρ(em) ∼α (e♯|me),Substitution. for all u1, . . . , un ∈ S+, n ∈ N, ρ(u1 . . . un) ∼α ρ̃(ρ(u1) . . . ρ(un)) (re-mind : we identify sequene of words and word of sequenes, see setion A.2)Example 7. Let S be the stabilization semigroup with 3 elements ⊥ ≤ a ≤ b, withprodut de�ned by : x · y = min≤(x, y) (b neutral element), and stabilization by b♯ = band a♯ = ⊥♯ = ⊥. Lett u ∈ {⊥, a, b}+, we de�ne ρ by:
ρ(u) =











b if u ∈ b+

⊥||u|aa if u ∈ b∗(ab∗)+

⊥ sinon.Then ρ is ompatible with S.Remark 19 When ♯ is the identity funtion, S beomes a standard ordered semigroup,and the lassial extended produt π is ompatible with S.Theorem 20 ([Col09℄) For any stabilization semigroup S, there exists a funtion ρompatible with S. Moreover, ρ is unique up to ∼.This theorem is fundamental, sine it assoiates a unique (up to ∼) semanti to anystabilization semigroup.



Lemma 3. Let ρ ompatible with a semigroup S. There exists γ suh that for any
n ∈ N and u ∈ S+, if |u| ≤ n then for all k ≥ γ(n), ρ(u)(k) = π(u)Proof. We show this result by indution on n. It is true for n = 1 by taking γ(1) = 1. Weassume γ(k) onstruted for k < n, and we want to show the result for n. Let u ∈ S+ oflength n, u = va with |v| = n−1 and a ∈ S. Letα a witness of ρ ompatible with S. Thesubstitution property tells us that ρ(u) ∼α ρ̃(ρ(v)a). but by indution hypothesis, forall k ≥ γ(n − 1), ρ̃(ρ(v)a)(k) = ρ(ρ(v)(k)a)(k) = ρ(π(v)a)(k). Moreover, ρ(π(v)a) ∼α

π(v) · a = π(u). Hene we have for all k ≥ α(γ(α(n − 1))), ρ(u)(k) = π(u).We get theresult with γ(n) = α(γ(α(n − 1))). �A.5 Generalities about stabilization semigroupsStruture An idempotent element of S is an element e ∈ S suh that e · e = e. Wenote E(S) the set of idempotent elements of S.In the sequel, we use a lassi Green's relation. Let a and b be in S; we denote a≤J bif there exists x and y in S ∪ {1} suh that a = xby. The relation ≤J is a preorder.If a ≤J b and b ≤J a, then a and b are in the same J -lass, and we denote aJ b.Obviously, ≤J indues an order over J -lasses, also noted ≤J .A regular element of S is an element a suh that there exists e ∈ E(S) with aJ e.Consequently, either all the elements of a J -lass are regular (we say that the J -lassis regular), either no element is (the J -lass is irregular).We an extend ♯ to all regular elements of S. If a is a regular element, there exists
e ∈ E(S) and x, y ∈ S ∪ {1} suh that x · e · y = a. We de�ne then a♯ = x · e♯ · y, whihdoes not depend on the hoie of the deomposition (f. [Kir05℄).De�nition 21 A regular J -lass J is stable if there exists an idempotent a in J suhthat a♯ ∈ J , otherwise J is unstable. If J is stable, then for all idempotent a in J ,
a♯ = a.De�nition 22 (Produt of stabilization semigroups) Let S1 = 〈S1, ·1,≤1, ♯1〉 and S2 =
〈S2, ·2,≤2, ♯2〉 be stabilization semigroups, then their produt S1 × S2 is the tuple
〈S1×S2, ·,≤, ♯〉 suh that (a1, a2) ·(b1, b2) = (a1 ·b1, a2 ·b2), (a1, a2) ≤ (b1, b2) if a1 ≤ b1and a2 ≤ b2, and (e1, e2)

♯ = (e♯1
1 , e♯2

2 ).Proposition 23 If S1 and S2 are stabilization semigroups, then S1 × S2 is one too.Moreover, if ρ1 is ompatible with S1 and ρ2 with S2 then ρ de�ned for all u = (u1, u2) ∈
(S1 × S2)

+ and k ∈ N by ρ(u)(k) = (ρ1(u1)(k), ρ2(u2)(k)), is ompatible with S1 × S2.De�nition 24 A funtion φ from S to S
′ is a morphism of stabilization semigroups if� for all u, v in S, φ(u · v) = φ(u) · φ(v),� For all u ∈ E(S), φ(u) ∈ E(S′) and φ(u♯) = φ(u)♯.Lemma 4. Let S,S′ be stabilization semigroups, ρ and ρ′ ompatible with S and S

′.We assume there exists a morphism of stabilization semigroups τ from S to S
′. Let

τ+ : S
+ → S

′+ and τN : S
N → S

′N the natural extensions of τ to �nite and in�nitesequenes. Then τN ◦ ρ ∼ ρ′ ◦ τ+.Proof. Let K = {(a, τ(a)), a ∈ S}. We an provide K with a struture of stabilizationsemigroup, as a sub-stabilization semigroup of S× S
′.Let φ : K+ → KN de�ned by φ(u, τ+(u)) = (ρ(u), τN(ρ(u)). Let α be a witness of

ρ ompatible with S. We show that φ is ompatible with K.



� Monotoniity. ρ is α-monotone, so φ is too� Letter. Let a ∈ K,a = (b, τ(b)) with b ∈ S, φ(a) = (ρ(b), τ(ρ(b)) ∼α (b, τ(b)) = a� Produt. Let a, b ∈ K, a = (a′, τ(a′)), b = (b′, τ(b′)), φ(ab) = (ρ(a′b′), τ(ρ(a′b′))) ∼α

(a′ · b′, τ(a′ · b′)) = a · b,� Stabilization. Let e ∈ E(K), m ∈ N, e = (a, τ(a)) with a ∈ E(S), φ(em) =
(ρ(am), τN(ρ(am))) ∼α (a♯|ma, τN(a♯|ma)) = e♯|me,� Substitution. Let u1, . . . , un ∈ S+, n ∈ N, ∀i,∃vi ∈ S+, ui = (vi, τ

+(vi)), φ(u1 . . . un) =
(ρ(v1 . . . vn), τN(ρ(v1 . . . vn))) ∼α (ρ̃(ρ(v1) . . . ρ(vn)), τN(ρ̃(ρ(v1) . . . ρ(vn))). We get
φ ∼α g with
g(u1 . . . un)(k) = (ρ(ρ(v1)(k) . . . ρ(vn)(k))(k), τN(ρ(ρ(v1)(k) . . . ρ(vn)(k))(k))). Toonlude,
φ̃(φ(u1) . . . φ(un))(k) = φ((ρ(v1), τ

N(ρ(v1))(k) . . . (ρ(vn), τN(ρ(vn))(k))(k)

= φ(ρ(v1)(k) . . . ρ(vn)(k), τ+(ρ(v1)(k) . . . ρ(vn)(k))(k)

= (ρ(ρ(v1)(k) . . . ρ(vn)(k))(k), τ+(ρ(ρ(v1)(k) . . . ρ(vn)(k))(k)))

∼α φ(u1 . . . un)(k)But (ρ, ρ′) is also ompatible with K, sine K is a sub-stabilization semigroup of
S×S′ (Proposition 23). The uniqueness (up to ∼) of the ompatible funtion (Theorem20) gives us φ ∼ (ρ, ρ′), hene by projetion on the seond omponent, we get τN ◦ ρ ∼
ρ′ ◦ τ+. �A.6 Reognized ost funtionsWe now have all the mathematial tools to de�ne how stabilization semigroups anreognize ost funtions.Let S = 〈S, ·,≤, ♯〉 be a stabilization semigroup. Let h : A → S be a morphism,anonially extended to h : A+ → S+, and I ⊆ S an ideal. Then the triplet S, h, I re-ognizes the funtion f : A+ → N∞ de�ned by f(u) = I[ρ(h(u))] where ρ is ompatiblewith S. A ost funtion from A+ to N∞ is said reognizable if it is ≈-equivalent to afuntion reognized by some S, h, I. By Proposition 16, the reognized ost funtiondoes not depend on the hoie of ρ.Example 8. Let A = {a, b}, the ost funtion | · |a is reognizable. We take the stabi-lization semigroup from Example 7, h de�ned by h(a) = a, h(b) = b, and I = {⊥}. Wehave then |u|a = I[ρ(h(u))] for all u ∈ A+.The following result shows the analogy with regular languages, and justify the nameof "regular" ost funtions :Theorem 25 ([Col09℄) For a ost funtion, the following properties are equivalent: � being reognizable by stabilization semigroup,� being omputable by B-automaton,� being omputable by S-automaton.We an report [Col09℄ for more details about stabilization semigroups, in partiularfor interesting deidability results about appliations to regular language theory.



A.7 MinimizationWe will show that for any given S, h, I reognizing a regular ost funtion f , we anbuild a (quotient-wise) minimal stabilization semigroup reognizing f .If X ⊆ S, we note 〈X〉♯ the losure of X in S by produt and stabilization. We anassume that S only has "useful" elements i.e. S = 〈h(A)〉♯.Let ≡ be the oarsest equivalene relation on S suh that : ∀x, y, a ∈ S,














x ≡ y ⇒ (x ∈ I ⇔ y ∈ I)
x ≡ y ⇒ a · x ≡ a · y
x ≡ y ⇒ x · a ≡ y · a
x ≡ y ⇒ x♯ ≡ y♯in other words ≡ is the oarsest equivalene relation saturating I (in partiular S/≡is a stabilization semigroup). This relation an be omputed e�etively, starting fromwhole S×S then iteratively removing ouples whih don't verify the above onditions.This is a kind of Moore algorithm, and its omplexity is polynomial in |S|.Theorem 26 S/≡ reognizes f .Proof. Let τ be the anonial projetion S −→ S/≡ naturally extended to τ+ : S+ −→

(S/≡)+, and also to τN : SN −→ (S/≡)N.We de�ne I ′ = τ(I), h′ = τ+ ◦h, and we want to show that S/≡, h′, I ′ reognizes f .Let ρ′ ompatible with S/≡. By Lemma 4, there exists α suh that
∀u ∈ S

+, τN(ρ(u)) ∼α ρ′(τ+(u))If u ∈ A+, we have I[ρ(h(u))] = I ′[τN(ρ(h(u)))] and I ′[ρ′(h′(u))] = I ′[ρ′(τ+(h(u)))].By Proposition 16, the funtions u 7→ I ′[τN(ρ(h(u)))] and u 7→ I ′[ρ′(τ+(h(u)))] are thus
≈α-equivalent. We onlude that S/≡, h′, I ′ reognizes the ost funtion f . �In order to show that S/≡ is minimal for the quotient relation, we have to buildset of words whih we will use as ounter-examples. We need for that a tool introduedby Hashigushi, alled ♯-expression.De�nition 27 (♯-expression) [Has90℄ We de�ne the ♯-expressions by indution. Ev-ery letter a ∈ A is a ♯-expression, if e and e′ are ♯-expressions, ee′ and e♯ are ♯-expressions.If e is a ♯-expression and k ∈ N, we de�ne the word e(k) by indution in thefollowing way : if e is a letter then e(k) = e, and if e and e′ are ♯-expressions, ee′(k) =
e(k)e′(k) and e♯(k) = e(k)k.We also de�ne an operation eval (depending on the semigroup and the morphism
h)to assoiate a value to any ♯-expression by indution : if e is a letter then eval(e) =
h(e), and if e and e′ are ♯-expressions, eval(ee′) = eval (e) · eval (e′) and eval (e♯) =
eval (e)♯ (eval (e) has to be an idempotent). A ♯-expression is well-formed if eval (e)exists. For all k ∈ N, we de�ne limk in the same way that eval exept for limk(e♯) =
limk(e)k (it is a produt, not a onatenation).De�nition 28 (Context) A ontext C[] is a ♯-expression with a possible ourreneof a free variable x. If e is a ♯-expression, C[e] is the ♯-expression obtained by replaing
x by e in C[].Example 9. If A = {a, b, c}, e = ab(bc♯b)♯a♯bb is a ♯-expression,
e(3) = abbcccbbcccbbcccbaaabb and eval (e) = h(a)h(b)(h(b)h(c)♯h(b))♯h(a)♯h(b)h(b).An example of ontext is C[] = ab(ax♯)♯, we have C[b] = ab(ab♯)♯



The following lemma shows how ♯-expression behave relatively to ompatible fun-tions.Lemma 5. For all ♯-expression e, there exists a αe suh as for all k ∈ N, ρ(h(e(k))) ∼αe

eval (e)|k limk(e).Proof. Let β be a witness of ρ ompatible with S. We proeed by indution on e:� if e is a letter, then for all k ∈ N, ρ(h(e(k))) ∼β h(e) = eval (e)|k limk(e).� if e = rs, then for all k ∈ N, ρ(h(e(k))) = ρ(h(r(k))h(s(k))) ∼β ρ̃(ρ(h(r(k)))ρ(h(s(k))),but by indution hypothesis, there exists αr and αs suh as ρ(h(r(k))) ∼αr
eval (r)|k limk(r)and ρ(h(s(k))) ∼αs

eval (s)|k limk(s), so by hoosing αe = β ◦ max(αr, αs), we getthe result.� if e = r♯ with eval (r) idempotent, then for all k ∈ N,
ρ(h(e(k))) ∼β ρ̃(ρ(h(r(k)))k)

∼αr
ρ̃((eval (r)|klimk(r))k)

∼β◦γ eval (r)♯|klimk(r)

= eval(e)|klimk(e)We get the result with αe = β ◦ αr ◦ β ◦ γ, where γ omes from Lemma 3.
�Lemma 6. If S, h, I and S

′, h′, I ′ reognize the same ost funtion, then S/≡ and
S
′/≡′ are isomorphi.Proof. We will onsider here that all elements of the semigroups are aessible byprodut and stabilization from h(A).

S, h, I and S
′/≡′, h′, I ′ reognize f . We will show that there is a surjetive morphism

φ from S to S
′/≡′.Let eval and eval ′ be the evaluations relatively to S, h and S

′/≡′, h′.For all ♯-expression e, let φ(eval (e)) = eval ′(e). We show that it is indeed a surjetivemorphism.Let assume that there exist e1, e2 some ♯-expressions suh that eval (e1) = eval (e2)but eval
′(e1) 6= eval

′(e2). By the de�nition of ≡′, eval
′(e1) and eval

′(e2) an be distin-guished by I ′, so there is a ontext C[] suh that eval ′(C[e1]) ∈ I ′ and eval ′(C[e2]) /∈ I ′(up to reversing e1 and e2). But we have eval (C[e1]) = eval [C(e2)].If eval (C[e1]) ∈ I, let uk = C[e2](k) for all k ∈ N.Let ρ, ρ′ be ompatible with S,S′. By Lemma 5, there exists α suh that ρ(h(C[e2](k))) ∼α

eval (C[e2])|k limk(C[e2]) and ρ′(h′(C[e2](k))) ∼α eval ′(C[e2])|k lim′
k(C[e2]) We have

eval (C[e2]) ∈ I so I[ρ(h(uk))] ≥α k, but eval ′(C[e2]) /∈ I, so I ′[ρ′(h′(uk))] = 0 for klarge enough. However, S, h, I and S
′, h′, I ′ reognize the same ost funtion. Hene wehave a ontradition.In the ase where eval (C[e1]) /∈ I, we an do the symmetrial reasoning and take

uk = C[e1](k), we also get a ontradition. In onlusion, suh a ouple e1, e2 an-not exist, hene φ is well de�ned. Moreover, φ is a surjetion beause we limited thesemigroups to 〈h(A)〉♯ to build S′/≡′.The only thing left to hek is that φ is a morphism of stabilization semigroups.Let a, b ∈ S. By hypothesis on S, there exists ea, eb suh that a = eval(ea) and
b = eval (eb). We have φ(a · b) = φ(eval (ea) · eval (eb)) = φ(eval (eaeb)) = eval ′(eaeb) =



eval ′(ea) · eval ′(eb) = φ(a) ·φ(b), and φ(a♯) = φ(eval (ea)♯) = φ(eval (e♯
a)) = eval ′(e♯

a) =
eval ′(ea)♯ = φ(a)♯.

φ is a surjetive morphism of stabilization semigroups from S to S
′/≡′. By reversingthe roles of S and S

′, we get that S/≡ and S
′/≡′ are isomorphi. �A.8 Temporal fragmentProposition 29 Let S = 〈S, ·,≤, ♯〉 be a stabilization semigroup. S is a temporal semi-group if the following ondition holds. Let J be a stable J -lass, for every J -lass J ′,if J ≥J J ′, then J ′ is stable.Proof of Theorem 12 The aim is to assoiate a temporal semigroup to any tem-poral B-automaton, in a way that both objets reognize the same ost funtion. We�rst assoiate a temporal semigroup. We start by building the temporal semigrouprepresenting the operations on one ounter in a temporal B-automaton.Let Sγ = 〈S, ·,≤, ♯〉 with S = {ic, r,⊥}. All elements are idempotent, ⊥ is a zero,

ic · r = r · ic = r = r♯, ic♯ = ⊥♯ = ⊥, and ⊥ ≤ ic ≤ r. The semigroup Sγ desribes thesemanti of the operations on one ounter.Let A = 〈Q, A, In,Fin, γ, ∆〉 be a temporal B-automaton (we an take it with oneounter by Theorem 7). We assoiate to it a stabilization semigroup SA in the followingway:Let SA = SQ×Q
γ .If E, F ∈ SA, we de�ne their produt by :
∀p, t ∈ Q, E · F (p, t) = max{E(p, q) · F (q, t), q ∈ Q},and the order by E ≤ F i� for all p, q ∈ Q, E(p, q) ≤ F (p, q). Finally, if E is anidempotent, we de�ne E♯ by:

∀p, q ∈ Q, E♯(p, q) = max{E(p, t) · E(t, t)♯ · E(t, q) / t ∈ Q}.Theorem 30 [Col09℄ SA = 〈SA, ·,≤, ♯〉 is a stabilization semigroup, and by taking
I = {E/∀(p, q) ∈ In × Fin , E(p, q) = ⊥} and h(a)(p, q) = max{σ/(p, a, σ, q) ∈ ∆} forall a ∈ A and p, q ∈ Q, SA, h, I reognizes [[A]]B .We still have to show that SA is a temporal stabilization semigroup.Lemma 7. Let E be an idempotent and p, q ∈ Q, then there exists t ∈ Q suh that
E(p, q) ≤ E(p, t) · E(t, t) · E(t, q).Proof. We an write E = E · · ·E, produt of length k, with k > |Q|. There exists asequene p0, a1, p1, . . . , pk suh that p0 = p, pk = q and E(p, q) = a1 · · · ak. (it is thesequene realizing the max in the de�nition of the produt of SA). But k > |Q| so
∃(j, l), 1 < j < l < k and pj = pl = t. We have E(p, t) ≥ a1 · · · aj , E(t, t) ≥ aj + 1 · · ·aland E(t, q) ≥ al+1 · · · ak, whih shows the result. �Lemma 8. Let J be J -lass of SA, then

J unstable i� there exists E ∈ J idempotent and p, q ∈ Q suh that E(p, q) = ic.Proof. Let J be an unstable J -lass, there exists E ∈ J idempotent with E♯ 6= E. But
E♯ ≤ E, so there exists p, q ∈ Q suh that E♯(p, q) < E(p, q)



By Lemma 7, there is t ∈ Q suh that E(p, q) ≤ E(p, t) · E(t, t) · E(t, q). But
E♯(p, q) ≥ E(p, t) ·E(t, t)♯ ·E(t, q), so we have E♯(p, q) < E(p, q) then E(t, t)♯ 6= E(t, t),whih implies E(t, t) = ic. We have shown the �rst impliation.Conversely, let E ∈ J idempotent and p, q ∈ Q suh that E(p, q) = ic If we assume
J stable, we get E♯ = E so E♯(p, q) = ic. By the de�nition of E♯, there exists t ∈ Q suhthat ic = E(p, t) ·E(t, t)♯ ·E(t, q). By the de�nition of the · operation in semigroup Sγ ,that implies E(p, t) = E(t, t)♯ = E(t, q) = ic, and in partiular E(t, t)♯ = ic is absurd.Hene J is unstable, this ompletes the seond impliation. �Theorem 31 A being a temporal B-automaton, SA is a temporal semigroup.Proof. Let J and J ′ bet two regular J -lasses of SA with J ≥J J ′ and J stable. ByLemma 8, ∀E ∈ J idempotent, ∀s, t ∈ Q, E(s, t) 6= ic.Let E′ ∈ J ′, J ≥J J ′ then ∃E ∈ J, A, B ∈ SA, E′ = A ·E ·B let us assume there exists
p, q ∈ Q, E′(p, q) = ic, then there exists s, t ∈ Q, ic = A(p, s) ·E(s, t) ·B(t, q). We musthave E(s, t) = ic, this is absurd. So by Lemma 8, J ′ is a stable lass. SA is a temporalsemigroup. �We will now do the onverse : assoiate a B-temporal automaton to any temporalsemigroup.De�nition 32 If S is a temporal semigroup, we de�ne

Unstab = {x ∈ S/∃e ∈ E(S), e♯ 6= e and e ≤J x}.

Unstab is therefore a union of unstable or irregular lasses. We also de�ne Stab as itsomplement (stable or irregular lasses).Lemma 9. Let S be a temporal semigroup, there exists η suh that
∀u ∈ Stab+, ρ(u) ∼η π(u).This lemma expresses the fat that in the stable part, the stabilization semigroup isindeed a lassi semigroup, and therefore its ompatible funtion is equivalent to theprodut.Theorem 33 If f is a ost funtion reognized by S, h, I with S a temporal semigroup,then f is temporal.Proof. Let f reognized by S, h, I with S a temporal semigroup.Let ρ be a funtion ompatible with S, with αρ as a witness.we build a temporal B-automaton A = 〈Q, A, In,Fin, {γ}, ∆〉 whih will ompute

f . If u is the word given to the automaton, we want to �nd the unstable fators u whihare "too long" and idempotent, in order to stabilize them as it happens in ρ. The ideais to non-deterministially guess an unstable idempotent fator of u, to whih we anapply the ♯ operator if it beomes too lon.We take Q = ({1} ∪ Stab)× ({1} ∪Unstab) × ({1} ∪Unstab). The �rst omponentkeeps trak of the urrent stable fator, the seond one is the unstable fator we readbefore the idempotent fator, and the third one is the unstable idempotent fator weare urrently reading. We therefore de�ne :
∆ = {((s, a, 1), l, ic, (s, a · h(l), 1))/a · h(l) ∈ Unstab} (1)

∪{((s, a, b), l, ic, (s, a, b · h(l)))/a · b · h(l) ∈ Unstab} (2)
∪{((s, a, b), l, r, (s · a · (b · h(l))♯, 1, 1))/a · b · h(l) ∈ Instab, b · h(l) idempotent} (3)
∪{((s, a, b), l, r, (s · a · b · h(l), 1, 1))/a · b · h(l) ∈ Stab} (4)



We �nally hoose In = {(1, 1, 1)} and Fin = {(s, a, b), s · a · b /∈ I}.We start by showing f 4α [[A]]B for some α. Let u ∈ A+, and σ a valid run of Aover u �nishing in state (s, a, b). Let n = supC(σ), q = s ·a · b, and w = h(u) ∈ S+. Byde�nition of A, w an be split in x1y1z1 . . . xkykzk with q = π(x1y1)·π(z1)
♯ · · ·π(xkyk)·

π(zk)♯, and for all j ∈ [[1, k]], π(xj) ∈ Stab ∪ {1}, π(yj) ∈ Unstab ∪ {1}, and π(zj)unstable idempotent with |yjzj | ≤ n (we assume here without loss of generality thatthe last transition is of type (3)). The transitions used during leture of the xj 's areof types (1), (2) and (4); those orresponding to yj's are of type (1), and �nally thoseorresponding to zj 's are of type (2) with one of type (3) at the end. Let γ be thefuntion of Lemma 3, for all j and all m ≥ γ(n), ρ(yjzj)(m) = π(yjzj). Let η bethe funtion of Lemma 9, by ombining the two lemmas and using the fat that anyunstable fator of xj has length at most n, we get that for m ≥ max(η(n), γ(n)),, pourtout j ∈ [[1, k]], ρ(xj)(m) = π(xj).Hene we have, for all m ≥ max(η(n), γ(n)) :
ρ(w)(αρ(m)) ≥ ρ(ρ(x1)(m)ρ(y1z1)(m) . . . ρ(xk)(m)ρ(ykzk)(m))(m)

≥ ρ(ρ(x1)(m)π(y1z1) . . . ρ(xk)(m)π(ykzk))(m)

≥ ρ(π(x1)(π(y1) · π(z1)
♯) . . . π(xk)(π(yk) · π(zk)♯))(m)

≥ q (Lemma 9)In onlusion, for all run σ of value at most n over u and �nishing in (s, a, b) with
q = s ·a ·b, we get q ≤ ρ(h(u))(α(n)) with α = αρ ◦max(η, γ), but q /∈ I is the onditionfor (s, a, b) to be an aepting state, so f(u) ≤ α(n). We an onlude f 4α [[A]]B .Conversely, let us show that [[A]]B 4β f for some β. For all u ∈ A+ and n ∈ N, webuild a run σ of A over u, suh that supC(σ) ≤ β(n), and suh that by taking q = s·a·bwith (s, a, b)last state of σ, we have ρ(h(u))(n)) ≤ q. In this way, if f(u) ≤ n, then
ρ(h(u))(n) /∈ I hene q /∈ I and the run is valid, whih implies [[A]]B(u) ≤ β(n). Wetherefore get the result [[A]]B 4β f .We remind the Ramsey theorem : there exists αR suh that for all t ∈ N, w ∈
S+, there exists a deomposition of w into xv1 . . . vny with π(v1) = · · · = π(vt) = eidempotent, and αR(t) ≥ |w|.Let u ∈ A+ and n ∈ N. Let t = αρ(αρ(n + 1)). If there is in h(u) a fator w with
π(w) ∈ Instab and |w| = αR(t), we apply Ramsey theorem to get w = xv1 . . . vt, y with
π(v1) = · · · = π(vt) = e idempotent. This deomposition gives us a rune of A over u :on fator w, we do transitions of type (1) over x, type (2) over the vj 's, and type (3) atthe end of vn, the rest of the run is then onstruted in the same way with y. This givesus a deomposition h(u) = u1w1 . . . ukwkuk+1, with wj = xjv

j
1 . . . vj

t and π(vj
1) = · · · =

π(vj
t ) = ej idempotent, for all j ∈ [[1, k]]. We get a run σ verifying supC(e) ≤ αR(t),and ending in state (s, a, b) with q = s · a · b = π(u1x1) · e

♯
1 · · ·π(ukxk) · e♯

k · π(uk+1).But we have :
ρ(h(u))(n) ≤ ρ̃(ρ(u1x1)ρ(v1

1) . . . ρ(v1
t ) . . . ρ(ukxk)ρ(vk

1 ) . . . ρ(vk
t )ρ(uk+1))(αρ(n))

≤ ρ̃(π(u1x1)π(v1
1) . . . π(v1

t ) . . . π(ukxk)π(vk
1 ) . . . π(vk

t )π(uk+1))(αρ(n))

≤ ρ(π(u1x1)e
t
1 . . . π(ukxk)et

kπ(uk+1))(αρ(n))

≤ (π(u1x1) · (e
♯
1|te1) . . . π(ukxk) · (e♯

k|tek) · π(uk+1))(αρ(αρ(n)))

= q



We get the wanted result, with β(n) = αR(αρ(αρ(n + 1))).Finally, f ≈max(α,β) [[A]]B , A reognizes the ost funtion f . �In order to show the last item of Theorem 12 we still have to show that minimizationpreserves the temporal property of a stabilization semigroup :Theorem 34 If S is temporal, then S/≡ is temporal.Proof. Let us assume that S/≡ is not temporal. It means there is x, y ∈ E(S/≡) with
x♯ 6= x, y♯ = y, and x <J y. Let τ be the anonial projetion of S over S/≡, there is
a, b ∈ S suh that τ(a) = x and τ(b) = y. We have a♯ 6≡ a so a is unstable, b♯ ≡ b and
a <J b♯ = (b♯)♯, whih shows that S is not temporal. �


