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Introduction

Let X be a Banach space, and let T be a power-bounded linear operator on X (i.e. sup nPN }T n } ă 8). By the classical mean ergodic theorem (see e.g. [START_REF] Krengel | Ergodic theorems[END_REF]) if x P X and if the sequence of iterates pT n xq has a weakly convergent subsequence, then the arithmetic means

A N pxq " 1 N N ÿ n"1
T n x are norm convergent. In particular, if x has a weakly null T -orbit (T n x w Ý Ñ 0), then

A N pxq } } Ý Ñ 0.
When X is a Hilbert space and T is a contraction operator (}T } ď 1), it turns out that a much stronger conclusion holds true: for any x P X with a weakly null T -orbit, the arithmetic means of T n x along any increasing sequence of integers pn i q are norm convergent to 0. This was first proved by J. R. Blum and D. L. Hanson ( [START_REF] Blum | On the mean ergodic theorem for subsequences[END_REF]) for isometries induced by measure-preserving transformations, and later on in [START_REF] Akcoglu | On operator convergence in Hilbert space and in Lebesgue space[END_REF] and [START_REF] Jones | A note on the Blum-Hanson theorem[END_REF] for arbitrary contractions. For contractions on a general Banach space X, this strong conclusion may or may not hold true. When it does so (for every contraction operator on X), the space X is said to have the Blum-Hanson property. This property is the topic of the present paper.

To proceed further, let us fix some terminology. From now on, we consider real Banach spaces only. A sequence px n q nPN Ă X is a Blum-Hanson sequence if every subsequence of px n q is norm convergent to 0 in the Cesàro sense; that is, for any increasing sequence of integers pn i q, it holds that lim

KÑ8 1 K › › › › › K ÿ i"1 x n i › › › › › " 0 .
Obviously, every norm null sequence is Blum-Hanson and every Blum-Hanson sequence is weakly null. In fact, it is shown in [START_REF] Mercourakis | On Cesàro summable sequences of continuous functions[END_REF] that a sequence px n q Ă X is Blum-Hanson if and only it is "uniformly weakly null", which means that for any ε ą 0, there exists an integer N ε such that @x ˚P B X ˚: 7tn P N; |xx ˚, x n y| ě εu ď N ε . (In the case where X is a Hilbert space, this was proved earlier in [START_REF] Berend | Mixing sequences in Hilbert spaces[END_REF], where Blum-Hanson sequences are called strongly mixing).

An operator T P LpXq satisfies the Blum-Hanson dichotomy at some point x P X if either the sequence pT n xq is not weakly null, or it is Blum-Hanson. We note that if T P LpXq and if z P X has a weakly convergent T -orbit, then π T z :" w-lim T n z is a fixed point of T and hence T n pz ´πT zq w Ý Ñ 0. It follows that an operator satisfies the Blum-Hanson dichotomy at all points x P X if and only if the following holds: for any z P X with a weakly convergent T -orbit, every subsequence of pT n zq is norm convergent to π T z in the Cesàro sense.

Given a class of operators C, we say that the Banach space X has the Blum-Hanson property with respect to C if every operator T P C X LpXq satisfies the Blum-Hanson dichotomy at all points x P X. Thus, the Blum-Hanson property itself corresponds to the class C of all contraction operators. If one considers only those operators T P C with weakly convergent orbits, one gets a formally weaker property, which we call the conditional Blum-Hanson property (with respect to C).

Few results can be found in the literature regarding the Blum-Hanson property. In the "positive" direction and apart from Hilbert spaces, the most notable ones seem to be the following: p , 1 ď p ă 8 has the Blum-Hanson property ( [START_REF] Müller | Quasi-similarity of power-bounded operators and Blum-Hanson property[END_REF]); L 1 has the conditional Blum-Hanson property ( [START_REF] Akcoglu | On operator convergence in Hilbert space and in Lebesgue space[END_REF]); L p has the conditional Blum-Hanson property with respect to isometries induced by measure-preserving transformations ( [START_REF] Blum | On the mean ergodic theorem for subsequences[END_REF]), and with respect to positive contractions ( [START_REF] Akcoglu | Weak convergence of positive contractions implies strong convergence of averages[END_REF]); any positive contraction on L p satisfies the Blum-Hanson dichotomy at all positive f P L p ( [START_REF] Bellow | An Lp-inequality with application to ergodic theory[END_REF]); the same is true for Orlicz function spaces endowed with the Orlicz norm, provided that this norm is uniformly smooth ( [START_REF] Millet | Sur le théorème en moyenne d'Akcoglu-Sucheston[END_REF]). As for "negative" results, we mention the following: the space CpT 2 q does not have the conditional Blum-Hanson property ( [START_REF] Akcoglu | A couterexample to Blum-Hanson theorem in general spaces[END_REF]); and p , 1 ă p ă 8 does not have the conditional Blum-Hanson property with respect to power-bounded operators ( [START_REF] Müller | Quasi-similarity of power-bounded operators and Blum-Hanson property[END_REF]). (This last result shows in particular that the Blum-Hanson property is not preserved under renormings; in other words, this is not an isomorphic property of the space). The most exciting question is arguably whether L p has the Blum-Hanson property.

In this note, our aim is to show that some of the above positive results, as well as some new ones, can be derived in a unified way from a general and rather simple theorem (Theorem 2.1) involving a certain "modulus" similar to the well known modulus of asymptotic smoothness of the given Banach space X. (See section 2 for the definition).

To be a little bit more precise, it follows from our main result that an "extremal" behaviour of the modulus of asymptotic smoothness at infinity entails the Blum-Hanson property for X. This is rather unexpected since, as far as we know, the behaviour of this modulus at infinity has never been considered. It also follows immediately from Theorem 2.1 that Banach spaces satisfying Kalton-Werner's property pm p q for some p P p1, 8s have the Blum-Hanson property. Finally, with little extra work we deduce from Theorem 2.1 that if the duality mapping of X has a certain weak continuity property, then X has the Blum-Hanson property; it follows in particular that uniform Gâteaux differentiability of the norm implies Blum-Hanson when combined with a suitable "approximation-like" property. As a concrete class of examples, we consider Orlicz spaces endowed with the Luxemburg norm: we show that asymptotically uniformly smooth small Orlicz sequence spaces have the Blum-Hanson property, and that any positive contraction on a Gâteaux smooth Orlicz function space L θ satisfies the Blum-Hanson dichotomy at all positive f P L θ .

The paper is organized as follows. Our main result is stated in section 2, and two typical examples are given immediately. Theorem 2.1 is proved in section 3. Results involving differentiability of the norm are collected in section 4. Section 5 is devoted to Orlicz spaces. Section 6 contains some remarks about very classical spaces (Hilbert, CpKq and L p ). In particular, we give a "new" proof of the Blum-Hanson property for Hilbert spaces, and we observe that CpKq fails the conditional Blum-Hanson property for any uncountable compact metric space K. Finally, section 7 contains some additional remarks and ends up with a few natural questions.

Main result, and two examples

Our main result (Theorem 2.1) is about sequences px n q Ă X which are not necessarily of the form x n " T n x for some contraction T P LpXq. We shall "only" assume that px n q is shift-monotone, in the following sense: for every finite increasing sequence of integers n 1 ă ¨¨¨ă n k , it holds that

}x 1`n 1 `¨¨¨x 1`n k } ď }x n 1 `¨¨¨`x n k } .
This is indeed more general than assuming that px n q is an orbit of some contraction operator; see [START_REF] Zsidó | Weak mixing properties of vector sequences[END_REF]Example 3.3.]. A similar property (called convex shiftboundedness) is considered in [START_REF] Zsidó | Weak mixing properties of vector sequences[END_REF]. It is shown there that a convex shift-bounded sequence px n q is weakly mixing to 0 (i.e. if and only if the arithmetic means of px n q along any increasing sequence of integers with positive lower density are norm convergent to 0. For sequences of the form x n " T n x where T is a power-bounded operator, this was proved earlier in [START_REF] Jones | Ergodic theorems of weak mixing type[END_REF].

Theorem 2.1 will be formulated using a "modulus" associated with a given convex cone C Ă X (i.e. a nonempty convex set which is closed under multiplication by nonnegative scalars). For any set A Ă X, let us denote by WNpAq the family of all weakly nul sequences py n q Ă X with y n P A for all n. Then, for any x P X and t ą 0, we put

r C pt, xq " sup pynqPWNpS X XCq lim sup nÑ8 }x `t y n } .
(Here and elsewhere, S X is the unit sphere of X).

The trivial case WNpS X X Cq " H is allowed: sup H declared to be ´8. For example, r C pt, xq " ´8 if the Banach space X has the Schur property, i.e. when every weakly null sequence is in fact norm null.

The modulus r X has already been used by many authors, see e.g [START_REF] García-Falset | Stability and fixed points for nonexpansive mappings[END_REF], [START_REF] Duta | Banach spaces with property pM q and their Szlenk indices[END_REF], [START_REF] Godefroy | Szlenk index and uniform homeomorphisms[END_REF], [START_REF] Maluta | On Milman's moduli for Banach spaces[END_REF], [START_REF] Marino | On property pM q and its generalizations[END_REF], [START_REF] Prus | On infinite-dimensional uniform smoothness of Banach spaces[END_REF]. There is a simple connection with the modulus of asymptotic smoothness. The latter is one of the many moduli introduced by V. D. Milman in [START_REF] Milman | Geometric theory of Banach spaces. II. Geometry of the unit ball[END_REF]. With the notation of [START_REF] Johnson | Almost Fréchet differentiability of Lipschitz mappings between infinite-dimensional Banach spaces[END_REF], it is the function ρX : R `ˆS X Ñ R `defined as follows:

ρX pt, xq " inf E sup yPB E }x `ty} ´1 ,
where the infinimum inf E is taken over all finite-codimensional subspaces E Ă X (and B E is the unit ball of E). The connection between the two moduli is the following: for any x P S X , (1)

r X pt, xq ď ρX pt, xq `1 .
This is fairly easy to check, using the fact that if py n q is a weakly null sequence in X then distpy n , Eq Ñ 0 for every finite-codimensional subspace E Ă X. Moreover, it is shown in [START_REF] Maluta | On Milman's moduli for Banach spaces[END_REF] that equality holds in (1) as soon as X embeds isometrically into a Banach space with a shrinking Markushevich basis (for example, a reflexive Banach space).

We note that if WNpS X XCq ‰ H, then r C pt, xq ě t´}x} for all t. Moreover, since r C pt, xq is obviously 1-Lipschitz with respect to t, the map t Þ Ñ r C pt, xq ´t is nonincreasing. Hence, r C pt, xq ´t always has a limit l C pxq as t Ñ 8, and l C pxq ě ´}x} in the nontrivial case WNpS X XCq " H. (Actually, if the cone C is symmetric, then r C pt, xq ě t for all t and hence l C pxq ě 0: this is because t " }ty} ď }x`ty}`}x´ty} 2 for any y P S X X C).

We can now state Theorem 2.1. Let X be a Banach space, and let C Ă X be a nonempty convex cone. Let also px n q nPZ `be a shift-monotone, weakly null sequence in C. If the initial point x :" x 0 satisfies (˚) lim tÑ8 ´rC pt, xq ´t¯ď 0 , then px n q is a Blum-Hanson sequence.

Let us say that an operator T P LpXq is C-positive if it maps the cone C into itself. As an immediate consequence of Theorem 2.1, we get Corollary 2.2. Assume that (˚) holds for some x P C. Then, any C-positive contraction on X satisfies the Blum-Hanson dichotomy at all ξ P R `x.

Proof. Let T P LpXq be a C-positive contraction, and assume that T n ξ w Ý Ñ 0 for some ξ " λx with λ ě 0. To show that pT n ξq is a Blum-Hanson sequence, we may obviously assume that ξ ‰ 0. Then λ ‰ 0 and r C pt, ξq " λ r C p t λ , xq for all t P R `, so (˚) is satisfied for ξ and the result follows by applying Theorem 2.1 with x n " T n ξ.

Remark. Assume additionally that C ´C " X. Then, the following equivalence holds for every C-positive contraction T : all T -orbits are weakly null iff they are all Blum-Hanson. However, it does not follow directly from Corollary 2.2 that X has the conditional Blum-Hanson property with respect to C-positive contractions. The point is that if a contraction T with weakly convergent orbits satisfies T n x w Ý Ñ 0 for some x P X and if we write x " u ´v with u, v P C, then the sequences pT n uq and pT n vq have no reason for being both weakly null even though they are both weakly convergent. When X " L p and C " L p , one can get round this difficulty with some extra work; see [START_REF] Akcoglu | Weak convergence of positive contractions implies strong convergence of averages[END_REF], paragraph (2.1).

For future reference, it is convenient to introduce the following terminology. Definition 2.3. We shall say that a Banach space X has extremal asymptotic smoothness at infinity if the modulus r X satisfies lim tÑ8 pr X pt, xq ´tq ď 0 for all x P X, and that X has extremal uniform asymptotic smoothness at infinity if lim tÑ8 pr X ptq ´tq ď 0, where r X ptq " sup xPS X r X pt, xq.

Thanks to (1), we see that X has extremal asymptotic smoothness at infinity as soon as its modulus of asymptotic smoothness satisfies (for all x P S X ) (˚˚) lim tÑ8 pρ X pt, xq `1 ´tq " 0 .

Note also that Banach spaces with the Schur property, for example the space 1 , trivially have extremal (uniform) asymptotic smoothness at infinity. This makes the terminology perhaps confusing because 1 is usually considered as the "less smooth" of all Banach spaces (indeed, it has the "worst possible" modulus of asymptotic smoothness). But we prefer to use the modulus r X rather than ρ X because it leads to more general results, and yet we want to emphasize asymptotic smoothness.

Note that extremal asymptotic smoothness at infinity is a hereditary property, i.e. inherited by subspaces. Thus, we may state Corollary 2.4. If the Banach space X has extremal asymptotic smoothness at infinity, then every subspace of X has the Blum-Hanson property. In particular, X has Blum-Hanson if p˚˚q holds for all x P X.

The "in particular" part is rather unexpected, since sually what matters about the modulus of asymptotic smoothness is the behaviour or ρX pt, xq as t goes to 0. Indeed, the main property captured by the modulus ρX is the following: the Banach space X is said to be asymptotically uniformly smooth if lim tÑ0 ρX ptq t " 0 , where ρX ptq " sup xPS X ρpt, xq.

Theorem 2.1 can also be applied when the given norm on X is smooth in a more usual sense, under a certain assumption on the duality mapping. We state the result right now in order to illustrate it with positive contractions on L p , but the proof is postponed to section 4 (see Proposition 4.1).

Corollary 2.5. Assume that the norm of X is uniformly Gâteaux differentiable on the unit sphere S X , and denote by Jpxq the Gâteaux derivative of the norm at x P S X . Assume that whenever py n q is a weakly null sequence in S X X C, it holds that xJpy n q, xy Ñ 0 for every x P C. Then, any C-positive contraction on X satisfies the Blum-Hanson dichotomy at all x P C.

We now give two hopefully illustrative examples.

The first one is about the so-called properties pm p q introduced by N. Kalton and D. Werner in [START_REF] Kalton | Property pM q, M -ideals, and almost isometric structure of Banach spaces[END_REF]. A Banach X has property pm p q, 1 ď p ď 8 if, for any x P X and every weakly null sequence px n q Ă X, it holds that [START_REF] Akcoglu | On operator convergence in Hilbert space and in Lebesgue space[END_REF] lim sup nÑ8 }x `xn } " p}x} p `lim sup }x n } p q 1{p .

For p " 8 the right-hand side is of course to be interpreted as maxp}x}, lim sup }x n }q.

We shall say that X has property subpm p q if (2) holds with """ replaced with "ď"; equivalently, if r X pt, xq ď p1 `tp q 1{p for all x P S X . For example, p has property pm p q and c 0 has property pm 8 q; any Lorentz sequence space dpw, pq different from 8 has property subpm p q (see [START_REF] Lindenstrauss | Classical Banach spaces[END_REF] for the definition); the Bergman space B p pDq on the unit disk has property pm p q; and for any continuous weight w : r0, 1s Ñ R `such that wprq " 0 only at r " 1, the space β w consisting of all functions f holomorphic on D such that wp|z|qf pzq Ñ 0 as |z| Ñ 1, with its natural norm, has property pm 8 q (see [28, pp. 163-164]). Note also that any Banach space has property subpm 1 q and that, just like extremal asymptotic smoothness, pm p q and subpm p q are hereditary properties, i.e. inherited by subspaces.

Example 1. For any p P p1, 8s, property subpm p q implies extremal uniform asymptotic smoothness at infinity, and hence the Blum-Hanson property. In particular, any subspace of an p or c 0 direct sum of Banach spaces with the Schur property has the Blum-Hanson property.

Proof. If X has property subpm p q then r X ptq ď p1 `tp q 1{p if p ă 8, and r X ptq ď maxp1, tq if p " 8; so the first part is clear. For the second part, it is enough to show that any p (resp. c 0 ) sum of Banach spaces with the Schur property has property pm p q (resp. pm 8 q). But this is clear since if X " ' k E k is such a space then (by the Schur property of each E k ) a sequence px n q " p' k x n,k q Ă X is weakly null if and only if it is bounded and }x n,k } E k Ñ 0 as n Ñ 8, for every k P N.

Remark 1. The p case is a slight generalization of a result of Y. Tomilov and V. Müller [START_REF] Müller | Quasi-similarity of power-bounded operators and Blum-Hanson property[END_REF]. Somewhat surprisingly, the c 0 case appears to be new. (That X " c 0 itself has the Blum-Hanson property was observed independently in [START_REF] Augé | Quelques problèmes de dynamique linéaire dans les espaces de Banach[END_REF]).

Remark 2. It is shown in [START_REF] Kalton | Property pM q, M -ideals, and almost isometric structure of Banach spaces[END_REF] that a separable Banach space X not containing 1 has property pm p q, 1 ă p ă 8 if and only if it is almost isometric to a subspace of an p direct sum of finite-dimensional spaces, and that X has property pm 8 q iff it is almost isometric to a subspace of c 0 . Hence, the special case quoted above is in fact rather general.

Our second example is a result due to A. Bellow [START_REF] Bellow | An Lp-inequality with application to ergodic theory[END_REF] (already mentioned in the introduction). Proof. The space L p is uniformly (Fréchet) smooth, and the first key step in [START_REF] Bellow | An Lp-inequality with application to ergodic theory[END_REF] is to show that for any ε ą 0, one can find a constant C ε such that the following inequality holds for every f, g P S Lp X P L p :

(3)

ż f Jpgq ď ε `Cε ż g Jpf q .
Now, the new thing is that the proof is already finished. Indeed, it follows at once from (3) that if pg n q is a weakly null sequence in S Lp X L p , then xJpg n q, f y Ñ 0 for every f P S Lp X L p . Hence, we may apply Corollary 2.5.

For completeness and since the same idea will be used in section 5, we include a proof of (3) (not with the best constant Cpεq). Recall that the duality mapping J : S Lp Ñ S Lq is given by Jpf q " |f | p´2 f ; so Jpf q " f p´1 if f P S Lp X P L p .

Let us fix ε ą 0, and let η ą 0 to be chosen later. If f, g P S Lp X L p then

ż f Jpgq " ż f g p´1 ď ż tf ăηgu pηgqg p´1 `żtfąη ´1gu f pηf q p´1 `żtηgďfďη ´1gu pη ´1gqpη ´1f q p´1 ď 2η p´1 `η´p ż g Jpf q ,
and the result follows by taking η " pε{2q 1{p´1 .

Proof of theorem 2.1

The proof of Theorem 2.1 relies on the following simple lemma. Here and afterwards, for any d, s P N we denote by FINps, dq the set of all finite sets A Ă N with cardinality |A| " s and "gaps" of length at least d, i.e. |n ´n1 | ě d for any n ‰ n 1 in A.

Lemma 3.1. Let px n q nPZ `be a bounded sequence in X. For any s P N, set

F psq :" inf dPN sup APFINps,dq › › › › › ÿ nPA x n › › › › › . Then px n q is a Blum-Hanson sequence if and only if lim sÑ8 F psq s " 0 . Proof. It is easy to see that if px n q is Blum-Hanson, then in fact lim |A|Ñ8 1 |A| › › › › › ÿ nPA x n › › › › › " 0 .
Indeed, if this does not hold then one can find ε ą 0 and a sequence of finite sets

pA k q kPN such that |A k | Ñ 8 and › › › ř nPA k x n › › › ě ε |A k | for all k. If |A k | is sufficiently fast increasing, then the sets B k :" A k Xpmax A k´1 , 8q satisfy max B k ă minpB k`1 q and › › › ř nPB k x n › › › ě pε{2q |B k |
for all k, and hence px n q is not Blum-Hanson (consider the increasing enumeration pn i q of the set Ť k B k ). Conversely, assume that F psq s Ñ 0 as s Ñ 8. Let pn i q iě1 be an increasing sequence of integers, and let us fix ε ą 0. We have to find K 0 P N such that

@K ě K 0 : › › › › › 1 K K ÿ i"1 x n i › › › › › ď ε .
By assumption, one may pick d, s P N such that @A P FINps, dq :

› › › › › ÿ nPA x n › › › › › ď εs .
Let K 0 be a large integer to be chosen later. Let also K ě K 0 , and let k P N satisfy ksd ď K ă pk `1qsd.

One can partition the interval r1, Ks as r1, Ks "

d ď l"1 k ď j"1 B l,j Y B ,
where each B l,j is an arithmetic progression with cardinality s and "ratio" d, and |B| ă sd. Explicitely:

B l,j " tb l,j , b l,j `d, . . . , b l,j `ps ´1qdu ,
where b l,j " pj ´1qsd `l. Putting A l,j :" tn i ; i P B l,j u and A :" tn i ; i P Bu, we then have A l,j P FINps, dq and |A| ă sd. Hence,

› › › ř K i"1 x n i › ›
› can be estimated as follows:

› › › › › K ÿ i"1 x n i › › › › › ď d ÿ l"1 k ÿ j"1 › › › › › › ÿ nPA l,j x n › › › › › › `› › › › › ÿ nPA x n › › › › › ď kd ˆεs `C sd ,
where C " sup n }x n }. Dividing by K and since K ě maxpksd, K 0 q, we get

› › › › › 1 K K ÿ i"1 x n i › › › › › ď ε `Csd K 0 ,
for every K ě K 0 . If we choose now K 0 ě Csd ε and replace ε with ε{2, this gives the required result.

The following observation will also be useful, mainly because it allows to replace r C pt, xq with a modulus which is non-decreasing with respect to t. (The corresponding fact for the modulus of asymptotic smoothness can be found e.g. in [START_REF] Gonzalo | High order smoothness and asymptotic structures in Banach spaces[END_REF]). From now on, we fix a convex cone C Ă X. Remark 3.2. Assume that WNpS X X Cq ‰ H. For x P X and t ě 0, define rC pt, xq " sup

pznqPWNpB X XCq lim sup nÑ8 }x `t z n } .
(In other words, rC pt, xq is defined exactly as r C pt, xq with the unit ball B X in place of the unit sphere S X ).Then r C pt, xq " rC pt, xq whenever t ą 2}x}. If C is symmetric, this holds for every t ě 0.

Proof. Let us fix x P X. We have to show that lim sup nÑ8 }x `t z n } ď r C pt, xq for any weakly null sequence pz n q Ă B X X C; and upon replacing pz n q by a suitable subsequence, we may assume that both lim }x `t z n } and lim }z n } exist. Choose ε P p0, 1q such that 2}x} `εt ď t. If lim }z n } ď ε, then lim }x `tz n } ď }x} `εt ď t ´}x} ď r C pt, xq. Otherwise, we may assume that }z n } ą ε for all n. Then y n :" zn }zn} w Ý Ñ 0, and x `tz n is a convex combination of x `ty n and x `tεy n . Since y n P S X and }εy n } " ε, it follows from the first case that lim }x `tz n } ď max plim sup }x `ty n }, lim sup }x `tεy n }q ď r C pt, xq.

If C is symmetric, then r C pt, xq ě }x} because }x} ď }x`ty}`}x´ty} 2 for every y P S X X C. Then the proof splits into two parts as above according to whether lim }z n } is 0 or ą 0, expressing x`tz n as a convex combination of x`ty n and x´ty n in the second case.

Finally, we note the following trivial yet essential fact: for any x P X and every weakly null sequence pz d q Ă C, We can now give the Proof of Theorem 2.1. We assume from the beginning that WNpS X XCq ‰ H, since otherwise we already know that every weakly null sequence px n q Ă C is norm null and hence Blum-Hanson. Let px n q nPZ `Ă C be a shift-monotone, weakly null sequence such that lim tÑ8 pr C pt, x 0 q ´tq ď 0 .

Then lim tÑ8 pr C pt, x 0 q ´tq ď 0 as well by Remark 3.2. For notational simplicity we will just write rC ptq instead of rC pt, x 0 q. Let F : N Ñ R `be the function introduced in Lemma 3.1:

F psq " inf dPN F d psq " lim dÑ8 F d psq ,
where

F d psq " sup APFINps,dq › › › › › ÿ nPA x n › › › › ›
.

(Since F d psq is non-increasing with respect to d, the infimum inf d is indeed a true limit).

The key point is the following Fact. The function F satisfies the inductive inequality F ps `1q ď rC pF psqq .

Proof of Fact. Let us fix s P N. By the definition of F ps `1q, one can choose a sequence pA d q dPN , where each A d is a finite subset of N with cardinality s `1 and gaps at least d, such that

lim dÑ8 › › › › › ÿ nPA d x n › › › › › " F ps `1q . Write A d " tn 1,d , . . . , n s`1,d u, with n 1,d ă ¨¨¨ă n s`1,d . Since the sequence px n q is shift-monotone, we have › › › › › ÿ nPA d x n › › › › › " › › x n 1,d `xn 2,d `¨¨¨`x n s`1,d › › ď › › x 0 ``x n 2,d ´n1,d `¨¨¨`x n s`1,d ´n1,d
˘› ›

:" }x 0 `zd } for every d P N.

Since n i,d ´n1,d ě d for every i P t2, . . . , s `1u and x n w Ý Ñ 0, the sequence pz d q is weakly null; and z d P C because C is a convex cone. By (4), it follows that lim sup It is now easy to conclude the proof. By Lemma 3.1, we have to show that F psq{s Ñ 0 as s Ñ 8. Put F psq " maxpF p1q, . . . , F psqq. Then F is non-decreasing and satisfies the same inductive inequality as F , i.e. F ps `1q ď rC p F psqq (again because rC ptq is non-decreasing with respect to t). If F psq has a finite limit as s Ñ 8 then of course lim sÑ8 F psq{s " 0, and hence lim sÑ8 F psq{s " 0. Otherwise, since lim tÑ8 pr C ptq ´tq ď 0, it follows from the inductive inequality that lim sup sÑ8 p F ps `1q ´F psqq ď 0 . By Cesàro's theorem, we conclude that F psq{s Ñ 0 in this case as well.

Blum-Hanson and the duality mapping

In this section, we give several sufficient conditions for a Banach space X to have extremal asymptotic smoothness at infinity (Definition 2.3). In particular, we prove Corollary 2.5 and some related results where the smoothness of the norm is involved. 4.1. Definitions. Let us recall some standard definitions and notation.

For any y P Xzt0u, we denote by Jpyq the set of all norming functionals for y, Jpyq " tφ P X ˚; }φ} " 1 and xφ, yy " }y}u .

The Banach space X is said to be Gâteaux smooth if the norm of X is Gâteaux differentiable at each point of the unit sphere of X. By the classical Šmulyan's criterion (see [START_REF] Deville | Smoothness and renormings in Banach spaces[END_REF]), this holds if and only if the duality mapping is single-valued, i.e. Jpyq is a single point (also denoted by Jpyq) for every y P S X . In this case, we have [START_REF] Augé | Quelques problèmes de dynamique linéaire dans les espaces de Banach[END_REF] }y `εh} " 1 `ε xJpyq, hy `opεq as ε Ñ 0 , for every fixed y P S X and h ‰ 0. The space X is uniformly Gâteaux smooth if its norm is uniformly Gâteaux differentiable on the unit sphere, i.e. the duality mapping is single-valued and the "little o" in ( 5) is uniform with respect to y P S X , for every fixed h ‰ 0. This a much weaker property than uniform Fréchet smoothnes: for example, uniformly Fréchet smooth Banach spaces are super-reflexive, but any separable Banach space has a uniformly Gâteaux smooth renorming (see [START_REF] Deville | Smoothness and renormings in Banach spaces[END_REF]).

Finally, recall that X is said to be an Asplund space if every separable subspace of X has separable dual (this is the more convenient definition as far as the present paper is concerned). For example, X is Asplund as soon as it admits a Fréchet smooth renorming, and the converse is true if X is separable (see [START_REF] Deville | Smoothness and renormings in Banach spaces[END_REF]).

4.2.

Vanishing duality mapping. The next result says essentially that the definition of extremal asymptotic smoothness at infinity can be rephrased in terms of the duality mapping of X.

For convenience, we introduce the following ad hoc terminology. We shall say that a set-valued map Θ : A Ñ 2 X ˚defined on a subset A of X is vanishing along weakly null nets in A at some point x P X if, whenever pz α q is a weakly null net in A and φ α P Θpz α q, it follows that xφ α , xy Ñ 0. Vanishing along weakly null sequences is defined in the same way.

Recall also the notation of Theorem 2.1: given a convex cone C Ă X, we say that condition p˚q holds for some x P X if lim tÑ8 pr C pt, xq ´tq ď 0 . Proposition 4.1. Let C be a convex cone in X. If the duality map J is vanishing along weakly null nets in S X X C at some point x P C then (˚) holds for x, and hence any C-positive contraction on X satisfies the Blum-Hanson dichotomy at x. If either X is uniformly Gâteaux smooth or an Asplund space, it is enough to assume that J is vanishing along weakly null sequences.

Proof. Towards a contradiction, assume that (˚) does not hold for x. Then one can find a sequence pt k q tending to 8 and, for each k P N, a weakly null sequence

py k n q nPN Ă S X X C such that lim nÑ8 }x `tk y k n } ´tk ą c
for all k and some c ą 0. Dividing by t k and putting ε k :" 1{t k , we get lim nÑ8 }ε k x `yk n } ´1 ą c ε k . It follows that one can find a weakly null net py α q αPA Ă S X X C and a net pε α q αPA Ă p0, 8q tending to 0 such that }ε α x `yα } ´1 ą c ε α for every α P A. (For example, one may proceed as follows. Let A be the set of all pairs pk, V q where k P N and V is a weak neighbourhood of 0 in X, with the product ordering, i.e. pk,

V q ĺ pk 1 , V 1 q iff k ď k 1 and V Ě V 1 .
For any α " pk, V q P A, put ε α :" ε k , and y α :" y k n , where n is the smallest integer such that y k n P V and }ε k x `yk n } ´1 ą c ε k ). Put z α :" εαx`yα }εαx`yα} ¨Then z α P S X X C, and the net pz α q is weakly null because ε α Ñ 0; hence xφ α , xy Ñ 0 for any choice of φ α P Jpz α q. Now, the map Φpεq " }εx`y α } is convex and its right derivative is given by Φ 1 d pεq " ε xφpεq, xy, where φpεq is a norming functional for εx `yα . The functional φpεq is of course also norming for z α :" εx`yα }εx`yα} ¨Hence, taking ε " ε α we get φ α P Jpz α q such that }ε α x `yα } ´1 " Φpε α q ´Φp0q ď ε α xφ α , xy .

Thus, we see that }ε α x`y α }´1 " opε α q, a contradiction since }ε α x`y α }´1 ą c ε α for every α P A.

If X is Asplund then the weak topology of any separable subspace of X is metrizable on bounded sets. Since in the above proof everything takes place in the separable subspace span `txu Y ty k n ; n, k P Nu ˘, it follows that one can replace nets by sequences in this case.

Finally, assume that X is uniformly Gâteaux smooth and, without loss of generality, that W N pS X X Cq ‰ H. If t Ñ 8 then, by uniform smoothness, we have for any sequence py n q Ă S X :

}x `ty n } " }t ´1x `yn } t ´1 " 1 `t´1 xJpy n q, xy `opt ´1q t ´1 " t `xJpy n q, xy `op1q ,
where the "little o" is uniform with respect to py n q. If J is vanishing at x along weakly null sequences in S X , it follows immediately that r C pt, xq " t `op1q .

Remark 1. Assume that WNpS X X Cq " H and that X is uniformly Gâteaux smooth. An examination of the above proof reveals that for a given x P C, the condition lim tÑ8 pr C pt, xq ´tq " 0 is actually equivalent to the requirement that J should be vanishing at x along weakly null sequences in S X X C.

Remark 2. It follows from the proof that if X is uniformly Fréchet smooth and J is vanishing along weakly null sequences in S X X C at all x P C, then (˚) holds uniformly with respect to x P S X X C.

Remark 3. The proof of Proposition 4.1 is similar to that of [START_REF] Dalby | Duality map Characterisations for Opial conditions[END_REF]Theorem 5].

Remark 4. The space X is said to have a weakly continuous duality mapping if X is Gâteaux smooth and there exists a continuous increasing function µ : R `Ñ R ẁith µp0q " 0 such that the map J µ pyq " µp}y}qJpyq is w-w ˚continuous on X (setting J µ p0q " 0). This property has proved to be quite important in fixed point theory since the classical work of F. Browder [START_REF] Browder | Fixed points theorems for nonlinear semicontractive mappings in Banach spaces[END_REF]. Obviously, it implies vanishing of the duality mapping along weakly null nets in S X at all x P X, and hence that lim tÑ8 pr X pt, xq ´tq ď 0 for all x. In fact, one can prove directly that lim tÑ8 pr X pt, xq ´tq " 0 uniformly on S X , because the modulus r X can be computed explicitely. Indeed it is shown in [START_REF] Marino | On property pM q and its generalizations[END_REF] that if X has a weakly continuous duality mapping with "gauge" function µ and if we put M ptq " ş t 0 µpsq ds then (6) lim sup }x `tx n } " M ´1´M p}x}q `M ptq for all x P X and every weakly null sequence px n q Ă S X ; in particular, r X pt, xq is the right-hand side of [START_REF] Beauzamy | Modèles étalés des espaces de Banach[END_REF]. Now, it is not hard to see that µpt ´1q " cµptq ´1, where c " µp1q 2 (see below). In particular, µptq Ñ 8 as t Ñ 8 and hence (6) does imply that r X pt, xq ´t Ñ 0 uniformly on S X . (To show that µpt ´1q " cµptq ´1, note that for any t ą 1 one can find a net py α q Ă tS X converging weakly to some y P S X . Then µptqJpy α q w Ý Ý Ñ µp1qJpyq; but since yα t w Ý Ñ y t and Jp z t q " Jpzq for any z P Xzt0u, we also know that µp1qJpy α q w Ý Ý Ñ µpt ´1qJ pyq, and the result follows).

4.

3. An appproximation-like property. We now use Proposition 4.1 to isolate one reasonably general class of Banach spaces having extremal asymptotic smoothness at infinity.

To formulate the result, we introduce an "approximation-like" property for which we have not tried to find a name to avoid pedantry (see however the remark at the end of this sub-section). We shall say that a Banach space Z has property (?) if the following holds: for any z P Z, one can find a sequence of compact operators pπ K q Ă LpZq such that π K z Ñ z and lim sup K }I ´πK } ď 1. (Equivalently, one may require that }I ´πK } ď 1 for all K). One example to keep in mind is the following: property (?) is satisfied if Z has a reverse monotone Schauder basis, i.e. a basis pf k q kPN such that }I ´πK } " 1 for all K, where π K is the canonical projection onto spantf 1 , . . . , f K u. (For example, any 1-unconditional basis is reverse monotone). More generally, it is enough to assume that Z has a reverse monotone finite-dimensional Schauder decomposition. Proposition 4.2. If the Banach space X is uniformly Gâteaux smooth and embeds isometrically into a Banach space with property (?), then X has extremal asymptotic smoothness at infinity (and hence the Blum-Hanson property).

Proof. By Proposition 4.1 (with C " X) it is enough to show that the duality mapping of X is vanishing along weakly null sequences in S X at all x P S X . So let us fix a weakly null sequence py n q Ă S X .

Let Z be a Banach space with property (?) such that X embeds isometrically into Z. Considering X as a subspace of Z, we still denote by Jpy n q any Hahn-Banach extension of Jpy n q, n P N. Also, for any Φ P Z ˚we denote by }Φ} X ˚the norm of Φ viewed as a linear functional on X; that is

}Φ} X ˚" }Φ |X }. Finally, if pΦ K q is a sequence in Z ˚, we write "Φ K w Ý Ý Ñ 0 in X ˚" if the sequence ppΦ K q |X q Ă X ˚is w ˚-null.
Let x P X be arbitrary, and let pπ K q be a sequence of compact operators on Z such that π K x Ñ x and lim sup K }I ´πK } ď 1. Since the sequence py n q is weakly null, we know that }π K y n } Ñ 0 for every fixed K P N. Hence, we can find a subsequence py n K q of py n q such that }π K y n K } Ñ 0 as K Ñ 8. Then

xpI ´πK qJpy n K q, y n K y " 1 ´xJpy n K q, π K y n K y KÑ8 Ý ÝÝÝ Ñ 1.
Since lim sup }pI ´πK qJpy n K q} X ˚ď lim sup }pI ´πK qJpy n K q} ď 1 and, moreover, y n K P S X and xJpy n K q, y n K y " 1, it follows that lim }pI ´πK qJpy n K q} X ˚" 1 " lim }Jpy n K q} X ˚and lim }pI ´πK qJpy n K q `Jpy n K q} X ˚" 2. By the uniform Gâteaux smoothness of X, this implies (see [16, Theorem 6.7 and Proposition 6.2]) that

pI ´πK qJpy n K q ´Jpy n K q w Ý Ý Ñ 0 in X ˚, i.e. π K Jpy n K q w Ý Ý Ñ 0 in X ˚. In particular, xJpy n K q, π K xy Ñ 0 and hence xJpy n K q, xy Ñ 0 since π K x Ñ x.
Thus, we have shown that for every x P X, one can find a subsequence py n K q of py n q such that xJpy n K q, xy Ñ 0. Since this can be done starting with any subsequence of py n q, this shows that xJpy n q, xy Ñ 0 for all x P X, as required.

Corollary 4.3. If X is uniformly Gâteaux smooth and embeds isometrically into a Banach space with a reverse monotone (e.g. 1-unconditional) FDD, then X has the Blum-Hanson property.

Remark. There are lots of well identified approximation properties in Banach space theory; see e.g. [START_REF] Casazza | Approximation properties. Handbook of the feometry of Banach spaces[END_REF] or [START_REF] Casazza | Notes on approximation properties in separable Banach spaces[END_REF]. The one that seems closest to (?) is the so-called Reverse Monotone Compact Approximation Property. A Banach space Z has (RMCAP) if one can find a sequence of compact operators pπ K q Ă LpZq such that π K z Ñ z for all z P Z and }I ´πK } Ñ 1. This is formally a much stronger property than (?), because in (?) the π K 's are allowed to depend on z. In view of the existing terminology property (?) could consistently be called the "Reverse Monotone Compact Point Approximation Property"; which is not a very exciting name. Incidentally, it is well known that L p does not have (RMCAP) if p ‰ 2. (A much stronger result is proved in [START_REF] Oikhberg | Reverse monotone approximation property[END_REF]. 4.4. Almost isometric embeddings. Recall that a Banach space X is said to embed almost isometrically into another Banach space Z if it can be p1`εq-embedded into Z for any ε ą 0, i.e. one can find an operator j : X Ñ Z such that p1 `εq ´1}x} ď }jx} ď p1 `εq}x} for all x P X. Almost isometric embeddings are relevant in our matters because of the following remark: extremal uniform asymptotic smoothness at infinity is preserved under almost isometric embeddings; that is, X has extremal uniform asymptotic smoothness at infinity as soon as it embeds almost isometrically into a Banach space with this property. Indeed, it is not hard to check that if X embeds almost isometrically into Z then r X ptq ď r Z ptq for all t P R `. (Recall that r X ptq " sup xPS X r X pt, xq). The corresponding fact for the modulus of asymptotic smoothness ρX is proved e.g. in [START_REF] Delpech | Asymptotic uniform moduli and Kottman constant of Orlicz sequence spaces[END_REF]Lemma 2.1] The following result is a"Fréchet" analogue of Proposition 4.2.

Proposition 4.4. If the Banach space X embeds almost isometrically into a uniformly Fréchet smooth Banach space with property (?), then X has extremal extremal uniform asymptotic smoothness at infinity (and hence the Blum-Hanson property).

Proof. By the proof of Proposition 4.2 and Remark 2 after the proof of Proposition 4.1, any uniformly Fréchet smooth space Z with property (?) has extremal uniform asymptotic smoothness at infinity. Since the latter is preserved under almost isometric embeddings, the result follows.

In view of this result and of Proposition 4.2, it is natural to ask whether a uniformly Gâteaux smooth space X has extremal (not uniform) asymptotic smoothness at infinity as soon as it embeds almost isometrically into a Banach space with property (?). We now show that this does hold true (and in fact without any smoothness assumption) if (?) is replaced with a stronger property.

Given a function c : R `ˆR `Ñ R `such that cps, tq ě s for any ps, tq, let us say that a Banach space Z has property (?) c if the following holds: for any z P B Z , one can find a sequence of compact operators pπ K q Ă LpZq such that π K z Ñ z and (7) @K @Φ P Z ˚: c p}pI ´πK qΦ}, |π K Φpzq|q ď }Φ} .

So one requires }I ´πK } ď 1 for all K, with a quantitative estimate provided by the function c. For example, p , 1 ď p ă 8 has property (?) c with cps, tq " ps q `tq q 1{q . Proposition 4.5. Assume that there exists a continuous function c : R `ˆR `Ñ R satisfying cps 1 , tq ě cps, tq ą s whenever s 1 ě s and t ą 0, such that for any ε ą 0, X can be p1 `εq-embedded into a Banach space with property (?) c . Then X has extremal asymptotic smoothness at infinity (and hence the Blum-Hanson property).

Proof. We show that the duality mapping of X is vanishing along weakly null nets in S X at all x P S X . So let us fix a weakly null net py α q Ă S X , linear functionals φ α P Jpy α q, and a point x P S X . Let also ε P p0, 1s be arbitrary.

By assumption, there exists a Banach space space with property (?) c such that X can be p1 `εq-embedded into Z. Without loss of generality, we may assume that X Ă Z as a set and p1 `εq ´1}ξ} Z ď }ξ} X ď p1 `εq}ξ} Z for every ξ P X. Let us choose sequence of compact operators π K : Z Ñ Z, such that π K x Ñ x and (7) holds with z " x.

Considering each φ α as linear functional on pX, } ¨}Z q, choose any Hahn-Banach extension Φ α P Z ˚. Then Φ α " φ α on X (by definition) and }Φ α } ď 1 `ε ď 2 because }φ α } X ˚" 1. We claim that [START_REF] Berend | Mixing sequences in Hilbert spaces[END_REF] lim inf α }pI ´πK qΦ α } ě p1 `εq

´1

for every K P N. Indeed, since }y α } Z ď p1 `εq we have }pI ´πK qΦ α } ě p1 `εq ´1|xΦ α , pI ´πK qy α y| " p1 `εq ´1|1 ´xΦ α , π K y α y| , because xΦ α , y α y " xφ α , y α y " 1. Since }π K y α } Z Ñ 0 (because py α q is a bounded weakly null net and π K is compact) and pΦ α q is bounded, this gives [START_REF] Berend | Mixing sequences in Hilbert spaces[END_REF]. By [START_REF] Bellow | An Lp-inequality with application to ergodic theory[END_REF] Since ε P p0, 1s is arbitrary, we conclude that xφ α , xy Ñ 0 for every x P X, as required.

4.5. WORTH. Our last result related to Gâteaux smoothness is about Banach spaces with property WORTH, a property which has been considered in fixed point theory (see e.g. [START_REF] Sims | A class of spaces with weak normal structure[END_REF]). A Banach space X has WORTH if lim nÑ8 ´}x `yn } ´}x ´yn } ¯" 0 for every weakly null sequence py n q Ă X. If weakly null sequences are replaced by weakly null bounded nets, one obtains the so-called property pauq, which have been thoroughly studied recently by S. R. Cowell and N. Kalton [START_REF] Cowell | Asymptotic unconditionality[END_REF], together with its dual version pau ˚q (the latter was introduced in [START_REF] Lima | Property pwM ˚q and the unconditional metric compact approximation property[END_REF] under the name "pwM ˚q"). Though perhaps innocent looking at first sight, these properties are in fact very strong. For example, it is shown in [START_REF] Cowell | Asymptotic unconditionality[END_REF] that a separable reflexive Banach space has WORTH if and only if it can be p1 `εq-embedded into a Banach space with a shrinking 1-unconditional basis, for any ε ą 0. Proposition 4.6. If X is uniformly Gâteaux smooth with property WORTH, then it has extremal asymptotic smothness at infinity (and hence the Blum-Hanson property).

Proof. We may assume that X does not have the Schur property. By WORTH, the modulus r X can be re-written as follows : where the "little o" is uniform with respect to py n q P WNpS X q. Hence, we get lim tÑ8 pr X pt, xq ´tq " 0 for every x P X.

r X pt,
Remark. A strong form of WORTH is the important property pM q introduced by N. Kalton in [START_REF] Kalton | M -ideals of compact operators[END_REF]. A Banach space X has property (M) if lim sup }u `xn } " lim sup }v `xn } whenever u, v P X satisfy }u} " }v} and px n q is a weakly null sequence in X.

Obviously, property (M) is weaker than pm p q, for any p P p1, 8s. Since we saw in section 2 that pm p q implies Blum-Hanson, it makes sense to ask whether (M) implies the Blum-Hanson property. By [START_REF] Kalton | Property pM q, M -ideals, and almost isometric structure of Banach spaces[END_REF]Corollary 4.5], this is true for subspaces of L p , 1 ă p ă 8 and for subspaces of L 1 not containing 1 , because any such space has property pm r q for some r ą 1. More generally, this is true for separable Banach spaces not containing 1 which are stable in the sense of [START_REF] Krivine | Espaces de Banach stables[END_REF]; see the proof of [27, Theorem 3.10].

Orlicz spaces

In this section, we apply the previous general results to the specific setting of Orlicz spaces. Not unexpectedly, the situation is similar to that of p and L p spaces (as far as the Blum-Hanson property is concerned).

Let θ : r0, 8q Ñ r0, 8q be an Orlicz N -function, i.e. an increasing convex function such that lim tÑ8 θptq{t " 8 and lim tÑ0 θptq{t " 0. Given any measure space pΩ, µq, the Orlicz space L θ pΩ, µq is the space of all (equivalence classes of) measurable functions f : Ω Ñ R such that ş Ω θpc |f |q dµ ă 8 for some c ą 0. We equip L θ pΩ, µq with one of its two "natural" norms, the so-called Luxemburg norm:

}f } " inf " λ ą 0; ż Ω θ ˆ|f | λ ˙dµ ă 8 * .
When Ω " Z `equipped with the counting measure, we denote the Orlicz space by θ ; and when Ω " p0, 1q with Lebesgue measure, we simply write L θ .

The small Orlicz space M θ pΩ, µq (also called the Morse-Transue space) is the subspace of L θ pΩ, µq consisting of all f such that ş Ω θpc |f |q dµ ă 8 for every c ą 0. We write m θ when Ω " N and M θ when Ω " p0, 1q.

It is well known (see e.g. [START_REF] Rao | Theory of Orlicz spaces[END_REF] and/or [START_REF] Lindenstrauss | Classical Banach spaces[END_REF]) that m θ " θ if and only if θ satisfies the so-called ∆ 2 condition at 0, i.e. lim sup tÑ0 θp2tq{θptq ă 8, and that M θ " L θ iff θ satisfies the ∆ 2 condition at 8, i.e. lim sup tÑ8 θp2tq{θptq ă 8. By the duality theory of Orlicz spaces, it follows that θ is reflexive iff both θ and the conjugate Orlicz function θ ˚satisfy the ∆ 2 condition at 0, and that L θ is reflexive iff θ and θ satisfy the ∆ 2 condition at 8. We quote the following more "specialized" results: ' m θ is asymptotically uniformly smooth if and only if θ ˚satisfies the ∆ 2 condition at 0 ( [START_REF] Delpech | Asymptotic uniform moduli and Kottman constant of Orlicz sequence spaces[END_REF]); ' L θ is Gâteaux smooth iff θ is C 1 and satisfies the ∆ 2 condition at 8 (see [44, Theorem X.4.3]);

We can now state our results about the Blum-Hanson property for Orlicz spaces. For the sake of "immediate applicability", we formulate the assumptions directly in terms of the Orlicz functions θ and θ ˚; but this should of course be translated into properties of the Orlicz spaces (using the just mentioned results). Proof.

(1) By [START_REF] Delpech | Asymptotic uniform moduli and Kottman constant of Orlicz sequence spaces[END_REF], the ∆ 2 condition for θ ˚means that X " m θ is asymptotically uniformly smooth. Moreover, it is also shown in [START_REF] Delpech | Asymptotic uniform moduli and Kottman constant of Orlicz sequence spaces[END_REF] that in this case the modulus of asymptotic smoothness of X behaves very nicely: one can find some constant α ą 1 such that ρX pt, xq ď p1 `tα q 1{α ´1 for every x P S X and all t ě 0. (This is stated only for t P r0, 1s in [START_REF] Delpech | Asymptotic uniform moduli and Kottman constant of Orlicz sequence spaces[END_REF], but the proof works for any t ě 0). This shows that m θ has extremal (uniform) asymptotic smoothness at infinity, hence (1).

(2) Here, the assumption mean that L θ is Gâteaux smooth. It is enough to show that the duality mapping J " S L θ Ñ S L θ is vanishing along weakly null nets in

S L θ X L θ at all f P S L θ X L θ .
We shall use the following known fact (see [START_REF] Rao | Theory of Orlicz spaces[END_REF]Theorem VII.2.3]): if f P S L θ X L θ then Jpf q is given by the formula [START_REF] Blum | On the mean ergodic theorem for subsequences[END_REF] xJpf q, gy "

1 ş f θ 1 pf q ż g θ 1 pf q .
This formula makes sense thanks to the ∆ 2 condition. Indeed, if h P L θ , then θ 1 p|h|q P L θ ˚by ∆ 2 (see [43, We also need the following inequality :

(10) @f P L θ X S L θ : ż f θ 1 pf q ě 1 .
To prove this, note that ş θp|f |q " 1 for every f P S L θ , by ∆ 2 (see e.g [43, Proposition III.4.6]). Since θ 1 is non-decreasing and θp0q " 0, it follows that tθ 1 ptq ě θptq for all t ě 0 and hence ş f θ 1 pf q ě ş θpf q for any f P L θ . Now, let us fix a weakly null net pf α q Ă L θ X S L θ and a function g P L θ . We show that xJpf α q, gy Ñ 0.

Let ε ą 0 be arbitrary. Since the function g θ 1 pgq is integrable (see the remark just after ( 9)), we may first choose η ą 0 so that ş g θ 1 pηgq ă ε. Then, proceed as in the proof of Bellow's inequality (3) for L p :

ż g θ 1 pf α q " ż fαăηg `żgăηfα `żηgďfαďη ´1g ď ż g θ 1 pηgq `η ż f α θ 1 pf α q `η´1 ż f α θ 1 pη ´1gq .
Using ( 9), [START_REF] Browder | Fixed points theorems for nonlinear semicontractive mappings in Banach spaces[END_REF] and assuming (as we may) that η ă ε, we get

xJpf α q, gy ď 2ε `η´1 ż f α θ 1 pη ´1gq ,
for every α. Since θ 1 pη ´1gq P L θ ˚" pL θ q ˚by ∆ 2 and since pf α q is weakly null, it follows that lim sup xJpf α q, gy ď 2ε, which concludes the proof.

Corollary 5.2. Any subspace a reflexive Orlicz sequence space has the Blum-Hanson property.

Remark. As mentioned in the introduction, the Blum-Hanson property for Orlicz function spaces endowed with the Orlicz norm has been studied in [START_REF] Millet | Sur le théorème en moyenne d'Akcoglu-Sucheston[END_REF]. It is shown there (Theorem 7.7) that if L θ is uniformly Fréchet smooth when endowed with the Orlicz norm, then it has the Blum-Hanson property with repect to positive contractions. The proof also makes use of a Bellow-like inequality (Lemma 7.2). Exactly as in the L p case, it could be shortened by applying Proposition 4.1.

6. Very classical spaces 6.1. Hilbert spaces. We include here a superficially new proof of the Blum-Hanson property for complex Hilbert spaces. This is merely a rewriting of the one that can be found in [START_REF] Krengel | Ergodic theorems[END_REF]. However, we find it worth mentioning for two reasons: it is extremely simple (though not elementary), and it suggests than one could possibly prove the Blum-Hanson property for other spaces by using "functional calculus" arguments.

Let T be a contraction operator on a complex Hilbert space H, and assume that T n x w Ý Ñ 0 for some x P H. Let σ x be the spectral measure for T associated with x, i.e. the positive (finite) measure on T whose Fourier coefficients are given by x σ x pnq "

" xT n x, xy n ě 0 xT ˚|n| x, xy n ď 0
The assumption T n x w Ý Ñ 0 means that σ x is a Rajchman measure: x σ x pnq Ñ 0 as |n| Ñ 8. Moreover, the following von Neumann-type inequality holds for every polynomial P (see e.g. [46, Proposition 1.1.2]): [START_REF] Casazza | Approximation properties. Handbook of the feometry of Banach spaces[END_REF] }P pT q x} 2 ď

ż T |P | 2 dσ x .
Now, let pn i q iě1 be an increasing sequence of integers. Applying [START_REF] Casazza | Approximation properties. Handbook of the feometry of Banach spaces[END_REF] with P pzq "

z n 1 `¨¨¨`z n K , we get (12) › › › › › K ÿ i"1 T n i x › › › › › 2 ď K ÿ i,j"1
x σ x pn i ´nj q for any K P N. Moreover, since x σ x pnq Ñ 0 as |n| Ñ 8, it is a simple exercise to show that

α K " 1 K 2 K ÿ i,j"1 |x σ x pn i ´nj q| Ñ 0 as K Ñ 8.
(Indeed, we have 7 pi, jq P 1, K 2 ; |n i ´nj | ď N ( ď 2KN , so that lim sup α K ď supt|x σ x pnq|; |n| ą N u for any N P N). By [START_REF] Casazza | Notes on approximation properties in separable Banach spaces[END_REF], it follows that the sequence pT n xq is Blum-Hanson. 6.2. CpKq spaces. As mentioned in the introduction, it is shown in [START_REF] Akcoglu | A couterexample to Blum-Hanson theorem in general spaces[END_REF] that the space CpT 2 q fails the conditional Blum-Hanson property. From this and known results about CpKq spaces, one can easily deduce Proposition 6.1. If K is an uncountable compact metrizable space, then CpKq fails the conditional Blum-Hanson property.

Proof. This relies on the following trivial observation:

Fact. Let X be a Banach space, and let Z be a 1-complemented subspace of X. If Z fails the (conditional) Blum-Hanson property then so does X.

Proof of Fact. Let π : X Ñ Z be a norm 1 projection from X onto Z, and let j : Z Ñ X be the canonical embedding. If T : Z Ñ Z is a contraction on Z, then r T :" jT π is a contraction on X extending T ; and since r T n " jT n π for all n, it has weakly convergent orbits as soon as T does. So the result is clear. Now, we use the following facts, which are the key ingredients in the proof of Miljutin's theorem on the isomorphism of all CpKq for uncountable and metrizable K (see [4, p. 95]). Let ∆ " t0, 1u N be the usual Cantor space. Then, for every compact metrizable L the space CpLq is isometric to a 1-complemented subspace of Cp∆q; and if L is uncountable then the space Cp∆q is isometric to a 1-complemented subspace of CpLq. Applying this first with L " T 2 we deduce that Cp∆q fails the conditional Blum-Hanson property, and taking then L " K we conclude that so does CpKq. Corollary 6.2. The disk algebra ApDq does not have the conditional Blum-Hanson property.

Proof. Recall that the disk algebra is the space of all complex-valued functions which are continuous on the closed unit disk D Ă C and holomorphic on D, endowed with the sup norm. Let K be an uncountable compact subset T with Lebesgue measure 0. By the Rudin-Carleson theorem, any continuous function f : K Ñ C can be extended to a function r f P ApDq with } r f } 8 " }f } 8 ; and in fact, it was shown by A. Pe lczyński that there is an isometric linear extension operator E " CpKq Ñ ApDq (see [START_REF] Michael | Pe lczyński, A linear extension theorem[END_REF]). It follows at once that ApDq has a 1-complemented subspace isometric to CpKq (namely ECpKq), and hence that ApDq cannot have the conditional Blum-Hanson property.

Remark. It is quite plausible that no CpKq space (for infinite K) has the Blum-Hanson property. In any event, if K is an infinite compact (Hausdorff) space then CpKq does not have extremal asymptotic smoothness at infinity. Indeed, as in any infinite Hausdorff space one can find a countably infinite discrete D in K. Denoting by Ω the closure of D in K, the space CpKq contains an isometric copy of CpΩq; so it is enough to show that CpΩq does not have extremal asymptotic smoothness at infinity. Write D " td n ; n P Nu. Since D is discrete, each td n u is clopen in Ω, so the function f n " 1 tdnu is in CpΩq. Obviously, the sequence pf n q is weakly null in X " CpΩq. Moreover, since f n ě 0 we have }1 `tf n } 8 " 1 `t for every t ě 0; so r X pt, 1q " 1 `t for all t.

In the case K " T 2 , the main result of [START_REF] Akcoglu | A couterexample to Blum-Hanson theorem in general spaces[END_REF] is in fact much more precise than Proposition 6.1: the space CpT 2 q fails the conditional Blum-Hanson property with respect to the very special class of composition operators, i.e. operators of the form T f " f ˝ϕ. Interestingly enough, this does not hold for K " r0, 1s. Proposition 6.3. The space Cpr0, 1sq has the conditional Blum-Hanson property with respect to composition operators.

Indeed, let T be a composition operator (T f " f ˝ϕ) on Cpr0, 1sq induced by some continuous map ϕ : r0, 1s Ñ r0, 1s, and assume that T has weakly convergent orbits. This means exactly that the iterates ϕ n converge pointwise on r0, 1s to some continuous function α : r0, 1s Ñ r0, 1s. Hence, it is enough to prove the following lemma. (This lemma is certainly well known but we couldn't locate a reference. The proof we give is due to D. Malicet, and we thank V. Munnier for explaining it). Lemma 6.4. Let ϕ : r0, 1s Ñ r0, 1s be a continuous map. If ϕ n pxq Ñ αpxq pointwise, where α : r0, 1s Ñ r0, 1s is continuous, then in fact ϕ n pxq Ñ αpxq uniformly.

Proof. We note that the set of fixed points of ϕ is exactly the closed interval I " αpr0, 1sq. If I " r0, 1s, there is nothing to prove. Otherwise, consider the space Λ obtained from r0, 1s by identifying all the points of I, with the usual quotient topology. Then Λ is homeomorphic to r0, 1s, the map ϕ induces a continuous map r ϕ : Λ Ñ Λ with a single fixed point r α, and the iterates r ϕ n converge pointwise to r α on Λ. If we can show that r ϕ n Ñ r α uniformly then we will get the result for ϕ. Therefore, all we need to do is to prove the following result : If ϕ : r0, 1s Ñ r0, 1s is a continuous map with a single fixed point α such that ϕ n pxq Ñ α pointwise on r0, 1s, then the convergence is uniform. To do this, the key point is the following Fact. Let J " ru, vs be a nontrivial compact interval of R. If ϕ : J Ñ J is continous and ϕ n pxq Ñ α P J pointwise on J, then ϕ cannot be onto.

Proof of Fact. If α " u, then we must have ϕpxq ă x for all x P su, vs, because ϕpxq ´x has constant sign on su, vs by the intermediate value theorem (α " u is the only fixed point of ϕ) and ϕpvq ď v; in particular ϕpxq ă v for all x P J, which gives the result in this case. Likewise if α " v. Now, assume that α P su, vr and that ϕ is onto. Then ϕpxq ´x has constant sign on both intervals ru, αr and sα, vs, and since ϕpru, vsq Ă ru, vs the only possible case is the following: ϕpxq ą x on ru, αr and ϕpxq ă x on sα, vs. In particular, ϕpxq ą u on ru, αs and ϕpxq ă v on rα, vs. Since ϕ is onto, we then have v P ϕpru, αsq and u P ϕprα, vsq, whence rα, vs Ă ϕpru, αsq and ru, αs Ă ϕprα, vsq. It follows that ru, αs Ă ϕ 2 pru, αsq; but this is a contradiction because ϕ 2 satisfies the same assumption as ϕ and hence ϕ 2 pxq ą u on ru, αs. Now, let ϕ : r0, 1s Ñ r0, 1s be a continuous map such that ϕ n pxq Ñ α pointwise on r0, 1s. Then J " Ş ně0 ϕ n pr0, 1sq is compact interval containing α, and it is easily checked that ϕpJq " J. By the above fact, it follows that Ş ně0 ϕ n pr0, 1sq " tαu; and from this it is not hard to deduce that ϕ n pxq Ñ α uniformly. 6.3. The space L 1 . In [START_REF] Akcoglu | On operator convergence in Hilbert space and in Lebesgue space[END_REF], the proof that L 1 " L 1 p0, 1q has the conditional Blum-Hanson property proceeds roughly as follows. Using the so-called linear modulus associated with a given contraction T on L 1 and assuming that T has weakly convergent orbits, one breaks the underlying measure space into 2 pieces A and B such that T has norm null orbits on L 1 pAq and T is an absolute contraction on L 1 pBq, i.e. a contraction on any L p , 1 ď p ď 8. Then the absolutely contractive part is handled using the L 2 case. This seems to be very specific to L 1 , and we see no way of using any kind of "smoothness" argument to shorten the proof. 6.4. The space L p . If L p " L p p0, 1q, 1 ă p ă 8 were to have the Blum-Hanson property, this could not be proved by a direct application of Theorem 2.1 with C " X " L p , except of course for p " 2. Indeed, L p does not have extremal asymptotic smoothness at infinity.

One can see this somewhat indirectly by observing that the duality mapping of L p is not vanishing along weakly null sequences (see Remark 1 just after Proposition 4.1). Indeed, let τ : p0, 1q Ñ p0, 1q be any strongly mixing transformation wrt Lebesgue measure, and let T f " f ˝τ be the induced isometry on L p . Since p ‰ 2, one can find g P L p such that ş g " 0 and ş Jpgq " c ‰ 0. Then T n g w Ý Ñ 0 by the strong mixing property, but JpT n gq is not weakly null because ş JpT n gq " c. (This example is taken from [START_REF] Bellow | An Lp-inequality with application to ergodic theory[END_REF]).

One may also check directly that L p does not have extremal asymptotic smoothness at infinity. Consider a sequence pξ n q of independent random variables on the probability space pΩ, Pq " p0, 1q with Lebesgue measure, such that Ppξ n " aq " 1´λ and Ppξ n " ´bq " λ, where a ‰ b (with a, b ą 0) and λ are chosen in such a way that Epξ n q " 0 and }ξ n } Lp " 1; explicitely, p1 ´λqa p `λb p " 1 and p1 ´λqa " λb. The sequence pξ n q is bounded in L 8 and orthogonal in L 2 , hence weakly null in L p . On the other hand, }1 `t ξ n } p " pp1 ´λqp1 `taq p `λp1 ´tbq p q 1{p for all n, and it follows that r Lp pt, 1q p t p ě p1 ´λqa p p1 `a´1 t ´1q p `λb p p1 ´b´1 t ´1q p .

Since p1´λqa p `λb p " 1, the right-hand side is equivalent to 1`ct ´1 as t Ñ 8, where c " p `p1 ´λqa p´1 `λb p´1 ˘. Putting α " p1 ´λqa " λb, we have c " pαpb p´2 ´ap´2 q and hence c ‰ 0 if p ‰ 2. Thus, taking a ă b if p ą 2 and a ą b if p ă 2, we see that lim tÑ8 `rLp pt, 1q ´t˘ě c p ą 0. (This example is taken from [START_REF] Dilworth | Weak convergence of greedy algorithms in Banach spaces[END_REF]). Incidentally, the sequence pξ n q above is Blum-Hanson. Indeed, by the Banach-Saks theorem the bounded sequence pξ n q has a subsequence whose arithmetic means are norm convergent, necessarily to 0 " w-lim ξ n ; and since pξ n q is invariant under spreading (i.e. } ř nPA ξ n } p depens only on the cardinality of the finite set A Ă N), the same is in fact true for any subsequence of pξ n q. One can also apply the mean ergodic theorem, as follows. Let X be the closed subspace of L p generated by the ξ n ; then the shift map ξ n Þ Ñ ξ n`1 extends to an isometry S of X because the ξ n are independent and identically distributed, and ξ n " S n ξ 0 by definition; by the mean ergodic theorem and the invariance under spreading, this gives the result. Finally, here is a more baroque proof: since the ξ n are centred and independent, they form a bi-monotone Schauder basis of X (because }ξ `ξ1 } p ě }ξ} p whenever ξ and ξ 1 are independent centred random variables); so X has the Blum-Hanson property by Proposition 4.2, and hence pξ n q " pS n ξ 0 q is Blum-Hanson.

The last few lines suggest that there still might be some hope for showing that L p has the Blum-Hanson property by applying something like Theorem 2.1. In this spirit, it is worth noting that for any finite measure space pΩ, B, µq, the space L p pΩ, µq satisfies a weak form of Kalton-Werner's property pm p q. Indeed, let us denote by τ the topology of convergence in measure (for measurable functions on Ω). It is not difficult to see that L p has property pm p q with respect to the topology τ ; that is, if f P L p pΩ, µq and if pf n q Ă L p pΩ, µq is τ -convergent to 0, then lim sup }f `fn } " p}f } p `lim sup }f n } p q 1{p . It follows that any subspace of L p pΩ, µq in which all weakly null sequences are τ -null has property pm p q, and hence the Blum-Hanson property. (This applies for example to the Bergman space B p pDq, since weak convergence in B p pDq implies uniform convergence on compact sets). More generally, the proof of Theorem 2.1 yields the following result. Proposition 6.5. Let pΩ, B, µq be a finite measure space, and let T be a contraction on a subspace X of L p pΩ, ,µq. If f P X is such that T n f τ Ý Ñ 0, then the sequence pT n f q is Blum-Hanson.

Hence, any subspace of L p has the "τ -Blum-Hanson property". This leaves us certainly far from showing the Blum-Hanson property for L p , but still this could be an interesting fact.

7.

Concluding remarks, and some questions 7.1. Sequences of contractions. Using the same ideas as in the proof of Theorem 2.1, one can prove a more general result allowing to deal with sequences of contractions not necessarily of the form T n for some T . We have no application, but this might be useful elsewhere.

Let I be the set of all finite intervals of positive integers, including the empty interval. We denote by |α| the length of an interval α P I. We write α ă β if α Ă β and min α " min β. Finally, we say that a family of points px α q αPI in a Banach space X is shift-monotone if }x α 1 `¨¨¨`x α k } ď }x α 1 zα 0 `¨¨¨`x α k zα 0 } for every increasing sequence α 0 ă α 1 ă ¨¨¨ă α k in I. For example, if px n q is a shift-monotone sequence in X and x α " x |α| , then the family px α q αPI is shift-monotone. Proposition 7.1. Let px α q αPI be a shift-monotone family in a Banach space X. Assume that x α w Ý Ñ 0 as |α| Ñ 8, and that lim tÑ8 pr X pt, x H q ´tq ď 0. Then, for any infinite increasing sequence α 1 ă α 2 ă . . . in I, the sequence px αn q is Blum-Hanson.

As an immediate consequence, we get Corollary 7.2. Let pT j q jPN be a sequence of contractions on X, and let x P X. Assume that T p T p`1 ¨¨¨T q x w Ý Ñ 0 as q ´p Ñ `8, and that lim tÑ8 pr X pt, xq ´tq ď 0. Then the sequence pT 1 ¨¨¨T n xq nPN is Blum-Hanson.

Proof. Just apply Proposition 7.1 to the (shift-monotone) family px α q αPI defined by x H " x and x α " T p ¨¨¨T q x if α " rp, qs.

Proof of Proposition 7.1. For any d, s P N, let us denote by Fps, dq be the family of all finite sets A Ă I of the form A " tα 1 , . . . , α s u with α 1 ă ¨¨¨ă α s and |α i`1 zα i | ě d for all i P t1, . . . , s ´1u. Now define the function F : N Ñ R `in the obvious way:

F psq " inf dPN sup APF ps,dq › › › › › ÿ αPA x α › › › › › .
Then, one shows exactly as in the proof of Theorem 2.1 that F psq{s Ñ 0 as s Ñ 8; and the result follows. 7.2. Direct sums and subpm p q. The following remarks show that properties subpm p q are preserved under direct sums. Proposition 7.3. Let pX i q iPI be a family of Banach spaces.

(1) Let p P r1, 8q, and assume that each X i has property subpm p i q for some p i ě p. Then the p direct sum ' p X i has property subpm p q. (2) If all pX i q have property subpm 8 q, then ' c 0 X i has subpm 8 q.

Proof. (1) To avoid double subscripts, we write any vector in X " ' p X i as x " pxpiqq iPI . Moreover, we denote all norms involved (in X and in every space X i ) by the same symbol } ¨}. Finally, we may assume that in fact p i " p for all i since subpm q q obviously implies subpm p q whenever q ě p.

Let x P X, and let pz n q be any weakly null sequence in X. We have to show that [START_REF] Cowell | Asymptotic unconditionality[END_REF] lim sup nÑ8 }x `zn } p ď }x} p `lim sup }z n } p .

Since all z n have countable support, we may assume (by a diagonal argument) that lim n }z n piq} exists for all i P I.

Let us fix ε ą 0. By the definition of X, we may choose a finite set I ε Ă I such that ÿ iRIε }xpiq} p ă ε p . Now, let pε i q iPIε be positive numbers such that ř i ε p i ă ε p . Since each space X i has property subpm p q and all limits lim n }z n piq} exist, one can find N P N such that @n ě N @i P I ε : }xpiq `zn piq} p ď }xpiq} p `}z n piq} p `εp i . We then have for all n ě N : for all n ě N . Since ε is arbitray, this gives [START_REF] Cowell | Asymptotic unconditionality[END_REF].

Part (2) is proved in the same way (the details are actually simpler).

Corollary 7.4. Let I be an arbitrary index set. If X is a Banach space with property subpm q q for some q ą 1 then p pI, Xq has extremal asymptotic smoothness at infinity (and hence the Blum-Hanson property) for any p P p1, qs. If X has property subpm 8 q then c 0 pI, Xq has extremal asymptotic smoothness at infinity.

Remark. Apart from trivial cases, 1 direct sums never have extremal asymptotic smoothness at infinity. In fact, if Z is a Banach space without the Schur property then, for any Y ‰ t0u, the space X " Y ' 1 Z does not have extremal asymptotic smoothness at infinity. To see this, choose a weakly null sequence in pz n q Ă S Z and observe that if y P S Y , then }py, 0q `tp0, z n q} " 1 `t for every t ě 0 and all n P N: this shows that r X pt, xq " 1 `t for any x P S X of the form py, 0q. On the other hand, we don't know if a "nontrivial" 1 direct sum can ever have the Blum-Hanson property.

7.3. A symmetric modulus. For any Banach space X, consider the "symmetric" modulus r r X defined as follows: r r X pt, xq " sup pynqPWNpS X q lim sup nÑ8 ˆ}x `ty n } `}x ´ty n } 2 ˙.

Obviously r r X pt, xq ď r X pt, xq. Moreover, the proof of Proposition 4.6 yields that if X is uniformly Gâteaux smooth (and does not have the Schur property) then lim tÑ8 pr r X pt, xq ´tq " 0 for every x P S X . That is, condition (˚) of Theorem 2.1 holds when r X is replaced with r r X . From this, it is tempting to believe that a proof similar to that of Theorem 2.1 should yield the following result : if T is a contraction on a uniformly Gâteaux smooth space X then, for any x P X with a weakly null orbit, one can find a choice of signs pε n q P t´1, 1u N such that the sequence pε n T n xq is Blum-Hanson. However, this would in fact mean that uniformly Gâteaux smooth spaces have the Blum-Hanson property, since it is easily checked that a sequence px n q is Blum-Hanson if and only if pε n x n q is, for any choice of signs pε n q.

To put this in perspective, it is worth recalling here that uniformly (Fréchet) smooth Banach spaces have the Banach-Saks property (se e.g. [START_REF] Diestel | Sequences and series in Banach spaces[END_REF]); that is, any bounded sequence has a subsequence whose arithmetic means are norm convergent. By a well known result of P. Erdös and M. Magidor ( [START_REF] Erdös | A note on regular methods of summability and the Banach-Saks property[END_REF], see also [START_REF] Beauzamy | Modèles étalés des espaces de Banach[END_REF]II.6]), any bounded sequence in a space X with the Banach-Saks property has a subsequence all of whose further subsequences have norm convergent arithmetic means. In particular, if X has the Banach-Saks property then any weakly null sequence in X has a Blum-Hanson subsequence. (In fact, it is enough to assume that X has the weak Banach-Saks property, i.e. any weakly convergent sequence has a subsequence with norm convergent arithmetic means). Hence, if T is a contraction on X then, for any x P X with a weakly null orbit, one can find a (nontrivial) choice of 0's and 1's pε n q such that pε n T n xq is Blum-Hanson. 7.4. How not to be Blum-Hanson. Since asymptotic smoothness is "dual" to asymptotic convexity, it is natural to expect that an extremal behaviour of the modulus of asymptotic convexity should give rise to non Blum-Hanson sequences.

Recall that the modulus of asymptotic convexity of the Banach space X is the function δX : R `ˆS X Ñ R `defined by δX pt, xq " sup

E inf yP q B E }x `ty} ´1 ,
where the supremum is taken over all finite-codimensional subspaces E of X and q B E " ty P E; }y} ě 1u. Obviously δX pt, xq ě 0. The space X is said to be asymptotically uniformly convex if δX ptq :" inf xPS X δX pt, xq ą 0 for all t ą 0. For example, 1 is asymptotically uniformly convex because δX ptq " t for all t. A closely related "modulus" is

d X pt, xq " inf pynqPWNpS X q
lim inf }x `ty n } .

(Again, the trivial case WNpS X q " H is allowed: inf H is declared to be `8). In the terminology of [START_REF] Lin | Demiclosedness principle and asymptotic behaviour for asymptotically nonexpansive mappings[END_REF], t ´1 inf xPS X d X pt, xq ´1 is the value of the Opial modulus of X at t ´1.

It is easy to check that d X pt, xq ě 1 `δpt, xq ě t for all t (if x P S X ), and that both δX xq and d X pt, xq ´t have a (nonegative) limit as t Ñ 8. The following result can now be proved along the same lines as Theorem 2.1. Proposition 7.5. Let px n q nPZ `be a reverse shift-monotone sequence in X, i.e. }x 1`n 1 `¨¨¨`x 1`n k } ě }x n 1 `¨¨¨`x n k } for all finite increasing sequences n 1 ă ¨¨¨ă n k . Assume that the initial point x " x 0 satisfies [START_REF] Dalby | Duality map Characterisations for Opial conditions[END_REF] lim tÑ8 ´dX ps, xq ´t¯ą 0 .

Then px n q is not a Blum-Hanson sequence.

As an immediate consequence, we get Corollary 7.6. Assume that lim tÑ8 p δX pt, xq `1 ´tq ą 0 for every x P S X . Then, no linear isometry on X can have any Blum-Hanson orbit (except t0u).

To prove Proposition 7.5, one may obviously assume that the sequence px n q is weakly null. Then, the strategy is the same as for Theorem 2.1 (but reverting all the inequalities). The function F introduced in Lemma 3.1 is replaced with

Gpsq " sup dPN inf APFIN s,d › › › › › ÿ nPA x n › › › › ›
, and one shows that lim inf sÑ8 Gpsq s ą 0. To do this, one makes use of the inequality Gps `1q ě Gpd X ps, x 0 qq . We shall not give any further detail, for a rather unpleasant reason: all the Banach spaces that we know for which lim tÑ8 p δX pt, xq `1 ´tq ą 0 for every x P S X happen to have the Schur property; and for such spaces everything is trivial since Blum-Hanson sequences are norm null.

Example 2 .

 2 Any positive contraction on L p , 1 ă p ă 8 satisfies the Blum-Hanson dichotomy at all f P L p (the positive cone of L p ).

  } ď rC `lim sup }z d }, x ˘.

dÑ8 }x 0

 0 `zd } ď rC plim sup }z d }q . Moreover, z d has the form ř mPB d x m , for some set B d Ă N with cardinality s and gaps at least d, i.e. B d P FINps, dq. Hence, }z d } ď F d psq for all d P N; and since rC ptq is non-decreasing with respect to t, it follows that rC plim sup }z d }q ď rC plim sup F d psqq " rC pF psqq. Altogether, we get F ps `1q " lim }x 0 `zd } ď rC pF psqq .

Proposition 5 . 1 .( 1 ) 2 )

 5112 Let θ be an Orlicz N -function. If θ ˚satisfies the ∆ 2 condition at 0, then every subspace of m θ has the Blum-Hanson property. (If θ is C 1 -smooth and satisfies the ∆ 2 condition at 8 then, any positive contraction on L θ satisfies the Blum-Hanson dichotomy at all f P L θ (the positive cone of L θ ).

  Writing xφ α , xy " xΦ α , π K xy `xΦ α , pI ´πK qxy, we get |xφ α , xy| ď |xπ K Φ α , xy| `2ε for all n P N, and hence lim sup

and since }Φ α } ď 1 `ε for every α, it follows that lim sup α c pp1 `εq ´1, |π K Φ α pxq|q ď 1 `ε for every K P N. Since cps, tq ą s for t ą 0 and since π K Φ α pxq is uniformly bounded with respect to α and K, this implies that lim sup α |π K Φ α pxq| ď δpε, xq , where δpε, xq does not depend on K P N and δpε, xq Ñ 0 as ε Ñ 0. Now, let us choose K P N such that }pI ´πK qx} Z ă ε. α |xφ α , xy| ď δpε, xq `2ε .

  xq " sup

		pynqPWNpS X q	lim sup nÑ8	}x `ty n } `}x ´ty n } 2	Moreover,
	by uniform Gâteaux smoothness we have (as t Ñ 8)
	}x `ty n } `}x ´ty n } "	}t ´1x `yn } `}t ´1x ´yn } t ´1
	"	p1 `t´1 xJpy n q, xy `opt ´1qq `p1 ´t´1 xJpy n q, xy `opt ´1qq t

´1

" 2t `op1q

  proof of proposition III.4.8]) and hence, by Hölder's inequality (see e.g [43, Proposition III.3.1]), k θ 1 p|h|q is integrable for any k, h P L θ .

  ε p `}x} p `ÿ iPIε }z n piq} p `ÿ iRIε p}xpiq} `}z n piq}q p . By Minkowski's inequality for p pIq, it follows that }x `zn } p ď ε p `}x} p `¨˜ÿ `}x} p `p}z n } `εq p

	}x `zn } p "	ÿ iPIε	}xpiq `zn piq} p `ÿ iRIε	}xpiq `zn piq} p
	ď	ÿ iPIε	p}xpiq} p `}z n piq} p `εp i q	`ÿ iRIε	}xpiq `zn piq} p
						'p
				¸1 p	¸1 p
			}z n piq} p	`˜ÿ	}xpiq} p
			iPI		iRIε
	ď ε p			

ď

7.5. Power-bounded operators. As mentioned in the introduction, it is shown in [START_REF] Müller | Quasi-similarity of power-bounded operators and Blum-Hanson property[END_REF] is that p , 1 ă p ă 8 does not have the conditional Blum-Hanson property with respect to power-bounded operators (in short, (CBHPB)). This has been extended by J. M. Augé [START_REF] Augé | Quelques problèmes de dynamique linéaire dans les espaces de Banach[END_REF]: any BanachX space with a shrinking symmetric basis (e.g. X " c 0 or p ) fails (CBHPB). Since the property is easily seen to be inherited by complemented subspaces, it follows that any Banach space containing a complemented copy of c 0 or some p , 1 ă p ă 8 fails (CBHPB). For example, this holds for L p , 1 ă p ă 8 and for any separable Banach containing a copy of c 0 (which is necessarily complemented by Sobczyk's theorem). Actually, we are aware of no example of a Banach space having the Blum-Hanson property with respect to power-bounded operators, apart from the trivial case of Banach spaces with the Schur property. 7.6. Some questions. To conclude the paper, we collect a few questions that appear to be quite natural. Hanson property with respect to power-bounded operators? Equivalently, is it true (or not) that if X is a Banach space without the Schur property, then X admit a renorming under which it fails the Blum-Hanson property? (15) Which Banach spaces can be renormed to have the Blum-Hanson property?