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SMOOTHNESS, ASYMPTOTIC SMOOTHNESS
AND THE BLUM-HANSON PROPERTY

PASCAL LEFEVRE, ETIENNE MATHERON, AND ARMEL PRIMOT

ABSTRACT. We isolate various sufficient conditions for a Banach space X to have
the so-called Blum-Hanson property. In particular, we show that X has the
Blum-Hanson property if either the modulus of asymptotic smoothness of X has
an extremal behaviour at infinity, or if X is uniformly Gateaux smooth and em-
beds isometrically into a Banach space with a 1-unconditional finite-dimensional
decomposition.

1. INTRODUCTION

Let X be a Banach space, and let T' be a power-bounded linear operator on X (i.e.
sup,ey |17 < o0). By the classical mean ergodic theorem (see e.g. [29]) if z € X
and if the sequence of iterates (T"x) has a weakly convergent subsequence, then the
arithmetic means

LN
An(z) = N Z Tz
n=1

are norm convergent. In particular, if 2 has a weakly null T-orbit (7"z < 0), then

Apn(x) 1, 0. When X is a Hilbert space and T is a contraction operator (|| < 1),

it turns out that a much stronger conclusion holds true: for any z € X with a weakly
null 7T- orbit, the arithmetic means of T"x along any increasing sequence of integers
(n;) are norm convergent to 0. This was first proved by J. R. Blum and D. L. Hanson
([9]) for isometries induced by measure-preserving transformations, and later on in
[2] and [24] for arbitrary contractions. For contractions on a general Banach space
X, this strong conclusion may or may not hold true. When it does so (for every
contraction operator on X ), the space X is said to have the Blum-Hanson property.
This property is the topic of the present paper.

To proceed further, let us fix some terminology. From now on, we consider real
Banach spaces only. A sequence (zp,)neny © X is a Blum-Hanson sequence if every
subsequence of (z;,) is norm convergent to 0 in the Cesaro sense; that is, for any
increasing sequence of integers (n;), it holds that

K
lim — , .
Kl—r>noc K ; Tns 0

Obviously, every norm null sequence is Blum-Hanson and every Blum-Hanson se-

quence is weakly null. In fact, it is shown in [36] that a sequence (z,,) < X is Blum-

Hanson if and only it is “uniformly weakly null”, which means that for any ¢ > 0,
1
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there exists an integer N. such that Vz* € Bxs : #{n e N; [(z*, x,)| = e} < N..
(In the case where X is a Hilbert space, this was proved earlier in [8], where Blum-
Hanson sequences are called strongly mizing).

An operator T € L(X) satisfies the Blum-Hanson dichotomy at some point x € X
if either the sequence (7T"x) is not weakly null, or it is Blum-Hanson. We note that
if T'e £(X) and if z € X has a weakly convergent T-orbit, then w7z := w-lim 7"z is
a fixed point of 7 and hence T"(z — 7rz) — 0. It follows that an operator satisfies
the Blum-Hanson dichotomy at all points x € X if and only if the following holds:
for any z € X with a weakly convergent T- orbit, every subsequence of (7" z) is norm
convergent to mrz in the Cesaro sense.

Given a class of operators C, we say that the Banach space X has the Blum-Hanson
property with respect to C if every operator T' € C n L(X) satisfies the Blum-Hanson
dichotomy at all points € X. Thus, the Blum-Hanson property itself corresponds
to the class C of all contraction operators. If one considers only those operators
T e C with weakly convergent orbits, one gets a formally weaker property, which we
call the conditional Blum-Hanson property (with respect to C).

Few results can be found in the literature regarding the Blum-Hanson property. In
the “positive” direction and apart from Hilbert spaces, the most notable ones seem
to be the following: ¢,, 1 < p < o has the Blum-Hanson property ([40]); L; has
the conditional Blum-Hanson property ([2]); L, has the conditional Blum-Hanson
property with respect to isometries induced by measure-preserving transformations
([9]), and with respect to positive contractions ([3]); any positive contraction on L,
satisfies the Blum-Hanson dichotomy at all positive f € L, ([7]); the same is true
for Orlicz function spaces endowed with the Orlicz norm, provided that this norm
is uniformly smooth ([38]). As for “negative” results, we mention the following:
the space C(T?) does not have the conditional Blum-Hanson property ([1]); and £,,
1 < p < o does not have the conditional Blum-Hanson property with respect to
power-bounded operators ([40]). (This last result shows in particular that the Blum-
Hanson property is not preserved under renormings; in other words, this is not an
isomorphic property of the space). The most exciting question is arguably whether
L, has the Blum-Hanson property.

In this note, our aim is to show that some of the above positive results, as well
as some new ones, can be derived in a unified way from a general and rather simple
theorem (Theorem 2.1) involving a certain “modulus” similar to the well known
modulus of asymptotic smoothness of the given Banach space X. (See section 2 for
the definition).

To be a little bit more precise, it follows from our main result that an “extremal”
behaviour of the modulus of asymptotic smoothness at infinity entails the Blum-
Hanson property for X. This is rather unexpected since, as far as we know, the
behaviour of this modulus at infinity has never been considered. It also follows im-
mediately from Theorem 2.1 that Banach spaces satisfying Kalton-Werner’s property
(my) for some p € (1, 0] have the Blum-Hanson property. Finally, with little extra
work we deduce from Theorem 2.1 that if the duality mapping of X has a cer-
tain weak continuity property, then X has the Blum-Hanson property; it follows in
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particular that uniform Gateauzx differentiability of the norm implies Blum-Hanson
when combined with a suitable “approximation-like” property. As a concrete class
of examples, we consider Orlicz spaces endowed with the Luzemburg norm: we show
that asymptotically uniformly smooth small Orlicz sequence spaces have the Blum-
Hanson property, and that any positive contraction on a Gateaux smooth Orlicz
function space Lg satisfies the Blum-Hanson dichotomy at all positive f € Lg.

The paper is organized as follows. Our main result is stated in section 2, and
two typical examples are given immediately. Theorem 2.1 is proved in section 3.
Results involving differentiability of the norm are collected in section 4. Section 5 is
devoted to Orlicz spaces. Section 6 contains some remarks about very classical spaces
(Hilbert, C(K) and L,). In particular, we give a “new” proof of the Blum-Hanson
property for Hilbert spaces, and we observe that C(K) fails the conditional Blum-
Hanson property for any uncountable compact metric space K. Finally, section 7
contains some additional remarks and ends up with a few natural questions.

2. MAIN RESULT, AND TWO EXAMPLES

Our main result (Theorem 2.1) is about sequences (x,) < X which are not nec-
essarily of the form z, = T"z for some contraction 7" € L£(X). We shall “only”
assume that (x,,) is shift-monotone, in the following sense: for every finite increas-
ing sequence of integers n; < - < ny, it holds that

Hlerm +- "$1+nkH < Hxnl ot xnkH .

This is indeed more general than assuming that (z,) is an orbit of some con-
traction operator; see [47, Example 3.3.]. A similar property (called convez shift-
boundedness) is considered in [47]. It is shown there that a convex shift-bounded
sequence (z,) is weakly mizing to 0 (i.e. % 25:1 |(x*, zp)| — 0 for every z* € X¥)
if and only if the arithmetic means of (z,,) along any increasing sequence of integers
with positive lower density are norm convergent to 0. For sequences of the form
xy, = T"x where T is a power-bounded operator, this was proved earlier in [25].

Theorem 2.1 will be formulated using a “modulus” associated with a given convex
cone C < X (i.e. a nonempty convex set which is closed under multiplication by
nonnegative scalars). For any set A < X, let us denote by WN(A) the family of
all weakly nul sequences (y,) < X with y, € A for all n. Then, for any x € X and
t > 0, we put

ro(t,x) = sup limsup |z + tyy,| -
(yn)EWN(SxnC) n—®

(Here and elsewhere, Sx is the unit sphere of X).
The trivial case WN(Sx n C) = ¢J is allowed: sup & declared to be —oo. For

example, rc(t,x) = —oo if the Banach space X has the Schur property, i.e. when
every weakly null sequence is in fact norm null.

The modulus rx has already been used by many authors, see e.g [20], [21], [22],
[34], [35], [42]. There is a simple connection with the modulus of asymptotic smooth-
ness. The latter is one of the many moduli introduced by V. D. Milman in [39]. With
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the notation of [26], it is the function px : RT x Sy — R defined as follows:
px(t,x) =inf sup |z +ty| —1,
E yeBg
where the infinimum infg is taken over all finite-codimensional subspaces £ < X
(and Bpg is the unit ball of E). The connection between the two moduli is the
following: for any z € S,

(1) rx(t,x) < px(t,x) + 1.

This is fairly easy to check, using the fact that if (y,) is a weakly null sequence in X
then dist(y,, ) — 0 for every finite-codimensional subspace E — X. Moreover, it
is shown in [34] that equality holds in (1) as soon as X embeds isometrically into a
Banach space with a shrinking Markushevich basis (for example, a reflexive Banach
space).

We note that if WN(SxnC) # &, then rc(t,x) = t—|z| for all t. Moreover, since
rc(t, ) is obviously 1-Lipschitz with respect to ¢, the map t — rc(t,x) — t is non-
increasing. Hence, rc(t,x) —t always has a limit [c(x) as t — o0, and Ic(x) = —|z|
in the nontrivial case WN(Sx nC) % . (Actually, if the cone C is symmetric, then
rc(t,z) =t for all ¢t and hence Ic(x) = 0: this is because ¢ = |ty| < W
for any y € Sx n C).

We can now state

Theorem 2.1. Let X be a Banach space, and let C < X be a nonempty convex
cone. Let also (xy)nez+ be a shift-monotone, weakly null sequence in C. If the initial
point x := xg satisfies

i —t) <
(%) gg&(TC(t’Jj) t) 0,

then (x,) is a Blum-Hanson sequence.

Let us say that an operator T' € L(X) is C-positive if it maps the cone C into
itself. As an immediate consequence of Theorem 2.1, we get

Corollary 2.2. Assume that (*) holds for some xz € C. Then, any C-positive
contraction on X satisfies the Blum-Hanson dichotomy at all £ € RTx.

Proof. Let T € L(X) be a C-positive contraction, and assume that 77¢ > 0 for
some ¢ = Az with A > 0. To show that (7"¢) is a Blum-Hanson sequence, we
may obviously assume that £ # 0. Then A # 0 and rg(t,€) = Arc(%, ) for all
t € R") so (x) is satisfied for £ and the result follows by applying Theorem 2.1 with
Ty =TNE. O

Remark. Assume additionally that C — C = X. Then, the following equivalence
holds for every C-positive contraction T": all T-orbits are weakly null iff they are all
Blum-Hanson. However, it does not follow directly from Corollary 2.2 that X has
the conditional Blum-Hanson property with respect to C-positive contractions. The
point is that if a contraction T' with weakly convergent orbits satisfies 7"z > 0 for
some x € X and if we write x = v — v with u, v € C, then the sequences (1T"u) and
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(T™v) have no reason for being both weakly null even though they are both weakly
convergent. When X = L, and C = L; , one can get round this difficulty with some
extra work; see [3], paragraph (2.1).

For future reference, it is convenient to introduce the following terminology.

Definition 2.3. We shall say that a Banach space X has extremal asymptotic
smoothness at infinity if the modulus rx satisfies limy o (rx(t,z) —t) < 0 for
all x € X, and that X has extremal uniform asymptotic smoothness at infinity
if limy o0 (rx (t) —t) < 0, where rx(t) = sup,eg, 7x(t, ).

Thanks to (1), we see that X has extremal asymptotic smoothness at infinity as
soon as its modulus of asymptotic smoothness satisfies (for all z € Sy)

() tlirrog(ﬁx(t,x) +1—t)=0.

Note also that Banach spaces with the Schur property, for example the space /1,
trivially have extremal (uniform) asymptotic smoothness at infinity. This makes the
terminology perhaps confusing because ¢; is usually considered as the “less smooth”
of all Banach spaces (indeed, it has the "worst possible” modulus of asymptotic
smoothness). But we prefer to use the modulus rx rather than px because it leads
to more general results, and yet we want to emphasize asymptotic smoothness.

Note that extremal asymptotic smoothness at infinity is a hereditary property,
i.e. inherited by subspaces. Thus, we may state

Corollary 2.4. If the Banach space X has extremal asymptotic smoothness at in-
finity, then every subspace of X has the Blum-Hanson property. In particular, X
has Blum-Hanson if (x%) holds for all z € X.

The “in particular” part is rather unexpected, since sually what matters about
the modulus of asymptotic smoothness is the behaviour or px(t,z) as t goes to 0.
Indeed, the main property captured by the modulus px is the following: the Banach
space X is said to be asymptotically uniformly smooth if

px (t)

lim ——= =0,
t—0 t

where ix () = supesy A, ).

Theorem 2.1 can also be applied when the given norm on X is smooth in a more
usual sense, under a certain assumption on the duality mapping. We state the result
right now in order to illustrate it with positive contractions on L, but the proof is
postponed to section 4 (see Proposition 4.1).

Corollary 2.5. Assume that the norm of X is uniformly Gateaux differentiable
on the unit sphere Sx, and denote by J(x) the Gateaux derivative of the norm at
x € Sx. Assume that whenever (yy) is a weakly null sequence in Sx n C, it holds
that {J(yn),z) — 0 for every x € C. Then, any C-positive contraction on X satisfies
the Blum-Hanson dichotomy at all x € C.



6 PASCAL LEFEVRE7 ETIENNE MATHERON, AND ARMEL PRIMOT

We now give two hopefully illustrative examples.

The first one is about the so-called properties (my) introduced by N. Kalton and
D. Werner in [28]. A Banach X has property (m,), 1 < p < o0 if, for any € X and
every weakly null sequence (x,) € X, it holds that
(2) limsup |z + z,| = (|z|? + limsup |z, 7).

n—o0
For p = o0 the right-hand side is of course to be interpreted as max(||z||, lim sup |z, ])-
We shall say that X has property sub - (m,) if (2) holds with “=" replaced with “<”;
equivalently, if rx (¢, x) < (1 + tP)'/? for all 2 € Sx.

For example, ¢, has property (m,;) and ¢ has property (ms); any Lorentz sequence
space d(w,p) different from ¢, has property sub- (my) (see [32] for the definition);
the Bergman space B (D) on the unit disk has property (m,); and for any continuous
weight w : [0,1] — R* such that w(r) = 0 only at r = 1, the space 3, consisting
of all functions f holomorphic on D such that w(|z|)f(z) — 0 as |z| — 1, with its
natural norm, has property (mq) (see [28, pp. 163-164]). Note also that any Banach
space has property sub-(m1) and that, just like extremal asymptotic smoothness,
(myp) and sub- (my) are hereditary properties, i.e. inherited by subspaces.

Example 1. For any p € (1,0], property sub-(my) implies extremal uniform as-
ymptotic smoothness at infinity, and hence the Blum-Hanson property. In particular,
any subspace of an £, or cg direct sum of Banach spaces with the Schur property has
the Blum-Hanson property.

Proof. If X has property sub- (m,,) then rx () < (1 +tP)Y7 if p < o0, and rx(t) <
max(1,t) if p = 00; so the first part is clear. For the second part, it is enough to show
that any ¢, (resp. ¢p) sum of Banach spaces with the Schur property has property
(my) (resp. (Mo )). But this is clear since if X = @y E}, is such a space then (by the
Schur property of each Ej) a sequence (xy,) = (®rznk) < X is weakly null if and
only if it is bounded and |z, || g, — 0 as n — oo, for every k € N.

O

Remark 1. The ¢, case is a slight generalization of a result of Y. Tomilov and V.
Miiller [40]. Somewhat surprisingly, the ¢y case appears to be new. (That X = ¢
itself has the Blum-Hanson property was observed independently in [5]).

Remark 2. Tt is shown in [28] that a separable Banach space X not containing ¢;
has property (m;), 1 < p < oo if and only if it is almost isometric to a subspace of
an ¢, direct sum of finite-dimensional spaces, and that X has property (me) iff it
is almost isometric to a subspace of ¢y. Hence, the special case quoted above is in
fact rather general.

Our second example is a result due to A. Bellow [7] (already mentioned in the
introduction).

Example 2. Any positive contraction on L,, 1 < p < o0 satisfies the Blum-Hanson
dichotomy at all f € L; (the positive cone of Ly).
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Proof. The space L, is uniformly (Fréchet) smooth, and the first key step in [7]
is to show that for any € > 0, one can find a constant C. such that the following
inequality holds for every f,g€ S, ,n € L; :

(3) |19 <4 [ga)

Now, the new thing is that the proof is already finished. Indeed, it follows at once
from (3) that if (g,) is a weakly null sequence in Sz, N L, then {J(gn), f) — 0 for
every f € Sp, N L;{ . Hence, we may apply Corollary 2.5.

For completeness and since the same idea will be used in section 5, we include
a proof of (3) (not with the best constant C'(c)). Recall that the duality mapping
J:Sp, — S, is given by
J(f) = [FP2f;
so J(f)=frlif feSy,nel).
Let us fix € > 0, and let n > 0 to be chosen later. If f, g€ S, n L;D" then

i = [t

< f (ng)g” ' + f ffPt + f (i 'g) ')t
{f<ng} {f>n"1g} {ng<f<n=lg}
< 2P 4P fg J(f),
and the result follows by taking n = (¢/2)/?~1, O

3. PROOF OF THEOREM 2.1

The proof of Theorem 2.1 relies on the following simple lemma. Here and after-
wards, for any d, s € N we denote by FIN(s,d) the set of all finite sets A c N with
cardinality |A| = s and “gaps” of length at least d, i.e. |n — n'| = d for any n # n/
in A.

Lemma 3.1. Let (),ecz+ be a bounded sequence in X. For any s € N, set

el
neA

F(s):=inf sup
deN AeFIN(s,d)

F(s)

S

=0.

Then (z,) is a Blum-Hanson sequence if and only if lim
S§—0

Proof. It is easy to see that if (z,,) is Blum-Hanson, then in fact

Indeed, if this does not hold then one can ﬁnd € > 0 and a sequence of finite sets
(Ag)ken such that |Ag| — oo and HzneAk Tn| =€ |Ag| for all k. If |Ay| is sufficiently
fast increasing, then the sets By := AN (max Ag_1, 00) satisfy max By, < min(Bj1)
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> (¢/2) | Bg| for all k, and hence (z,,) is not Blum-Hanson (consider

and HZneBk Tn
the increasing enumeration (n;) of the set  J, Bx).

Conversely, assume that @ — 0as s — o0. Let (n;);>1 be an increasing sequence
of integers, and let us fix € > 0. We have to find Ky € N such that

1 K

By assumption, one may pick d, s € N such that

S,

Let Ky be a large integer to be chosen later. Let also K > Ky, and let £k € N
satisfy ksd < K < (k + 1)sd.
One can partition the interval [1, K] as

VK > K

<e¢

VA € FIN(s,d)

\

where each B ; is an arithmetic progression with cardinality s and “ratio” d, and
|B| < sd. Explicitely:

Blvj = {bl7j7 bl,j + d, ceey blvj + (5 _ ]_)d} ,
where b ; = (j — 1)sd + 1. Putting A;; := {n;; i € By;} and A := {n;; i € B},

we then have A;; € FIN(s,d) and |A| < sd. Hence,
follows:

K .
i—1 Tn;| can be estimated as

K

Y

2, on

neA

NP

1 j=1 TLEAZJ'

< kdxes+Csd,

where C = sup,, |z, |. Dividing by K and since K > max(ksd, Ko), we get
K

1

K=

for every K > Kj. If we choose now K >
the required result.

Csd
\€+7
Ky

% and replace e with /2, this gives

0

The following observation will also be useful, mainly because it allows to replace
rc(t, ) with a modulus which is non-decreasing with respect to t. (The correspond-
ing fact for the modulus of asymptotic smoothness can be found e.g. in [23]). From
now on, we fix a convex cone C c X.
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Remark 3.2. Assume that WN(Sx n C) # . Forx € X and t = 0, define

ro(t,z) = sup limsup ||z + ¢ 2| -
(#n)EWN(BxnC) n—®0
(In other words, Tc(t,x) is defined exactly as rc(t,z) with the unit ball Bx in
place of the unit sphere Sx ). Then rc(t,z) = Fc(t,z) whenever t > 2|x||. If C is
symmetric, this holds for every t = 0.

Proof. Let us fix x € X. We have to show that limsup,,_,, |* + ¢ z,|| < rc(t,z) for
any weakly null sequence (z,) € Bx n C; and upon replacing (z,) by a suitable
subsequence, we may assume that both lim |z + ¢ 2, | and lim ||z, | exist.

Choose € € (0,1) such that 2|z| + et < t. If lim|2,| < e, then lim |z + tz,| <
|z|| + et <t — |z| < re(t,z). Otherwise, we may assume that |z,]| >  for all n.
Then y, := ﬁ 250, and z + ¢, is a convex combination of z + ty, and x + tey,.
Since y, € Sx and |ey,| = €, it follows from the first case that lim |z + tz,| <
max (lim sup || + ty,|, imsup |z + tey,|) < rc(t, z).

If C is symmetric, then rg(t,z) > |z| because |z| < wﬂ for every
y € Sx n C. Then the proof splits into two parts as above according to whether
lim ||z,,|| is 0 or > 0, expressing x +tz, as a convex combination of x +ty,, and x —ty,

in the second case.
O

Finally, we note the following trivial yet essential fact: for any x € X and every
weakly null sequence (z4) < C,

(4) limsup |z + z4| < Fe(limsup [zq], ) .
d—a0

We can now give the

Proof of Theorem 2.1. We assume from the beginning that WN(Sx nC) # ¢, since
otherwise we already know that every weakly null sequence (x,) < C is norm null
and hence Blum-Hanson.

Let (25,)pez+ < C be a shift-monotone, weakly null sequence such that

i —t) <
tIL% (re(t,zo) —t) <0.
Then lim;_,o (Fc(t,z0) —t) < 0 as well by Remark 3.2. For notational simplicity we

will just write 7¢(t) instead of T (t, o).
Let F: N — R™ be the function introduced in Lemma 3.1:

F = inf F, = lim F,
(S) clleN d(s) d—»l 0 d(8)7
where

Fy(s) = sup
AEFIN(s,d)

In
neA
(Since Fjy(s) is non-increasing with respect to d, the infimum inf,; is indeed a true
limit).

The key point is the following
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Fact. The function F' satisfies the inductive inequality F'(s + 1) < 7c(F(s)).

Proof of Fact. Let us fix s € N. By the definition of F(s + 1), one can choose a
sequence (Ag)gen, where each Ay is a finite subset of N with cardinality s + 1 and
gaps at least d, such that

lim Z o =F(s+1).
d—o0
TLEAd
Write Ag = {n14,...,ns41,4}, With n1 4 < -+ < ngp14. Since the sequence (z,)

is shift-monotone, we have

> o

’I’LEAd

”xnl,d T Tyt T Tngiay ”

< ”‘TO + (xna,d—nl,d et ‘Tns+1,d—n1,d)H

|0 + 2l

for every d € N.
Since n;jq —ny1q = d for every i € {2,...,5+ 1} and =z, 2 0, the sequence (zg) is
weakly null; and z4 € C because C is a convex cone. By (4), it follows that

limsup |zg + z4|| < Fc(limsup [zq]) -
d—0
Moreover, z4 has the form ), By Tms for some set By < N with cardinality s and
gaps at least d, i.e. By € FIN(s,d). Hence,

lzall < Fa(s)

for all d € N; and since 7¢(t) is non-decreasing with respect to ¢, it follows that
re(limsup |z4]) < Fe(limsup Fy(s)) = 7c(F'(s)). Altogether, we get

F(s+1) =lim|zg + z4| < Fc(F(s)).
g

It is now easy to conclude the proof. By Lemma 3.1, we have to show that
F(s)/s — 0 as s — 00. Put F(s) = max(F(1),...,F(s)). Then F is non-decreasing
and satisfies the same inductive inequality as F, i.e. F(s + 1) < 7c(F(s)) (again
because 7c(t) is non-decreasing with respect to ¢). If F'(s) has a finite limit as s — o0
then of course lims_o F(s)/s = 0, and hence lim,_,o, F(s)/s = 0. Otherwise, since

limy—, o (Fc(t) — t) < 0, it follows from the inductive inequality that

limsup(F(s +1) — F(s)) <0.

§—00

By Cesaro’s theorem, we conclude that F(s)/s — 0 in this case as well.
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4. BLUM-HANSON AND THE DUALITY MAPPING

In this section, we give several sufficient conditions for a Banach space X to have
extremal asymptotic smoothness at infinity (Definition 2.3). In particular, we prove
Corollary 2.5 and some related results where the smoothness of the norm is involved.

4.1. Definitions. Let us recall some standard definitions and notation.
For any y € X\{0}, we denote by J(y) the set of all norming functionals for ¥,

J(y) ={¢ e X% o] = 1 and (¢, y) = |y[}.

The Banach space X is said to be Gateaur smooth if the norm of X is Gateaux
differentiable at each point of the unit sphere of X. By the classical Smulyan’s
criterion (see [16]), this holds if and only if the duality mapping is single-valued, i.e.
J(y) is a single point (also denoted by J(y)) for every y € Sx. In this case, we have

(5) ly +eh| =1+e{J(y),hy+o(e) ase -0,
for every fixed y € Sx and h # 0.

The space X is uniformly Gateaux smooth if its norm is uniformly Géteaux
differentiable on the unit sphere, i.e. the duality mapping is single-valued and the
“little 0” in (5) is uniform with respect to y € Sx, for every fixed h # 0. This
a much weaker property than uniform Fréchet smoothnes: for example, uniformly
Fréchet smooth Banach spaces are super-reflexive, but any separable Banach space
has a uniformly Géateaux smooth renorming (see [16]).

Finally, recall that X is said to be an Asplund space if every separable subspace
of X has separable dual (this is the more convenient definition as far as the present
paper is concerned). For example, X is Asplund as soon as it admits a Fréchet
smooth renorming, and the converse is true if X is separable (see [16]).

4.2. Vanishing duality mapping. The next result says essentially that the defi-
nition of extremal asymptotic smoothness at infinity can be rephrased in terms of
the duality mapping of X.

For convenience, we introduce the following ad hoc terminology. We shall say
that a set-valued map © : A — 2% defined on a subset A of X is vanishing along
weakly null nets in A at some point x € X if, whenever (z,) is a weakly null net in A
and ¢, € O(z,), it follows that (¢,,x) — 0. Vanishing along weakly null sequences
is defined in the same way.

Recall also the notation of Theorem 2.1: given a convex cone C — X, we say that
condition (%) holds for some x € X if

tli)rgj(rc(t, x)—t) <0.

Proposition 4.1. Let C be a convexr cone in X. If the duality map J is vanishing
along weakly null nets in Sx n C at some point x € C then (x) holds for x, and
hence any C-positive contraction on X satisfies the Blum-Hanson dichotomy at x. If
either X is uniformly Gdateaux smooth or an Asplund space, it is enough to assume
that J is vanishing along weakly null sequences.
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Proof. Towards a contradiction, assume that () does not hold for z. Then one
can find a sequence (t¥) tending to oo and, for each k € N, a weakly null sequence
(y¥)nen © Sx N C such that

lim ||z 4ty | — tF > ¢
n—00

for all k£ and some ¢ > 0.

Dividing by t* and putting e, := 1/t*, we get lim,, .o |legz + 95| — 1 > cep. It
follows that one can find a weakly null net (ya)aca © Sx N C and a net (£4)aea <
(0,00) tending to 0 such that |eqz + yo| — 1 > ceq, for every o € A. (For example,
one may proceed as follows. Let A be the set of all pairs (k, V') where k € N and V
is a weak neighbourhood of 0 in X, with the product ordering, i.e. (k,V) < (K, V)
iff k <k’ and V 2 V'. For any o = (k,V) € A, put g4 := &}, and 3, := y¥, where n
is the smallest integer such that y* € V and [epx + y¥| — 1 > cep).

Put z, = % Then z, € Sx n C, and the net (z,) is weakly null because
ea — 0; hence {(¢4,x) — 0 for any choice of ¢, € J(24). Now, the map ®(e) =
|lex +yall is convex and its right derivative is given by ®/,(¢) = £ (¢(e), x), where ¢(¢)
is a norming functional for ex + y,. The functional ¢(g) is of course also norming
for z, 1= =¥ . Hence, taking € = &, we get ¢, € J(zq) such that

~ Tertual
leat + Yol =1 = ®(ea) — ®(0) < ca{Pas ) -

Thus, we see that |eqz+ya|—1 = 0(eq), a contradiction since |eqz+yal—1 > ceq
for every a € A.

If X is Asplund then the weak topology of any separable subspace of X is metriz-
able on bounded sets. Since in the above proof everything takes place in the sep-
arable subspace span ({x} u{yk; nkeN }), it follows that one can replace nets by
sequences in this case.

Finally, assume that X is uniformly Gateaux smooth and, without loss of gener-
ality, that WN(Sx n C) # . If t — oo then, by uniform smoothness, we have for
any sequence (y,) < Sx:

[t +
tfl
1+ ¢ (yn), x) + o(t™")
t_l
= t+{J(yn); ) +0(1),
where the “little 0” is uniform with respect to (y,). If J is vanishing at = along
weakly null sequences in Sx, it follows immediately that

re(t,z) =t+o(1).

|2+ tyn| =

0

Remark 1. Assume that WN(Sy n C) #+ & and that X is uniformly Gateaux
smooth. An examination of the above proof reveals that for a given x € C, the
condition lim; o (rc(t, x) —t) = 0 is actually equivalent to the requirement that .J
should be vanishing at x along weakly null sequences in Sy n C.
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Remark 2. It follows from the proof that if X is uniformly Fréchet smooth and J
is vanishing along weakly null sequences in Sx n C at all z € C, then (%) holds
uniformly with respect to z € Sx n C.

Remark 3. The proof of Proposition 4.1 is similar to that of [14, Theorem 5].

Remark 4. The space X is said to have a weakly continuous duality mapping if X
is Gateaux smooth and there exists a continuous increasing function p : Rt — R*
with £(0) = 0 such that the map J,(y) = u(|y|)J(y) is w-w* continuous on X
(setting J,(0) = 0). This property has proved to be quite important in fixed
point theory since the classical work of F. Browder [10]. Obviously, it implies van-
ishing of the duality mapping along weakly null nets in Sx at all x € X, and
hence that lim; o (rx (¢, z) —t) < 0 for all z. In fact, one can prove directly that
lim¢ o0 (rx (t,2) — t) = 0 uniformly on Sx, because the modulus rx can be com-
puted explicitely. Indeed it is shown in [35] that if X has a weakly continuous duality
mapping with “gauge” function p and if we put M (t) = Sé u(s)ds then

(6) lim sup [ + ta| = M~ (M([2]) + M ()

for all x € X and every weakly null sequence (z,) c Sx; in particular, rx (¢, z) is

the right-hand side of (6). Now, it is not hard to see that u(t~!) = cu(t)~!, where

c = p(1)? (see below). In particular, uu(t) — o as t — 0o and hence (6) does imply

that rx(t,7) —t — 0 uniformly on Sy. (To show that u(t~1) = cu(t)~!, note that

for any ¢t > 1 one can find a net (y,) < tSx converging weakly to some y € Sx. Then
w

w1(t)J(Ya) Ak 1(1)J(y); but since 22 — ¥ and J(%) = J(z) for any z € X\{0}, we
*
also know that 1(1)J(ya) — u(t~1)J(y), and the result follows).

4.3. An appproximation-like property. We now use Proposition 4.1 to isolate
one reasonably general class of Banach spaces having extremal asymptotic smooth-
ness at infinity.

To formulate the result, we introduce an “approximation-like” property for which
we have not tried to find a name to avoid pedantry (see however the remark at the
end of this sub-section). We shall say that a Banach space Z has property (7) if
the following holds: for any z € Z, one can find a sequence of compact operators
(mx) © L(Z) such that gz — 2z and limsupy |I — 7| < 1. (Equivalently, one
may require that |I — 7x| < 1 for all K). One example to keep in mind is the
following: property (?) is satisfied if Z has a reverse monotone Schauder basis,
i.e. a basis (fx)ken such that |[I — x| = 1 for all K, where 7 is the canonical
projection onto span{fi,..., fx}. (For example, any 1-unconditional basis is reverse
monotone). More generally, it is enough to assume that Z has a reverse monotone
finite-dimensional Schauder decomposition.

Proposition 4.2. If the Banach space X is uniformly Gdteauxr smooth and embeds
isometrically into a Banach space with property (?), then X has extremal asymptotic
smoothness at infinity (and hence the Blum-Hanson property).
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Proof. By Proposition 4.1 (with C = X) it is enough to show that the duality
mapping of X is vanishing along weakly null sequences in Sx at all x € Sx. So let
us fix a weakly null sequence (y,,) < Sx.

Let Z be a Banach space with property (7) such that X embeds isometrically into
Z. Considering X as a subspace of Z, we still denote by J(y,) any Hahn-Banach
extension of J(yn), n € N. Also, for any ® € Z* we denote by ||®|x#* the norm of
® viewed as a linear functional on X; that is [®[x» = [®x[. Finally, if (®x) is

a sequence in Z*, we write “@g Y%, 0 in X*7 if the sequence ((®x)jx) < X* is
w*-null.

Let € X be arbitrary, and let (7x) be a sequence of compact operators on Z such
that mxx — x and limsupg |/ — 7| < 1. Since the sequence (y,) is weakly null,
we know that |7xy,| — 0 for every fixed K € N. Hence, we can find a subsequence
(Yng ) of (yn) such that |7xyn,| — 0 as K — oo. Then

K—
(I =75 Ui )s Y ) = 1= T Unge )y ThYnge) = L.
Since limsup |[(I — 75 )J (Yny )| x* < limsup |({ — 7} )J (Yn, )| < 1 and, moreover,
Yngx € Sx and (J(Yny)sYny) = 1, it follows that Im |( — 75 ) (Yny )| x*x = 1 =
Hm | J (Y, )| x+ and Bm (1 — 7% ) J (Yng ) + J (Yng )| x+ = 2. By the uniform Gateaux
smoothness of X, this implies (see [16, Theorem 6.7 and Proposition 6.2]) that

w* .
(I = 75) I Wng) = J (Yngx) — 0 in X7,

ie 5 J(Yng) % 0in X*. In particular, (J(yn, ), Txkx) — 0 and hence {J (Y, ), x) —
0 since Tgx — .

Thus, we have shown that for every x € X, one can find a subsequence (yy, ) of
(yn) such that (J(yn, ), ) — 0. Since this can be done starting with any subsequence
of (yy), this shows that (J(yn),z) — 0 for all x € X, as required.

O

Corollary 4.3. If X is uniformly Gateaux smooth and embeds isometrically into a
Banach space with a reverse monotone (e.g. 1-unconditional) FDD, then X has the
Blum-Hanson property.

Remark. There are lots of well identified approximation properties in Banach space
theory; see e.g. [11] or [12]. The one that seems closest to (7) is the so-called Reverse
Monotone Compact Approzimation Property. A Banach space Z has (RMCAP) if
one can find a sequence of compact operators (1x) < £(Z) such that mxz — z for all
z€ Zand |[—mg| — 1. This is formally a much stronger property than (?), because
in (?) the mx’s are allowed to depend on z. In view of the existing terminology
property (?) could consistently be called the “Reverse Monotone Compact Point
Approximation Property”; which is not a very exciting name. Incidentally, it is well
known that L, does not have (RMCAP) if p # 2. (A much stronger result is proved
in [41].

4.4. Almost isometric embeddings. Recall that a Banach space X is said to
embed almost isometrically into another Banach space Z if it can be (14¢)-embedded
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into Z for any € > 0, i.e. one can find an operator j : X — Z such that
(L +e) Y| < [jz] < (1 + )|

for all x € X. Almost isometric embeddings are relevant in our matters because
of the following remark: extremal uniform asymptotic smoothness at infinity is pre-
served under almost isometric embeddings; that is, X has extremal uniform as-
ymptotic smoothness at infinity as soon as it embeds almost isometrically into a
Banach space with this property. Indeed, it is not hard to check that if X em-
beds almost isometrically into Z then rx(t) < rz(t) for all t € RT. (Recall that
rx(t) = sup,eg, 7x(t,x)). The corresponding fact for the modulus of asymptotic
smoothness py is proved e.g. in [15, Lemma 2.1]

The following result is a“Fréchet” analogue of Proposition 4.2.

Proposition 4.4. If the Banach space X embeds almost isometrically into a uni-
formly Fréchet smooth Banach space with property (?), then X has extremal extremal
uniform asymptotic smoothness at infinity (and hence the Blum-Hanson property).

Proof. By the proof of Proposition 4.2 and Remark 2 after the proof of Proposition
4.1, any uniformly Fréchet smooth space Z with property (?) has extremal uni-
form asymptotic smoothness at infinity. Since the latter is preserved under almost
isometric embeddings, the result follows.

O

In view of this result and of Proposition 4.2, it is natural to ask whether a uni-
formly Gdteaur smooth space X has extremal (not uniform) asymptotic smoothness
at infinity as soon as it embeds almost isometrically into a Banach space with prop-
erty (7). We now show that this does hold true (and in fact without any smoothness
assumption) if (?7) is replaced with a stronger property.

Given a function ¢ : RT x Rt — R* such that c(s,t) > s for any (s, ), let us say
that a Banach space Z has property (7). if the following holds: for any z € Bz, one
can find a sequence of compact operators (mx) < L£(Z) such that gz — z and

(7) VK VO e Z" : c(|(I — 7)), [mx®(2)]) < |-

So one requires ||[I — x| < 1 for all K, with a quantitative estimate provided by the
function ¢. For example, £, 1 < p < o0 has property (?). with ¢(s,t) = (s 4 9)1/4.

Proposition 4.5. Assume that there exists a continuous function ¢ : Rt xRt — R*
satisfying c(s',t) = c(s,t) > s whenever s = s and t > 0, such that for any e > 0,
X can be (1 + €)-embedded into a Banach space with property (?).. Then X has
extremal asymptotic smoothness at infinity (and hence the Blum-Hanson property).

Proof. We show that the duality mapping of X is vanishing along weakly null nets
in Sy at all x € Sx. So let us fix a weakly null net (y,) = Sx, linear functionals
¢a € J(Ya), and a point = € Sx. Let also € € (0, 1] be arbitrary.

By assumption, there exists a Banach space space with property (7). such that
X can be (1 +¢)-embedded into Z. Without loss of generality, we may assume that
X c Zasasetand (1 +¢) Y€z < |€llx < (1 +¢)|€]z for every € € X. Let us
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choose sequence of compact operators wx : Z — Z, such that mgz — x and (7)
holds with z = z.

Considering each ¢, as linear functional on (X, | - ||z), choose any Hahn-Banach
extension ®, € Z*. Then &, = ¢, on X (by definition) and ||P,] < 1+ e < 2
because |¢qx* = 1. We claim that

(8) liminf | (I — ) @af = (1 +2)7*
for every K € N. Indeed, since |y.|z < (1 + ) we have

(I =7f)®all = (1+e)7 K Pa, (I = 7K)ya)
= (1 + 5)71‘1 - <(I)on7TKyoc>| )

because (Py, Yo) = (ba,Ya) = 1. Since |Txyalz — 0 (because (y,) is a bounded
weakly null net and 7x is compact) and (®,) is bounded, this gives (8).
By (7) and since |®,] < 1+ ¢ for every «, it follows that

limsupc ((1+¢)7!, |mk®a(z)]) <1+¢
«

for every K € N. Since c(s,t) > s for t > 0 and since 7} ® () is uniformly bounded
with respect to o and K, this implies that

lim sup |75 ()] < 3(e, 7).

where 0(g,z) does not depend on K € N and d(e,2) — 0 as € — 0.

Now, let us choose K € N such that |(I — 7x)z|z < e. Writing (¢a,x) =
(Po,mrT) + (Do, (I — K )x), We get [(Pa, )| < (75 Py, z)| + 2¢ for all n € N, and
hence

limsup [{¢a,z)| < (e, x) + 2¢.

Since e € (0,1] is arbitrary, we conclude that {(¢n,z) — 0 for every x € X, as
required.
]

4.5. WORTH. Our last result related to Gateaux smoothness is about Banach
spaces with property WORTH, a property which has been considered in fixed point
theory (see e.g. [45]). A Banach space X has WORTH if

lim (|2 + ynl = |2 = gl ) = 0
n—ao0

for every weakly null sequence (y,) < X. If weakly null sequences are replaced by
weakly null bounded nets, one obtains the so-called property (au), which have been
thoroughly studied recently by S. R. Cowell and N. Kalton [13], together with its
dual version (au®) (the latter was introduced in [30] under the name “(wM™*)”).
Though perhaps innocent looking at first sight, these properties are in fact very
strong. For example, it is shown in [13] that a separable reflexive Banach space
has WORTH if and only if it can be (1 4 ¢)-embedded into a Banach space with a
shrinking 1-unconditional basis, for any € > 0.
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Proposition 4.6. If X is uniformly Gateauxr smooth with property WORTH, then
it has extremal asymptotic smothness at infinity (and hence the Blum-Hanson prop-

erty).
Proof. We may assume that X does not have the Schur property. By WORTH, the
modulus rx can be re-written as follows :

_ : |z + tyn| + = — tyn|
rx(t,z) = sup  limsup .
(un)eWN(Sx) e 2

Moreover, by uniform Gateaux smoothness we have (as t — o)

o+ oy + |t e —
|z + tyn|| + |2 — tyn| = It~ ynH_H T — Yl

t—1
(T I (), ) + ot h) + (1=t (yn), @) + 0(t™1))
= =
= 2t+o0(1)
where the “little 0o” is uniform with respect to (y,) € WN(Sx). Hence, we get
lim¢ o0 (rx (t,2) —t) = 0 for every z € X. O

Remark. A strong form of WORTH is the important property (M) introduced by
N. Kalton in [27]. A Banach space X has property (M) if

limsup |u + x| = limsup |v + x|

whenever u,v € X satisfy [|u| = |v| and (x,) is a weakly null sequence in X.
Obviously, property (M) is weaker than (m,), for any p € (1,0]. Since we saw in
section 2 that (m,) implies Blum-Hanson, it makes sense to ask whether (M) implies
the Blum-Hanson property. By [28, Corollary 4.5], this is true for subspaces of Ly,
1 < p < o0 and for subspaces of L1 not containing ¢;, because any such space has
property (m,) for some r > 1. More generally, this is true for separable Banach
spaces not containing ¢; which are stable in the sense of [33]; see the proof of [27,
Theorem 3.10].

5. ORLICZ SPACES

In this section, we apply the previous general results to the specific setting of
Orlicz spaces. Not unexpectedly, the situation is similar to that of ¢, and L, spaces
(as far as the Blum-Hanson property is concerned).

Let 6 : [0,00) — [0,00) be an Orlicz N -function, i.e. an increasing convex function
such that lim;_,o, 0(t)/t = o0 and lim;_,¢ 6(¢)/t = 0. Given any measure space (£2, ),
the Orlicz space Lg(2, 1) is the space of all (equivalence classes of) measurable
functions f : @ — R such that §, 6(c|f|) du < oo for some ¢ > 0. We equip Lg(€, 1)
with one of its two “natural” norms, the so-called Luzemburg norm:

171 = mf{A -0 La <§') < oo} |

When Q = Z* equipped with the counting measure, we denote the Orlicz space
by ¢p; and when Q = (0,1) with Lebesgue measure, we simply write Ly.
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The small Orlicz space My(Q2, 1) (also called the Morse-Transue space) is the
subspace of Ly(€2, 1) consisting of all f such that {;, 0(c|f]) du < oo for every ¢ > 0.
We write mg when Q = N and My when Q = (0, 1).

It is well known (see e.g. [43] and/or [32]) that my = { if and only if 0 satisfies
the so-called Ay condition at 0, i.e. limsup,_,,6(2t)/0(t) < oo, and that My = Ly
iff 0 satisfies the Ag condition at co, i.e. limsup,_,., 0(2t)/0(t) < co. By the duality
theory of Orlicz spaces, it follows that £y is reflexive iff both # and the conjugate
Orlicz function 6* satisfy the As condition at 0, and that Ly is reflexive iff # and 6*
satisfy the Ay condition at oco.

We quote the following more “specialized” results:

e myg is asymptotically uniformly smooth if and only if 8* satisfies the As
condition at 0 ([15]);

o Ly is Gateaux smooth iff § is C! and satisfies the Ay condition at oo (see [44,
Theorem X.4.3));

We can now state our results about the Blum-Hanson property for Orlicz spaces.
For the sake of “immediate applicability”, we formulate the assumptions directly in
terms of the Orlicz functions 6 and 6*; but this should of course be translated into
properties of the Orlicz spaces (using the just mentioned results).

Proposition 5.1. Let 6 be an Orlicz N -function.

(1) If 6* satisfies the Ag condition at 0, then every subspace of mg has the Blum-
Hanson property.

(2) If 0 is C'-smooth and satisfies the Ao condition at oo then, any positive
contraction on Lg satisfies the Blum-Hanson dichotomy at all f € L; (the
positive cone of Lg).

Proof. (1) By [15], the Ay condition for #* means that X = my is asymptotically
uniformly smooth. Moreover, it is also shown in [15] that in this case the modulus of
asymptotic smoothness of X behaves very nicely: one can find some constant o > 1
such that

px(t,x) < (14t —1
for every x € Sx and all ¢ > 0. (This is stated only for ¢ € [0,1] in [15], but the

proof works for any ¢ > 0). This shows that my has extremal (uniform) asymptotic
smoothness at infinity, hence (1).

(2) Here, the assumption mean that Ly is Gateaux smooth. It is enough to show
that the duality mapping J = S, — S L is vanishing along weakly null nets in
Sry 0 L; at all fe Sg, n L;’.

We shall use the following known fact (see [43, Theorem VII.2.3]): if f € Sy, L
then J(f) is given by the formula

(9) (f) gy = f g'(f).
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This formula makes sense thanks to the A, condition. Indeed, if h € Ly, then
0'(|h|) € Lgx by Ag (see [43, proof of proposition II1.4.8]) and hence, by Holder’s
inequality (see e.g [43, Proposition I11.3.1]), k&'(|h|) is integrable for any k, h € Ly.

We also need the following inequality :
(10) VieLfnSi, - Jf&’(f);l.

To prove this, note that §6(|f]) = 1 for every f € Sp,, by Ag (see e.g [43, Proposition
I11.4.6]). Since @’ is non-decreasing and 6(0) = 0, it follows that ¢6’(t) = 6(t) for all
t > 0 and hence § f0'(f) = (0(f) for any f e L.

Now, let us fix a weakly null net (f,) = Lj n Sr, and a function g € L. We
show that (J(fa),g) — O.

Let € > 0 be arbitrary. Since the function g#6’(g) is integrable (see the remark
just after (9)), we may first choose 7 > 0 so that §g6'(ng) < e. Then, proceed as in
the proof of Bellow’s inequality (3) for L,:

[t = [+
fa<ng g<nfa ng<fa<n—lg

< Jgﬁ’(ng) +1) ffa 0 (fa) +n " ffa ' (n"g).

Using (9), (10) and assuming (as we may) that n < &, we get
(I(fa)rgy <2 +n7" ffoz 0'(n""g),

for every a. Since #'(n~'g) € Lgx = (Lg)* by Ao and since (f,) is weakly null, it
follows that limsup (J(fa),g) < 2¢, which concludes the proof.
O

Corollary 5.2. Any subspace a reflexive Orlicz sequence space has the Blum-Hanson
property.

Remark. As mentioned in the introduction, the Blum-Hanson property for Orlicz
function spaces endowed with the Orlicz norm has been studied in [38]. It is shown
there (Theorem 7.7) that if Ly is uniformly Fréchet smooth when endowed with
the Orlicz norm, then it has the Blum-Hanson property with repect to positive
contractions. The proof also makes use of a Bellow-like inequality (Lemma 7.2).
Exactly as in the L, case, it could be shortened by applying Proposition 4.1.

6. VERY CLASSICAL SPACES

6.1. Hilbert spaces. We include here a superficially new proof of the Blum-Hanson
property for complex Hilbert spaces. This is merely a rewriting of the one that can be
found in [29]. However, we find it worth mentioning for two reasons: it is extremely
simple (though not elementary), and it suggests than one could possibly prove the
Blum-Hanson property for other spaces by using “functional calculus” arguments.

Let T be a contraction operator on a complex Hilbert space H, and assume that
T"z > 0 for some z € H.
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Let o, be the spectral measure for T associated with z, i.e. the positive (finite)
measure on T whose Fourier coefficients are given by

_ (T"x,x) n=0
az(n) = {<T*|nx,x> n<0

The assumption 7"z —> 0 means that o, is a Rajchman measure: &,(n) — 0 as
|n| — o0. Moreover, the following von Neumann-type inequality holds for every
polynomial P (see e.g. [46, Proposition 1.1.2]):

(11) IP(T)al? < | |PPdo..

Now, let (n;);>1 be an increasing sequence of integers. Applying (11) with P(z) =
2" 4 4 2K we get
2

(12)

K K
ET"% < Z oz (n;
i=1 ij=1
for any K € N. Moreover, since 0,(n) — 0 as |n| — o0, it is a simple exercise to
show that
K
W ACEEBIE
ig=1
¥))

as K — o. (Indeed, we have ji{ € [1,K]% |ni —nj| < N} < 2KN, so that
limsup ag < sup{|o;(n)|; |n| > N} for any N € N). By (12), it follows that the
sequence (T"z) is Blum-Hanson.

6.2. C(K) spaces. As mentioned in the introduction, it is shown in [1] that the
space C(T?) fails the conditional Blum-Hanson property. From this and known
results about C(K) spaces, one can easily deduce

Proposition 6.1. If K is an uncountable compact metrizable space, then C(K) fails
the conditional Blum-Hanson property.

Proof. This relies on the following trivial observation:

Fact. Let X be a Banach space, and let Z be a 1-complemented subspace of X. If
Z fails the (conditional) Blum-Hanson property then so does X.

Proof of Fact. Let m : X — Z be a norm 1 projection from X onto Z, and let
jiZ—->X be the canomcal embedding. If T': Z — Z is a contraction on Z, then
T := 7T'm is a contraction on X extending 7'; and since T = = jT™7 for all n, it has
weakly convergent orbits as soon as T' does. So the result is clear.

O

Now, we use the following facts, which are the key ingredients in the proof of
Miljutin’s theorem on the isomorphism of all C(K) for uncountable and metrizable
K (see [4, p. 95]). Let A = {0,1} be the usual Cantor space. Then, for every
compact metrizable L the space C(L) is isometric to a 1-complemented subspace of
C(A); and if L is uncountable then the space C(A) is isometric to a 1-complemented
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subspace of C(L). Applying this first with L = T? we deduce that C(A) fails the
conditional Blum-Hanson property, and taking then L. = K we conclude that so
does C(K).

]

Corollary 6.2. The disk algebra A(D) does not have the conditional Blum-Hanson
property.

Proof. Recall that the disk algebra is the space of all complex-valued functions which
are continuous on the closed unit disk D < C and holomorphic on D, endowed with
the sup norm. Let K be an uncountable compact subset T with Lebesgue measure
0. By the Rudin-Carleson theorem, any continuous function f : K — C can be
extended to a function f € A(D) with |f]w = ||f]e; and in fact, it was shown by A.
Pelczynski that there is an isometric linear extension operator £ = C(K) — A(D)
(see [37]). It follows at once that A(D) has a 1-complemented subspace isometric
to C(K) (namely EC(K)), and hence that A(ID) cannot have the conditional Blum-
Hanson property. O

Remark. It is quite plausible that no C(K) space (for infinite K) has the Blum-
Hanson property. In any event, if K is an infinite compact (Hausdorff) space then
C(K) does not have extremal asymptotic smoothness at infinity. Indeed, as in any
infinite Hausdorff space one can find a countably infinite discrete D in K. Denoting
by Q the closure of D in K, the space C(K) contains an isometric copy of C(2); so
it is enough to show that C(£2) does not have extremal asymptotic smoothness at
infinity. Write D = {d,;; n € N}. Since D is discrete, each {d,} is clopen in Q, so
the function f, = 14, is in C(2). Obviously, the sequence (f,) is weakly null in
X = C(R2). Moreover, since f, = 0 we have |1 + tf,]|o = 1 + t for every t = 0; so
rx(t,1) =1+t for all ¢.

In the case K = T?, the main result of [1] is in fact much more precise than
Proposition 6.1: the space C(T?) fails the conditional Blum-Hanson property with
respect to the very special class of composition operators, i.e. operators of the form
Tf = f op. Interestingly enough, this does not hold for K = [0, 1].

Proposition 6.3. The space C([0,1]) has the conditional Blum-Hanson property
with respect to composition operators.

Indeed, let T be a composition operator (T'f = f o ¢) on C([0,1]) induced by
some continuous map ¢ : [0,1] — [0, 1], and assume that 7" has weakly convergent
orbits. This means exactly that the iterates ¢" converge pointwise on [0, 1] to some
continuous function « : [0,1] — [0,1]. Hence, it is enough to prove the following
lemma. (This lemma is certainly well known but we couldn’t locate a reference. The
proof we give is due to D. Malicet, and we thank V. Munnier for explaining it).

Lemma 6.4. Let ¢ : [0,1] — [0, 1] be a continuous map. If o™ (z) — a(x) pointwise,
where o : [0, 1] — [0,1] is continuous, then in fact p"(z) — a(z) uniformly.

Proof. We note that the set of fixed points of ¢ is exactly the closed interval I =
a([0,1]). If I = [0,1], there is nothing to prove. Otherwise, consider the space
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A obtained from [0, 1] by identifying all the points of I, with the usual quotient
topology. Then A is homeomorphic to [0, 1], the map ¢ induces a continuous map
@ : A —> A with a single fixed point &, and the iterates @™ converge pointwise to
a on A. If we can show that ¢" — & uniformly then we will get the result for .
Therefore, all we need to do is to prove the following result : If ¢ : [0,1] — [0, 1]
is a continuous map with a single fized point a such that ¢™(x) — a pointwise on
[0,1], then the convergence is uniform. To do this, the key point is the following

Fact. Let J = [u,v] be a nontrivial compact interval of R. If ¢ : J — J is continous
and ¢"(x) — a € J pointwise on J, then ¢ cannot be onto.

Proof of Fact. If a = u, then we must have p(z) < x for all x €]u,v], because
¢(x) — x has constant sign on |u,v] by the intermediate value theorem (o = u is
the only fixed point of ¢) and ¢(v) < v; in particular p(z) < v for all x € J, which
gives the result in this case. Likewise if & = v. Now, assume that « € Ju, v[ and that
¢ is onto. Then ¢(x) — = has constant sign on both intervals [u, o[ and ]a,v], and
since ¢([u, v]) < [u,v] the only possible case is the following: ¢(z) > = on [u, af and
¢(x) < x on |a,v]. In particular, p(z) > u on [u,a] and ¢(x) < v on [a,v]. Since
¢ is onto, we then have v € ¢([u,a]) and u € ¢([a,v]), whence [a,v] < ¢([u, a])
and [u, a] < ¢([e,v]). It follows that [u, o] < p?([u,a]); but this is a contradiction
because (? satisfies the same assumption as ¢ and hence p?(z) > u on [u,a]. O

Now, let ¢ : [0,1] — [0, 1] be a continuous map such that ¢"(x) — a pointwise
on [0,1]. Then J =[5, ¢"([0,1]) is compact interval containing c, and it is easily
checked that ¢(J) = J. By the above fact, it follows that (,-,¢"([0,1]) = {a};
and from this it is not hard to deduce that ¢"(z) — « uniformly.

O

6.3. The space L;. In [2], the proof that L; = L;(0, 1) has the conditional Blum-
Hanson property proceeds roughly as follows. Using the so-called linear modulus
associated with a given contraction 7" on L; and assuming that 7" has weakly con-
vergent orbits, one breaks the underlying measure space into 2 pieces A and B such
that 7" has norm null orbits on L;(A) and T is an absolute contraction on L1 (B),
i.e. a contraction on any L,, 1 < p < c0. Then the absolutely contractive part is
handled using the Lo case. This seems to be very specific to L1, and we see no way
of using any kind of “smoothness” argument to shorten the proof.

6.4. The space L,. If L, = L,(0,1), 1 < p < o were to have the Blum-Hanson
property, this could not be proved by a direct application of Theorem 2.1 with
C = X = L, except of course for p = 2. Indeed, L, does not have extremal
asymptotic smoothness at infinity.

One can see this somewhat indirectly by observing that the duality mapping of L,
is not vanishing along weakly null sequences (see Remark 1 just after Proposition
4.1). Indeed, let 7 : (0,1) — (0,1) be any strongly mixing transformation wrt
Lebesgue measure, and let T'f = f o7 be the induced isometry on L,. Since p # 2,

one can find g € L, such that {g = 0 and {J(g) = ¢ # 0. Then T"g = 0 by the
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strong mixing property, but J(1™g) is not weakly null because §.J(I™g) = c¢. (This
example is taken from [7]).

One may also check directly that L, does not have extremal asymptotic smooth-
ness at infinity. Consider a sequence (&) of independent random variables on the
probability space (€2, P) = (0, 1) with Lebesgue measure, such that P(§, =a) = 1—\
and P(&, = —b) = A\, where a # b (with a,b > 0) and A are chosen in such a way
that E(§,) = 0 and [[€, [z, = 1; explicitely, (1 — A)a? + Ab? = 1 and (1 — A)a = Ab.
The sequence (&) is bounded in Ly, and orthogonal in Ly, hence weakly null in L,,.
On the other hand, |1+ t&,[, = (1 —A)(1 + ta)? + A(1 — tb)P)/P for all n, and it
follows that

rr,(t, 1)P
tp
Since (1—\)aP+A\bP = 1, the right-hand side is equivalent to 14ct~! as t — o0, where
c=p((1=Xa’~t+XbP71). Putting o = (1—X)a = A\b, we have ¢ = pa(bP~2 —aP~?)
and hence ¢ # 0 if p # 2. Thus, taking a < b if p > 2 and a > b if p < 2, we see that
limyo0 (rr, (¢, 1) — ) = 5 > 0. (This example is taken from [18]).

> (1—=NaP(1+a 1t HP + P(1 — b 1P,

Incidentally, the sequence (&,) above is Blum-Hanson. Indeed, by the Banach-
Saks theorem the bounded sequence (&,) has a subsequence whose arithmetic means
are norm convergent, necessarily to 0 = w-lim&,; and since (&,) is invariant under
spreading (i.e. | X, c4 &nlp depens only on the cardinality of the finite set A < N),
the same is in fact true for any subsequence of (£,). One can also apply the mean
ergodic theorem, as follows. Let X be the closed subspace of L, generated by the
&n; then the shift map &, — &,+1 extends to an isometry S of X because the &, are
independent and identically distributed, and &, = S™&y by definition; by the mean
ergodic theorem and the invariance under spreading, this gives the result. Finally,
here is a more baroque proof: since the &, are centred and independent, they form
a bi-monotone Schauder basis of X (because [§ + &'||l, = [|£], whenever £ and &
are independent centred random variables); so X has the Blum-Hanson property by
Proposition 4.2, and hence (&,) = (S"&p) is Blum-Hanson.

The last few lines suggest that there still might be some hope for showing that
L, has the Blum-Hanson property by applying something like Theorem 2.1. In
this spirit, it is worth noting that for any finite measure space (2,8, i), the space
L,(€, 1) satisfies a weak form of Kalton-Werner’s property (my). Indeed, let us
denote by 7 the topology of convergence in measure (for measurable functions on
). It is not difficult to see that L, has property (m,) with respect to the topology
7; that is, if f e L,(Q, p) and if (f,) < Lp(2, ) is 7-convergent to 0, then

limsup £+ ful = (I[P + limsup | £[")"7.

It follows that any subspace of L,(2, ) in which all weakly null sequences are
7-null has property (mp), and hence the Blum-Hanson property. (This applies for
example to the Bergman space B,(D), since weak convergence in By(D) implies
uniform convergence on compact sets). More generally, the proof of Theorem 2.1
yields the following result.



24 PASCAL LEFEVRE7 ETIENNE MATHERON, AND ARMEL PRIMOT

Proposition 6.5. Let (2,8, 1) be a finite measure space, and let T be a contraction
on a subspace X of L,(Q, ). If f € X is such that T" f 50, then the sequence
(T™f) is Blum-Hanson.

Hence, any subspace of L, has the “r-Blum-Hanson property”. This leaves us
certainly far from showing the Blum-Hanson property for L,, but still this could be
an interesting fact.

7. CONCLUDING REMARKS, AND SOME QUESTIONS

7.1. Sequences of contractions. Using the same ideas as in the proof of Theorem
2.1, one can prove a more general result allowing to deal with sequences of contrac-
tions not necessarily of the form 7™ for some 7. We have no application, but this
might be useful elsewhere.

Let Z be the set of all finite intervals of positive integers, including the empty
interval. We denote by |«a| the length of an interval a € Z. We write a < fif a <
and min @ = min . Finally, we say that a family of points (x4 )aez in a Banach space
X is shift-monotone if [xa, +- -+ 2o, | < [Taj\ae + +Tag\aol for every increasing
sequence oy < ay < -+ < g in Z. For example, if (x,,) is a shift-monotone sequence
in X and o = 7o), then the family (74)aez is shift-monotone.

Proposition 7.1. Let (x4)aez be a shift-monotone family in a Banach space X.
Assume that T, ~—> 0 as |a| — o0, and that limy—o(rx (t,25) —t) < 0. Then, for
any infinite increasing sequence a; < ag < ... in L, the sequence (x,,) is Blum-
Hanson.

As an immediate consequence, we get

Corollary 7.2. Let (Tj)jen be a sequence of contractions on X, and let x € X.
Assume that TyTpy1---Tyx > 0 as ¢g—p — +0, and that limy_,o (rx (t, x) —t) < 0.
Then the sequence (T -+ - T, @) pen 18 Blum-Hanson.

Proof. Just apply Proposition 7.1 to the (shift-monotone) family (x)qez defined by
rg =x and zo =Ty - - Tyx if o = [p,q]. O

Proof of Proposition 7.1. For any d,s € N, let us denote by F(s,d) be the family
of all finite sets A < Z of the form A = {ay,...,as} with a1 < -+ < a4 and
lait1\ai| = d for all i € {1,...,s — 1}. Now define the function F' : N — R, in the
obvious way:

F(s) =inf sup

Zo
deN AcF(s,d)

acA

Then, one shows exactly as in the proof of Theorem 2.1 that F'(s)/s — 0 as s — 0;

and the result follows.
O
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7.2. Direct sums and sub-(m,). The following remarks show that properties
sub- (m,,) are preserved under direct sums.
Proposition 7.3. Let (X;)ier be a family of Banach spaces.

(1) Let p € [1,00), and assume that each X; has property sub-(myp,) for some
pi = p. Then the £, direct sum @, X; has property sub-(m,).
(2) If all (X;) have property sub-(my), then @c,X; has sub-(my).

Proof. (1) To avoid double subscripts, we write any vector in X = @, X; as v =
(2(7))ier- Moreover, we denote all norms involved (in X and in every space X;) by
the same symbol || - |. Finally, we may assume that in fact p; = p for all i since
sub- (mg) obviously implies sub- (m,,) whenever ¢ > p.

Let z € X, and let (z,,) be any weakly null sequence in X. We have to show that

(13) limsup |z + 2z, [P < [|z[? + limsup |z, .

n—oo

Since all z, have countable support, we may assume (by a diagonal argument)
that lim,, ||z, (7)| exists for all i € I.

Let us fix € > 0. By the definition of X, we may choose a finite set I, < I such

that
D lz@)]P <
i¢l.
Now, let (£;);er. be positive numbers such that Y, ¥ < P. Since each space X;
has property sub-(m,) and all limits lim,, |2,(¢)| exist, one can find N € N such
that

V= NViel : [z(@)+ zo()]P < |z@) P + |20 (@) [P + €F -
We then have for all n > N:

l+ zal? = D (@) + (@) + D |2() + 20 (D)
i€l Z¢IE
< DL U@ + |2a@)P +2) + - (i) + 2n(i)|P
iel. i¢le
< PP+ ) @I+ DD (2@ + [z (i)])
iel. i¢l.

By Minkowski’s inequality for £,(I), it follows that

o4zl < e [zl + <Zrzn<i>\p)p+<2 ra:<z'>rp>p

el i¢le

p

< Azl + (2] +€)°
for all n > N. Since ¢ is arbitray, this gives (13).

Part (2) is proved in the same way (the details are actually simpler).
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Corollary 7.4. Let I be an arbitrary indezx set. If X is a Banach space with property
sub-(mg) for some q > 1 then €,(I,X) has extremal asymptotic smoothness at
infinity (and hence the Blum-Hanson property) for any p € (1,q]. If X has property
sub-(mo) then co(I,X) has extremal asymptotic smoothness at infinity.

Remark. Apart from trivial cases, ¢; direct sums never have extremal asymptotic
smoothness at infinity. In fact, if Z is a Banach space without the Schur property
then, for any Y # {0}, the space X =Y @y, Z does not have extremal asymptotic
smoothness at infinity. To see this, choose a weakly null sequence in (z,) < Sz and
observe that if y € Sy, then ||(y,0) + ¢(0, z,)| = 1 + ¢ for every t = 0 and all n € N:
this shows that rx(t,x) = 1 + ¢ for any = € Sx of the form (y,0). On the other
hand, we don’t know if a “nontrivial” ¢; direct sum can ever have the Blum-Hanson
property.

7.3. A symmetric modulus. For any Banach space X, consider the “symmetric”
modulus 7x defined as follows:

H(L‘ + tyn” + Hl’ — tyn”)

Tx(t,z) = sup lim sup ( 5

(yn)eEWN(Sx) n—®

Obviously 7x(¢,x) < rx(t,z). Moreover, the proof of Proposition 4.6 yields that

if X is uniformly Gateaux smooth (and does not have the Schur property) then

lim¢ o0 (Tx (t,2) — t) = O for every x € Sx. That is, condition (%) of Theorem 2.1
holds when rx is replaced with 7.

From this, it is tempting to believe that a proof similar to that of Theorem 2.1
should yield the following result : if T is a contraction on a uniformly Gateaux
smooth space X then, for any x € X with a weakly null orbit, one can find a choice
of signs (e,,) € {—1,1}Y such that the sequence (¢,T"z) is Blum-Hanson. However,
this would in fact mean that uniformly Géateaux smooth spaces have the Blum-
Hanson property, since it is easily checked that a sequence () is Blum-Hanson if
and only if (e,xy,) is, for any choice of signs (&,,).

To put this in perspective, it is worth recalling here that uniformly (Fréchet)
smooth Banach spaces have the Banach-Saks property (se e.g. [17]); that is, any
bounded sequence has a subsequence whose arithmetic means are norm convergent.
By a well known result of P. Erdés and M. Magidor ([19], see also [6, I1.6]), any
bounded sequence in a space X with the Banach-Saks property has a subsequence
all of whose further subsequences have norm convergent arithmetic means. In par-
ticular, if X has the Banach-Saks property then any weakly null sequence in X has
a Blum-Hanson subsequence. (In fact, it is enough to assume that X has the weak
Banach-Saks property, i.e. any weakly convergent sequence has a subsequence with
norm convergent arithmetic means). Hence, if T is a contraction on X then, for any
x € X with a weakly null orbit, one can find a (nontrivial) choice of 0’s and 1’s (e,,)
such that (,7"x) is Blum-Hanson.

7.4. How not to be Blum-Hanson. Since asymptotic smoothness is “dual” to
asymptotic convexity, it is natural to expect that an extremal behaviour of the
modulus of asymptotic convexity should give rise to non Blum-Hanson sequences.
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Recall that the modulus of asymptotic convexity of the Banach space X is the
function dx : Rt x Sy — R™ defined by
Sx(t,x) =sup inf |z +ty| -1,
E yeBE

where the supremum is taken over all finite-codimensional subspaces E of X and
= {y € E; |y| = 1}. Obviously 6x(¢t,z) = 0. The space X is said to be

asymptotically uniformly conver if §x (t) := infiesy dx (¢, z) > 0 for all ¢ > 0. For

example, {1 is asymptotically uniformly convex because dx (t) = t for all ¢.

A closely related “modulus” is

dx(t,z) = inf liminf ||z + ty,]| .
(yn)EWN(Sx)

(Again, the trivial case WN(Sx) = J is allowed: inf ¢F is declared to be +0). In
the terminology of [31], ¢t inf,eg, dx (¢, z) — 1 is the value of the Opial modulus of
X att~ L

It is casy to check that dx(t,z) > 1+ 6(t,x) >t for all ¢ (if 2 € Sx), and that
both dx(t,z) and dx(t,x) — ¢t have a (nonegative) limit as ¢t — oo. The following
result can now be proved along the same lines as Theorem 2.1.

Proposition 7.5. Let (x,),cz+ be a reverse shift-monotone sequence in X, i.e
|@14ny + -+ Tign, | = |0, + -+ + 2, || for all finite increasing sequences ny <
- < ng. Assume that the initial point x = xg satisfies

(14) tlg&(clx(s, x) — t) >0.
Then (xy,) is not a Blum-Hanson sequence.

As an immediate consequence, we get

Corollary 7.6. Assume that lim; o (6x (¢, ) +1 —1t) > 0 for every x € Sx. Then,
no linear isometry on X can have any Blum-Hanson orbit (except {0}).

To prove Proposition 7.5, one may obviously assume that the sequence (z,,) is

weakly null. Then, the strategy is the same as for Theorem 2.1 (but reverting all
the inequalities). The function F' introduced in Lemma 3.1 is replaced with

2, o

> (). To do this, one makes use of the inequality

G(s) =sup inf

deN A€FIN, 4 ’

()

and one shows that hm mf
G(s+1) = G(dx(s,x0)) -

We shall not give any further detail, for a rather unpleasant reason: all the Banach
spaces that we know for which lim;_,(6x (t,2) +1—1%) > 0 for every = € Sy happen
to have the Schur property; and for such spaces everything is trivial since Blum-
Hanson sequences are norm null.
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7.5. Power-bounded operators. As mentioned in the introduction, it is shown in
[40] is that £,, 1 < p < o0 does not have the conditional Blum-Hanson property with
respect to power-bounded operators (in short, (CBHPB)). This has been extended by
J. M. Augé [5]: any BanachX space with a shrinking symmetric basis (e.g. X = ¢ or
¢,) fails (CBHPB). Since the property is easily seen to be inherited by complemented
subspaces, it follows that any Banach space containing a complemented copy of ¢
or some (P, 1 < p < oo fails (CBHPB). For example, this holds for L,, 1 <p < o
and for any separable Banach space containing a copy of ¢y (which is necessarily
complemented by Sobczyk’s theorem). Actually, we are aware of no example of
a Banach space having the Blum-Hanson property with respect to power-bounded
operators, apart from the trivial case of Banach spaces with the Schur property.

7.6. Some questions. To conclude the paper, we collect a few questions that ap-
pear to be quite natural.

(1) Does every uniformly Gateaux smooth Banach space have the Blum-Hanson
property?

(2) For which countable compact K does C(K) have the Blum-Hanson property?

(3) Does £y have the Blum-Hanson property?

(4) Let X be a Banach space with the Schur property, and let (©2,P) be a
probability space. Does Lo(Q2, P, X) have the Blum-Hanson property?

(5) Let X be a Banach space and assume that X has the Blum-Hanson prop-
erty with respect to contractions with weakly null orbits. Does it follow
that X has the conditional Blum-Hanson property (i.e. BH with respect to
contractions with weakly convergent orbits)?

(6) Does L; have the full (not just conditional) Blum-Hanson property?

(7) Are the Blum-Hanson property and the conditional Blum-Hanson property
equivalent?

(8) Does every subspace of L; have the (conditional) Blum-Hanson property?

(9) Does the Hardy space HP(DD), 1 < p < oo have property (?7)?

(10) Does property (M) imply the Blum-Hanson property?

(11) Is there a Banach space with a 1-unconditional basis failing the Blum-Hanson
property?

(12) Does the ¢; direct sum ¢ @ ¢ have the Blum-Hanson property?

(13) Does Lj has the (conditional) Blum-Hanson property with respect to power-
bounded operators?

(14) Is there any Banach space X failing the Schur property but having the Blum-
Hanson property with respect to power-bounded operators? Equivalently, is
it true (or not) that if X is a Banach space without the Schur property, then
X admit a renorming under which it fails the Blum-Hanson property?

(15) Which Banach spaces can be renormed to have the Blum-Hanson property?
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