HYPERCYCLIC ABELIAN SEMIGROUPS OF AFFINE MAPS ON \mathbb{C}^n

YAHYA N'DAO

ABSTRACT. We give a characterization of hypercyclic abelian semigroup \mathcal{G} of affine maps on \mathbb{C}^n . If \mathcal{G} is finitely generated, this characterization is explicit. We prove in particular that no abelian group generated by n affine maps on \mathbb{C}^n has a dense orbit.

1. Introduction

Let $M_n(\mathbb{C})$ be the set of all square matrices of order $n \geq 1$ with entries in \mathbb{C} and $GL(n, \mathbb{C})$ be the group of all invertible matrices of $M_n(\mathbb{C})$. A map $f:\mathbb{C}^n\longrightarrow\mathbb{C}^n$ is called an affine map if there exist $A \in M_n(\mathbb{C})$ and $a \in \mathbb{C}^n$ such that f(x) = Ax + a, $x \in \mathbb{C}^n$. We denote f = (A, a), we call A the linear part of f. The map f is invertible if $A \in GL(n,\mathbb{C})$. Denote by $MA(n,\mathbb{C})$ the vector space of all affine maps on \mathbb{C}^n and $GA(n, \mathbb{C})$ the group of all invertible affine maps of $MA(n,\mathbb{C})$.

Let \mathcal{G} be an abelian affine sub-semigroup of $MA(n, \mathbb{C})$. For a vector $v \in \mathbb{C}^n$, we consider the orbit of \mathcal{G} through $v: \mathcal{G}(v) = \{f(v): f \in \mathcal{G}\} \subset \mathbb{C}^n$. Denote by \overline{E} the closure of a subset $E \subset \mathbb{C}^n$. The group \mathcal{G} is called *hypercyclic* if there exists a vector $v \in \mathbb{C}^n$ such that $\overline{\mathcal{G}(v)} = \mathbb{C}^n$. For an account of results and bibliography on hypercyclicity, we refer to the book [5] by Bayart and Matheron.

Let $n \in \mathbb{N}_0$ be fixed, denote by:

- $\mathbb{C}^* = \mathbb{C} \setminus \{0\}$, $\mathbb{R}^* = \mathbb{R} \setminus \{0\}$ and $\mathbb{N}_0 = \mathbb{N} \setminus \{0\}$.
- $\mathcal{B}_0 = (e_1, \dots, e_{n+1})$ the canonical basis of \mathbb{C}^{n+1} and I_{n+1} the identity matrix of $GL(n+1, \mathbb{C})$. For each $m = 1, 2, \dots, n + 1$, denote by:
- $\mathbb{T}_m(\mathbb{C})$ the set of matrices over \mathbb{C} of the form

(1.1)
$$\begin{bmatrix} \mu & & 0 \\ a_{2,1} & \mu & \\ \vdots & \ddots & \ddots \\ a_{m,1} & \dots & a_{m,m-1} & \mu \end{bmatrix}$$

- $\mathbb{T}_m^*(\mathbb{C})$ the group of matrices of the form (1.1) with $\mu \neq 0$. Let $r \in \mathbb{N}$ and $\eta = (n_1, \dots, n_r) \in \mathbb{N}_0^r$ such that $n_1 + \dots + n_r = n + 1$. In particular, $r \leq n + 1$.
- $\mathcal{K}_{\eta,r}(\mathbb{C}) := \mathbb{T}_{n_1}(\mathbb{C}) \oplus \cdots \oplus \mathbb{T}_{n_r}(\mathbb{C})$. In particular if r = 1, then $\mathcal{K}_{\eta,1}(\mathbb{C}) = \mathbb{T}_{n+1}(\mathbb{C})$ and
- $\mathcal{K}_{\eta,r}^*(\mathbb{C}) := \mathcal{K}_{\eta,r}(\mathbb{C}) \cap \mathrm{GL}(n+1, \mathbb{C}).$
- $u_0 = (e_{1,1}, \dots, e_{r,1}) \in \mathbb{C}^{n+1}$ where $e_{k,1} = (1, 0, \dots, 0) \in \mathbb{C}^{n_k}$, for $k = 1, \dots, r$. So $u_0 \in \{1\} \times \mathbb{C}^n$. $p_2 : \mathbb{C} \times \mathbb{C}^n \longrightarrow \mathbb{C}^n$ the second projection defined by $p_2(x_1, \dots, x_{n+1}) = (x_2, \dots, x_{n+1})$.

Key words and phrases. affine, hypercyclic, dense, orbit, abelian semigroup.

²⁰⁰⁰ Mathematics Subject Classification. 37C85, 47A16.

2

•
$$e^{(k)} = (e_1^{(k)}, \dots, e_r^{(k)}) \in \mathbb{C}^{n+1}$$
 where
$$e_j^{(k)} = \begin{cases} 0 \in \mathbb{C}^{n_j} & \text{if } j \neq k \\ e_{k,1} & \text{if } j = k \end{cases} \qquad \text{for every } 1 \leq j, \ k \leq r.$$

- exp: $\mathbb{M}_{n+1}(\mathbb{C}) \longrightarrow \mathrm{GL}(n+1,\mathbb{C})$ is the matrix exponential map; set $\exp(M) = e^M$, $M \in M_{n+1}(\mathbb{C}).$
- Define the map $\Phi: GA(n, \mathbb{C}) \longrightarrow GL(n+1, \mathbb{C})$

$$f = (A, a) \longmapsto \begin{bmatrix} 1 & 0 \\ a & A \end{bmatrix}$$

We have the following composition formula

$$\begin{bmatrix} 1 & 0 \\ a & A \end{bmatrix} \begin{bmatrix} 1 & 0 \\ b & B \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ Ab + a & AB \end{bmatrix}.$$

Then Φ is an injective homomorphism of groups. Write

- $G = \Phi(\mathcal{G})$, it is an abelian sub-semigroup of $GL(n+1,\mathbb{C})$.
- Define the map $\Psi: MA(n, \mathbb{C}) \longrightarrow M_{n+1}(\mathbb{C})$

$$f = (A, a) \longmapsto \begin{bmatrix} 0 & 0 \\ a & A \end{bmatrix}$$

We can see that Ψ is injective and linear. Hence $\Psi(MA(n,\mathbb{C}))$ is a vector subspace of $M_{n+1}(\mathbb{C})$. We prove (see Lemma 2.5) that Φ and Ψ are related by the following property

$$\exp(\Psi(MA(n,\mathbb{C}))) = \Phi(GA(n,\mathbb{C})).$$

Let consider the normal form of \mathcal{G} : By Proposition 2.1, there exists a $P \in \Phi(GA(n,\mathbb{C}))$ and a partition η of (n+1) such that $G'=P^{-1}GP\subset \mathcal{K}_{n,r}^*(\mathbb{C})\cap \Phi(MA(n,\mathbb{C}))$. For such a choice of matrix P, we let

- $v_0 = Pu_0$. So $v_0 \in \{1\} \times \mathbb{C}^n$, since $P \in \Phi(GA(n, \mathbb{C}))$.
- $w_0 = p_2(v_0) \in \mathbb{C}^n$. We have $v_0 = (1, w_0)$.
- $\varphi = \Phi^{-1}(P) \in MA(n, \mathbb{C}).$ $g = \exp^{-1}(G) \cap (P(\mathcal{K}_{\eta,r}(\mathbb{C}))P^{-1}).$ If $G \subset \mathcal{K}_{\eta,r}^*(\mathbb{C}),$ we have $P = I_{n+1}$ and $g = \exp^{-1}(G) \cap (P(\mathcal{K}_{\eta,r}(\mathbb{C}))P^{-1}).$
- $g^1 = g \cap \Psi(MA(n,\mathbb{C}))$. It is an additive sub-semigroup of $M_{n+1}(\mathbb{C})$ (because by Lemma 3.2,
- g is an additive sub-semigroup of $M_{n+1}(\mathbb{C})$). $g_u^1 = \{Bu: B \in g^1\} \subset \mathbb{C}^{n+1}, \ u \in \mathbb{C}^{n+1}$. $\mathfrak{q} = \Psi^{-1}(g^1) \subset MA(n,\mathbb{C})$. Then \mathfrak{q} is an additive sub-semigroup of $MA(n,\mathbb{C})$ and we have $\Psi(\mathfrak{q}) = g^1$. By Corollary 2.9, we have $exp(\Psi(\mathfrak{q})) = \Phi(\mathcal{G})$.
- $\mathfrak{q}_v = \{ f(v), f \in \mathfrak{q} \} \subset \mathbb{C}^n, v \in \mathbb{C}^n.$

For groups of affine maps on \mathbb{K}^n ($\mathbb{K} = \mathbb{R}$ or \mathbb{C}), their dynamics were recently initiated for some classes in different point of view, (see for instance, [6], [7], [8], [4]). The purpose here is to give analogous results as for linear abelian sub-semigroup of $GL(n,\mathbb{C})$ ([2], Theorem 1.1).

Our main results are the following:

Theorem 1.1. Let \mathcal{G} be an abelian sub-semigroup of $MA(n,\mathbb{C})$. Then the following are equivalent:

- (i) \mathcal{G} is hypercyclic.
- (ii) the orbit $\mathcal{G}(w_0)$ is dense in \mathbb{C}^n .
- (iii) \mathfrak{q}_{w_0} is an additive sub-semigroup dense in \mathbb{C}^n .

For a finitely generated abelian sub-semigroup $\mathcal{G} \subset \mathrm{MA}(n,\mathbb{R})$, let introduce the following property: Consider the following rank condition on a collection of affine maps $f_1,\ldots,f_p\in\mathcal{G}$. Let $f'_1,\ldots,f'_p\in\mathfrak{q}$ be such that $e^{\Psi(f'_k)}=\Phi(f_k),\ k=1,\ldots,p$. We say that f_1,\ldots,f_p satisfy the property \mathcal{D} if for every $(s_1,\ldots,s_p;\ t_2,\ldots,t_r)\in\mathbb{Z}^{p+r-1}\setminus\{0\}$:

$$\operatorname{rank} \left[\begin{array}{cccc} \operatorname{Re}(f_1'(w_0)) & \dots & \operatorname{Re}(f_p'(w_0)) & 0 & \dots & 0 \\ \operatorname{Im}(f_1'(w_0)) & \dots & \operatorname{Im}(f_p'(w_0)) & 2\pi p_2(e^{(2)}) & \dots & 2\pi p_2(e^{(r)}) \\ s_1 & \dots & s_p & t_2 & \dots & t_r \end{array} \right] = 2n + 1.$$

For r = 1, this means that for every $(s_1, \ldots, s_p) \in \mathbb{Z}^p \setminus \{0\}$:

$$\operatorname{rank} \left[\begin{array}{ccc} \operatorname{Re}(f_1'(w_0)) & \dots & \operatorname{Re}(f_p'(w_0)) \\ \operatorname{Im}(f_1'(w_0)) & \dots & \operatorname{Im}(f_p'(w_0)) \\ s_1 & \dots & s_p \end{array} \right] = 2n + 1.$$

For a vector $v \in \mathbb{C}^n$, we write v = Re(v) + i Im(v) where Re(v) and $\text{Im}(v) \in \mathbb{R}^n$. The next result can be stated as follows:

Theorem 1.2. Let \mathcal{G} be an abelian sub-semigroup of $MA(n,\mathbb{C})$ and let $f_1,\ldots,f_p\in\mathcal{G}$ generating \mathcal{G}^* and let $f_1',\ldots,f_p'\in\mathfrak{q}$ be such that $e^{\Psi(f_1')}=\Phi(f_1),\ldots,e^{\Psi(f_p')}=\Phi(f_p)$. Then the following are equivalent:

- (i) \mathcal{G} is hypercyclic.
- (ii) the maps $\varphi^{-1} \circ f_1 \circ \varphi, \ldots, \varphi^{-1} \circ f_p \circ \varphi$ in $MA(n, \mathbb{C})$ satisfy the property \mathcal{D}

(iii)
$$\mathfrak{q}_{w_0} = \begin{cases} \sum_{k=1}^p \mathbb{N} f_k'(w_0) + 2i\pi \sum_{k=2}^r \mathbb{Z}(p_2(Pe^{(k)})), & \text{if } r \ge 2\\ \sum_{k=1}^p \mathbb{N} f_k'(w_0), & \text{if } r = 1 \end{cases}$$

is an additive sub-semigroup dense in C.

Corollary 1.3. Let \mathcal{G} be an abelian sub-semigroup of $MA(n,\mathbb{C})$ and $G = \Phi(\mathcal{G})$. Let $P \in \Phi(GA(n,\mathbb{C}))$ such that $P^{-1}GP \subset \mathcal{K}_{\eta,r}(\mathbb{C})$ where $1 \leq r \leq n+1$ and $\eta = (n_1,\ldots,n_r) \in \mathbb{N}_0^r$. If \mathcal{G} is generated by 2n-r+1 commuting invertible affine maps, then it has no dense orbit.

Corollary 1.4. Let \mathcal{G} be an abelian sub-semigroup of $MA(n,\mathbb{C})$. If \mathcal{G} is generated by n commuting invertible affine maps, then it has no dense orbit.

2. Normal form of abelian affine groups

Proposition 2.1. ([1], Proposition 2.1) Let \mathcal{G} be an abelian subgroup of $GA(n,\mathbb{C})$ and $G = \Phi(\mathcal{G})$. Then there exists $P \in \Phi(GA(n,\mathbb{C}))$ such that $P^{-1}GP$ is a subgroup of $\mathcal{K}^*_{\eta,r}(\mathbb{C}) \cap \Phi(GA(n,\mathbb{C}))$, for some $r \leq n+1$ and $\eta = (n_1, \ldots, n_r) \in \mathbb{N}_0^r$.

This proposition can be generalized for any abelian affine semigroup as follow:

Proposition 2.2. Let \mathcal{G} be an abelian sub-semigroup of $MA(n,\mathbb{C})$ and $G = \Phi(\mathcal{G})$. Then there exists $P \in \Phi(GA(n,\mathbb{C}))$ such that $P^{-1}GP$ is a subgroup of $\mathcal{K}_{\eta,r}^*(\mathbb{C}) \cap \Phi(GA(n,\mathbb{C}))$, for some $r \leq n+1$ and $\eta = (n_1, \ldots, n_r) \in \mathbb{N}_0^r$.

The same proof of Proposition 2.1 remained valid for Proposition 2.2.

The group $G' = P^{-1}GP$ is called the *normal form* of G. In particular we have $Pu_0 = v_0 \in \{1\} \times \mathbb{C}^n$. To prove Proposition 2.1, we need the following results:

Denote by $\mathcal{L}_{\mathcal{G}}$ the set of the linear parts of all elements of \mathcal{G} . Then $\mathcal{L}_{\mathcal{G}}$ is an abelian sub-semigroup of $M_n(\mathbb{C})$. A subset $F \subset \mathbb{C}^n$ is called G-invariant (resp. $\mathcal{L}_{\mathcal{G}}$ -invariant) if $A(F) \subset F$ for any $A \in G$ (resp. $A \in \mathcal{L}_{\mathcal{G}}$).

Proposition 2.3. ([3]) Let G' be an abelian sub-semigroup of $M_m(\mathbb{C})$, $m \geq 1$. Then there exists $P \in GL(m,\mathbb{C})$ such that $P^{-1}G'P$ is a sub-semigroup of $\mathcal{K}_{\eta',r'}(\mathbb{C})$, for some $r' \leq m$ and $\eta' = (n'_1, \ldots, n'_{r'}) \in \mathbb{N}_0^{r'}$.

Lemma 2.4. ([2], Proposition 3.2) $exp(\mathcal{K}_{\eta,r}(\mathbb{C})) = \mathcal{K}_{\eta,r}^*(\mathbb{C})$.

Lemma 2.5. ([1], Lemma 2.8) $exp(\Psi(MA(n,\mathbb{C})) = GA(n,\mathbb{C}).$

Lemma 2.6. ([1], Lemma 2.9) If $N \in P\mathcal{K}_{\eta,r}(\mathbb{C})P^{-1}$ such that $e^N \in \Phi(GA(n,\mathbb{C}))$, then there exists $k \in \mathbb{Z}$ such that $N - 2ik\pi I_{n+1} \in \Psi(MA(n,\mathbb{C}))$.

Denote by $G^* = G \cap GL(n+1, \mathbb{C})$.

Lemma 2.7. ([2], Lemma 4.2) One has $exp(g) = G^*$.

Corollary 2.8. ([1], Corollary 2.11) Let $G = \Phi(\mathcal{G})$. We have $g = g^1 + 2i\pi \mathbb{Z}I_{n+1}$.

Denote by $\mathcal{G}^* = \mathcal{G} \cap GA(n, \mathbb{C})$.

Corollary 2.9. We have $exp(\Psi(\mathfrak{q})) = \Phi(\mathcal{G}^*)$.

Proof. By Lemmas 2.7 and 2.8, We have $G = exp(g) = exp(g^1 + 2i\pi \mathbb{Z}I_{n+1}) = exp(g^1)$. Since $g^1 = \Psi(\mathfrak{q})$, we get $exp(\Psi(\mathfrak{q})) = \Phi(\mathcal{G})$.

3. Proof of Theorem 1.1

Let \widetilde{G} be the semigroup generated by G and $\mathbb{C}I_{n+1}=\{\lambda I_{n+1}: \lambda\in\mathbb{C}\}$. Then \widetilde{G} is an abelian sub-semigroup of $GL(n+1,\mathbb{C})$. By Proposition 2.1, there exists $P\in\Phi(GA(n,\mathbb{C}))$ such that $P^{-1}GP$ is a sub-semigroup of $\mathcal{K}^*_{\eta,r}(\mathbb{C})$ for some $r\leq n+1$ and $\eta=(n_1,\ldots,n_r)\in\mathbb{N}^n_0$ and this also implies that $P^{-1}\widetilde{G}P$ is a sub-semigroup of $\mathcal{K}^*_{\eta,r}(\mathbb{C})$. Set $\widetilde{g}=exp^{-1}(\widetilde{G})\cap(P\mathcal{K}_{\eta,r}(\mathbb{C})P^{-1})$ and $\widetilde{g}_{v_0}=\{Bv_0: B\in\widetilde{g}\}$. Then we have the following theorem, applied to \widetilde{G} :

Theorem 3.1. ([3], Theorem 1.1) Under the notations above, the following properties are equivalent:

- (i) \widetilde{G} has a dense orbit in \mathbb{C}^{n+1} .
- (ii) the orbit $\widetilde{G}(v_0)$ is dense in \mathbb{C}^{n+1} .
- (iii) \widetilde{g}_{v_0} is an additive sub-semigroup dense in \mathbb{C}^{n+1} .

Lemma 3.2. ([2], Lemma 4.1) The sets g and \widetilde{g} are additive subgroups of $M_{n+1}(\mathbb{C})$. In particular, g_{v_0} and \widetilde{g}_{v_0} are additive subgroups of \mathbb{C}^{n+1} .

Recall that $g^1 = g \cap \Psi(MA(n,\mathbb{C}))$ and $\mathfrak{q} = \Psi^{-1}(g^1) \subset MA(n,\mathbb{C})$.

Lemma 3.3. Under the notations above, one has:

- (i) $\widetilde{g} = g^1 + \mathbb{C}I_{n+1}$.
- (ii) $\{0\} \times \mathfrak{q}_{w_0} = g_{v_0}^1$.

Proof. (i) Let $B \in \widetilde{g}$, then $e^B \in \widetilde{G}$. One can write $e^B = \lambda A$ for some $\lambda \in \mathbb{C}^*$ and $A \in G$. Let $\mu \in \mathbb{C}$ such that $e^{\mu} = \lambda$, then $e^{B-\mu I_{n+1}} = A$. Since $B - \mu I_{n+1} \in P\mathcal{K}_{\eta,r}(\mathbb{C})P^{-1}$, so Be $\mu \in \mathcal{C}$ such that $\mathcal{C} = \mathcal{A}$, when $\mathcal{C} = \mathcal{A}$ such $\mathcal{C} = \mathcal{A}$ such that $B - \mu I_{n+1} \in \exp^{-1}(G) \cap P\mathcal{K}_{\eta,r}(\mathbb{C})P^{-1} = g$. By Corollary 2.8, there exists $k \in \mathbb{Z}$ such that $B' := B - \mu I_{n+1} + 2ik\pi I_{n+1} \in g^1$. Then $B \in g^1 + \mathbb{C}I_{n+1}$ and hence $\widetilde{g} \subset g^1 + \mathbb{C}I_{n+1}$. Since $g^1 \subset \widetilde{g}$ and $\mathbb{C}I_{n+1} \subset \widetilde{g}$, it follows that $g^1 + \mathbb{C}I_{n+1} \subset \widetilde{g}$ (since \widetilde{g} is an additive group, by Lemma 3.2). This proves (i).

(ii) Since $\Psi(\mathfrak{q}) = g^1$ and $v_0 = (1, w_0)$, we obtain for every $f = (B, b) \in \mathfrak{q}$,

$$\Psi(f)v_0 = \begin{bmatrix} 0 & 0 \\ b & B \end{bmatrix} \begin{bmatrix} 1 \\ w_0 \end{bmatrix}$$
$$= \begin{bmatrix} 0 \\ b + Bw_0 \end{bmatrix}$$
$$= \begin{bmatrix} 0 \\ f(w_0) \end{bmatrix}.$$

Hence $g_{v_0}^1 = \{0\} \times \mathfrak{q}_{w_0}$.

Lemma 3.4. The following assertions are equivalent:

Proof. (i) \iff (ii) follows from the fact that $\{0\} \times \mathfrak{q}_{w_0} = g_{v_0}^1$ (Lemma 3.3,(ii)).

 $(ii) \Longrightarrow (iii) : \text{By Lemma } 3.3, \text{(ii)}, \ \widetilde{g}_{v_0} = g_{v_0}^1 + \mathbb{C}v_0. \ \text{Since } v_0 = (1, w_0) \notin \{0\} \times \mathbb{C}^n \text{ and } \mathbb{C}I_{n+1} \subset \widetilde{g},$ we obtain $\mathbb{C}v_0 \subset \widetilde{g}_{v_0}$ and so $\mathbb{C}v_0 \subset \overline{\widetilde{g}}_{v_0}$. Therefore $\mathbb{C}^{n+1} = \{0\} \times \mathbb{C}^n \oplus \mathbb{C}v_0 = \overline{g}_{v_0}^1 \oplus \mathbb{C}v_0 \subset \overline{\widetilde{g}}_{v_0}$ (since, by Lemma 3.2, \widetilde{g}_{v_0} is an additive sub-semigroup of \mathbb{C}^{n+1}). Thus $\overline{\widetilde{g}}_{v_0} = \mathbb{C}^{n+1}$.

 $(iii) \Longrightarrow (ii) : \text{Let } x \in \mathbb{C}^n, \text{ then } (0,x) \in \widetilde{g}_{v_0} \text{ and there exists a sequence } (A_m)_{m \in \mathbb{N}} \subset \widetilde{g} \text{ such that } \lim_{m \to +\infty} A_m v_0 = (0,x). \text{ By Lemma 3.3, we can write } A_m v_0 = \lambda_m v_0 + B_m v_0 \text{ with } \lambda_m \in \mathbb{C}$

and $B_m = \begin{bmatrix} 0 & 0 \\ b_m & B_m^1 \end{bmatrix} \in g^1$ for every $m \in \mathbb{N}$. Since $B_m v_0 \in \{0\} \times \mathbb{C}^n$ for every $m \in \mathbb{N}$ then $A_m v_0 = (\lambda_m, b_m + B_m^1 w_0 + \lambda_m w_0)$. It follows that $\lim_{m \to +\infty} \lambda_m = 0$ and $\lim_{m \to +\infty} A_m v_0 = 0$ $\lim_{m\to +\infty} B_m v_0 = (0,x), \text{ thus } (0,x) \in \overline{\mathbf{g}_{v_0}^1}. \text{ Hence } \{0\} \times \mathbb{C}^n \subset \overline{\mathbf{g}_{v_0}^1}. \text{ Since } \mathbf{g}^1 \subset \Psi(MA(n,\mathbb{C})),$

 $g_{v_0}^1 \subset \{0\} \times \mathbb{C}^n$ then we conclude that $\overline{g_{v_0}^1} = \{0\} \times \mathbb{C}^n$.

Lemma 3.5. Let $x \in \mathbb{C}^n$ and $G = \Phi(\mathcal{G})$. The following are equivalent:

- (i) $\overline{\mathcal{G}(x)} = \mathbb{C}^n$.
- (ii) $\overline{G(1,x)} = \{1\} \times \mathbb{C}^n$.
- (iii) $\overline{\widetilde{G}(1,x)} = \mathbb{C}^{n+1}$.

Proof. (i) \iff (ii): is obvious since $\{1\} \times \mathcal{G}(x) = G(1,x)$ by construction.

 $(iii) \Longrightarrow (ii) : \text{Let } y \in \mathbb{C}^n \text{ and } (B_m)_m \text{ be a sequence in } \widetilde{G} \text{ such that } \lim_{m \to +\infty} B_m(1,x) = (1,y).$

One can write $B_m = \lambda_m \Phi(f_m)$, with $f_m \in \mathcal{G}$ and $\lambda_m \in \mathbb{C}^*$, thus $B_m(1,x) = (\lambda_m, \lambda_m f_m(x))$, so $\lim_{m \to +\infty} \lambda_m = 1$. Therefore, $\lim_{m \to +\infty} \Phi(f_m)(1,x) = \lim_{m \to +\infty} \frac{1}{\lambda_m} B_m(1,x) = (1,y)$. Hence, $(1,y) \in \overline{G(1,x)}$.

 $(ii) \xrightarrow{} (iii) : \text{Since } \mathbb{C}^{n+1} \setminus (\{0\} \times \mathbb{C}^n) = \bigcup_{\lambda \in \mathbb{C}^*} \lambda \left(\{1\} \times \mathbb{C}^n \right) \text{ and for every } \lambda \in \mathbb{C}^*, \ \lambda G(1,x) \subset \mathbb{C}^n$

 $\widetilde{G}(1,x)$, we get

$$\mathbb{C}^{n+1} = \overline{\mathbb{C}^{n+1} \setminus (\{0\} \times \mathbb{C}^n)}$$

$$= \overline{\bigcup_{\lambda \in \mathbb{C}^*} \lambda \left(\{1\} \times \mathbb{C}^n\right)}$$

$$= \overline{\bigcup_{\lambda \in \mathbb{C}^*} \lambda \overline{G(1, x)} \subset \overline{\widetilde{G}(1, x)}}$$

Hence $\mathbb{C}^{n+1} = \overline{\widetilde{G}(1,x)}$.

Proposition 3.6. Let G be an abelian subsemigroup of $M_n(\mathbb{C})$ and $G^* = G \cap GL(n, \mathbb{C})$. Then G is locally hypercyclic (resp. hypercyclic) if and only if so is G^* .

Proof. Suppose that $\overline{G^*(u)} \neq \emptyset$, for some $u \in \mathbb{K}^n$. Then $\emptyset \neq \overline{G^*(u)} \subset \overline{G(u)}$ and so $\overline{G(u)} \neq \emptyset$. Conversely, suppose that $\overline{G(u)} \neq \emptyset$, for some $u \in \mathbb{C}^n$. By proposition 2.1, one can suppose that G is an abelian sub-semigroup of $\mathcal{K}_{\eta,r}(\mathbb{C})$. Write $G' := (G \setminus G^*) \cup \{I_n\}$. then G' is a sub-semigroup of G.

- If $G' = \{I_n\}$ then $G = G^*$ and so G^* is locally hypercyclic.
- If $G' \neq \{I_n\}$ then

$$G(u) \subset \left(\bigcup_{A \in (G' \setminus \{I_n\})} Im(A)\right) \cup G^*(u).$$

As every $A \in (G' \setminus \{I_n\})$, is non invertible, then $Im(A) \subset \bigcup_{k=1}^r H_k$ where

$$H_k := \left\{ u = [u_1, \dots, u_r]^T \in \mathbb{C}^n, \ u_j \in \mathbb{C}^{n_j}, \ u_k \in \{0\} \times \mathbb{C}^{n_k - 1} \ \ 1 \le j \le r, \\ j \ne k \right\}.$$

It follows that

$$G(u) \subset \left(\bigcup_{k=1}^{r} H_k\right) \cup G^*(u),$$

and so

$$\overline{G(u)} \subset \left(\bigcup_{k=1}^r H_k\right) \cup \overline{G^*(u)}.$$

Since $\dim H_k = n-1$, $\overset{\circ}{H_k} = \emptyset$, for every $1 \le k \le r$ and therefore $\overline{G^*(u)} \ne \emptyset$.

Lemma 3.7. Let G be an abelian subsemigroup of $\mathcal{K}_{\eta,r}(\mathbb{C})$, $G^* = G \cap GL(n,\mathbb{C})$ and $g^* = exp^{-1}(G^*) \cap \mathcal{K}_{\eta,r}(\mathbb{C})$. Then $g = g^*$.

Proof. Let $G' = G \setminus G^*$. Since $e^A \in GL(n, \mathbb{C})$ for every $A \in M_n(\mathbb{C})$ and $G' \subset M_n(\mathbb{C}) \setminus GL(n, \mathbb{C})$ then $exp^{-1}(G^*) = \emptyset$. As $g = (exp^{-1}(G') \cap \mathcal{K}_{\eta,r}(\mathbb{C})) \cup g^*$ then $g = g^*$.

Proof of Theorem 1.1.

By Proposition 2.1, one can suppose that G is an abelian subsemigroup of $\mathcal{K}_{\eta,r}(\mathbb{C})$. We let $G^* = G \cap GL(n,\mathbb{C})$, $g^* = exp^{-1}(G^*) \cap \mathcal{K}_{\eta,r}(\mathbb{C})$ and $(g^*)_{u_0} = \{Bu_0, B \in g^*\}$. By applying Proposition 2.7 on G^* , the orbit $G^*(u_0)$ is dense in \mathbb{C}^n if and only if $(g^*)_{u_0}$ is an additive subsemigroup, locally dense in \mathbb{C}^n . By Proposition 4.2, Lemma 4.3 and Proposition 4.6, Theorem 1.1 is proved.

 $(ii) \Longrightarrow (i)$: is obvious.

 $\underline{(i)} \Longrightarrow (ii)$: Suppose that \mathcal{G} is hypercyclic, so $\overline{\mathcal{G}(x)} = \mathbb{C}^n$ for some $x \in \mathbb{C}^n$. By Lemma 3.5,(iii), $\overline{\widetilde{G}(1,x)} = \mathbb{C}^{n+1}$ and by Theorem 3.1, $\overline{\widetilde{G}(v_0)} = \mathbb{C}^{n+1}$. Then by Lemma 3.5, $\overline{\mathcal{G}(w_0)} = \mathbb{C}^n$, since $v_0 = (1, w_0)$.

 $(ii) \Longrightarrow (iii)$: Suppose that $\overline{\mathcal{G}(w_0)} = \mathbb{C}^n$. By Lemma 3.5, $\overline{\widetilde{G}(v_0)} = \mathbb{C}^{n+1}$ and by Theorem 3.1, $\overline{\widetilde{g}_{v_0}} = \mathbb{C}^{n+1}$. Then by Lemma 3.4, $\overline{\mathfrak{q}_{w_0}} = \mathbb{C}^n$.

 $\underbrace{(iii)} \Longrightarrow (ii)$: Suppose that $\overline{\mathfrak{q}_{w_0}} = \mathbb{C}^n$. By Lemma 3.4, $\overline{\widetilde{\mathfrak{g}}_{v_0}} = \mathbb{C}^{n+1}$ and by Theorem 3.1, $\overline{\widetilde{G}}(v_0) = \mathbb{C}^{n+1}$. Then by Lemma 3.5, $\overline{\mathcal{G}}(w_0) = \mathbb{C}^n$.

Proof of Corollary ??. Assume that $\mathcal{G} \subset GL(n,\mathbb{C})$ then take $P = \operatorname{diag}(1,Q)$ and $G = \Phi(\mathcal{G})$, then $P^{-1}GP \subset \mathcal{K}_{\eta,r'+1}(\mathbb{C})$ where $\eta = (1,n'_1,\ldots,n'_{r'})$. Hence $u_0 = (1,u'_0)$, $v_0 = Pu_0 = (1,Qu'_0)$ and thus $w_0 = Qu'_0 = v'_0$. Every $f = (A,0) \in \mathcal{G}$ is simply noted A. Then for every $A \in \mathcal{G}$, $\Phi(A) = \operatorname{diag}(1,A)$. We can verify that $g^1 = \{\operatorname{diag}(0,B) : B \in g'\}$ where $g' = \exp^{-1}(\mathcal{G}) \cap Q(\mathcal{K}_{\eta',r'}(\mathbb{C}))Q^{-1}$ and so $\mathfrak{q} = \Psi^{-1}(g^1) = g'$. Hence the proof of Corollary ?? follows directly from Theorem 1.1. \square .

4. Finitely generated subgroups

Recall the following result proved in [3] which applied to G can be stated as following:

Proposition 4.1. ([3], Proposition 5.1) Let G be an abelian sub-semigroup of $M_n(\mathbb{C})$ such that G^* is generated by A_1, \ldots, A_p and let $B_1, \ldots, B_p \in g$ such that $A_k = e^{B_k}$, $k = 1, \ldots, p$ and $P \in GL(n+1,\mathbb{C})$ satisfying $P^{-1}GP \subset \mathcal{K}_{\eta,r}(\mathbb{C})$. Then:

$$g = \sum_{k=1}^{p} \mathbb{N}B_k + 2i\pi \sum_{k=1}^{r} \mathbb{Z}PJ_kP^{-1}$$
 and $g_{v_0} = \sum_{k=1}^{p} \mathbb{N}B_kv_0 + \sum_{k=1}^{r} 2i\pi \mathbb{Z}Pe^{(k)}$,

where $J_k = \operatorname{diag}(J_{k,1}, \dots, J_{k,r})$ with $J_{k,i} = 0 \in \mathbb{T}_{n_i}(\mathbb{C})$ if $i \neq k$ and $J_{k,k} = I_{n_k}$.

Proposition 4.2. Let \mathcal{G} be an abelian sub-semigroup of $GA(n,\mathbb{C})$ such that \mathcal{G}^* is generated by f_1,\ldots,f_p and let $f'_1,\ldots,f'_p \in \mathfrak{q}$ such that $e^{\Psi(f'_k)} = \Phi(f_k)$, k=1,..,p. Let P be as in Proposition 2.1. Then:

$$\mathfrak{q}_{w_0} = \begin{cases} \sum_{k=1}^{p} \mathbb{N} f_k'(w_0) + \sum_{k=2}^{r} 2i\pi \mathbb{Z} p_2(Pe^{(k)}), & \text{if } r \ge 2\\ \sum_{k=1}^{p} \mathbb{N} f_k'(w_0), & \text{if } r = 1 \end{cases}$$

Proof. Let $G = \Phi(\mathcal{G})$. Then G is generated by $\Phi(f_1), \ldots, \Phi(f_p)$. Apply Proposition 4.1 to G, $A_k = \Phi(f_k), B_k = \Psi(f'_k) \in g^1$, then we have

$$g = \sum_{k=1}^{p} \mathbb{Z}\Psi(f'_k) + 2i\pi\mathbb{Z}\sum_{k=1}^{r} PJ_k P^{-1}.$$

We have $\sum_{k=1}^{p} \mathbb{Z}\Psi(f'_k) \subset \Psi(MA(n,\mathbb{C}))$. Moreover, for every $k=2,\ldots,r,\ J_k\in \Psi(MA(n,\mathbb{C}))$, hence $PJ_kP^{-1}\in \Psi(MA(n,\mathbb{C}))$, since $P\in \Phi(GA(n,\mathbb{C}))$. However, $mPJ_1P^{-1}\notin \Psi(MA(n,\mathbb{C}))$ for every $m\in \mathbb{Z}\setminus\{0\}$, since J_1 has the form $J_1=\operatorname{diag}(1,J')$ where $J'\in M_n(\mathbb{C})$. As $g^1=g\cap \Psi(MA(n,\mathbb{C}))$, then $mPJ_1P^{-1}\notin g^1$ for every $m\in \mathbb{Z}\setminus\{0\}$. Hence we obtain:

$$g^{1} = \begin{cases} \sum_{k=1}^{p} \mathbb{N}\Psi(f'_{k}) + \sum_{k=2}^{r} 2i\pi \mathbb{Z}PJ_{k}P^{-1}, & if \ r \geq 2\\ \sum_{k=1}^{p} \mathbb{N}\Psi(f'_{k}), & if \ r = 1 \end{cases}$$

Since $J_k u_0 = e^{(k)}$, we get

$$\mathbf{g}_{v_0}^1 = \begin{cases} \sum_{k=1}^p \mathbb{N}\Psi(f_k')v_0 + \sum_{k=2}^r 2i\pi \mathbb{Z}Pe^{(k)}, & if \ r \ge 2\\ \sum_{k=1}^p \mathbb{N}\Psi(f_k')v_0, & if \ r = 1 \end{cases}$$

By Lemma 3.3,(iii), one has $\{0\} \times \mathfrak{q}_{w_0} = g_{v_0}^1$ and $\Psi(f_k')v_0 = (0, f_k'(w_0))$, so $\mathfrak{q}_{w_0} = p_2(g_{v_0}^1)$. It follows that

$$\mathfrak{q}_{w_0} = \begin{cases} \sum_{k=1}^{p} \mathbb{N} f_k'(w_0) + \sum_{k=2}^{r} 2i\pi \mathbb{Z} p_2(Pe^{(k)}), & \text{if } r \ge 2\\ \sum_{k=1}^{p} \mathbb{N} f_k'(w_0), & \text{if } r = 1 \end{cases}$$

The proof is completed.

Recall the following proposition which was proven in [9]:

Proposition 4.3. (cf. [9], page 35). Let $F = \mathbb{Z}u_1 + \cdots + \mathbb{Z}u_p$ with $u_k = Re(u_k) + iIm(u_k)$, where $Re(u_k)$, $Im(u_k) \in \mathbb{R}^n$, $k = 1, \ldots, p$. Then F is dense in \mathbb{C}^n if and only if for every $(s_1, \ldots, s_p) \in \mathbb{Z}^p \setminus \{0\}$:

$$\operatorname{rank} \left[\begin{array}{cccc} \operatorname{Re}(u_1) & \dots & & \operatorname{Re}(u_p) \\ \operatorname{Im}(u_1) & \dots & & \operatorname{Im}(u_p) \\ s_1 & \dots & & s_p \end{array} \right] = 2n + 1.$$

Proof of Theorem 1.2: This follows directly from Theorem 1.1, Propositions 4.2 and 4.3.

Proof of Corollary 1.3: First, by Proposition 4.3, if $F = \mathbb{Z}u_1 + \cdots + \mathbb{Z}u_m$, $u_k \in \mathbb{C}^n$ with $m \leq 2n$, then F cannot be dense in \mathbb{C}^n . Now, by the form of \mathfrak{q}_{w_0} in Proposition 4.2, \mathfrak{q}_{w_0} cannot be dense in \mathbb{C}^n and so Corollary 1.3 follows by Theorem 1.2.

Proof of Corollary 1.4: Since $n \leq 2n - r + 1$ (because $r \leq n + 1$), Corollary 1.4 follows from Corollary 1.3.

5. Example

Example 5.1. Let \mathcal{G} the sub-semigroup of $GA(2,\mathbb{C})$ generated by $f_1=(A_1,a_1), f_2=(A_2,a_2),$ $f_3 = (A_3, a_3)$ and $f_4 = (A_4, a_4)$ where $A_1 = I_2$, $a_1 = (1+i, 0)$, $A_2 = \operatorname{diag}(1, e^{-2+i}), \ a_2 = (0, 0), A_3 = \operatorname{diag}\left(1, e^{\frac{-\sqrt{2}}{\pi} + i\left(\frac{\sqrt{2}}{2\pi} - \frac{\sqrt{7}}{2}\right)}\right)$,

 $a_3 = \left(\frac{-\sqrt{3}}{2\pi} + i\left(\frac{\sqrt{5}}{2} - \frac{\sqrt{3}}{2\pi}\right), 0\right), A_4 = I_2, \quad a_4 = (2i\pi, 0).$

Then \mathcal{G} is hypercyclic.

Proof. First one can check that \mathcal{G} is abelian: $f_i f_j = f_j f_i$ for every i, j = 1, 2, 3, 4. Denote by $G = \Phi(\mathcal{G})$. Then G is generated by

$$\Phi(f_{1}) = \begin{bmatrix} 1 & 0 & 0 \\ 1+i & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \ \Phi(f_{2}) = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & e^{-2+i} \end{bmatrix},
\Phi(f_{3}) = \begin{bmatrix} 1 & 0 & 0 \\ -\frac{\sqrt{3}}{2\pi} + i\left(\frac{\sqrt{5}}{2} - \frac{\sqrt{3}}{2\pi}\right) & 1 & 0 \\ 0 & 0 & e^{\frac{-\sqrt{2}}{\pi}} + i\left(\frac{\sqrt{2}}{2\pi} - \frac{\sqrt{7}}{2}\right) \end{bmatrix}, \ \Phi(f_{4}) = \begin{bmatrix} 1 & 0 & 0 \\ 2i\pi & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

Let $f'_i = (B_i, b_i), i = 1, 2, 3, 4$ when

$$B_1 = \text{diag}(0, 0) = 0, b_1 = (1 + i, 0),$$

$$B_2 = \text{diag}(0, -2 + i), \quad b_2 = (0, 0),$$

$$B_{3} = \operatorname{diag}\left(0, \quad \frac{-\sqrt{2}}{\pi} + i\left(\frac{\sqrt{2}}{2\pi} - \frac{\sqrt{7}}{2}\right)\right), \quad b_{3} = \left(\frac{-\sqrt{3}}{2\pi} + i\left(\frac{\sqrt{5}}{2} - \frac{\sqrt{3}}{2\pi}\right), \ 0\right),$$

$$B_{4} = \operatorname{diag}(0, 0) = 0, \quad b_{4} = (2i\pi, \ 0).$$

Then we have $e^{\Psi(f_i')} = \Phi(f_i), i = 1, 2, 3, 4.$

Here $r=2, \eta=(2,1), G$ is an abelian sub-semigroup of $\mathcal{K}^*_{(2,1),2}(\mathbb{C})$. We have $P=I_3, \varphi=(I_2,0),$

$$u_0 = v_0 = (1, 0, 1), e^{(2)} = (0, 0, 1)$$
 and $w_0 = (0, 1)$. By Proposition 4.2, $\mathfrak{q}_{w_0} = \sum_{k=1}^4 \mathbb{Z} f_k'(w_0) + 2i\pi \mathbb{Z} f_k'(w_0)$

 $2i\pi\mathbb{Z}p_2(e^{(2)})$. On the other hand, for every $(s_1, s_2, s_3, s_4, t_2) \in \mathbb{Z}^5 \setminus \{0\}$, write

$$M_{(s_1,s_2,s_3,s_4,t_2)} = \begin{bmatrix} \operatorname{Re}(B_1w_0 + b_1) & \operatorname{Re}(B_2w_0 + b_2) & \operatorname{Re}(B_3w_0 + b_3) & \operatorname{Re}(B_4w_0 + b_4) & 0 \\ \operatorname{Im}(B_1w_0 + b_1) & \operatorname{Im}(B_2w_0 + b_2) & \operatorname{Im}(B_3w_0 + b_3) & \operatorname{Im}(B_4w_0 + b_4) & 2\pi e^{(2)} \\ s_1 & s_2 & s_3 & s_4 & t_2 \end{bmatrix}.$$

Then the determinant:

$$\Delta = \det \left(M_{(s_1, s_2, s_3, s_4, t_2)} \right)$$

$$= \begin{vmatrix} 1 & 0 & -\frac{\sqrt{3}}{2\pi} & 0 & 0 \\ 0 & -2 & -\frac{\sqrt{2}}{\pi} & 0 & 0 \\ 1 & 0 & \frac{\sqrt{5}}{2} - \frac{\sqrt{3}}{2\pi} & 2\pi & 0 \\ 0 & 1 & \frac{\sqrt{2}}{2\pi} - \frac{\sqrt{7}}{2} & 0 & 2\pi \\ s_1 & s_2 & s_3 & s_4 & t_2 \end{vmatrix}$$

$$= 2\pi \left(-s_1\sqrt{3} + 2s_2\sqrt{2} - 4s_3\pi + s_4\sqrt{5} - t_2\sqrt{7} \right).$$

Since π , $\sqrt{2}$, $\sqrt{3}$, $\sqrt{5}$ and $\sqrt{7}$ are rationally independent, $\Delta \neq 0$ for every $(s_1, s_2, s_3, s_4, t_2) \in \mathbb{Z}^5 \setminus \{0\}$. It follows that rank $(M_{(s_1, s_2, s_3, s_4, t_2)}) = 5$. Hence f_1, \ldots, f_4 satisfy the property \mathcal{D} . By Theorem 1.2, \mathcal{G} is hypercyclic.

References

- 1. A. Ayadi, Hypercyclic abelian groups of affine maps on \mathbb{C}^n , Canad. Math. Bull. Vol. 56 (3), (2013) pp. 477490.
- 2. A. Ayadi and H. Marzougui, Dense orbits for abelian subgroups of GL(n, C), Foliations 2005: World Scientific, Hackensack, NJ, (2006), 47–69.
- 3. A. Ayadi and H.marzougui Abelian semigroups of matrices on \mathbb{C}^n and hypercyclicity, Proceedings of the Edinburgh Mathematical Society, available on CJO. doi:10.1017/S0013091513000539.
- 4. A. Ayadi, H. Marzougui and Y. N'dao, On the dynamic of abelian groups of affine maps on \mathbb{C}^n and \mathbb{R}^n , Preprint ICTP, IC /2009/062 (2009).
- 5. F. Bayart, E. Matheron, Dynamics of Linear Operators, Cambridge Tracts in Math., 179, Cambridge University Press, (2009).
- M. Javaheri, A generalization of Dirichlet approximation theorem for the affine actions on real line, Journal
 of Number Theory 128 (2008) 1146-1156.
- 7. R.S. Kulkarni, Dynamics of linear and affine maps, Asian J.Math.12,no 3, (2008), 321-344.
- V. Bergelson, M. Misiurewicz and S. Senti, Affine actions of a free semigroup on the real line Ergod. Th. and Dynam. Sys. 26, (2006), 1285–1305.
- 9. Waldschmidt.M, Topologie des points rationnels, Cours de troisième Cycle, Université P. et M. Curie (Paris VI), (1994/95).

Yahya N'dao, University of Moncton, Department of mathematics and statistics, Canada $E\text{-}mail\ address$: yahiandao@yahoo.fr ; yahiandao@yoila.fr