
HAL Id: hal-00859354
https://hal.science/hal-00859354

Submitted on 6 Sep 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

An XML Format Proposal for the Description of
Weighted Automata, Transducers and Regular

Expressions
Akim Demaille, Alexandre Duret-Lutz, Florian Lesaint, Sylvain Lombardy,

Jacques Sakarovitch, Florent Terrones

To cite this version:
Akim Demaille, Alexandre Duret-Lutz, Florian Lesaint, Sylvain Lombardy, Jacques Sakarovitch, et
al.. An XML Format Proposal for the Description of Weighted Automata, Transducers and Regular
Expressions. Finite-State Methods and Natural Language Processing, 2008, Ispra, Italy. pp.199-206.
�hal-00859354�

https://hal.science/hal-00859354
https://hal.archives-ouvertes.fr

An XML Format Proposal for

the Description of Weighted Automata,

Transducers and Regular Expressions

Akim DEMAILLE a, Alexandre DURET-LUTZ a, Florian LESAINT a,
Sylvain LOMBARDY b, Jacques SAKAROVITCH c and Florent TERRONES a

a LRDE, EPITA, {name}@lrde.epita.fr
b IGM, Université Paris Est Marne-la-Vallée, lombardy@univ-mlv.fr

c LTCI, CNRS / ENST, sakarovitch@enst.fr

Abstract. We present an XML format that allows to describe a large class
of finite weighted automata and transducers. Our design choices stem
from our policy of making the implementation as simple as possible. This
format has been tested for the communication between the modules of
our automata manipulation platform Vaucanson, but this document is
less an experiment report than a position paper intended to open the
discussion among the community of automata software writers.

Keywords. XML format, finite automata, weighted automata, transducers,
regular expressions

Introduction

The aim of an interchange format for automata is to make possible, and hopefully
easy, the communication between the various programs that input or output such
objects.

There exist many kinds of (finite) automata: automata on finite words or on
infinite words, automata on tuples of words (often called transducers), weighted
automata where the weights can be taken in very different semirings, timed au-
tomata, counter automata, pushdown automata, Petri nets, etc. The scope of our
proposal is restricted to weighted automata and transducers on finite words. These
automata already form a large family and cover most of the needs in Finite State
Machines that are relevant to Natural Language Processing.

To our knowledge, there does not exist any format representing this class of
automata. Many tools have devised their own format for reading and writing au-
tomata. For instance Grail [1], FSM [2], OpenFST [3] each have their own textual
representations of automata. Such representations, often integer-based, are con-
cise and simple to parse but they are dedicated to one program, and will hardly
allow any generalization. What if the weights of our automaton are not integers,
or if we want to label the transition of an automaton with rational expressions in-
stead of letters? Other formats, such as GraphML [4], are more generic and allow

to represent any kind of graph, but they do not allow to represent the semantics
associated to the automaton: indeed exchanging automata requires some typing
information to be conveyed along with the structure.

Most of the design choices for our proposal for an exchange format have been
shaped by the policy of making its implementation as simple as possible. This is
already true of the option of choosing XML as the language for describing the
format. Our proposal, called FSM XML, already covers a large class of automata
but should be considered as a skeleton that can be completed to cater for other
needs. We believe such a generic interchange format, should be of interest to the
community.

FSM XML has been implemented and tested within Vaucanson [5], our automata
manipulation platform, where it serves as an exchange format between compo-
nents such as the core and the command-line interface. But this document is less
a report on an experiment than a position paper intended to open the discussion.

Because of size constraints in these proceedings, we only give a brief summary
of the FSM XML format and of the choices we have taken. We refer interested readers
to our web page for more exhaustive information [6].

1. FSM XML Overview

We assume the reader familiar with the terminology of automata theory [7].

1.1. Data to Carry

The complete description of an automaton involves four different types of data: (1)
the type of the labels, which amounts to define a semiring of series, a mathematical
structure; (2) the automaton structure itself, that is a labeled graph; (3) if the
automaton is to be seen on a screen or drawn in a figure, geometric data that
tell where the states are located, and possibly the shape of the transitions, the
relative location of its label; (4) finally, data which we call drawing data and that
tell how the states and transitions are actually drawn, their size, the thickness
the lines, the color, etc.

The two latter types are relevant only to applications that display the au-
tomaton in some way: they have no influence on the structural meaning of the
automaton. Their presence is optional and we will focus on the first two items.

1.2. Automaton Description

An FSM XML description of an automaton consists in a tag <automaton/> contain-
ing two required children:
<automaton name=’Example Automaton’ readingDir=right>

<valueType>...</valueType>
<automStruct>...</automStruct>

</automaton>

The tag <valueType/> specifies the type of the labels of the automaton, and
the tag <automStruct/> holds the description of the structure of the automaton
(list of states and transitions with their labels).

The attribute name names the automaton and the attribute readingDir tells
whether the automaton reads the word from left to right or from right to left.

1.3. The Labels: That Is the Question

The question of labels has three levels: (1) what are the types of labels that need
to be supported? (2) how will these types be represented in the format? (3) how
will the label of a given transition in an automaton will be represented in the
format? The first commands over the two others.

b

a a

b b

(a)

a |1

a |1 a |2

(b)

Figure 1. How many automata are there?

Let us consider Figure 1. At (a), we see an automaton whose labels are letters
a and b and which clearly recognizes the set of words containing at least one b;
but we can consider that the same automaton is an automaton with multiplicity
in N where the coefficient of every transition is 1, in which case the automaton
realizes the series which associates every word with its number of occurences of b.
At (b), we see an automaton which is clearly a weighted automaton, and the
weights are (positive) integers, but we do not know without further information
which is the semiring structure which is applied to these integers: it may be the
‘classical structure’, in which case the weight of an is 2n, or a ‘tropical structure’,
and the weight of an is n if we are in 〈N, min, +〉, or 2n − 1 if we are in 〈N, max, +〉.
This example makes clear that the description of an automaton must contain
the definition of the semiring of series to which the behaviour of the automaton
belongs. The requirement of such a strong typing is what distinguishes FSM XML

from more general graph representation formats such as GraphML [4].

1.3.1. Label Types

We represent automata either over free monoids or over products of free monoids.
Products of arbitrary number of free monoids allow to represent k-tape automata,
that is, generalization of transducers that are 2-tape automata (we thus do not
use the name ‘transducer’ in the description of the format).

The generators of the free monoids are either simple letters or tuples of sim-
ple letters of arbitrary dimension. The simple letters refers to simple types in
programming languages such as characters (or subsets of them such as letters or
digits) or even integers1. Tuples of letters consist then in ordered sets of simple
letters, not necessarily all of the same type: for instance, pairs of letter and digit
will naturally represent indexed letters. Another very useful example: automata
over free monoids whose generators are pairs of letters are equivalent to trans-
ducers which realize length preserving relations and are also used, modulo some
technicalities, to represent synchronized transducers.

Within FSM XML, we represent weighted automata; the weights being taken
either in numerical semirings or in series semirings. By ‘numerical semirings’, we

1Automata used in the study of numeration systems, for instance, make use of labels that are
integers.

refer to simple types of numbers, as they are implemented in any programming

languages, like integers, or reals, together with conventional operations, or ‘un-
conventional’ ones that can be overloaded on the conventional ones. By ‘series

semirings’, we refer to semirings that can be recursively defined by using the al-

ready defined numerical semirings and the (products of) free monoids. The rea-
son for opening the possibility in FSM XML is Kleene-Schützenberger Theorem for

transducers which states that a (finite) automaton over the product say A∗ ×B∗

with multiplicity say in N is equivalent to an automaton over A∗ with multiplicity

in the semiring of (rational) series over B∗ with multiplicity in N.

1.3.2. Label Type Representation

The three main features of label types that we want to represent are then: product

of an arbitrary number of free monoids, generators that are vectors of arbitrary
dimension, and recursive definition for semiring of multiplicities. These are easily

and naturally taken into account in an XML format although it may end rapidly

into rather long and apparently complicated description files.
Figure 2 shows three excerpts of FSM XML files that describe label types: the

first one for a classical Boolean automaton over a two-letter alphabet, and the

two others for the aforementioned two equivalent forms of transducers with mul-

tiplicities.
One understands that in both tags <semiring/> and <monoid/>, we use

the attribute type to control the syntax of the tag: we call such attributes piv-

otal. In <semiring/>, type = numerical calls for two other attributes, set and
operation that will be given token values, that is, conventional strings that have

to be recognized and correctly interpreted by the parser. Whereas type = series

calls for another succession of <semiring/> and <monoid/> tags.
In <monoid/>, type = free calls for the attributes genKind, genDescrip

and genSort, whereas type = product calls for the attribute prodDim, an integer

stricly larger than 1 which tells how many children <monoid/> this tag <monoid/>

will have.

The attribute genKind is another pivotal attribute which controls whether

the generators are simple or tuple. In the former case, genSort is a token which

tells which kind of generators are expected: letter, digit, alphanum, or integer.
The latter case is not exemplified in Figure 2 but the mecanism is of the same

type as for product of monoids, although it is not recursive.

The attribute genDescrip= enum tells that the generators of the free monoid
will be enumerated, by means of the attribute value in tags <monGen/>. The

assignments genDescrip = range and genDescrip = set are meant to give way

to the description of large alphabets such as those that are used in NLP. The
precise syntax and semantic open by these tokens have still to be defined.

This constrained specification of the type of an automaton makes it easier

to extend the format to support new types without redefining the complete se-

mantics of each new automaton type. For instance to support automata over a
log-probability semiring we would just have to introduce some new tokens (and

their semantics) for the set or operation attributes.

<valueType>
<semiring type=numerical set=’B’ operation=’classical’ />
<monoid type=free genKind=simple genDescrip=’enum’ genSort=’letter’>

<monGen value=’a’/>
<monGen value=’b’/>

</monoid>
</valueType>

(a) Type for a Boolean automaton over {a, b}∗.

<valueType>
<semiring type=numerical set=’N’ operation=’classical’ />
<monoid type=product prodDim=’2’>

<monoid type=free genKind=simple genDescrip=’enum’ genSort=’letter’>
<monGen value=’a’/>
<monGen value=’b’/>
</monoid>

<monoid type=free genKind=simple genDescrip=’enum’ genSort=’letter’>
<monGen value=’a’/>
<monGen value=’b’/>

</monoid>
</monoid>

</valueType>

(b) Type for an automaton over {a, b}∗×{a, b}∗ with multiplicity in N

<valueType>
<semiring type=series>

<semiring type=numerical set=’N’ operation=’classical’ />
<monoid type=free genKind=simple genDescrip=’enum’ genSort=’letter’>

<monGen value=’a’/>
<monGen value=’b’/>

</monoid>
</semiring>
<monoid type=free genKind=simple genDescrip=’enum’ genSort=’letter’>

<monGen value=’a’/>
<monGen value=’b’/>

</monoid>
</valueType>

(c) Type for an automaton over {a, b}∗ with multiplicity in N〈〈A∗×B∗〉〉

Figure 2. FSM XML files for label types

1.3.3. Rational Expressions for Label Representation

It is quite a natural idea to be able to describe rational (that is, regular) ex-
pressions within an XML format for automata. The behaviour of a finite au-
tomaton over any monoid can be denoted by a rational expression, and most of
the automata related software deal with the conversion between automata and
expressions, back and forth.

For the large range of automata that we want to be able to describe, the need
for rational expression is even more striking. For instance, as a consequence of
the Kleene-Schützenberger Theorem we may have a transition labeled by a letter
whose weight is a regular expression.

Rational expressions are well-formed formulas, that naturally correspond to
trees and XML is perfectly fitted to describe trees. There is thus not much to say
about the translation of an expression into an XML file. Two points have to be
noted though.

The expressions we are interested in denote rational series, of course the
same as the automata we are considering realize and, for the same reason, the
expressions must begin with the description of the type of the semiring of series to
which the series they denote belongs. The expressions thus share with automata

the tag <valueType/> (and this is the reason why we have called it valueType

and not labelType).
As they correspond to weighted automata, our expressions are weighted ex-

pressions and as the weights may be taken in non commutative semirings, there
exist two external multiplication operators: a left and a right one.

It is a major, as well as quite logical, feature of FSM XML that it possesses
the possibility of describing rational expressions. As bare letters are also rational

expressions, and with the idea of giving a uniform treatment to the largest class of
entities, all labels (of transitions) are represented in FSM XML using the syntax for

rational expressions. As an example, Figure 3 shows the description of a transition
connecting two states s0 and s1, and labeled by 2(a, b).

<transition source="s0" target="s1">

<label>

<leftExtMul>

<weight value="2"/>

<monElmt>

<monElmt><monGen value = "a"/></monElmt>

<monElmt><monGen value = "b"/></monElmt>

</monElmt>

</leftExtMul>

</label>

</transition>

Figure 3. A transition with input label ’a’, output label ’b’ and weight ’2’

1.3.4. Geometry and Drawing Informations

The tags <geometricData/> and <drawingData/> are optional child tags of
<automaton/> , <state/> , <transition/> , <inital/> , and <final/> .

The former contains coordinates for the automaton and the states, and geometric
shapes for transitions. The latter is planned to hold information about the way

the automaton and its parts are drawn, but its content is not specified at this
stage of our proposal.

2. Design Choices

2.1. Why XML?

While parsing XML is certainly not as efficient as loading a binary file, efficiency

is not the first concern when devising a interchange format. The choice of XML
simplifies exchanges, manipulations, and future evolutions (adding new tags, at-

tributes, or tokens to support new automata do not invalidate existing files).
Frameworks such as DOM [8] or SAX [9] make it easier to build a parser in many

languages. An XML Schema Description (XSD) document [10] is available on our
webpage [6] and many transformations can easily be applied to XML files using

languages such as XSLT [11].

2.2. Apparent Verbosity

While XML documents remain human-legible (compared to a binary file at least)
this interchange format is meant to be written by computers. We purposely tried
to (1) unify the representation of the various automata and (2) refrained from
adding any kind of syntactic sugar. In both cases, the intent is to simplify the
number of cases an implementation of the format has to deal with.

For instance from the perspective on someone actually typing in an automaton
in FSM XML, entering the transition as shown in Figure 3 is cumbersome and one
could dream about some kind of syntactic sugar like:
<transition source="s0" target="s1" in="a" out="b" weight="2"/>.

Our point is that one never writes an XML file representing an automaton
by hand (automata are either drawn using a graphical interface, or computed)
and from a implementation perspective, the two forms are as easy to input or
output. Since the syntax of Figure 3 makes it possible to represent more complex
types than the above abbreviation, we have only kept the first: this frees the
implementation from having to deal with many special cases. In other words, the
verbosity is the result of a simpler grammar, chosen for the sake of simplicity.

2.3. Computable Properties Are Not Part of the Type

Among the ‘structural’ properties of automata, we can distinguish between prop-
erties that are static, or could be called a type property, such as the input al-
phabet, or the semiring of weights, and properties that we could call computable
such as ‘being deterministic’, or ‘unambiguous’, or ‘trim’, or ‘functional’ (for a
transducer).

As it stands, our proposition can specify static properties but makes no pro-
vision for the expression of computable properties. We do agree that such kind
of attributes are useful (especially if the format is used for the communication
between trusted components). The floor is open for the specification of tokens
that will describe these computable properties.

The reason we left these properties aside is that we did not want to organize
the format around them. For instance it sounds wrong to specify the type of an
automaton by first telling whether it is deterministic or not: this kind of property
definitively is not part of the type.

3. Conclusion

The experience gained using an XML format in Vaucanson, with the constraint
of being able to define a large variety of automata, has shaped our choices for
the proposal on the level both of design and implementation and there have been
significant changes since the format we presented at the CIAA 2005 conference [6].

Even though the class of automata initially supported by FSM XML are those
targeted by Vaucanson, this format is meant to be extended to encompass the
needs of other tools from the community. We believe that the strong typing en-
forced by the format will give the many communities that use automata the nec-
essary tools to ease such extensions.

References

[1] D. Raymond and D. Wood, Grail: Engineering Automata in C++,
http://www.csd.uwo.ca/Research/grail/

[2] M. Mohri, F.C.N. Pereira and M.D. Riley, A Rational Design for a Weighted Finite-State
Transducer Library, LNCS 1436, 1998, http://www.research.att.com/~fsmtools/fsm/

[3] C. Allauzen, et al., OpenFst: A General and Efficient Weighted Finite-State Transducer
Library, Proc. of CIAA’07, LNCS 4783, pp. 11–23, 2007, http://www.openfst.org

[4] U. Brandes, M. Eiglsperger and J. Lerne, GraphML - an XML based graph interchange
format (2002), http://graphml.graphdrawing.org

[5] The Vaucanson Group, Vaucanson, a generic C++ platform for computing automata and
transducers (2003–2008), http://vaucanson.lrde.epita.fr

[6] The Vaucanson Group, XML proposal for Automaton Exchanges (2004–2008),
http://vaucanson.lrde.epita.fr/XML

[7] J.E. Hopcroft, R. Motwani and J.D. Ullman, Introduction to Automata Theory, Languages

and Computation, Addison-Wesley, 2000.
[8] W3C, Document Object Model 2 (2000), http://www.w3c.org/DOM
[9] D. Megginson, Simple API for XML 2 (2001), http://www.saxproject.org
[10] W3C, XML Schema Description (2001), http://www.w3c.org/XML/Schema/
[11] W3C, XSL Transformations (1999), http://www.w3.org/TR/xslt

