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SMOOTHNESS, ASYMPTOTIC SMOOTHNESS

AND THE BLUM-HANSON PROPERTY

PASCAL LEFÈVRE, ÉTIENNE MATHERON, AND ARMEL PRIMOT

Abstract. We isolate various sufficient conditions for a Banach space X to have
the so-called Blum-Hanson property. In particular, we show that X has the
Blum-Hanson property if either the modulus of asymptotic smoothness of X has
an extremal behaviour at infinity, or if X is uniformly Gâteaux smooth and em-
beds isometrically into a Banach space with a 1-unconditional finite-dimensional
decomposition.

1. Introduction

Let X be a Banach space, and let T be a power-bounded linear operator on X (i.e.
supnPN }T

n} ă 8). By the classical mean ergodic theorem (see e.g. [29]) if x P X
and if the sequence of iterates pTnxq has a weakly convergent subsequence, then the
arithmetic means

AN pxq “
1

N

N
ÿ

n“1

Tnx

are norm convergent. In particular, if x has a weakly null T - orbit (Tnx
w
ÝÑ 0), then

AN pxq
} }
ÝÑ 0. When X is a Hilbert space and T is a contraction operator (}T } ď 1),

it turns out that a much stronger conclusion holds true: for any x P X with a weakly
null T - orbit, the arithmetic means of Tnx along any increasing sequence of integers
pniq are norm convergent to 0. This was first proved by J. R. Blum and D. L. Hanson
([9]) for isometries induced by measure-preserving transformations, and later on in
[2] and [24] for arbitrary contractions. For contractions on a general Banach space
X, this strong conclusion may or may not hold true. When it does so (for every
contraction operator on X), the space X is said to have the Blum-Hanson property.
This property is the topic of the present paper.

To proceed further, let us fix some terminology. From now on, we consider real
Banach spaces only. A sequence pxnqnPN Ă X is a Blum-Hanson sequence if every
subsequence of pxnq is norm convergent to 0 in the Cesàro sense; that is, for any
increasing sequence of integers pniq, it holds that

lim
KÑ8

1

K

›

›

›

›

›

K
ÿ

i“1

xni

›

›

›

›

›

“ 0 .

Obviously, every norm null sequence is Blum-Hanson and every Blum-Hanson se-
quence is weakly null. In fact, it is shown in [36] that a sequence pxnq Ă X is Blum-
Hanson if and only it is “uniformly weakly null”, which means that for any ε ą 0,
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2 PASCAL LEFÈVRE, ÉTIENNE MATHERON, AND ARMEL PRIMOT

there exists an integer Nε such that @x˚ P BX˚ : 7tn P N; |xx˚, xny| ě εu ď Nε.
(In the case where X is a Hilbert space, this was proved earlier in [8], where Blum-
Hanson sequences are called strongly mixing).

An operator T P LpXq satisfies the Blum-Hanson dichotomy at some point x P X
if either the sequence pTnxq is not weakly null, or it is Blum-Hanson. We note that
if T P LpXq and if z P X has a weakly convergent T -orbit, then πT z :“ w-limTnz is

a fixed point of T and hence Tnpz ´ πT zq
w
ÝÑ 0. It follows that an operator satisfies

the Blum-Hanson dichotomy at all points x P X if and only if the following holds:
for any z P X with a weakly convergent T - orbit, every subsequence of pTnzq is norm
convergent to πTz in the Cesàro sense.

Given a class of operators C, we say that the Banach spaceX has the Blum-Hanson
property with respect to C if every operator T P CXLpXq satisfies the Blum-Hanson
dichotomy at all points x P X. Thus, the Blum-Hanson property itself corresponds
to the class C of all contraction operators. If one considers only those operators
T P C with weakly convergent orbits, one gets a formally weaker property, which we
call the conditional Blum-Hanson property (with respect to C).

Few results can be found in the literature regarding the Blum-Hanson property. In
the “positive” direction and apart from Hilbert spaces, the most notable ones seem
to be the following: `p, 1 ď p ă 8 has the Blum-Hanson property ([40]); L1 has
the conditional Blum-Hanson property ([2]); Lp has the conditional Blum-Hanson
property with respect to isometries induced by measure-preserving transformations
([9]), and with respect to positive contractions ([3]); any positive contraction on Lp
satisfies the Blum-Hanson dichotomy at all positive f P Lp ([7]); the same is true
for Orlicz function spaces endowed with the Orlicz norm, provided that this norm
is uniformly smooth ([38]). As for “negative” results, we mention the following:
the space CpT2q does not have the conditional Blum-Hanson property ([1]); and `p,
1 ă p ă 8 does not have the conditional Blum-Hanson property with respect to
power-bounded operators ([40]). (This last result shows in particular that the Blum-
Hanson property is not preserved under renormings; in other words, this is not an
isomorphic property of the space). The most exciting question is arguably whether
Lp has the Blum-Hanson property.

In this note, our aim is to show that some of the above positive results, as well
as some new ones, can be derived in a unified way from a general and rather simple
theorem (Theorem 2.1) involving a certain “modulus” similar to the well known
modulus of asymptotic smoothness of the given Banach space X. (See section 2 for
the definition).

To be a little bit more precise, it follows from our main result that an “extremal”
behaviour of the modulus of asymptotic smoothness at infinity entails the Blum-
Hanson property for X. This is rather unexpected since, as far as we know, the
behaviour of this modulus at infinity has never been considered. It also follows im-
mediately from Theorem 2.1 that Banach spaces satisfying Kalton-Werner’s property
pmpq for some p P p1,8s have the Blum-Hanson property. Finally, with little extra
work we deduce from Theorem 2.1 that if the duality mapping of X has a cer-
tain weak continuity property, then X has the Blum-Hanson property; it follows in
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particular that uniform Gâteaux differentiability of the norm implies Blum-Hanson
when combined with a suitable “approximation-like” property. As a concrete class
of examples, we consider Orlicz spaces endowed with the Luxemburg norm: we show
that asymptotically uniformly smooth small Orlicz sequence spaces have the Blum-
Hanson property, and that any positive contraction on a Gâteaux smooth Orlicz
function space Lθ satisfies the Blum-Hanson dichotomy at all positive f P Lθ.

The paper is organized as follows. Our main result is stated in section 2, and
two typical examples are given immediately. Theorem 2.1 is proved in section 3.
Results involving differentiability of the norm are collected in section 4. Section 5 is
devoted to Orlicz spaces. Section 6 contains some remarks about very classical spaces
(Hilbert, CpKq and Lp). In particular, we give a “new” proof of the Blum-Hanson
property for Hilbert spaces, and we observe that CpKq fails the conditional Blum-
Hanson property for any uncountable compact metric space K. Finally, section 7
contains some additional remarks and ends up with a few natural questions.

2. Main result, and two examples

Our main result (Theorem 2.1) is about sequences pxnq Ă X which are not nec-
essarily of the form xn “ Tnx for some contraction T P LpXq. We shall “only”
assume that pxnq is shift-monotone, in the following sense: for every finite increas-
ing sequence of integers n1 ă ¨ ¨ ¨ ă nk, it holds that

}x1`n1 ` ¨ ¨ ¨x1`nk} ď }xn1 ` ¨ ¨ ¨ ` xnk} .

This is indeed more general than assuming that pxnq is an orbit of some con-
traction operator; see [47, Example 3.3.]. A similar property (called convex shift-
boundedness) is considered in [47]. It is shown there that a convex shift-bounded

sequence pxnq is weakly mixing to 0 (i.e. 1
N

řN
n“1 |xx

˚, xny| Ñ 0 for every x˚ P X˚)
if and only if the arithmetic means of pxnq along any increasing sequence of integers
with positive lower density are norm convergent to 0. For sequences of the form
xn “ Tnx where T is a power-bounded operator, this was proved earlier in [25].

Theorem 2.1 will be formulated using a “modulus” associated with a given convex
cone C Ă X (i.e. a nonempty convex set which is closed under multiplication by
nonnegative scalars). For any set A Ă X, let us denote by WNpAq the family of
all weakly nul sequences pynq Ă X with yn P A for all n. Then, for any x P X and
t ą 0, we put

rCpt, xq “ sup
pynqPWNpSXXCq

lim sup
nÑ8

}x` t yn} .

(Here and elsewhere, SX is the unit sphere of X).

The trivial case WNpSX X Cq “ H is allowed: supH declared to be ´8. For
example, rCpt, xq ” ´8 if the Banach space X has the Schur property, i.e. when
every weakly null sequence is in fact norm null.

The modulus rX has already been used by many authors, see e.g [20], [21], [22],
[34], [35], [42]. There is a simple connection with the modulus of asymptotic smooth-
ness. The latter is one of the many moduli introduced by V. D. Milman in [39]. With
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the notation of [26], it is the function ρ̄X : R` ˆ SX Ñ R` defined as follows:

ρ̄Xpt, xq “ inf
E

sup
yPBE

}x` ty} ´ 1 ,

where the infinimum infE is taken over all finite-codimensional subspaces E Ă X
(and BE is the unit ball of E). The connection between the two moduli is the
following: for any x P SX ,

(1) rXpt, xq ď ρ̄Xpt, xq ` 1 .

This is fairly easy to check, using the fact that if pynq is a weakly null sequence in X
then distpyn, Eq Ñ 0 for every finite-codimensional subspace E Ă X. Moreover, it
is shown in [34] that equality holds in (1) as soon as X embeds isometrically into a
Banach space with a shrinking Markushevich basis (for example, a reflexive Banach
space).

We note that if WNpSXXCq ‰ H, then rCpt, xq ě t´}x} for all t. Moreover, since
rCpt, xq is obviously 1-Lipschitz with respect to t, the map t ÞÑ rCpt, xq ´ t is non-
increasing. Hence, rCpt, xq´ t always has a limit lCpxq as tÑ8, and lCpxq ě ´}x}
in the nontrivial case WNpSXXCq “ H. (Actually, if the cone C is symmetric, then

rCpt, xq ě t for all t and hence lCpxq ě 0: this is because t “ }ty} ď }x`ty}`}x´ty}
2

for any y P SX XC).

We can now state

Theorem 2.1. Let X be a Banach space, and let C Ă X be a nonempty convex
cone. Let also pxnqnPZ` be a shift-monotone, weakly null sequence in C. If the initial
point x :“ x0 satisfies

(˚) lim
tÑ8

´

rCpt, xq ´ t
¯

ď 0 ,

then pxnq is a Blum-Hanson sequence.

Let us say that an operator T P LpXq is C-positive if it maps the cone C into
itself. As an immediate consequence of Theorem 2.1, we get

Corollary 2.2. Assume that (˚) holds for some x P C. Then, any C-positive
contraction on X satisfies the Blum-Hanson dichotomy at all ξ P R`x.

Proof. Let T P LpXq be a C-positive contraction, and assume that Tnξ
w
ÝÑ 0 for

some ξ “ λx with λ ě 0. To show that pTnξq is a Blum-Hanson sequence, we
may obviously assume that ξ ‰ 0. Then λ ‰ 0 and rCpt, ξq “ λ rCp

t
λ , xq for all

t P R`, so (˚) is satisfied for ξ and the result follows by applying Theorem 2.1 with
xn “ Tnξ. �

Remark. Assume additionally that C ´ C “ X. Then, the following equivalence
holds for every C-positive contraction T : all T -orbits are weakly null iff they are all
Blum-Hanson. However, it does not follow directly from Corollary 2.2 that X has
the conditional Blum-Hanson property with respect to C-positive contractions. The
point is that if a contraction T with weakly convergent orbits satisfies Tnx

w
ÝÑ 0 for

some x P X and if we write x “ u´ v with u, v P C, then the sequences pTnuq and
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pTnvq have no reason for being both weakly null even though they are both weakly
convergent. When X “ Lp and C “ L`p , one can get round this difficulty with some
extra work; see [3], paragraph (2.1).

For future reference, it is convenient to introduce the following terminology.

Definition 2.3. We shall say that a Banach space X has extremal asymptotic
smoothness at infinity if the modulus rX satisfies limtÑ8prXpt, xq ´ tq ď 0 for
all x P X, and that X has extremal uniform asymptotic smoothness at infinity
if limtÑ8prXptq ´ tq ď 0, where rXptq “ supxPSX rXpt, xq.

Thanks to (1), we see that X has extremal asymptotic smoothness at infinity as
soon as its modulus of asymptotic smoothness satisfies (for all x P SX)

(˚˚) lim
tÑ8

pρ̄Xpt, xq ` 1´ tq “ 0 .

Note also that Banach spaces with the Schur property, for example the space `1,
trivially have extremal (uniform) asymptotic smoothness at infinity. This makes the
terminology perhaps confusing because `1 is usually considered as the “less smooth”
of all Banach spaces (indeed, it has the ”worst possible” modulus of asymptotic
smoothness). But we prefer to use the modulus rX rather than ρX because it leads
to more general results, and yet we want to emphasize asymptotic smoothness.

Note that extremal asymptotic smoothness at infinity is a hereditary property,
i.e. inherited by subspaces. Thus, we may state

Corollary 2.4. If the Banach space X has extremal asymptotic smoothness at in-
finity, then every subspace of X has the Blum-Hanson property. In particular, X
has Blum-Hanson if p˚˚q holds for all x P X.

The “in particular” part is rather unexpected, since sually what matters about
the modulus of asymptotic smoothness is the behaviour or ρ̄Xpt, xq as t goes to 0.
Indeed, the main property captured by the modulus ρ̄X is the following: the Banach
space X is said to be asymptotically uniformly smooth if

lim
tÑ0

ρ̄Xptq

t
“ 0 ,

where ρ̄Xptq “ supxPSX ρ̄pt, xq.

Theorem 2.1 can also be applied when the given norm on X is smooth in a more
usual sense, under a certain assumption on the duality mapping. We state the result
right now in order to illustrate it with positive contractions on Lp, but the proof is
postponed to section 4 (see Proposition 4.1).

Corollary 2.5. Assume that the norm of X is uniformly Gâteaux differentiable
on the unit sphere SX , and denote by Jpxq the Gâteaux derivative of the norm at
x P SX . Assume that whenever pynq is a weakly null sequence in SX XC, it holds
that xJpynq, xy Ñ 0 for every x P C. Then, any C-positive contraction on X satisfies
the Blum-Hanson dichotomy at all x P C.
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We now give two hopefully illustrative examples.

The first one is about the so-called properties pmpq introduced by N. Kalton and
D. Werner in [28]. A Banach X has property pmpq, 1 ď p ď 8 if, for any x P X and
every weakly null sequence pxnq Ă X, it holds that

(2) lim sup
nÑ8

}x` xn} “ p}x}
p ` lim sup }xn}

pq1{p.

For p “ 8 the right-hand side is of course to be interpreted as maxp}x}, lim sup }xn}q.
We shall say that X has property sub - pmpq if (2) holds with ““” replaced with “ď”;

equivalently, if rXpt, xq ď p1` t
pq1{p for all x P SX .

For example, `p has property pmpq and c0 has property pm8q; any Lorentz sequence
space dpw, pq different from `8 has property sub - pmpq (see [32] for the definition);
the Bergman space BppDq on the unit disk has property pmpq; and for any continuous
weight w : r0, 1s Ñ R` such that wprq “ 0 only at r “ 1, the space βw consisting
of all functions f holomorphic on D such that wp|z|qfpzq Ñ 0 as |z| Ñ 1, with its
natural norm, has property pm8q (see [28, pp. 163–164]). Note also that any Banach
space has property sub - pm1q and that, just like extremal asymptotic smoothness,
pmpq and sub - pmpq are hereditary properties, i.e. inherited by subspaces.

Example 1. For any p P p1,8s, property sub - pmpq implies extremal uniform as-
ymptotic smoothness at infinity, and hence the Blum-Hanson property. In particular,
any subspace of an `p or c0 direct sum of Banach spaces with the Schur property has
the Blum-Hanson property.

Proof. If X has property sub - pmpq then rXptq ď p1` tpq1{p if p ă 8, and rXptq ď
maxp1, tq if p “ 8; so the first part is clear. For the second part, it is enough to show
that any `p (resp. c0) sum of Banach spaces with the Schur property has property
pmpq (resp. pm8q). But this is clear since if X “ ‘kEk is such a space then (by the
Schur property of each Ek) a sequence pxnq “ p‘kxn,kq Ă X is weakly null if and
only if it is bounded and }xn,k}Ek Ñ 0 as nÑ8, for every k P N.

�

Remark 1. The `p case is a slight generalization of a result of Y. Tomilov and V.
Müller [40]. Somewhat surprisingly, the c0 case appears to be new. (That X “ c0

itself has the Blum-Hanson property was observed independently in [5]).

Remark 2. It is shown in [28] that a separable Banach space X not containing `1
has property pmpq, 1 ă p ă 8 if and only if it is almost isometric to a subspace of
an `p direct sum of finite-dimensional spaces, and that X has property pm8q iff it
is almost isometric to a subspace of c0. Hence, the special case quoted above is in
fact rather general.

Our second example is a result due to A. Bellow [7] (already mentioned in the
introduction).

Example 2. Any positive contraction on Lp, 1 ă p ă 8 satisfies the Blum-Hanson
dichotomy at all f P L`p (the positive cone of Lp).
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Proof. The space Lp is uniformly (Fréchet) smooth, and the first key step in [7]
is to show that for any ε ą 0, one can find a constant Cε such that the following
inequality holds for every f, g P SLpX P L

`
p :

(3)

ż

f Jpgq ď ε` Cε

ż

g Jpfq .

Now, the new thing is that the proof is already finished. Indeed, it follows at once
from (3) that if pgnq is a weakly null sequence in SLp X L

`
p , then xJpgnq, fy Ñ 0 for

every f P SLp X L
`
p . Hence, we may apply Corollary 2.5.

For completeness and since the same idea will be used in section 5, we include
a proof of (3) (not with the best constant Cpεq). Recall that the duality mapping
J : SLp Ñ SLq is given by

Jpfq “ |f |p´2f ;

so Jpfq “ fp´1 if f P SLpX P L
`
p .

Let us fix ε ą 0, and let η ą 0 to be chosen later. If f, g P SLp X L
`
p then

ż

f Jpgq “

ż

fgp´1

ď

ż

tfăηgu
pηgqgp´1 `

ż

tfąη´1gu
fpηfqp´1 `

ż

tηgďfďη´1gu
pη´1gqpη´1fqp´1

ď 2ηp´1 ` η´p
ż

g Jpfq ,

and the result follows by taking η “ pε{2q1{p´1. �

3. Proof of theorem 2.1

The proof of Theorem 2.1 relies on the following simple lemma. Here and after-
wards, for any d, s P N we denote by FINps, dq the set of all finite sets A Ă N with
cardinality |A| “ s and “gaps” of length at least d, i.e. |n ´ n1| ě d for any n ‰ n1

in A.

Lemma 3.1. Let pxnqnPZ` be a bounded sequence in X. For any s P N, set

F psq :“ inf
dPN

sup
APFINps,dq

›

›

›

›

›

ÿ

nPA

xn

›

›

›

›

›

.

Then pxnq is a Blum-Hanson sequence if and only if lim
sÑ8

F psq

s
“ 0 .

Proof. It is easy to see that if pxnq is Blum-Hanson, then in fact

lim
|A|Ñ8

1

|A|

›

›

›

›

›

ÿ

nPA

xn

›

›

›

›

›

“ 0 .

Indeed, if this does not hold then one can find ε ą 0 and a sequence of finite sets

pAkqkPN such that |Ak| Ñ 8 and
›

›

›

ř

nPAk
xn

›

›

›
ě ε |Ak| for all k. If |Ak| is sufficiently

fast increasing, then the sets Bk :“ AkXpmaxAk´1,8q satisfy maxBk ă minpBk`1q
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and
›

›

›

ř

nPBk
xn

›

›

›
ě pε{2q |Bk| for all k, and hence pxnq is not Blum-Hanson (consider

the increasing enumeration pniq of the set
Ť

k Bk).

Conversely, assume that F psq
s Ñ 0 as sÑ8. Let pniqiě1 be an increasing sequence

of integers, and let us fix ε ą 0. We have to find K0 P N such that

@K ě K0 :

›

›

›

›

›

1

K

K
ÿ

i“1

xni

›

›

›

›

›

ď ε .

By assumption, one may pick d, s P N such that

@A P FINps, dq :

›

›

›

›

›

ÿ

nPA

xn

›

›

›

›

›

ď εs .

Let K0 be a large integer to be chosen later. Let also K ě K0, and let k P N
satisfy ksd ď K ă pk ` 1qsd.

One can partition the interval r1,Ks as

r1,Ks “
d
ď

l“1

k
ď

j“1

Bl,j YB ,

where each Bl,j is an arithmetic progression with cardinality s and “ratio” d, and
|B| ă sd. Explicitely:

Bl,j “ tbl,j , bl,j ` d, . . . , bl,j ` ps´ 1qdu ,

where bl,j “ pj ´ 1qsd ` l. Putting Al,j :“ tni; i P Bl,ju and A :“ tni; i P Bu,

we then have Al,j P FINps, dq and |A| ă sd. Hence,
›

›

›

řK
i“1 xni

›

›

›
can be estimated as

follows:
›

›

›

›

›

K
ÿ

i“1

xni

›

›

›

›

›

ď

d
ÿ

l“1

k
ÿ

j“1

›

›

›

›

›

›

ÿ

nPAl,j

xn

›

›

›

›

›

›

`

›

›

›

›

›

ÿ

nPA

xn

›

›

›

›

›

ď kdˆ εs` C sd ,

where C “ supn }xn}. Dividing by K and since K ě maxpksd,K0q, we get
›

›

›

›

›

1

K

K
ÿ

i“1

xni

›

›

›

›

›

ď ε`
Csd

K0
,

for every K ě K0. If we choose now K0 ě
Csd
ε and replace ε with ε{2, this gives

the required result.
�

The following observation will also be useful, mainly because it allows to replace
rCpt, xq with a modulus which is non-decreasing with respect to t. (The correspond-
ing fact for the modulus of asymptotic smoothness can be found e.g. in [23]). From
now on, we fix a convex cone C Ă X.
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Remark 3.2. Assume that WNpSX XCq ‰ H. For x P X and t ě 0, define

r̄Cpt, xq “ sup
pznqPWNpBXXCq

lim sup
nÑ8

}x` t zn} .

(In other words, r̄Cpt, xq is defined exactly as rCpt, xq with the unit ball BX in
place of the unit sphere SX).Then rCpt, xq “ r̄Cpt, xq whenever t ą 2}x}. If C is
symmetric, this holds for every t ě 0.

Proof. Let us fix x P X. We have to show that lim supnÑ8 }x` t zn} ď rCpt, xq for
any weakly null sequence pznq Ă BX X C; and upon replacing pznq by a suitable
subsequence, we may assume that both lim }x` t zn} and lim }zn} exist.

Choose ε P p0, 1q such that 2}x} ` εt ď t. If lim }zn} ď ε, then lim }x ` tzn} ď
}x} ` εt ď t ´ }x} ď rCpt, xq. Otherwise, we may assume that }zn} ą ε for all n.

Then yn :“ zn
}zn}

w
ÝÑ 0, and x` tzn is a convex combination of x` tyn and x` tεyn.

Since yn P SX and }εyn} “ ε, it follows from the first case that lim }x ` tzn} ď
max plim sup }x` tyn}, lim sup }x` tεyn}q ď rCpt, xq.

If C is symmetric, then rCpt, xq ě }x} because }x} ď }x`ty}`}x´ty}
2 for every

y P SX X C. Then the proof splits into two parts as above according to whether
lim }zn} is 0 or ą 0, expressing x`tzn as a convex combination of x`tyn and x´tyn
in the second case.

�

Finally, we note the following trivial yet essential fact: for any x P X and every
weakly null sequence pzdq Ă C,

(4) lim sup
dÑ8

}x` zd} ď r̄C
`

lim sup }zd}, x
˘

.

We can now give the

Proof of Theorem 2.1. We assume from the beginning that WNpSXXCq ‰ H, since
otherwise we already know that every weakly null sequence pxnq Ă C is norm null
and hence Blum-Hanson.

Let pxnqnPZ` Ă C be a shift-monotone, weakly null sequence such that

lim
tÑ8

prCpt, x0q ´ tq ď 0 .

Then limtÑ8 pr̄Cpt, x0q´ tq ď 0 as well by Remark 3.2. For notational simplicity we
will just write r̄Cptq instead of r̄Cpt, x0q.

Let F : NÑ R` be the function introduced in Lemma 3.1:

F psq “ inf
dPN

Fdpsq “ lim
dÑ8

Fdpsq ,

where

Fdpsq “ sup
APFINps,dq

›

›

›

›

›

ÿ

nPA

xn

›

›

›

›

›

.

(Since Fdpsq is non-increasing with respect to d, the infimum infd is indeed a true
limit).

The key point is the following
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Fact. The function F satisfies the inductive inequality F ps` 1q ď r̄CpF psqq .

Proof of Fact. Let us fix s P N. By the definition of F ps ` 1q, one can choose a
sequence pAdqdPN, where each Ad is a finite subset of N with cardinality s ` 1 and
gaps at least d, such that

lim
dÑ8

›

›

›

›

›

ÿ

nPAd

xn

›

›

›

›

›

“ F ps` 1q .

Write Ad “ tn1,d, . . . , ns`1,du, with n1,d ă ¨ ¨ ¨ ă ns`1,d. Since the sequence pxnq
is shift-monotone, we have

›

›

›

›

›

ÿ

nPAd

xn

›

›

›

›

›

“
›

›xn1,d
` xn2,d

` ¨ ¨ ¨ ` xns`1,d

›

›

ď
›

›x0 `
`

xn2,d´n1,d
` ¨ ¨ ¨ ` xns`1,d´n1,d

˘›

›

:“ }x0 ` zd}

for every d P N.
Since ni,d ´ n1,d ě d for every i P t2, . . . , s` 1u and xn

w
ÝÑ 0, the sequence pzdq is

weakly null; and zd P C because C is a convex cone. By (4), it follows that

lim sup
dÑ8

}x0 ` zd} ď r̄Cplim sup }zd}q .

Moreover, zd has the form
ř

mPBd
xm, for some set Bd Ă N with cardinality s and

gaps at least d, i.e. Bd P FINps, dq. Hence,

}zd} ď Fdpsq

for all d P N; and since r̄Cptq is non-decreasing with respect to t, it follows that
r̄Cplim sup }zd}q ď r̄Cplim supFdpsqq “ r̄CpF psqq. Altogether, we get

F ps` 1q “ lim }x0 ` zd} ď r̄CpF psqq .

�

It is now easy to conclude the proof. By Lemma 3.1, we have to show that
F psq{sÑ 0 as sÑ8. Put F̄ psq “ maxpF p1q, . . . , F psqq. Then F̄ is non-decreasing
and satisfies the same inductive inequality as F , i.e. F̄ ps ` 1q ď r̄CpF̄ psqq (again
because r̄Cptq is non-decreasing with respect to t). If F̄ psq has a finite limit as sÑ8

then of course limsÑ8 F̄ psq{s “ 0, and hence limsÑ8 F psq{s “ 0. Otherwise, since
limtÑ8pr̄Cptq ´ tq ď 0, it follows from the inductive inequality that

lim sup
sÑ8

pF̄ ps` 1q ´ F̄ psqq ď 0 .

By Cesàro’s theorem, we conclude that F̄ psq{sÑ 0 in this case as well.
�
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4. Blum-Hanson and the duality mapping

In this section, we give several sufficient conditions for a Banach space X to have
extremal asymptotic smoothness at infinity (Definition 2.3). In particular, we prove
Corollary 2.5 and some related results where the smoothness of the norm is involved.

4.1. Definitions. Let us recall some standard definitions and notation.

For any y P Xzt0u, we denote by Jpyq the set of all norming functionals for y,

Jpyq “ tφ P X˚; }φ} “ 1 and xφ, yy “ }y}u .

The Banach space X is said to be Gâteaux smooth if the norm of X is Gâteaux
differentiable at each point of the unit sphere of X. By the classical Šmulyan’s
criterion (see [16]), this holds if and only if the duality mapping is single-valued, i.e.
Jpyq is a single point (also denoted by Jpyq) for every y P SX . In this case, we have

(5) }y ` εh} “ 1` ε xJpyq, hy ` opεq as εÑ 0 ,

for every fixed y P SX and h ‰ 0.

The space X is uniformly Gâteaux smooth if its norm is uniformly Gâteaux
differentiable on the unit sphere, i.e. the duality mapping is single-valued and the
“little o” in (5) is uniform with respect to y P SX , for every fixed h ‰ 0. This
a much weaker property than uniform Fréchet smoothnes: for example, uniformly
Fréchet smooth Banach spaces are super-reflexive, but any separable Banach space
has a uniformly Gâteaux smooth renorming (see [16]).

Finally, recall that X is said to be an Asplund space if every separable subspace
of X has separable dual (this is the more convenient definition as far as the present
paper is concerned). For example, X is Asplund as soon as it admits a Fréchet
smooth renorming, and the converse is true if X is separable (see [16]).

4.2. Vanishing duality mapping. The next result says essentially that the defi-
nition of extremal asymptotic smoothness at infinity can be rephrased in terms of
the duality mapping of X.

For convenience, we introduce the following ad hoc terminology. We shall say
that a set-valued map Θ : A Ñ 2X

˚

defined on a subset A of X is vanishing along
weakly null nets in A at some point x P X if, whenever pzαq is a weakly null net in A
and φα P Θpzαq, it follows that xφα, xy Ñ 0. Vanishing along weakly null sequences
is defined in the same way.

Recall also the notation of Theorem 2.1: given a convex cone C Ă X, we say that
condition p˚q holds for some x P X if

lim
tÑ8

prCpt, xq ´ tq ď 0 .

Proposition 4.1. Let C be a convex cone in X. If the duality map J is vanishing
along weakly null nets in SX X C at some point x P C then (˚) holds for x, and
hence any C-positive contraction on X satisfies the Blum-Hanson dichotomy at x. If
either X is uniformly Gâteaux smooth or an Asplund space, it is enough to assume
that J is vanishing along weakly null sequences.
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Proof. Towards a contradiction, assume that (˚) does not hold for x. Then one
can find a sequence ptkq tending to 8 and, for each k P N, a weakly null sequence
pyknqnPN Ă SX XC such that

lim
nÑ8

}x` tkykn} ´ t
k ą c

for all k and some c ą 0.
Dividing by tk and putting εk :“ 1{tk, we get limnÑ8 }εkx ` ykn} ´ 1 ą c εk. It

follows that one can find a weakly null net pyαqαPA Ă SX XC and a net pεαqαPA Ă
p0,8q tending to 0 such that }εαx` yα} ´ 1 ą c εα for every α P A. (For example,
one may proceed as follows. Let A be the set of all pairs pk, V q where k P N and V
is a weak neighbourhood of 0 in X, with the product ordering, i.e. pk, V q ĺ pk1, V 1q
iff k ď k1 and V Ě V 1. For any α “ pk, V q P A, put εα :“ εk, and yα :“ ykn, where n
is the smallest integer such that ykn P V and }εkx` y

k
n} ´ 1 ą c εk).

Put zα :“ εαx`yα
}εαx`yα}

¨ Then zα P SX XC, and the net pzαq is weakly null because

εα Ñ 0; hence xφα, xy Ñ 0 for any choice of φα P Jpzαq. Now, the map Φpεq “
}εx`yα} is convex and its right derivative is given by Φ1dpεq “ ε xφpεq, xy, where φpεq
is a norming functional for εx ` yα. The functional φpεq is of course also norming
for zα :“ εx`yα

}εx`yα}
¨ Hence, taking ε “ εα we get φα P Jpzαq such that

}εαx` yα} ´ 1 “ Φpεαq ´ Φp0q ď εα xφα, xy .

Thus, we see that }εαx`yα}´1 “ opεαq, a contradiction since }εαx`yα}´1 ą c εα
for every α P A.

If X is Asplund then the weak topology of any separable subspace of X is metriz-
able on bounded sets. Since in the above proof everything takes place in the sep-
arable subspace span

`

txu Y tykn; n, k P Nu
˘

, it follows that one can replace nets by
sequences in this case.

Finally, assume that X is uniformly Gâteaux smooth and, without loss of gener-
ality, that WNpSX XCq ‰ H. If tÑ 8 then, by uniform smoothness, we have for
any sequence pynq Ă SX :

}x` tyn} “
}t´1x` yn}

t´1

“
1` t´1xJpynq, xy ` opt

´1q

t´1

“ t` xJpynq, xy ` op1q ,

where the “little o” is uniform with respect to pynq. If J is vanishing at x along
weakly null sequences in SX , it follows immediately that

rCpt, xq “ t` op1q .

�

Remark 1. Assume that WNpSX X Cq “ H and that X is uniformly Gâteaux
smooth. An examination of the above proof reveals that for a given x P C, the
condition limtÑ8prCpt, xq ´ tq “ 0 is actually equivalent to the requirement that J
should be vanishing at x along weakly null sequences in SX XC.
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Remark 2. It follows from the proof that if X is uniformly Fréchet smooth and J
is vanishing along weakly null sequences in SX X C at all x P C, then (˚) holds
uniformly with respect to x P SX XC.

Remark 3. The proof of Proposition 4.1 is similar to that of [14, Theorem 5].

Remark 4. The space X is said to have a weakly continuous duality mapping if X
is Gâteaux smooth and there exists a continuous increasing function µ : R` Ñ R`
with µp0q “ 0 such that the map Jµpyq “ µp}y}qJpyq is w-w˚ continuous on X
(setting Jµp0q “ 0). This property has proved to be quite important in fixed
point theory since the classical work of F. Browder [10]. Obviously, it implies van-
ishing of the duality mapping along weakly null nets in SX at all x P X, and
hence that limtÑ8prXpt, xq ´ tq ď 0 for all x. In fact, one can prove directly that
limtÑ8prXpt, xq ´ tq “ 0 uniformly on SX , because the modulus rX can be com-
puted explicitely. Indeed it is shown in [35] that if X has a weakly continuous duality

mapping with “gauge” function µ and if we put Mptq “
şt
0 µpsq ds then

(6) lim sup }x` txn} “M´1
´

Mp}x}q `Mptq
¯

for all x P X and every weakly null sequence pxnq Ă SX ; in particular, rXpt, xq is
the right-hand side of (6). Now, it is not hard to see that µpt´1q “ cµptq´1, where
c “ µp1q2 (see below). In particular, µptq Ñ 8 as tÑ 8 and hence (6) does imply
that rXpt, xq ´ t Ñ 0 uniformly on SX . (To show that µpt´1q “ cµptq´1, note that
for any t ą 1 one can find a net pyαq Ă tSX converging weakly to some y P SX . Then

µptqJpyαq
w˚

ÝÝÑ µp1qJpyq; but since yα
t

w
ÝÑ

y
t and Jp zt q “ Jpzq for any z P Xzt0u, we

also know that µp1qJpyαq
w˚

ÝÝÑ µpt´1qJpyq, and the result follows).

4.3. An appproximation-like property. We now use Proposition 4.1 to isolate
one reasonably general class of Banach spaces having extremal asymptotic smooth-
ness at infinity.

To formulate the result, we introduce an “approximation-like” property for which
we have not tried to find a name to avoid pedantry (see however the remark at the
end of this sub-section). We shall say that a Banach space Z has property (?) if
the following holds: for any z P Z, one can find a sequence of compact operators
pπKq Ă LpZq such that πKz Ñ z and lim supK }I ´ πK} ď 1. (Equivalently, one
may require that }I ´ πK} ď 1 for all K). One example to keep in mind is the
following: property (?) is satisfied if Z has a reverse monotone Schauder basis,
i.e. a basis pfkqkPN such that }I ´ πK} “ 1 for all K, where πK is the canonical
projection onto spantf1, . . . , fKu. (For example, any 1-unconditional basis is reverse
monotone). More generally, it is enough to assume that Z has a reverse monotone
finite-dimensional Schauder decomposition.

Proposition 4.2. If the Banach space X is uniformly Gâteaux smooth and embeds
isometrically into a Banach space with property (?), then X has extremal asymptotic
smoothness at infinity (and hence the Blum-Hanson property).
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Proof. By Proposition 4.1 (with C “ X) it is enough to show that the duality
mapping of X is vanishing along weakly null sequences in SX at all x P SX . So let
us fix a weakly null sequence pynq Ă SX .

Let Z be a Banach space with property (?) such that X embeds isometrically into
Z. Considering X as a subspace of Z, we still denote by Jpynq any Hahn-Banach
extension of Jpynq, n P N. Also, for any Φ P Z˚ we denote by }Φ}X˚ the norm of
Φ viewed as a linear functional on X; that is }Φ}X˚ “ }Φ|X}. Finally, if pΦKq is

a sequence in Z˚, we write “ΦK
w˚

ÝÝÑ 0 in X˚” if the sequence ppΦKq|Xq Ă X˚ is
w˚-null.

Let x P X be arbitrary, and let pπKq be a sequence of compact operators on Z such
that πKx Ñ x and lim supK }I ´ πK} ď 1. Since the sequence pynq is weakly null,
we know that }πKyn} Ñ 0 for every fixed K P N. Hence, we can find a subsequence
pynK q of pynq such that }πKynK } Ñ 0 as K Ñ8. Then

xpI ´ π˚KqJpynK q, ynK y “ 1´ xJpynK q, πKynK y
KÑ8
ÝÝÝÝÑ 1.

Since lim sup }pI ´ π˚KqJpynK q}X˚ ď lim sup }pI ´ π˚KqJpynK q} ď 1 and, moreover,
ynK P SX and xJpynK q, ynK y “ 1, it follows that lim }pI ´ π˚KqJpynK q}X˚ “ 1 “
lim }JpynK q}X˚ and lim }pI´π˚KqJpynK q`JpynK q}X˚ “ 2. By the uniform Gâteaux
smoothness of X, this implies (see [16, Theorem 6.7 and Proposition 6.2]) that

pI ´ π˚KqJpynK q ´ JpynK q
w˚

ÝÝÑ 0 in X˚,

i.e. π˚KJpynK q
w˚

ÝÝÑ 0 inX˚. In particular, xJpynK q, πKxy Ñ 0 and hence xJpynK q, xy Ñ
0 since πKxÑ x.

Thus, we have shown that for every x P X, one can find a subsequence pynK q of
pynq such that xJpynK q, xy Ñ 0. Since this can be done starting with any subsequence
of pynq, this shows that xJpynq, xy Ñ 0 for all x P X, as required.

�

Corollary 4.3. If X is uniformly Gâteaux smooth and embeds isometrically into a
Banach space with a reverse monotone (e.g. 1-unconditional) FDD, then X has the
Blum-Hanson property.

Remark. There are lots of well identified approximation properties in Banach space
theory; see e.g. [11] or [12]. The one that seems closest to (?) is the so-called Reverse
Monotone Compact Approximation Property. A Banach space Z has (RMCAP) if
one can find a sequence of compact operators pπKq Ă LpZq such that πKz Ñ z for all
z P Z and }I´πK} Ñ 1. This is formally a much stronger property than (?), because
in (?) the πK ’s are allowed to depend on z. In view of the existing terminology
property (?) could consistently be called the “Reverse Monotone Compact Point
Approximation Property”; which is not a very exciting name. Incidentally, it is well
known that Lp does not have (RMCAP) if p ‰ 2. (A much stronger result is proved
in [41].

4.4. Almost isometric embeddings. Recall that a Banach space X is said to
embed almost isometrically into another Banach space Z if it can be p1`εq-embedded
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into Z for any ε ą 0, i.e. one can find an operator j : X Ñ Z such that

p1` εq´1}x} ď }jx} ď p1` εq}x}

for all x P X. Almost isometric embeddings are relevant in our matters because
of the following remark: extremal uniform asymptotic smoothness at infinity is pre-
served under almost isometric embeddings; that is, X has extremal uniform as-
ymptotic smoothness at infinity as soon as it embeds almost isometrically into a
Banach space with this property. Indeed, it is not hard to check that if X em-
beds almost isometrically into Z then rXptq ď rZptq for all t P R`. (Recall that
rXptq “ supxPSX rXpt, xq). The corresponding fact for the modulus of asymptotic
smoothness ρ̄X is proved e.g. in [15, Lemma 2.1]

The following result is a“Fréchet” analogue of Proposition 4.2.

Proposition 4.4. If the Banach space X embeds almost isometrically into a uni-
formly Fréchet smooth Banach space with property (?), then X has extremal extremal
uniform asymptotic smoothness at infinity (and hence the Blum-Hanson property).

Proof. By the proof of Proposition 4.2 and Remark 2 after the proof of Proposition
4.1, any uniformly Fréchet smooth space Z with property (?) has extremal uni-
form asymptotic smoothness at infinity. Since the latter is preserved under almost
isometric embeddings, the result follows.

�

In view of this result and of Proposition 4.2, it is natural to ask whether a uni-
formly Gâteaux smooth space X has extremal (not uniform) asymptotic smoothness
at infinity as soon as it embeds almost isometrically into a Banach space with prop-
erty (?). We now show that this does hold true (and in fact without any smoothness
assumption) if (?) is replaced with a stronger property.

Given a function c : R` ˆR` Ñ R` such that cps, tq ě s for any ps, tq, let us say
that a Banach space Z has property (?)c if the following holds: for any z P BZ , one
can find a sequence of compact operators pπKq Ă LpZq such that πKz Ñ z and

(7) @K @Φ P Z˚ : c p}pI ´ π˚KqΦ}, |π
˚
KΦpzq|q ď }Φ} .

So one requires }I´πK} ď 1 for all K, with a quantitative estimate provided by the

function c. For example, `p, 1 ď p ă 8 has property (?)c with cps, tq “ psq ` tqq1{q.

Proposition 4.5. Assume that there exists a continuous function c : R`ˆR` Ñ R`
satisfying cps1, tq ě cps, tq ą s whenever s1 ě s and t ą 0, such that for any ε ą 0,
X can be p1 ` εq-embedded into a Banach space with property (?)c. Then X has
extremal asymptotic smoothness at infinity (and hence the Blum-Hanson property).

Proof. We show that the duality mapping of X is vanishing along weakly null nets
in SX at all x P SX . So let us fix a weakly null net pyαq Ă SX , linear functionals
φα P Jpyαq, and a point x P SX . Let also ε P p0, 1s be arbitrary.

By assumption, there exists a Banach space space with property (?)c such that
X can be p1` εq-embedded into Z. Without loss of generality, we may assume that
X Ă Z as a set and p1 ` εq´1}ξ}Z ď }ξ}X ď p1 ` εq}ξ}Z for every ξ P X. Let us
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choose sequence of compact operators πK : Z Ñ Z, such that πKx Ñ x and (7)
holds with z “ x.

Considering each φα as linear functional on pX, } ¨ }Zq, choose any Hahn-Banach
extension Φα P Z

˚. Then Φα “ φα on X (by definition) and }Φα} ď 1 ` ε ď 2
because }φα}X˚ “ 1. We claim that

(8) lim inf
α

}pI ´ π˚KqΦα} ě p1` εq
´1

for every K P N. Indeed, since }yα}Z ď p1` εq we have

}pI ´ π˚KqΦα} ě p1` εq´1|xΦα, pI ´ πKqyαy|

“ p1` εq´1|1´ xΦα, πKyαy| ,

because xΦα, yαy “ xφα, yαy “ 1. Since }πKyα}Z Ñ 0 (because pyαq is a bounded
weakly null net and πK is compact) and pΦαq is bounded, this gives (8).

By (7) and since }Φα} ď 1` ε for every α, it follows that

lim sup
α

c pp1` εq´1, |π˚KΦαpxq|q ď 1` ε

for every K P N. Since cps, tq ą s for t ą 0 and since π˚KΦαpxq is uniformly bounded
with respect to α and K, this implies that

lim sup
α

|π˚KΦαpxq| ď δpε, xq ,

where δpε, xq does not depend on K P N and δpε, xq Ñ 0 as εÑ 0.
Now, let us choose K P N such that }pI ´ πKqx}Z ă ε. Writing xφα, xy “

xΦα, πKxy ` xΦα, pI ´ πKqxy, we get |xφα, xy| ď |xπ
˚
KΦα, xy| ` 2ε for all n P N, and

hence

lim sup
α

|xφα, xy| ď δpε, xq ` 2ε .

Since ε P p0, 1s is arbitrary, we conclude that xφα, xy Ñ 0 for every x P X, as
required.

�

4.5. WORTH. Our last result related to Gâteaux smoothness is about Banach
spaces with property WORTH, a property which has been considered in fixed point
theory (see e.g. [45]). A Banach space X has WORTH if

lim
nÑ8

´

}x` yn} ´ }x´ yn}
¯

“ 0

for every weakly null sequence pynq Ă X. If weakly null sequences are replaced by
weakly null bounded nets, one obtains the so-called property pauq, which have been
thoroughly studied recently by S. R. Cowell and N. Kalton [13], together with its
dual version pau˚q (the latter was introduced in [30] under the name “pwM˚q”).
Though perhaps innocent looking at first sight, these properties are in fact very
strong. For example, it is shown in [13] that a separable reflexive Banach space
has WORTH if and only if it can be p1 ` εq-embedded into a Banach space with a
shrinking 1-unconditional basis, for any ε ą 0.
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Proposition 4.6. If X is uniformly Gâteaux smooth with property WORTH, then
it has extremal asymptotic smothness at infinity (and hence the Blum-Hanson prop-
erty).

Proof. We may assume that X does not have the Schur property. By WORTH, the
modulus rX can be re-written as follows :

rXpt, xq “ sup
pynqPWNpSXq

lim sup
nÑ8

}x` tyn} ` }x´ tyn}

2
¨

Moreover, by uniform Gâteaux smoothness we have (as tÑ8)

}x` tyn} ` }x´ tyn} “
}t´1x` yn} ` }t

´1x´ yn}

t´1

“
p1` t´1xJpynq, xy ` opt

´1qq ` p1´ t´1xJpynq, xy ` opt
´1qq

t´1

“ 2t` op1q

where the “little o” is uniform with respect to pynq P WNpSXq. Hence, we get
limtÑ8prXpt, xq ´ tq “ 0 for every x P X. �

Remark. A strong form of WORTH is the important property pMq introduced by
N. Kalton in [27]. A Banach space X has property (M) if

lim sup }u` xn} “ lim sup }v ` xn}

whenever u, v P X satisfy }u} “ }v} and pxnq is a weakly null sequence in X.
Obviously, property (M) is weaker than pmpq, for any p P p1,8s. Since we saw in
section 2 that pmpq implies Blum-Hanson, it makes sense to ask whether (M) implies
the Blum-Hanson property. By [28, Corollary 4.5], this is true for subspaces of Lp,
1 ă p ă 8 and for subspaces of L1 not containing `1, because any such space has
property pmrq for some r ą 1. More generally, this is true for separable Banach
spaces not containing `1 which are stable in the sense of [33]; see the proof of [27,
Theorem 3.10].

5. Orlicz spaces

In this section, we apply the previous general results to the specific setting of
Orlicz spaces. Not unexpectedly, the situation is similar to that of `p and Lp spaces
(as far as the Blum-Hanson property is concerned).

Let θ : r0,8q Ñ r0,8q be an Orlicz N -function, i.e. an increasing convex function
such that limtÑ8 θptq{t “ 8 and limtÑ0 θptq{t “ 0. Given any measure space pΩ, µq,
the Orlicz space LθpΩ, µq is the space of all (equivalence classes of) measurable
functions f : Ω Ñ R such that

ş

Ω θpc |f |q dµ ă 8 for some c ą 0. We equip LθpΩ, µq
with one of its two “natural” norms, the so-called Luxemburg norm:

}f} “ inf

"

λ ą 0;

ż

Ω
θ

ˆ

|f |

λ

˙

dµ ă 8

*

.

When Ω “ Z` equipped with the counting measure, we denote the Orlicz space
by `θ; and when Ω “ p0, 1q with Lebesgue measure, we simply write Lθ.
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The small Orlicz space MθpΩ, µq (also called the Morse-Transue space) is the
subspace of LθpΩ, µq consisting of all f such that

ş

Ω θpc |f |q dµ ă 8 for every c ą 0.
We write mθ when Ω “ N and Mθ when Ω “ p0, 1q.

It is well known (see e.g. [43] and/or [32]) that mθ “ `θ if and only if θ satisfies
the so-called ∆2 condition at 0, i.e. lim suptÑ0 θp2tq{θptq ă 8, and that Mθ “ Lθ
iff θ satisfies the ∆2 condition at 8, i.e. lim suptÑ8 θp2tq{θptq ă 8. By the duality
theory of Orlicz spaces, it follows that `θ is reflexive iff both θ and the conjugate
Orlicz function θ˚ satisfy the ∆2 condition at 0, and that Lθ is reflexive iff θ and θ˚

satisfy the ∆2 condition at 8.

We quote the following more “specialized” results:

‚ mθ is asymptotically uniformly smooth if and only if θ˚ satisfies the ∆2

condition at 0 ([15]);
‚ Lθ is Gâteaux smooth iff θ is C1 and satisfies the ∆2 condition at 8 (see [44,

Theorem X.4.3]);

We can now state our results about the Blum-Hanson property for Orlicz spaces.
For the sake of “immediate applicability”, we formulate the assumptions directly in
terms of the Orlicz functions θ and θ˚; but this should of course be translated into
properties of the Orlicz spaces (using the just mentioned results).

Proposition 5.1. Let θ be an Orlicz N -function.

(1) If θ˚ satisfies the ∆2 condition at 0, then every subspace of mθ has the Blum-
Hanson property.

(2) If θ is C1- smooth and satisfies the ∆2 condition at 8 then, any positive
contraction on Lθ satisfies the Blum-Hanson dichotomy at all f P L`θ (the
positive cone of Lθ).

Proof. (1) By [15], the ∆2 condition for θ˚ means that X “ mθ is asymptotically
uniformly smooth. Moreover, it is also shown in [15] that in this case the modulus of
asymptotic smoothness of X behaves very nicely: one can find some constant α ą 1
such that

ρ̄Xpt, xq ď p1` t
αq1{α ´ 1

for every x P SX and all t ě 0. (This is stated only for t P r0, 1s in [15], but the
proof works for any t ě 0). This shows that mθ has extremal (uniform) asymptotic
smoothness at infinity, hence (1).

(2) Here, the assumption mean that Lθ is Gâteaux smooth. It is enough to show
that the duality mapping J “ SLθ Ñ SL˚

θ
is vanishing along weakly null nets in

SLθ X L
`
θ at all f P SLθ X L

`
θ .

We shall use the following known fact (see [43, Theorem VII.2.3]): if f P SLθXL
`
θ

then Jpfq is given by the formula

(9) xJpfq, gy “
1

ş

fθ1pfq

ż

g θ1pfq .
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This formula makes sense thanks to the ∆2 condition. Indeed, if h P Lθ, then
θ1p|h|q P Lθ˚ by ∆2 (see [43, proof of proposition III.4.8]) and hence, by Hölder’s
inequality (see e.g [43, Proposition III.3.1]), k θ1p|h|q is integrable for any k, h P Lθ.

We also need the following inequality :

(10) @f P L`θ X SLθ :

ż

fθ1pfq ě 1 .

To prove this, note that
ş

θp|f |q “ 1 for every f P SLθ , by ∆2 (see e.g [43, Proposition
III.4.6]). Since θ1 is non-decreasing and θp0q “ 0, it follows that tθ1ptq ě θptq for all
t ě 0 and hence

ş

fθ1pfq ě
ş

θpfq for any f P L`θ .

Now, let us fix a weakly null net pfαq Ă L`θ X SLθ and a function g P L`θ . We
show that xJpfαq, gy Ñ 0.

Let ε ą 0 be arbitrary. Since the function g θ1pgq is integrable (see the remark
just after (9)), we may first choose η ą 0 so that

ş

g θ1pηgq ă ε. Then, proceed as in
the proof of Bellow’s inequality (3) for Lp:

ż

g θ1pfαq “

ż

fαăηg
`

ż

găηfα

`

ż

ηgďfαďη´1g

ď

ż

g θ1pηgq ` η

ż

fα θ
1pfαq ` η

´1

ż

fα θ
1pη´1gq .

Using (9), (10) and assuming (as we may) that η ă ε, we get

xJpfαq, gy ď 2ε` η´1

ż

fα θ
1pη´1gq ,

for every α. Since θ1pη´1gq P Lθ˚ “ pLθq
˚ by ∆2 and since pfαq is weakly null, it

follows that lim sup xJpfαq, gy ď 2ε, which concludes the proof.
�

Corollary 5.2. Any subspace a reflexive Orlicz sequence space has the Blum-Hanson
property.

Remark. As mentioned in the introduction, the Blum-Hanson property for Orlicz
function spaces endowed with the Orlicz norm has been studied in [38]. It is shown
there (Theorem 7.7) that if Lθ is uniformly Fréchet smooth when endowed with
the Orlicz norm, then it has the Blum-Hanson property with repect to positive
contractions. The proof also makes use of a Bellow-like inequality (Lemma 7.2).
Exactly as in the Lp case, it could be shortened by applying Proposition 4.1.

6. Very classical spaces

6.1. Hilbert spaces. We include here a superficially new proof of the Blum-Hanson
property for complex Hilbert spaces. This is merely a rewriting of the one that can be
found in [29]. However, we find it worth mentioning for two reasons: it is extremely
simple (though not elementary), and it suggests than one could possibly prove the
Blum-Hanson property for other spaces by using “functional calculus” arguments.

Let T be a contraction operator on a complex Hilbert space H, and assume that
Tnx

w
ÝÑ 0 for some x P H.
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Let σx be the spectral measure for T associated with x, i.e. the positive (finite)
measure on T whose Fourier coefficients are given by

xσxpnq “

"

xTnx, xy n ě 0

xT ˚|n|x, xy n ď 0

The assumption Tnx
w
ÝÑ 0 means that σx is a Rajchman measure: xσxpnq Ñ 0 as

|n| Ñ 8. Moreover, the following von Neumann–type inequality holds for every
polynomial P (see e.g. [46, Proposition 1.1.2]):

(11) }P pT qx}2 ď

ż

T
|P |2 dσx .

Now, let pniqiě1 be an increasing sequence of integers. Applying (11) with P pzq “
zn1 ` ¨ ¨ ¨ ` znK , we get

(12)

›

›

›

›

›

K
ÿ

i“1

Tnix

›

›

›

›

›

2

ď

K
ÿ

i,j“1

xσxpni ´ njq

for any K P N. Moreover, since xσxpnq Ñ 0 as |n| Ñ 8, it is a simple exercise to
show that

αK “
1

K2

K
ÿ

i,j“1

|xσxpni ´ njq| Ñ 0

as K Ñ 8. (Indeed, we have 7
 

pi, jq P J1,KK2; |ni ´ nj | ď N
(

ď 2KN , so that
lim supαK ď supt|xσxpnq|; |n| ą Nu for any N P N). By (12), it follows that the
sequence pTnxq is Blum-Hanson.

6.2. CpKq spaces. As mentioned in the introduction, it is shown in [1] that the
space CpT2q fails the conditional Blum-Hanson property. From this and known
results about CpKq spaces, one can easily deduce

Proposition 6.1. If K is an uncountable compact metrizable space, then CpKq fails
the conditional Blum-Hanson property.

Proof. This relies on the following trivial observation:

Fact. Let X be a Banach space, and let Z be a 1-complemented subspace of X. If
Z fails the (conditional) Blum-Hanson property then so does X.

Proof of Fact. Let π : X Ñ Z be a norm 1 projection from X onto Z, and let
j : Z Ñ X be the canonical embedding. If T : Z Ñ Z is a contraction on Z, then
rT :“ jTπ is a contraction on X extending T ; and since rTn “ jTnπ for all n, it has
weakly convergent orbits as soon as T does. So the result is clear.

�

Now, we use the following facts, which are the key ingredients in the proof of
Miljutin’s theorem on the isomorphism of all CpKq for uncountable and metrizable
K (see [4, p. 95]). Let ∆ “ t0, 1uN be the usual Cantor space. Then, for every
compact metrizable L the space CpLq is isometric to a 1-complemented subspace of
Cp∆q; and if L is uncountable then the space Cp∆q is isometric to a 1-complemented
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subspace of CpLq. Applying this first with L “ T2 we deduce that Cp∆q fails the
conditional Blum-Hanson property, and taking then L “ K we conclude that so
does CpKq.

�

Corollary 6.2. The disk algebra ApDq does not have the conditional Blum-Hanson
property.

Proof. Recall that the disk algebra is the space of all complex-valued functions which
are continuous on the closed unit disk D Ă C and holomorphic on D, endowed with
the sup norm. Let K be an uncountable compact subset T with Lebesgue measure
0. By the Rudin-Carleson theorem, any continuous function f : K Ñ C can be

extended to a function rf P ApDq with } rf}8 “ }f}8; and in fact, it was shown by A.
Pe lczyński that there is an isometric linear extension operator E “ CpKq Ñ ApDq
(see [37]). It follows at once that ApDq has a 1-complemented subspace isometric
to CpKq (namely ECpKq), and hence that ApDq cannot have the conditional Blum-
Hanson property. �

Remark. It is quite plausible that no CpKq space (for infinite K) has the Blum-
Hanson property. In any event, if K is an infinite compact (Hausdorff) space then
CpKq does not have extremal asymptotic smoothness at infinity. Indeed, as in any
infinite Hausdorff space one can find a countably infinite discrete D in K. Denoting
by Ω the closure of D in K, the space CpKq contains an isometric copy of CpΩq; so
it is enough to show that CpΩq does not have extremal asymptotic smoothness at
infinity. Write D “ tdn; n P Nu. Since D is discrete, each tdnu is clopen in Ω, so
the function fn “ 1tdnu is in CpΩq. Obviously, the sequence pfnq is weakly null in
X “ CpΩq. Moreover, since fn ě 0 we have }1 ` tfn}8 “ 1 ` t for every t ě 0; so
rXpt,1q “ 1` t for all t.

In the case K “ T2, the main result of [1] is in fact much more precise than
Proposition 6.1: the space CpT2q fails the conditional Blum-Hanson property with
respect to the very special class of composition operators, i.e. operators of the form
Tf “ f ˝ ϕ. Interestingly enough, this does not hold for K “ r0, 1s.

Proposition 6.3. The space Cpr0, 1sq has the conditional Blum-Hanson property
with respect to composition operators.

Indeed, let T be a composition operator (Tf “ f ˝ ϕ) on Cpr0, 1sq induced by
some continuous map ϕ : r0, 1s Ñ r0, 1s, and assume that T has weakly convergent
orbits. This means exactly that the iterates ϕn converge pointwise on r0, 1s to some
continuous function α : r0, 1s Ñ r0, 1s. Hence, it is enough to prove the following
lemma. (This lemma is certainly well known but we couldn’t locate a reference. The
proof we give is due to D. Malicet, and we thank V. Munnier for explaining it).

Lemma 6.4. Let ϕ : r0, 1s Ñ r0, 1s be a continuous map. If ϕnpxq Ñ αpxq pointwise,
where α : r0, 1s Ñ r0, 1s is continuous, then in fact ϕnpxq Ñ αpxq uniformly.

Proof. We note that the set of fixed points of ϕ is exactly the closed interval I “
αpr0, 1sq. If I “ r0, 1s, there is nothing to prove. Otherwise, consider the space
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Λ obtained from r0, 1s by identifying all the points of I, with the usual quotient
topology. Then Λ is homeomorphic to r0, 1s, the map ϕ induces a continuous map
rϕ : Λ Ñ Λ with a single fixed point rα, and the iterates rϕn converge pointwise to
rα on Λ. If we can show that rϕn Ñ rα uniformly then we will get the result for ϕ.
Therefore, all we need to do is to prove the following result : If ϕ : r0, 1s Ñ r0, 1s
is a continuous map with a single fixed point α such that ϕnpxq Ñ α pointwise on
r0, 1s, then the convergence is uniform. To do this, the key point is the following

Fact. Let J “ ru, vs be a nontrivial compact interval of R. If ϕ : J Ñ J is continous
and ϕnpxq Ñ α P J pointwise on J , then ϕ cannot be onto.

Proof of Fact. If α “ u, then we must have ϕpxq ă x for all x P su, vs, because
ϕpxq ´ x has constant sign on su, vs by the intermediate value theorem (α “ u is
the only fixed point of ϕ) and ϕpvq ď v; in particular ϕpxq ă v for all x P J , which
gives the result in this case. Likewise if α “ v. Now, assume that α P su, vr and that
ϕ is onto. Then ϕpxq ´ x has constant sign on both intervals ru, αr and sα, vs, and
since ϕpru, vsq Ă ru, vs the only possible case is the following: ϕpxq ą x on ru, αr and
ϕpxq ă x on sα, vs. In particular, ϕpxq ą u on ru, αs and ϕpxq ă v on rα, vs. Since
ϕ is onto, we then have v P ϕpru, αsq and u P ϕprα, vsq, whence rα, vs Ă ϕpru, αsq
and ru, αs Ă ϕprα, vsq. It follows that ru, αs Ă ϕ2pru, αsq; but this is a contradiction
because ϕ2 satisfies the same assumption as ϕ and hence ϕ2pxq ą u on ru, αs. �

Now, let ϕ : r0, 1s Ñ r0, 1s be a continuous map such that ϕnpxq Ñ α pointwise
on r0, 1s. Then J “

Ş

ně0 ϕ
npr0, 1sq is compact interval containing α, and it is easily

checked that ϕpJq “ J . By the above fact, it follows that
Ş

ně0 ϕ
npr0, 1sq “ tαu;

and from this it is not hard to deduce that ϕnpxq Ñ α uniformly.
�

6.3. The space L1. In [2], the proof that L1 “ L1p0, 1q has the conditional Blum-
Hanson property proceeds roughly as follows. Using the so-called linear modulus
associated with a given contraction T on L1 and assuming that T has weakly con-
vergent orbits, one breaks the underlying measure space into 2 pieces A and B such
that T has norm null orbits on L1pAq and T is an absolute contraction on L1pBq,
i.e. a contraction on any Lp, 1 ď p ď 8. Then the absolutely contractive part is
handled using the L2 case. This seems to be very specific to L1, and we see no way
of using any kind of “smoothness” argument to shorten the proof.

6.4. The space Lp. If Lp “ Lpp0, 1q, 1 ă p ă 8 were to have the Blum-Hanson
property, this could not be proved by a direct application of Theorem 2.1 with
C “ X “ Lp, except of course for p “ 2. Indeed, Lp does not have extremal
asymptotic smoothness at infinity.

One can see this somewhat indirectly by observing that the duality mapping of Lp
is not vanishing along weakly null sequences (see Remark 1 just after Proposition
4.1). Indeed, let τ : p0, 1q Ñ p0, 1q be any strongly mixing transformation wrt
Lebesgue measure, and let Tf “ f ˝ τ be the induced isometry on Lp. Since p ‰ 2,

one can find g P Lp such that
ş

g “ 0 and
ş

Jpgq “ c ‰ 0. Then Tng
w
ÝÑ 0 by the
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strong mixing property, but JpTngq is not weakly null because
ş

JpTngq ” c. (This
example is taken from [7]).

One may also check directly that Lp does not have extremal asymptotic smooth-
ness at infinity. Consider a sequence pξnq of independent random variables on the
probability space pΩ,Pq “ p0, 1q with Lebesgue measure, such that Ppξn “ aq “ 1´λ
and Ppξn “ ´bq “ λ, where a ‰ b (with a, b ą 0) and λ are chosen in such a way
that Epξnq “ 0 and }ξn}Lp “ 1; explicitely, p1 ´ λqap ` λbp “ 1 and p1 ´ λqa “ λb.
The sequence pξnq is bounded in L8 and orthogonal in L2, hence weakly null in Lp.

On the other hand, }1 ` t ξn}p “ pp1´ λqp1` taq
p ` λp1´ tbqpq1{p for all n, and it

follows that

rLppt,1q
p

tp
ě p1´ λqapp1` a´1t´1qp ` λbpp1´ b´1t´1qp.

Since p1´λqap`λbp “ 1, the right-hand side is equivalent to 1`ct´1 as tÑ8, where
c “ p

`

p1´λqap´1`λbp´1
˘

. Putting α “ p1´λqa “ λb, we have c “ pαpbp´2´ap´2q

and hence c ‰ 0 if p ‰ 2. Thus, taking a ă b if p ą 2 and a ą b if p ă 2, we see that
limtÑ8

`

rLppt,1q ´ t
˘

ě c
p ą 0. (This example is taken from [18]).

Incidentally, the sequence pξnq above is Blum-Hanson. Indeed, by the Banach-
Saks theorem the bounded sequence pξnq has a subsequence whose arithmetic means
are norm convergent, necessarily to 0 “ w-lim ξn; and since pξnq is invariant under
spreading (i.e. }

ř

nPA ξn}p depens only on the cardinality of the finite set A Ă N),
the same is in fact true for any subsequence of pξnq. One can also apply the mean
ergodic theorem, as follows. Let X be the closed subspace of Lp generated by the
ξn; then the shift map ξn ÞÑ ξn`1 extends to an isometry S of X because the ξn are
independent and identically distributed, and ξn “ Snξ0 by definition; by the mean
ergodic theorem and the invariance under spreading, this gives the result. Finally,
here is a more baroque proof: since the ξn are centred and independent, they form
a bi-monotone Schauder basis of X (because }ξ ` ξ1}p ě }ξ}p whenever ξ and ξ1

are independent centred random variables); so X has the Blum-Hanson property by
Proposition 4.2, and hence pξnq “ pS

nξ0q is Blum-Hanson.

The last few lines suggest that there still might be some hope for showing that
Lp has the Blum-Hanson property by applying something like Theorem 2.1. In
this spirit, it is worth noting that for any finite measure space pΩ,B, µq, the space
LppΩ, µq satisfies a weak form of Kalton-Werner’s property pmpq. Indeed, let us
denote by τ the topology of convergence in measure (for measurable functions on
Ω). It is not difficult to see that Lp has property pmpq with respect to the topology
τ ; that is, if f P LppΩ, µq and if pfnq Ă LppΩ, µq is τ -convergent to 0, then

lim sup }f ` fn} “ p}f}
p ` lim sup }fn}

pq1{p.

It follows that any subspace of LppΩ, µq in which all weakly null sequences are
τ -null has property pmpq, and hence the Blum-Hanson property. (This applies for
example to the Bergman space BppDq, since weak convergence in BppDq implies
uniform convergence on compact sets). More generally, the proof of Theorem 2.1
yields the following result.
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Proposition 6.5. Let pΩ,B, µq be a finite measure space, and let T be a contraction

on a subspace X of LppΩ, ,µq. If f P X is such that Tnf
τ
ÝÑ 0, then the sequence

pTnfq is Blum-Hanson.

Hence, any subspace of Lp has the “τ–Blum-Hanson property”. This leaves us
certainly far from showing the Blum-Hanson property for Lp, but still this could be
an interesting fact.

7. Concluding remarks, and some questions

7.1. Sequences of contractions. Using the same ideas as in the proof of Theorem
2.1, one can prove a more general result allowing to deal with sequences of contrac-
tions not necessarily of the form Tn for some T . We have no application, but this
might be useful elsewhere.

Let I be the set of all finite intervals of positive integers, including the empty
interval. We denote by |α| the length of an interval α P I. We write α ă β if α Ă β
and minα “ minβ. Finally, we say that a family of points pxαqαPI in a Banach space
X is shift-monotone if }xα1`¨ ¨ ¨`xαk} ď }xα1zα0

`¨ ¨ ¨`xαkzα0
} for every increasing

sequence α0 ă α1 ă ¨ ¨ ¨ ă αk in I. For example, if pxnq is a shift-monotone sequence
in X and xα “ x|α|, then the family pxαqαPI is shift-monotone.

Proposition 7.1. Let pxαqαPI be a shift-monotone family in a Banach space X.

Assume that xα
w
ÝÑ 0 as |α| Ñ 8, and that limtÑ8prXpt, xHq ´ tq ď 0. Then, for

any infinite increasing sequence α1 ă α2 ă . . . in I, the sequence pxαnq is Blum-
Hanson.

As an immediate consequence, we get

Corollary 7.2. Let pTjqjPN be a sequence of contractions on X, and let x P X.

Assume that TpTp`1 ¨ ¨ ¨Tq x
w
ÝÑ 0 as q´pÑ `8, and that limtÑ8prXpt, xq´ tq ď 0.

Then the sequence pT1 ¨ ¨ ¨TnxqnPN is Blum-Hanson.

Proof. Just apply Proposition 7.1 to the (shift-monotone) family pxαqαPI defined by
xH “ x and xα “ Tp ¨ ¨ ¨Tq x if α “ rp, qs. �

Proof of Proposition 7.1. For any d, s P N, let us denote by Fps, dq be the family
of all finite sets A Ă I of the form A “ tα1, . . . , αsu with α1 ă ¨ ¨ ¨ ă αs and
|αi`1zαi| ě d for all i P t1, . . . , s ´ 1u. Now define the function F : N Ñ R` in the
obvious way:

F psq “ inf
dPN

sup
APFps,dq

›

›

›

›

›

ÿ

αPA

xα

›

›

›

›

›

.

Then, one shows exactly as in the proof of Theorem 2.1 that F psq{sÑ 0 as sÑ8;
and the result follows.

�
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7.2. Direct sums and sub - pmpq. The following remarks show that properties
sub - pmpq are preserved under direct sums.

Proposition 7.3. Let pXiqiPI be a family of Banach spaces.

(1) Let p P r1,8q, and assume that each Xi has property sub - pmpiq for some
pi ě p. Then the `p direct sum ‘`pXi has property sub - pmpq.

(2) If all pXiq have property sub - pm8q, then ‘c0Xi has sub - pm8q.

Proof. (1) To avoid double subscripts, we write any vector in X “ ‘`pXi as x “
pxpiqqiPI . Moreover, we denote all norms involved (in X and in every space Xi) by
the same symbol } ¨ }. Finally, we may assume that in fact pi “ p for all i since
sub - pmqq obviously implies sub - pmpq whenever q ě p.

Let x P X, and let pznq be any weakly null sequence in X. We have to show that

(13) lim sup
nÑ8

}x` zn}
p ď }x}p ` lim sup }zn}

p .

Since all zn have countable support, we may assume (by a diagonal argument)
that limn }znpiq} exists for all i P I.

Let us fix ε ą 0. By the definition of X, we may choose a finite set Iε Ă I such
that

ÿ

iRIε

}xpiq}p ă εp .

Now, let pεiqiPIε be positive numbers such that
ř

i ε
p
i ă εp. Since each space Xi

has property sub - pmpq and all limits limn }znpiq} exist, one can find N P N such
that

@n ě N @i P Iε : }xpiq ` znpiq}
p ď }xpiq}p ` }znpiq}

p ` εpi .

We then have for all n ě N :

}x` zn}
p “

ÿ

iPIε

}xpiq ` znpiq}
p `

ÿ

iRIε

}xpiq ` znpiq}
p

ď
ÿ

iPIε

p}xpiq}p ` }znpiq}
p ` εpi q `

ÿ

iRIε

}xpiq ` znpiq}
p

ď εp ` }x}p `
ÿ

iPIε

}znpiq}
p `

ÿ

iRIε

p}xpiq} ` }znpiq}q
p .

By Minkowski’s inequality for `ppIq, it follows that

}x` zn}
p ď εp ` }x}p `

¨

˝

˜

ÿ

iPI

}znpiq}
p

¸
1
p

`

˜

ÿ

iRIε

}xpiq}p

¸
1
p

˛

‚

p

ď εp ` }x}p ` p}zn} ` εq
p

for all n ě N . Since ε is arbitray, this gives (13).

Part (2) is proved in the same way (the details are actually simpler).
�
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Corollary 7.4. Let I be an arbitrary index set. If X is a Banach space with property
sub - pmqq for some q ą 1 then `ppI,Xq has extremal asymptotic smoothness at
infinity (and hence the Blum-Hanson property) for any p P p1, qs. If X has property
sub - pm8q then c0pI,Xq has extremal asymptotic smoothness at infinity.

Remark. Apart from trivial cases, `1 direct sums never have extremal asymptotic
smoothness at infinity. In fact, if Z is a Banach space without the Schur property
then, for any Y ‰ t0u, the space X “ Y ‘`1 Z does not have extremal asymptotic
smoothness at infinity. To see this, choose a weakly null sequence in pznq Ă SZ and
observe that if y P SY , then }py, 0q ` tp0, znq} “ 1` t for every t ě 0 and all n P N:
this shows that rXpt, xq ” 1 ` t for any x P SX of the form py, 0q. On the other
hand, we don’t know if a “nontrivial” `1 direct sum can ever have the Blum-Hanson
property.

7.3. A symmetric modulus. For any Banach space X, consider the “symmetric”
modulus rrX defined as follows:

rrXpt, xq “ sup
pynqPWNpSXq

lim sup
nÑ8

ˆ

}x` tyn} ` }x´ tyn}

2

˙

.

Obviously rrXpt, xq ď rXpt, xq. Moreover, the proof of Proposition 4.6 yields that
if X is uniformly Gâteaux smooth (and does not have the Schur property) then
limtÑ8prrXpt, xq ´ tq “ 0 for every x P SX . That is, condition (˚) of Theorem 2.1
holds when rX is replaced with rrX .

From this, it is tempting to believe that a proof similar to that of Theorem 2.1
should yield the following result : if T is a contraction on a uniformly Gâteaux
smooth space X then, for any x P X with a weakly null orbit, one can find a choice
of signs pεnq P t´1, 1uN such that the sequence pεnT

nxq is Blum-Hanson. However,
this would in fact mean that uniformly Gâteaux smooth spaces have the Blum-
Hanson property, since it is easily checked that a sequence pxnq is Blum-Hanson if
and only if pεnxnq is, for any choice of signs pεnq.

To put this in perspective, it is worth recalling here that uniformly (Fréchet)
smooth Banach spaces have the Banach-Saks property (se e.g. [17]); that is, any
bounded sequence has a subsequence whose arithmetic means are norm convergent.
By a well known result of P. Erdös and M. Magidor ([19], see also [6, II.6]), any
bounded sequence in a space X with the Banach-Saks property has a subsequence
all of whose further subsequences have norm convergent arithmetic means. In par-
ticular, if X has the Banach-Saks property then any weakly null sequence in X has
a Blum-Hanson subsequence. (In fact, it is enough to assume that X has the weak
Banach-Saks property, i.e. any weakly convergent sequence has a subsequence with
norm convergent arithmetic means). Hence, if T is a contraction on X then, for any
x P X with a weakly null orbit, one can find a (nontrivial) choice of 0’s and 1’s pεnq
such that pεnT

nxq is Blum-Hanson.

7.4. How not to be Blum-Hanson. Since asymptotic smoothness is “dual” to
asymptotic convexity, it is natural to expect that an extremal behaviour of the
modulus of asymptotic convexity should give rise to non Blum-Hanson sequences.
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Recall that the modulus of asymptotic convexity of the Banach space X is the
function δ̄X : R` ˆ SX Ñ R` defined by

δ̄Xpt, xq “ sup
E

inf
yP qBE

}x` ty} ´ 1 ,

where the supremum is taken over all finite-codimensional subspaces E of X and
qBE “ ty P E; }y} ě 1u. Obviously δ̄Xpt, xq ě 0. The space X is said to be
asymptotically uniformly convex if δ̄Xptq :“ infxPSX δ̄Xpt, xq ą 0 for all t ą 0. For
example, `1 is asymptotically uniformly convex because δ̄Xptq “ t for all t.

A closely related “modulus” is

dXpt, xq “ inf
pynqPWNpSXq

lim inf }x` tyn} .

(Again, the trivial case WNpSXq “ H is allowed: infH is declared to be `8). In
the terminology of [31], t´1 infxPSX dXpt, xq ´ 1 is the value of the Opial modulus of
X at t´1.

It is easy to check that dXpt, xq ě 1 ` δ̄pt, xq ě t for all t (if x P SX), and that
both δ̄Xpt, xq and dXpt, xq ´ t have a (nonegative) limit as t Ñ 8. The following
result can now be proved along the same lines as Theorem 2.1.

Proposition 7.5. Let pxnqnPZ` be a reverse shift-monotone sequence in X, i.e.
}x1`n1 ` ¨ ¨ ¨ ` x1`nk} ě }xn1 ` ¨ ¨ ¨ ` xnk} for all finite increasing sequences n1 ă

¨ ¨ ¨ ă nk. Assume that the initial point x “ x0 satisfies

(14) lim
tÑ8

´

dXps, xq ´ t
¯

ą 0 .

Then pxnq is not a Blum-Hanson sequence.

As an immediate consequence, we get

Corollary 7.6. Assume that limtÑ8pδ̄Xpt, xq ` 1´ tq ą 0 for every x P SX . Then,
no linear isometry on X can have any Blum-Hanson orbit (except t0u).

To prove Proposition 7.5, one may obviously assume that the sequence pxnq is
weakly null. Then, the strategy is the same as for Theorem 2.1 (but reverting all
the inequalities). The function F introduced in Lemma 3.1 is replaced with

Gpsq “ sup
dPN

inf
APFINs,d

›

›

›

›

›

ÿ

nPA

xn

›

›

›

›

›

,

and one shows that lim inf
sÑ8

Gpsq
s ą 0. To do this, one makes use of the inequality

Gps` 1q ě GpdXps, x0qq .

We shall not give any further detail, for a rather unpleasant reason: all the Banach
spaces that we know for which limtÑ8pδ̄Xpt, xq`1´ tq ą 0 for every x P SX happen
to have the Schur property; and for such spaces everything is trivial since Blum-
Hanson sequences are norm null.
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7.5. Power-bounded operators. As mentioned in the introduction, it is shown in
[40] is that `p, 1 ă p ă 8 does not have the conditional Blum-Hanson property with
respect to power-bounded operators (in short, (CBHPB)). This has been extended by
J. M. Augé [5]: any BanachX space with a shrinking symmetric basis (e.g. X “ c0 or
`p) fails (CBHPB). Since the property is easily seen to be inherited by complemented
subspaces, it follows that any Banach space containing a complemented copy of c0

or some `p, 1 ă p ă 8 fails (CBHPB). For example, this holds for Lp, 1 ă p ă 8
and for any separable Banach space containing a copy of c0 (which is necessarily
complemented by Sobczyk’s theorem). Actually, we are aware of no example of
a Banach space having the Blum-Hanson property with respect to power-bounded
operators, apart from the trivial case of Banach spaces with the Schur property.

7.6. Some questions. To conclude the paper, we collect a few questions that ap-
pear to be quite natural.

(1) Does every uniformly Gâteaux smooth Banach space have the Blum-Hanson
property?

(2) For which countable compact K does CpKq have the Blum-Hanson property?

(3) Does `8 have the Blum-Hanson property?

(4) Let X be a Banach space with the Schur property, and let pΩ,Pq be a
probability space. Does L2pΩ,P, Xq have the Blum-Hanson property?

(5) Let X be a Banach space and assume that X has the Blum-Hanson prop-
erty with respect to contractions with weakly null orbits. Does it follow
that X has the conditional Blum-Hanson property (i.e. BH with respect to
contractions with weakly convergent orbits)?

(6) Does L1 have the full (not just conditional) Blum-Hanson property?

(7) Are the Blum-Hanson property and the conditional Blum-Hanson property
equivalent?

(8) Does every subspace of L1 have the (conditional) Blum-Hanson property?

(9) Does the Hardy space HppDq, 1 ď p ă 8 have property (?)?

(10) Does property (M) imply the Blum-Hanson property?

(11) Is there a Banach space with a 1-unconditional basis failing the Blum-Hanson
property?

(12) Does the `1 direct sum `2 ‘ `2 have the Blum-Hanson property?

(13) Does L1 has the (conditional) Blum-Hanson property with respect to power-
bounded operators?

(14) Is there any Banach space X failing the Schur property but having the Blum-
Hanson property with respect to power-bounded operators? Equivalently, is
it true (or not) that if X is a Banach space without the Schur property, then
X admit a renorming under which it fails the Blum-Hanson property?

(15) Which Banach spaces can be renormed to have the Blum-Hanson property?
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