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ARE HYPERBOLICALLY COMPLETELY MONOTONE FOR α ∈]0, 1/4] ∪ [1/3, 1/2]

, about the hyperbolic complete monotonicity of α-stable densities. We prove that densitites of subordinators of order α are HCM for α ∈]0, 1/4] ∪ [1/3, 1/2].

Introduction

Hyperbolically completely monotone functions (HCM in short) were introduced by L. Bondesson [START_REF] Bondesson | Lennart Generalized gamma convolutions and related classes of distributions and densities[END_REF] in order to analyze infinitely divisible distributions, and particularly the so-called generalized gamma convolutions introduced by O. Thorin [START_REF] Thorin | On the infinite divisibility of the Pareto distribution[END_REF]. We recall their definition in section 1 below.

Bondesson showed that the densities of α-stable positive random variables are HCM for α = n -1 , for any integer n ≥ 2. Furthermore, he conjectured that the HCM property actually holds for all α ∈]0, 1/2]. Recently, Wissem Jedidi and Thomas Simon [START_REF] Jedidi | Further examples of GGC and HCM functions[END_REF] investigated some aspects of the problem. I thank them for pointing out this question to me.

In this paper we prove this conjecture for values of α in ]0, 1/4] ∪ [1/3, 1/2]. For this we introduce the functions

G α (x) = x -1 α g α (x -1-α α )
where g α is the density of the positive α-stable distribution. We show that G α extends to an analytic function on the slit plane C\] -∞, 0]. By analyzing its behaviour at infinity and near the cut, we are able to prove that it has the following form

(1.1) G α (z) = ce -δz exp +∞ 0 1 z + t - 1 1 + t θ(t)dt
where c, δ are positive constants and θ takes values in ]0, 1[. In order that G α be HCM it is then enough that the function θ be increasing, which we prove for α ∈ [1/3, 1/2]. The HCM property for the remaining values of α is obtained by a multiplicative convolution argument.

This paper is organized as follows. In the section 2 we recall some results of Zolotarev on densities of stable distributions. These are used in the next section to obtain the asymptotic behaviour of the function G α in the complex plane. In section four we establish the integral representation (1.1). Finally, in section five, we prove that θ is increasing for 1/3 < α < 1/2, and we finish the proof of this part of the conjecture.
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Hyperbolically completely monotone functions

We recall here the basic definition and properties of the class of hyperbolically completely monotone functions, and refer to [START_REF] Bondesson | Lennart Generalized gamma convolutions and related classes of distributions and densities[END_REF] for more details.

A real valued function H defined on ]0, +∞[ is called hyperbolically completely monotone (HCM) if for every u > 0 the function H(uv)H(uv -1 ) is a completely monotone function of the variable v + v -1 . Bondesson [START_REF] Bondesson | Lennart Generalized gamma convolutions and related classes of distributions and densities[END_REF] 

H(x) = cx β-1 exp -a 1 x - ∞ 1 log x + t 1 + t µ 1 (dt) -a 2 x -1 - ∞ 1 log x -1 + t 1 + t µ 2 (dt)
where β is real, a 1 , a 2 are positive constants and

µ 1 , µ 2 positive measures. (iii) If H is HCM then H(x β ) is HCM for all β ≤ 1 (iv)
H is HCM if and only if the functions x γ H(x) are HCM for all values of γ ∈ R.

(v) If X and Y are independent positive random variables both with an HCM density then the random variable XY also has an HCM density.

In particular, from (iii) and (iv) we deduce that if X is a positive random variable with HCM density, then X γ has HCM density for all γ ≥ 1.

Stable random variables

Let α ∈]0, 1[ and ρ ∈]0, 1[, we denote g α,ρ the density of the strictly α-stable distribution with asymmetry parameter ρ (cf [START_REF] Zolotarev | One-dimensional stable distributions[END_REF]). For ρ = 1 (and only for this value) this distribution is supported on the half axis ]0, +∞[, and we simply put

g α = g α,1 .
The following result is an integral representation for the functions g α,ρ on the positive axis, due to Zolotarev.

Theorem 3.1. (Zolotarev, [5], Theorem 2.4.2) For all x > 0, α, ρ ∈]0, 1[ (3.1) g α,ρ (x) = (2iπ) -1 ∞ 0 e -e -iπρα y α x -α -e -e iπρα y α x -α x e -y dy
The following result which is easily obtained by a subordination argument, plays an important role in the following. Lemma 3.2. Let X and Y be independent positive stable random variables, with respective parameters (α, ρ) and (β, 1), then XY 1/α is a stable random variable with parameter (αβ, ρ).

We deduce from the preceding lemma and Proposition 2.1 that Proposition 3.3. The set of α ∈]0, 1[ such that g α is HCM is a semigroup under multiplication.

The function G α

Denote G α the function

(4.1) G α (z) = (2iπ) -1 ∞ 0
e -e -iπα y α z 1-α -e -e iπα y α z 1-α z e -y dy where we take ( as in the rest of the paper) for z h , the determination of the power function which is positive on ]0, +∞[ and analytic on C\] -∞, 0]). This function

G α is analytic in C\] -∞, 0]. In fact z α G α (z) = F α (z 1-α
) where F α is an entire function. One has, for all x > 0,

g α (x) = x -1 1-α G α (x -α 1-α ) and for all z ∈ C\] -∞, 0] G α (z) = G α (z) For r > 0 we denote G α (-r + ) = lim z→-r,ℑ(z)>0 G α (z) G α (-r -) = lim z→-r,ℑ(z)<0 G α (z) = G α (-r + )
the boundary values of G α .

5. Behaviour near 0.

It follows from (4.1) that, as z → 0, (

G α (z) = Γ(α + 1) sin(2πα) π z -α (1 + O(|z| 1-α )) 5.1) 
6. Bounds at infinity Theorem 6.1. Let θ ∈] -1, 1[ be fixed, and

δ = (1 -α)α α 1-α c = (1 -α) -1 2 α 1 2(1-α)
then, as r → +∞, for z = re iπθ , one has

(6.1) G α (z) ∼ cz -1 2 e -δz As r → +∞ (6.2) G α (-r + ) ∼ -icr -1 2 e δr G α (-r -) ∼ icr -1 2 e δr
Furthermore, for some R > 0, the function G α (z)z 1/2 e δz is uniformly bounded on C\] -∞, 0] ∩ {|z| > R}.

In order to obtain this asymptotic result, observe that one can rewrite the integral defining G α as a contour integral:

G α (z) = (2iπ) -1 Γ e y-y α z 1-α z dy
where Γ is a contour which starts from -∞, following the negative axis, taking the lower branch of y α , encircles 0 then goes back to -∞ along the negative axis, this time picking up the upper branch of y α . In order to obtain the asymptotics we take z = re iθ and rewrite the integral as

G α (z) = (2iπ) -1 Γ e r(y-y α e iπ(1-α)θ ) e -iπθ dy
This integral is subject to the steepest descent method (see [START_REF] Peter | Applied Asymptotic Analysis[END_REF] for example) using the unique saddle point at y = α 1 1-α e iπθ of the function y -y α e iπ(1-α)θ . This gives the point wise convergence for a fixed θ. In order to obtain the uniform convergence, first notice that uniform property is clear for θ in any compact subset of ] -1, +1[, say for θ ∈ [-7/8, 7/8]. then, for θ ∈]7/8, 1[, the saddle point is over the half line ]-∞, 0[ and close to it, then one can use another determination of y α with a cut say on the half-line arg(y) = -3π/4, and a contour encircling the cut and going back to a neighborhood of -∞ by an arc with a ray going to infinity. Then again one can deform this contour to go through the saddle point and then conclude of the uniform convergence for θ ∈]7/8, 1[. A symmetrical argument gives the uniformity for θ ∈] -1, -7 8 [.

Behaviour of G α on the cut

Lemma 7.1. For any r > 0

(7.1) G α (-r + ) = (2iπ) -1
∞ 0 e r 1-α y α -e e -2iπα r 1-α y α r e -y dy

(7.2) G α (-r + ) = (2iπ) -1 ∞ 1 Γ(nα + 1) Γ(n + 1) (1 -e -2iπnα )r n(1-α)-1
Proof. The first formula follows at once from (4.1) by letting z → -r, the second one comes from expanding the exponentials in the numerator of (4.1) and integrating term by term. Lemma 7.2. For any r > 0 one has ℑ(G α (-r + )) < 0. Furthermore, -r α ℑ(G α (-r + )) is an increasing function of r.

Proof. By (7.2) we get

-ℑ(G α (-r + )) = (2π) -1 ∞ 1 Γ(nα + 1) Γ(n + 1) (1 -cos(2πnα))r n(1-α)-1
in which all terms in the sum are positive; the two claims are clear.

In the sequel, denote G α (-r + ) =: R(r)e -iπθ(r)

the polar decomposition of G α (-r + ). Since ℑ(G α (-r + )) < 0, one can chose θ(r) in ]0, 1[. Observe also that θ(r) → 1/2 as r → +∞ (by (6.2)).

Remark 7.3. in fact one could also obtain from the integral representation that θ(t) -1/2 = o(e -ǫr ) as r → +∞ for some ǫ > 0, but we will not use this).

Integral representation

Proposition 8.1. For all z ∈ C\] -∞, 0] (8.1) G α (z) = ae -δz exp ∞ 0 1 z + t - 1 1 + t θ(t)dt
for some a > 0.

Proof. Let L α (z) = exp ∞ 0 1 z + t - 1 1 + t θ(t)dt
This is an analytic function on C\] -∞, 0], and it satifies, by well known properties of Stieltjes transforms,

L α (-r + ) L α (-r -) = e -2iπθ(r)
Furthermore, as z → ∞, since θ(t) → t→+∞ 1/2, one has

L α (z) = z -1/2 exp(o(log(|z|))
Near zero, one has θ(t) = α + O(t 1-α ) by (5.1), which implies

L α (z) ∼ z α z → 0
On the other hand, for r > 0,

G α (-r + ) G α (-r -) = e -2iπθ(r)
therefore the function E α (z) = e δz G α (z)/L α (z) is analytic on C\] -∞, 0], and can be extended continuouly to C \ {0}. Since it is bounded near 0 it can be extended to an entire function and it satifies

E α (z) = exp(o(log(|z|))
at infinity thus it is constant. Since both functions G α , L α take positive values on ]0, +∞[, this constant is positive. 9. The function θ is monotone for α ∈ [1/3, 1/2] Lemma 9.1. For 0 ≤ ρ ≤ inf(1, 1 2α ) the function gα,ρ (x) = x -1-α g α,ρ (x -1 ) is decreasing on ]0, +∞[. Proof. Recall that if X is a stable variable with parameters (2α, ρ), and Y an independent stable variable with parameters (1/2, 1), then Z = XY 1 2α is a stable variable with parameters (α, ρ) . Since the density of Y is e

-1 2t √ 2πt 3 one has g α,ρ (x) = 2α ∞ 0 g 2α,ρ (y) e -1 2 (y/x) 2α y α √ 2πx α+1 dy Therefore x -1-α g α,ρ (x -1 ) = 2α ∞ 0 g 2α,ρ (y) e -1 2 (yx) 2α y α √ 2π dy which is clearly decreasing in x. Lemma 9.2. For α ∈ [1/3, 1/2] the function r α ℜG α (-r + ) is decreasing.
Proof. Note that, by formulas (3.1) and (7.1) one has

ℜG α (-r + ) = r -1/α g α, 1 α -2 (r -1-α α ) for α ∈ [1/3, 1/2]. it follows that r α ℜG α (-r + ) = r α-1/α g α, 1 α -2 (r 1-α α ) = x -1-α g α, 1 α -2 (x -1 )
with x = r 1-1 α . The result follows from the preceding lemma.

Theorem 9.3. For α ∈]1/3, 1/2|, the function θ increases from the value α to the value 1/2, and G α (z) = Γ(α + 1)e -δz z -1/2 exp -∞ 0 log(1 + t/z)θ ′ (t)dt

Proof. One has tan(πθ(r)) = -r α ℑ(G α (-r + )) r α ℜ(G α (-r + )) and the numerator and denominator of this formula are positive and respectively increasing and decreasing. This implies that θ is increasing. The other claim follows by integrating by parts.

The HCM property of stable distribution

For α ∈ [ 1 3 , 1 2 ] one has 1-α α ≥ 1 and G α is HCM. This implies that g α is HCM. By Proposition (3.3) the set of α such that g α is HCM thus contains the multiplicative semigroup generated by [1/3, 1/2], which is ]0, 1/4] ∪ [1/3, 1/2].

Remark 10.1. Following the same arguments than above, one can prove that for α ≥ 1/2, the function θ decreases from α to 1/2 and consequently G α enjoys the next decomposition :

G α (z) = Γ(α + 1)e -δz z -1/2 exp ∞ 0 log(1 + t/z)|θ ′ (t)|dt
In other words, e -δz 1 Gα(z) is an HCM function.