
HAL Id: hal-00859173
https://hal.science/hal-00859173

Submitted on 6 Sep 2013

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Preliminary System Safety Analysis with Limited
Markov Chain Generation

Pierre-Antoine Brameret, Jean-Marc Roussel, Antoine Rauzy

To cite this version:
Pierre-Antoine Brameret, Jean-Marc Roussel, Antoine Rauzy. Preliminary System Safety Analysis
with Limited Markov Chain Generation. 4th IFAC Workshop on Dependable Control of Discrete
Systems (DCDS 2013), Sep 2013, York, United Kingdom. Paper n°3. �hal-00859173�

https://hal.science/hal-00859173
https://hal.archives-ouvertes.fr


Preliminary System Safety Analysis with
Limited Markov Chain Generation

P.-A. Brameret ∗ J.-M. Roussel ∗ A. Rauzy ∗∗

∗ Lurpa, Ens de Cachan, 61 avenue du Président Wilson,
94235 Cachan cedex, France

{pierre-antoine.brameret,jean-marc.roussel}@lurpa.ens-cachan.fr
∗∗ Lix, École Polytechnique, Route de Saclay,

91128 Palaiseau cedex, France
rauzy@lix.polytechnique.fr

Abstract: Markov chains are a powerful and versatile tool to calculate reliability indicators.
However, their use is limited for two reasons: the exponential blow-up of the size of the model,
and the difficulty to design models. To overcome this second difficulty, a solution consists in
generating automatically the Markov chain from a higher level description, e.g. a stochastic
Petri net or an AltaRica model. These higher level models describe the Markov chain implicitly.
In this article, we propose an algorithm to generate partial Markov chains. The idea is to accept
a little loss of accuracy in order to limit the size of the generated chain. The cornerstone of
this method is a Relevance Factor associated to each state of the chain. This factor enables the
selection of the most representative states. We show on an already published test case, that
our method provides very accurate results while reducing dramatically the complexity of the
assessment. It is worth noticing that the proposed method can be used with different high-level
modeling formalisms.

Keywords: Model Based Safety Assessment, Markov chains, State space build

1. INTRODUCTION

Safety and reliability of critical systems are today of a
paramount importance. Consequently, system designers
have to perform safety and reliability analyses since the
earliest phases of their projects. These preliminary studies
must be both representative of the designed system and
obtained within short delays. Therefore, approximate cal-
culations of reliability indicators are acceptable provided
they are accurate enough.

Nowadays, industrial systems embed complex safety mech-
anisms, e.g. cold redundancies and reconfigurations. Fault
Trees and related formalisms are not powerful enough to
capture the behavior of theses mechanisms. Markov chains
have much greater expressive power. They are a powerful
and versatile tool to calculate reliability indicators. How-
ever, their use is limited for two reasons: the exponential
explosion of the size of the model, and the difficulty to
design models. To overcome this second difficulty, a so-
lution consists in generating automatically the Markov
chain from a higher level description, such as a stochastic
Petri net (Ajmone Marsan et al., 1994), an AltaRica model
(Prosvirnova et al., 2013) or a Boolean Driven Markovian
Process (Bouissou and Bon, 2003). These higher level
models describe the Markov chain in an implicit way.

In this article, we propose an algorithm to generate partial
Markov chains. The idea is to accept a little loss of
accuracy in order to reduce the size of the generated chain.
The cornerstone of this method is a Relevance Factor
associated to each state of the chain. This factor enables

the selection of the most representative states. We show on
an already published test case made with 11 components,
that it is possible to obtain the unreliability (probability
that the system is down at a given time) with a relative
error lower than 0.25% while limiting its state space to
only 74 states instead of 1, 056. It is worth noticing that
the proposed method can be used with different high-level
modeling formalisms.

The remainder of this paper is organized as follows. Section
2 introduces the context of the work, some already existing
Markov chain reduction methods, and an overview of our
method. Section 3 is the core of the paper and presents the
limited build of a state space. Section 4 shows the results of
the method applied to an example taken from literature,
where numeric values for probabilistic indicators can be
compared.

2. PROBLEM STATEMENT

2.1 Context of the work

Fig. 1 presents the context of our work: the preliminary
system safety analysis. In this early phase of the project,
engineers must compare different possible architectures for
the studied system. It is common for them to have a refined
view on these architectures without an accurate knowledge
of the safety indicators of components. A mean to compare
these architectures is to assess the safety indicators of a
system built with each architecture.

Calculation of the safety indicators can be made as follows:



Architecture C

System
Description

Component
Data

λ μArchitecture B

System
Description

Component
Data

λ μ

Safety
Assessment

Architecture A

System
Description Component

Data

λ μ

A
1.5x10-4

System Probabilistic Indicator
- unavailability

B
3.5x10-4

C
5.5x10-5

Fig. 1. Context of the work: preliminary system safety
analysis

• build (homogeneous) continuous time Markov chain
which represents the failure/repair behavior of the
fault-tolerant system,
• evaluate the Markov chain for several mission times.

When architectures are well detailed, the system has a
large number of states and an even larger number of
transitions between those states. As the computation cost
is expensive, safety engineers are often forced to limit their
experimentation. That is why efficient methods to obtain
safety indicators must be developed.

2.2 Related work

Evaluation of continuous-time Markov processes (Stewart,
1994) is usually done by translating the Markov process
into a set of differential equations. Solving this differential
set leads to compute the various probabilities associated
to the identified states of the system. To solve the set
of equations, analytical (Bolch et al., 2006) or numerical
methods (Rauzy, 2004) exist. The cost of solving a set
of differential equations is very high when the number of
states of the Markov chain increases.

Evaluation of large Markov chains is an important chal-
lenge. To solve this problem, reduction of the Markov
chain is usually done. Some authors propose exact methods
(a smaller Markov chain equivalent to a bigger one is
produced) and others, approximate methods.

Lal and Bhat (1988) considered the inversion of transi-
tion matrices and optimized calculations of steady state
probabilities by partitioning the transition matrix. It is
not strictly speaking a reduction of the model to a smaller
model, but it is yet a reduction of the complexity towards
reward assessment. Pribadi et al. (2001) introduced a
method to reduce Markov chains in size while guaranteeing
the exact probabilistic assessment of rewards associated to
states. It is efficient to reduce the chain toward the calcula-
tion of the reward but this relies on ergodicity of the chain
to be reduced, which may be a strong hypothesis. Fourneau
et al. (2007) censored the Markov chain to the states
which give non-null reward, but as shown by Zhao and
Liu (1996), the equivalence between the censored Markov
chain and the initial Markov chain is complex to calculate.
Thus, a method to approximate the censored Markov chain

is developed by Fourneau et al. (2007), which gives bounds
to the reward.

For all these efficient methods, the input data is only a
Markov chain without complementary information about
the represented system. In our case, the method exploits
information on the studied system to partially build the
state space of the failure/repair behavior of the system. We
directly obtain a shorter Markov chain, easier to evaluate.
It is important to note that our method is essentially
heuristic and produces a good level of approximation.

2.3 Proposed method

Fig. 2 presents the strategy we propose to calculate safety
indicators of a given architecture. The input data of
our method is a description of the dynamic of the sys-
tem expressed with a safety model (as AltaRica models
(Prosvirnova et al., 2013), Dynamic Fault Tree models
(DFT, Dugan et al. (1992)), Boolean logic Driven Markov
Processes (BDMP, Bouissou and Bon (2003)), Safety Anal-
ysis Modeling Language (SAML, Gudemann and Ortmeier
(2011)), . . . ) or more generalist model as Petri Nets (PN).
To apply our method, the only requirement is to be able
to construct the state space of the system regarding the
failure/repair behaviour. To avoid combinatorial explosion
during the evaluation of the Markov chain, we propose to
build only a part of the state space by selecting the most
significant states. In order to do so, we propose a Relevance
Factor, which is defined in Section 3.1.

C
on

tr
ib

u
ti

on

Description
of the system

Possible models:
• AltaRica models
• DFT models
• BDMP models
• PN models
• SAML models
• . . .

The strategy is to select

the most significant state

according to a relevance

factor

Partial Build of
the State Space

Markov Chain
Evaluation

Use of classical tools

Unavailability
of the system

Fig. 2. Proposed method to obtain the unavailability of a
system

The description of the system is used to build its state
space partially, based on failure/repair events. A Markov
chain is then generated from the state space, knowing
which failure/repair event leads from a state to another.
The computation of the unavailability of the system is
made with the Markov chain. For this step, classical tools
can be used.

Our method is entirely based on the following practical
statement of fact:

• In the complete state space of the system, some states
are more interesting toward assessment of safety in-



dicators than others. Those with important steady-
state probabilities are more influential in the assess-
ment than those with small steady-state probabilities.
• By suppressing states with small steady-state proba-

bilities, probabilistic indicators assessment is quicker
with little loss of accuracy.

In our case, we build the state space partially by selecting
directly the most interesting states.

3. LIMITED BUILT OF A MARKOV CHAIN

This section presents the main contribution of this pro-
posal. The Relevance Factor defined Section 3.1, enables
the identification of the states with the highest steady-
state probabilities while building the state space.

Our method exploits properties of the studied systems and
some characteristics of Markov chains:

• The nominal state of the system is the state with the
highest sojourn time.
• For each state of a Markov chain, possible evolutions

are weighted according to their transition rate. That
is why the sojourn times of all states are not equal.

The partial build of the state space is based on the
conservation of the states for which the Relevance Factor
is superior to a threshold τ . The others states are ignored.

3.1 Relevance Factor

The method we propose is based on a Relevance Factor
(Eq. 1) associated to each state. Its value (between 0 and
1) predicts the influence of the state within the state space.
The most influential state has the highest value for its
Relevance Factor. In our case, the most influential state is
the nominal state. Its Relevance Factor is fixed to 1.0.

Let sj be the state whose Relevance Factor R(sj) is to be
evaluated. Let qi→j be the transition rate from state si to
state sj . Let sinit be the nominal state. For all states sj
(sj 6= sinit, as R(sinit) = 1.0), the relevance factor R(sj)
is defined as follows:

R(sj) = max
si∈parent states

 R(si)×

transition
rate︷︸︸︷
qi→j∑
k qi→k︸ ︷︷ ︸

R-contribution from parent i

 (1)

The Relevance Factor is defined to decrease according to
the exploration depth of the state space. The term

qi→j∑
k
qi→k

is inspired by the conditional probability to go from a
state to another in continuous-time Markov processes. By
construction, it is always inferior to 1. This aspect enables
the decrease of the Relevance Factor from a parent si to its
children sj . Moreover, this term also takes into account the
weight of outgoing transitions from si according to their
transition rate qi→k.

Like differential equations of a Markov chain, the proposed
Relevance Factor has a local definition only. In our case,
its value only depends on the Relevance Factor of parent
states: R(si) × qi→j∑

k
qi→k

. By introducing max evaluation,

we favor the influence of the most important parent state.
It is important to note that the max evaluation is a key-
feature of the method. It enables the limited exploration
of the states.

3.2 Limited Build Algorithm

To avoid the calculation of the complete state space
and then its reduction, Algorithm 1 has been specifically
developed. It automatically obtains the most influential
states without completely generating the state space.

This algorithm is based on neighbour discovery. It is
inspired by the famous Dijkstra algorithm (Dijkstra, 1959)
to specify the order in which states are explored.

Algorithm 1: Limited Exploration Algorithm

Input: Description of the system
Input: τ the threshold on the relevance factor
Output: G = (Σ,Θ) where Σ is the set of explored

states and Θ is the set of explored transitions
Local: C the set of candidate states: discovered but not

explored yet
Local: R(si) the Relevance Factor of state si
begin

// Initialisation
C ← {sinit}
Σ← ∅
Θ← ∅
R(sinit) = 1.0
// Construction of the state space
while C 6= ∅ and max{R(sk), sk ∈ C} ≥ τ do

// Choose the candidate with highest
Relevance Factor

si = arg max{R(sk), sk ∈ C}
C ← C \ {si}
Σ← Σ ∪ {si}
// Calculation of the possible evolutions

from si
Discovery of all reachable states sk from si
outRate =

∑
k qi→k

// Calculation of R(sj)
foreach reachable state sj from si do

if sj /∈ Σ then
R = R(si)× qi→j

outRate
if sj ∈ C then

R(sj) = max{R(sj), R}
else

R(sj) = R
// Record of the state
C ← C ∪ {sj}

// Record of the transition
Θ← Θ ∪ {(si, (event, qi→j), sj)}

// Clean transitions which are not leading
to a state of Σ

foreach t = (si, (event, qi→j), sj) ∈ Θ do
if sj /∈ Σ then

Θ← Θ \ {t}

The main input of Algorithm 1 is the description of
the system with a safety model or a Petri net. The



input model is used to discover new reachable states
from previously discovered ones. In Algorithm 1, only
instruction “Discovery of all reachable states sj from si” is
specific to the description model given as input data. The
Relevance Factor is calculated alongside the discovery of
new states.

The build of the system’s state space begins from its
nominal state. This state is chosen by the system designer
and usually corresponds to the state with all components
up. In Algorithm 1, states are separated into two distinct
families: candidate states (C) and explored states (Σ).
Candidate states are states which are only discovered, but
not explored yet. They are explored according to their
Relevance Factor.

The state chosen to pursue the build of the state space is
the candidate with the higher Relevance Factor. After its
selection, this state becomes an explored state. Then, all
reachable states from state si are calculated. Three cases
are possible for each reachable state sj :

• sj ∈ Σ: sj has already been explored.
• sj ∈ C: sj has already been discovered. The Rele-

vance Factor of sj may change.
• sj /∈ (C ∪ Σ): sj is a new candidate state.

In any case, transition from si to sj must be recorded.

When all the candidate states have their Relevance Factor
below threshold τ , the exploration is stopped. The limited
state space of the system is only the set of explored
states (remaining candidate states are discarded). As some
recorded transitions lead to candidate states, it is neces-
sary to delete them at the end of the process.

The obtained partial state space contains only the most
influential states of the state space of the system.

3.3 Illustration

Let us consider an illustrative system composed of 3
independent components C1, C2, C3. Each component
has a failure event (λi) and a repair event (µi). This
system with 3 components has only 8 (23) states. Fig. 3
represents the complete state space obtained by applying
the proposed algorithm with a threshold fixed to 0. States
are labeled according to the order of discovery by our
algorithm, and also, with the set of failed components. λi
and µi are as follows: λ2 = 2 ·λ1, λ3 = 3 ·λ1, µi = 100 ·λ1.
For didactic aspects, we have noted, at the beginning of
each transition, the value of

qi→j∑
k
qi→k

. The detail of the

values of the Relevance Factor for each state is given below
the state space.

For this illustrative system, an algebraic resolution is also

possible. Let Pni (t) and P fi (t) be the probabilities for
component Ci to be in the nominal mode or in the failure
mode at date t. These probabilities are:

Pni (t) =
1

λi + µi

(
µi + λi e

−(λi+µi)t
)

P fi (t) =
1

λi + µi

(
λi − λi e−(λi+µi)t

)
They are obtained by solving the following set of differ-
ential equations (Eq. 2) which corresponds to the Markov

sinit

{ }

s3

{C1}

s2

{C2}

s1

{C3}

s6

{C1, C2}

s5

{C1, C3}

s4

{C2, C3}

s7
{C1, C2, C3}

1
6

λ1

2
6

λ2

3
6

λ3

100
105

µ1

2
105

λ2

3
105

λ3

100
104µ2

1
104

λ1

3
104

λ3
100
103

µ1
1

103

λ1

2
103

λ2

100
203µ2

100
203

µ1

3
203

λ3

100
202

µ3

100
202

µ1

2
202 λ2

100
201

µ2

100
201

µ3

1
201

λ1

100
300

µ3

100
300

µ1

100
300

µ2



R(sinit) = 1.0

R(s1) = 3/6 = 0.5

R(s2) = 2/6 ≈ 0.333

R(s3) = 1/6 ≈ 0.167

R(s4) = R(s1)× 2/103 = 1/2× 2/103 ≈ 9.71× 10−3

R(s5) = R(s1)× 1/103 = 1/2× 1/103 ≈ 4.85× 10−3

R(s6) = R(s2)× 1/104 = 1/3× 1/104 ≈ 3.21× 10−3

R(s7) = R(s4)× 1/201 = 1/2× 2/103× 1/201 ≈ 4.83× 10−5

Fig. 3. Application of the proposed algorithm on a system
with three independent components: C1, C2, C3 (λ2 =
2 · λ1, λ3 = 3 · λ1, µi = 100 · λ1)

chain model of a reparable component.
∂

∂t
Pni (t) =− λiPni (t) + µiP

f
i (t)

∂

∂t
P fi (t) =λiP

n
i (t)− µiP fi (t)

Pni (0) =1

(2)

As components are independent, the probability to be in
a state is calculated by composing previous probabilities.
The set of equations (3) presents the probability to be in
each state at t =∞ according to the algebraic model.

Psinit
=

µ1

λ1 + µ1
× µ2

λ2 + µ2
× µ3

λ3 + µ3
≈ 0.942

Ps1 =
µ1

λ1 + µ1
× µ2

λ2 + µ2
× λ3
λ3 + µ3

≈ 2.82× 10−2

Ps2 =
µ1

λ1 + µ1
× λ2
λ2 + µ2

× µ3

λ3 + µ3
≈ 1.88× 10−2

Ps3 =
λ1

λ1 + µ1
× µ2

λ2 + µ2
× µ3

λ3 + µ3
≈ 9.42× 10−3

Ps4 =
µ1

λ1 + µ1
× λ2
λ2 + µ2

× λ3
λ3 + µ3

≈ 5.65× 10−4

Ps5 =
λ1

λ1 + µ1
× µ2

λ2 + µ2
× λ3
λ3 + µ3

≈ 2.82× 10−4

Ps6 =
λ1

λ1 + µ1
× λ2
λ2 + µ2

× µ3

λ3 + µ3
≈ 1.88× 10−4

Ps7 =
λ1

λ1 + µ1
× λ2
λ2 + µ2

× λ3
λ3 + µ3

≈ 5.65× 10−6

(3)

For this example, it is important to note that the states
sorted by their Relevance Factor are in the same order as
states sorted by their steady-state probability at t =∞.

Applied to this illustrative example, our method identifies
without error the states with the highest steady-state
probabilities.



3.4 Value of the Threshold

In our approach, the size of the partially built state space
depends on the value of the threshold on the Relevance
Factor. If it is too high, influential states will be discarded,
and the assessment done with the limited Markov chain
will be inaccurate. On the opposite, if the threshold is too
low, lots of useless states will be explored, and time to
build and then assess the chain will be high.

According to previous experiments, a threshold of 10−4

suits most problems. We currently analyze the practical
reasons for which this value is well-adapted.

4. CASE STUDY

This section presents an academic case study for which the
unreliability will be assessed with several techniques. The
objective is to test our partial build method against other
existing methods. This example comes from Malhotra and
Trivedi (1995). It was used by Montani et al. (2006) to
compare three safety tools that assess unreliability of a
system, based on different approaches: DBNet (Montani
et al., 2006), DRPFTproc (Bobbio and Raiteri, 2004) and
Galileo (Dugan et al., 2000).

The safety model, technical data and proposed mission
times come from Montani et al. (2006). To be able to
evaluate the accuracy of our method on this academic
example, we have assessed the unreliability of the system
with the complete Markov chain (1056 states) and with the
partial Markov chain (74 states) obtained by Algorithm 1
with a threshold fixed to 10−4.

4.1 Structure of the studied system

The system (Fig. 4) is a multiprocessor computing system
composed by two computing modules CM1 and CM2.

• CM1 consists of a processor P1, a memory M1, a
primary hard disk D11 and a backup disk D12.
• CM2 is formed similarly with P2, M2, D21 and D22.
• M3 is a spare memory. It can replace M1 or M2 in

case of failure, but not both.
• A unique bus connects CM1, CM2 and M3.
• The power supply PS is used by both processors.

P1 M1 D11 D12

CM1

B

U

S
P2 M2

CM2

PS

M3

D21 D22

Fig. 4. Structure of the multiprocessor computing system
(Montani et al., 2006)

The disks and the memory are warm spare components
which deteriorate, even when unused. Table 1 regroups
technical data of components.

Component Failure rate (h−1) Dormancy factor

BUS 2.0× 10−9 -

P1, P2 5.0× 10−7 -

PS 6.0× 10−6 -

D11, D12, D21, D22 8.0× 10−5 0.5

M1, M2, M3 3.0× 10−8 0.5

Table 1. Failures rates and dormancy factors

4.2 Results of the study

Table 2 shows the assessment of the system’s unreliabil-
ity for several mission times. Values given for DBNet,
DRPFTproc, and Galileo come from Montani et al. (2006).
We have assessed the unreliability with the complete
Markov chain (1056 states) and the partial Markov chain
(74 states). We have used the same amount of significant
figures to be able to compare values.

For the mission times proposed for this academic example,
results obtained with the five methods are very similar.

To deepen this first result, we measured the percent error
of the unreliability given by the partial Markov chain (74
states) with respect to the result given by the complete
Markov chain (1056 states), which is considered as the
exact value. This percent error (δ) is defined as follows:

δ =

∣∣∣∣vCompleteMC − vPartialMC

vCompleteMC

∣∣∣∣× 100

where v is the unreliability of the system.

Fig. 5 presents the evolution of δ according to the mission
time. This plot is drawn from 1000 measures (one measure
every 50 hours of the mission time).

Fig. 5. Percent error δ of unreliability assessed with the
partial Markov chain (74 states) with reference to
unreliability assessed with the complete Markov chain
(1056 states)

With a threshold value fixed to 10−4, the percent error
is always lower than 0.25%. The evolution of the percent
error is induced by the presence of absorbing states in the
Markov chain. These states are due to the presence of non-
reparable components in this system.

For this example proposed by Malhotra and Trivedi (1995)
and used by Montani et al. (2006) as benchmark, the par-
tial Markov chain proposed by our algorithm is sufficient
to assess safety indicators for preliminary system safety
analysis.



Mission Time (hours)
Assessment tool

DBNet DRPFTproc Galileo
Full state space exploration Limited state space exploration

(1056 states) (74 states)

1,000 0.0060086 0.0060088 0.0060088 0.0060088 0.0060033

2,000 0.0122452 0.0122455 0.0122455 0.0122456 0.0122280

3,000 0.0191820 0.0191832 0.0191832 0.0191833 0.0191477

4,000 0.0273523 0.0273548 0.0273548 0.0273548 0.0272960

5,000 0.0372379 0.0372413 0.0372413 0.0372413 0.0371549

Table 2. Unreliability of the system, assessed with different tools.

5. CONCLUSION

In this article, we proposed a method to build approximate
Markov chains from higher level description. The idea is to
keep only the most representative states of the full chain.
These states are selected by means of a Relevance Factor.
The Relevance Factor of states is calculated on the fly
thanks to an algorithm derived from Dijkstra’s algorithm
to calculate shortest paths in a graph. We showed on an
already published test case made with 11 components, that
it is possible to obtain the unreliability with a relative
error lower than 0.25% while limiting state space to only
74 states instead of 1, 056. Applied to another system
with 21 components, the state space limitation is even
more impressive. The complete Markov chain has 962, 552
states and 10, 768, 622 transitions. With a partial state
space limited to only 131 states and 436 transitions, the
unavailability of the system is obtained with a relative
error of 0.6%.

As a future work, we plan to integrate our method in the
AltaRica 3.0 project (Fig. 6) (Prosvirnova et al., 2013) and
apply it onto industrial sized test cases.

Fig. 6. Overview of the AltaRica 3.0 project

REFERENCES

Ajmone Marsan, M., Balbo, G., Conte, G., Donatelli, S.,
and Franceschinis, G. (1994). Modelling with Gener-
alized Stochastic Petri Nets. Wiley Series in Parallel
Computing. John Wiley and Sons.

Bobbio, A. and Raiteri, D.C. (2004). Parametric fault trees
with dynamic gates and repair boxes. In Reliability and
Maintainability, 2004 Annual Symposium-RAMS, 459–
465. IEEE.

Bolch, G., Greiner, S., de Meer, H., and Trivedi, K.S.
(2006). Queueing Networks and Markov Chains: Model-
ing and Performance Evaluation with Computer Science
Applications. Wiley-Interscience.

Bouissou, M. and Bon, J. (2003). A new formalism that
combines advantages of fault-trees and markov models:
Boolean logic driven markov processes. Reliability En-
gineering & System Safety, 82(2), 149–163.

Dijkstra, E. (1959). A note on two problems in connexion
with graphs. Numerische mathematik, 1(1), 269–271.

Dugan, J., Bavuso, S., and Boyd, M. (1992). Dynamic
fault-tree models for fault-tolerant computer systems.
Reliability, IEEE Transactions on, 41(3), 363–377.

Dugan, J.B., Sullivan, K.J., and Coppit, D. (2000). Devel-
oping a low-cost high-quality software tool for dynamic
fault-tree analysis. Reliability, IEEE Transactions on,
49(1), 49–59.

Fourneau, J.M., Pekergin, N., and Youns, S. (2007). Cen-
soring markov chains and stochastic bounds. In Formal
Methods and Stochastic Models for Performance Evalua-
tion, volume 4748 of Lecture Notes in Computer Science,
213–227. Springer Berlin Heidelberg.

Gudemann, M. and Ortmeier, F. (2011). Towards model-
driven safety analysis. In Dependable Control of Discrete
Systems (DCDS), 2011 3rd International Workshop on,
53–58. IEEE.

Lal, R. and Bhat, U. (1988). Reduced system algorithms
for markov chains. Management Science, 34(10), 1202–
1220.

Malhotra, M. and Trivedi, K.S. (1995). Dependability
modeling using Petri-nets. Reliability, IEEE Transac-
tions on, 44(3), 428–440.

Montani, S., Portinale, L., Bobbio, A., Varesio, M., and
Codetta-Raiteri, D. (2006). A tool for automatically
translating dynamic fault trees into dynamic bayesian
networks. In Reliability and Maintainability Symposium,
2006. RAMS’06. Annual, 434–441. IEEE.

Pribadi, Y., Voeten, J., and Theelen, B. (2001). Reducing
markov chains for performance evaluation. In Proceed-
ings of PROGRESS’01.

Prosvirnova, T., Batteux, M., Brameret, P.A., Kloul, L.,
Cherfi, A., Friedlhuber, T., Roussel, J.M., and Rauzy, A.
(2013). The altarica 3.0 project for model-based safety
assessment. In Dependable Control of Discrete Systems
(DCDS), 2013 4th IFAC Workshop on. IEEE. To be
published.

Rauzy, A. (2004). An experimental study on iterative
methods to compute transient solutions of large markov
models. Reliability Engineering & System Safety, 86(1),
105–115.

Stewart, W. (1994). Introduction to the numerical solution
of Markov chains, volume 1. Princeton University Press.

Zhao, Y.Q. and Liu, D. (1996). The censored markov
chain and the best augmentation. Journal of Applied
Probability, 33(3), 623–629.


