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Abstract. Let Γ be a topological semigroup acting on a topological space X, and

let Γ0 be a subsemigroup of Γ. We give general conditions ensuring that Γ and Γ0

have the same transitive points.

1. Introduction

In this paper, we consider the following problem. Let Γ be a topological semigroup

acting continuously on a topological space X, and let Γ0 be a sub-semigroup of Γ.

Assume that Γ has a transitive point x ∈ X, i.e. the orbit Γ ·x is dense in X. When

is it possible to conclude that x is also a transitive point for the sub-semigroup Γ0?

As stated, this is a problem in topological dynamics. However, our motivation

comes from linear dynamics, i.e. the dynamics of linear operators. More precisely,

our starting examples are the following three interesting results due to S. Ansari

[1], F. León Saavedra -V. Müller [16] and A. Conejero -V. Müller-A. Peris [7].

(1) Powers of hypercyclic operators are hypercyclic.

(2) Rotations of hypercyclic operators are hypercyclic.

(3) Every single operator in a hypercyclic 1-parameter semigroup (Tt)t≥0 is

hypercyclic.

Moreover, in each case the hypercyclic vectors are the same. (Here we use the

terminology prevailing in linear dynamics: an operator or a semigroup of operators

is hypercyclic if it has a transitive point, and a hypercyclic vector is any such

transitive point).

Besides the formal similarity of these results, the proofs of (2) and (3) given

in [16] and [7] are quite similar too, and it is possible to give also a proof of (1)

along the same lines. This was pointed out in Chapter 3 of [4], which was an

attempt to push the analogy beyond this mere observation. However, at that time
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there was still something missing, namely some general statement of the form “two

semigroups share the same transitive points” having (1), (2) and (3) as reasonably

straightforward consequences.

On the other hand, such a statement was found by S. Shkarin in [21]. The main

result of [21] is in fact purely topological (see Section 2), and it has the following

consequence: if T is a hypercyclic operator acting on a topological vector space X

and if g is a topological generator of a compact group G then, for any T -hypercyclic

vector x ∈ X, the set {(gn, Tnx); n ≥ 1} is dense in G × X. In other words,

the point (1G, x) ∈ G × X is (τg × T )-transitive, where τg : G → G is the (left)

translation by g and (τg × T )(h, z) = (gh, Tz).

It is not hard to see that (1) and (2) above follow quite easily from Shkarin’s

result. (The inference of (3) is not that trivial, but this seems to be inevitable; see

Section 2). Moreover, this is indeed a statement of the form “some semigroup Γ0

has the same transitive points as some larger semigroup Γ”: just let the semigroup

Γ := G × N act on G ×X in the obvious way, i.e. (ξ, n) · (h, x) = (ξh, Tnx), and

put Γ0 := {(gn, n); n ≥ 1}.

In this paper, our aim is to prove two general results of this type. That is, we give

some conditions ensuring that a topological semigroup Γ (acting on some topological

space X) and a sub-semigroup Γ0 ⊂ Γ have the same transitive points. Our first

theorem is purely linear and can be used to recover the aforementioned results of

Ansari, León-Müller and Conejero-Müller-Peris, whereas our second theorem is a

generalization of Shkarin’s theorem.

In both cases, a key role will be played by the quotient space Γ/Γ0. Since

we are dealing with semigroups and not groups, something is needed regarding

the mere existence of this quotient. We shall say that Γ/Γ0 is well-defined if

there is a topological group G and a continous and open surjective homomorphism

π0 : Γ → G such that Γ0 = ker(π0). Of course, we define the quotient group Γ/Γ0

to be the group G, the obvious uniqueness question being easily settled (see Lemma

3.1 below).

Before stating the results, let us introduce some terminology. All topological

spaces under consideration are assumed to be Hausdorff.

By a dynamical system, we mean a pair (X,Γ) where X is a topological

space and Γ is a topological semigroup acting continuously on X. That is, we

are given a jointly continuous map (γ, x) 7→ γ · x from Γ × X into X such that

γ1 · (γ2 · x) = (γ1γ2) · x for any x, γ1, γ2. When Γ = N = {1, 2, . . . }, i.e. when the

action is given by the iterates of a single continuous map T : X → X, we write

(X,T ) in place of (X,Γ).

The dynamical system (X,Γ) is said to be point transitive if there is some

x ∈ X such that Γ · x := {γ · x; γ ∈ Γ} is dense in X. Any such point x is called

a transitive point for Γ, and the set of all transitive points for Γ is denoted by

Trans(Γ). When Γ = N = {1, 2, ...}, (X,Γ) = (X,T ), we write of course Trans(T )

in place of Trans(Γ).
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If (X,Γ) is a dynamical system then, for each γ ∈ Γ, we denote by Tγ : X → X

the continuous map defined by Tγ(x) = γ · x. When Γ has a unit (denoted by 1),

it is assumed that T1 is the identity map.

The dynamical system is (X,Γ) is said to be linear if X is a topological vector

space and every Tγ is a linear operator. In other words, the map γ 7→ Tγ is a

linear representation of the topological semigroup Γ. In that case, we use the linear

terminology and notation. Thus, we say “hypercyclic” instead of “transitive”, and

we write HC(Γ) instead of Trans(Γ).

Our first result reads as follows.

Theorem 1.1. Let (X,Γ) be a hypercyclic linear dynamical system with a

completely metrizable acting semigroup Γ, and let Γ0 be a subsemigroup of Γ such

that Γ/Γ0 is well-defined. Assume that the following hold:

(a) Γ0 ·X is dense in X;

(b) Γ/Γ0 is compact and abelian;

(c) HC(Γ) is Γ-invariant and there is at least one γ ∈ Γ such that the operator

Tγ is hypercyclic.

Then (X,Γ0) is hypercyclic, with the same hypercyclic vectors as (X,Γ).

Remark. When the semigroup Γ is abelian, it is easily seen that HC(Γ) is Γ-

invariant if and only if all operators Tγ have dense range. Hence, the assumptions

of Theorem 1.1 are fulfilled if Γ is abelian, all operators Tγ have dense range, Γ/Γ0

is compact and some Tγ is hypercyclic.

For the sake of illustration, we point out the following immediate consequence.

Corollary 1.1. Let T = (Tγ)γ∈Rn be a (jointly continuous) group of linear

operators such that at least one operator Tγ is hypercyclic. Then the group generated

by any basis (γ1, . . . , γn) of Rn is hypercyclic, with the same hypercyclic vectors as

T .

The nice thing with Theorem 1.1 is that it is rather general and very simply

stated. Yet, it is is not completely satisfactory. Rather unexpectedly, we have

been unable to deduce directly from it the Conejero-Müller-Peris theorem about

1-parameter hypercyclic semigroups in full generality, because we don’t know how

to prove directly that some operator Ta is hypercyclic if the semigroup (Tt)t≥0 is,

without assuming that the underlying topological vector space X is metrizable; but

perhaps Theorem 1.1 is not responsible for that. However, there is a general version

of the León-Müller theorem dealing with rotations of an arbitrary semigroup rather

than rotations of a single operator (see Theorem 2.1), and this result does not follow

either from Theorem 1.1. Finally, Theorem 1.1 is a linear statement from which

Shkarin’s theorem can certainly not be recovered.
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Theorem 1.2 below is a kind of answer to these objections. Shkarin’s theorem

follows very easily from it, and it can also be used to prove directly the Conejero-

Müller-Peris theorem with no metrizability assumption as well as the general version

of the León-Müller theorem. These two results do not appear to follow from

Shkarin’s theorem itself, even though Theorem 1.2 is quite reminiscent from [21].

To formulate Theorem 1.2 properly, we need an additional definition. Recall

first that if T : Z → Z is a continuous self-map of a topological space Z, a

point z ∈ Z is said to be T -recurrent if z is a cluster point of the sequence

(Tn(z))n∈N. Since N starts with 1, it is equivalent to say that z is in the closure of

the set {Tn(z); n ∈ N} (recall that Z is Hausdorff); in particular, any transitive

point is recurrent. Moreover, we shall say that a topological space B is locally

path-connected at some point z ∈ B if z has a neighbourhood basis consisting of

path-connected sets. Finally, recall that a topological space B is said to be simply

path-connected if B is path-connected and any closed path in B is null-homotopic.

Definition. We shall say that a dynamical system (Z, T ) has property (S) if there

is a point z ∈ Z with the following properties:

(i) z is T -recurrent;

(ii) one can find two sets A,B ⊂ Z such that

• z ∈ A ⊂ B,

• A is T -invariant and path-connected,

• B is simply path-connected and locally path-connected at z.

For example, (Z, T ) has property (S) provided Z has a T -invariant, simply path-

connected and locally path-connected subset containing a T -recurrent point. In

particular, if T is a hypercyclic linear operator then (HC(T ), T ) has property (S);

see Corollary 2.1 below. The letter “S” refers to Shkarin’s paper [21].

Our second result reads as follows. Recall that a character of a topological

semigroup Γ is a continuous homomorphism χ : Γ→ T, where T is the circle group.

A character is nontrivial if it is not identically 1. Throughout the paper, we denote

by Γ̂ the character group of Γ.

Theorem 1.2. Let (X,Γ) be a point transitive dynamical system, with a completely

metrizable acting semigroup Γ. Let also Γ0 be a sub-semigroup of Γ such that Γ/Γ0

is well-defined. Assume that the following hold:

(a) Γ0 ·X is dense in X;

(b) Γ/Γ0 is compact and abelian;

(c) for any nontrivial character χ ∈ Γ̂ such that Γ0 ⊂ ker(χ), one can find γ ∈ Γ

such that χ(γ) 6= 1 and a Tγ-invariant set Z ⊂ Trans(Γ) such that the

dynamical system (Z, Tγ) has property (S).
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4 É. Matheron

Then (X,Γ0) is point transitive, with the same transitive points as (X,Γ).

Remark. Let π0 : Γ → Γ/Γ0 be the quotient map, and let us denote by S the set

of all γ ∈ Γ for which one can find a Tγ-invariant set Z ⊂ Trans(Γ) such that

the dynamical system (Z, Tγ) has property (S). Then condition (c) above may be

formulated as follows: the subgroup generated by π0(S) is dense in Γ/Γ0.

It will be clear from the proofs that Theorem 1.1 is essentially a special case of

Theorem 1.2, if not a formal consequence. However, since the former has a much

simpler formulation, it seemed better to state it separately, at least for the sake of

readability. One can formulate an artificial statement having both Theorems 1.1

and 1.2 as immediate consequences (see Section 6), but this seems to add nothing.

The general ideas needed for proving Theorems 1.1 and 1.2 are the same as

in [16], [7] and [21]. As pointed out in [21], these ideas go back in fact to the

influential paper [9] by H. Furstenberg. Actually, in the case of a compact ground

space X, Shkarin’s theorem is essentially proved in [9] and also in W. Parry’s paper

[18], albeit not stated explicitely in this form.

However, the examples we have in mind come from linear dynamics, where the

space X is of course highly non-compact. Moreover, since we are dealing with a

general semigroup Γ, some preliminary work is required to make the “usual” ideas

work. Finally, the main difference with Chapter 3 of [4] are the following: (i) one

of the assumptions made in [4] happens to be superfluous; (ii) when writing [4],

the authors were not aware of Shkarin’s theorem; (iii) while the final parts in the

proofs of the results of Ansari, León-Müller and Conejero-Müller-Peris are treated

separately in [4], with an ad hoc connectedness argument in each case, this is no

longer the case in the present paper.

The paper is organized as follows. In Section 2, we explain how Theorems

1.1 and 1.2 can be used to recover the results of Ansari, León-Müller, Conejero-

Müller-Peris and Shkarin mentioned at the beginning of this introduction. Section

3 contains some preliminary results about compact quotients of semigroups. The

proofs of Theorems 1.1 and 1.2 are given in Section 4. The key steps are a general

“abstract” result characterizing the non-transitivity of a sub-semigroup (Theorem

4.1), and a lemma showing that dynamical systems with property (S) have no

nonconstant eigenfunction (Lemma 4.1). Section 5 contains some additional results.

In particular, we prove there a “supercyclic” version of Theorem 1.1. Finally, we

conclude the paper with a few remarks and some possibly interesting questions.

Notation. As already indicated, we denote by N the set of all positive integers;

that is, N starts with 1. The set of all nonnegative integers is denoted by Z+, and

the set of all nonegative real numbers by R+. Unless otherwise specified, (0,∞)

will be considered as an additive semigroup. As a rule, we use the multiplicative

notation for the law of a semi-group Γ, even if Γ is abelian. Accordingly, the unit

element (if there is any) is denoted by the symbol 1. This has an obvious drawback

when Γ is e.g. R+ or Z+: the unit element is 1 = 0 and should not be confused
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with 1. Finally, if (X,Γ) is a dynamical system and Γ has a unit, it is assumed that

the map T1 : X → X is the identity map.

2. Applications of the main results

2.1. The ALMCMP Theorem. The following theorem summarizes the results

of Ansari [1], León-Müller [16] and Conejero-Müller-Peris [7] mentioned in the

introduction.

Theorem 2.1. Let X be a real or complex infinite-dimensional topological vector

space.

(1) If T is a hypercyclic operator on X then T p is hypercyclic for any positive

integer p, with the same hypercyclic vectors.

(2) Assume that X is a complex vector space.

(a) If T is a hypercyclic operator on X then ωT is hypercyclic for any ω ∈ T,

with the same hypercyclic vectors.

(b) More generally, let S be a multiplicative semigroup of operators on X,

and assume that there exists an operator R ∈ L(X) commuting with

S such that R − µI has dense range for any µ ∈ C. If the semigroup

T · S := {ξS; ξ ∈ T, S ∈ S} is hypercyclic then so is S, with the same

hypercyclic vectors.

(3) If T = (Tt)t≥0 is jointly continuous hypercyclic semigroup of operators on X

then each operator Ta, a > 0 is hypercyclic, with the same hypercyclic vectors

as T .

Remark 1. Part (2a) follows indeed from (2b) by considering the semigroup S
generated by ωT and putting R := T , since it is well-known that P (T ) has dense

range for every nonzero polynomial P if T is hypercyclic (see e.g. [4], Chapter 1).

Remark 2. Part (2b) has interesting applications. In particular, it implies the so-

called positive supercyclicity theorem: If T is a supercyclic operator such that

T − µI has dense range for every µ ∈ C, then T is positively supercyclic, i.e. there

is some x ∈ X such that the set {rTn(x); r > 0, n ∈ N} is dense in X. In fact, any

supercyclic vector for T is positively supercyclic. Positively supercyclic operators

have been completely characterized in [21].

Remark 3. The joint continuity assumption in (3) (i.e. the continuity of the map

(t, x) 7→ Tt(x)) is easily seen to be equivalent to the local equicontinuity of the

semigroup (Tt), i.e. the equicontinuity of (Tt)t∈K for any compact set K ⊂ R+.

Moreover, if the Uniform Boundedness Principle is available (e.g. if the topological

vector space X is barreled and locally convex or is a Baire space) then every C0-

semigroup on X is locally equicontinuous.
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6 É. Matheron

In this sub-section, we show how to deduce (1), (2a) and (3) from Theorem 1.1

assuming that the topological vector space X is metrizable for part (3), and the

full Theorem 2.1 from Theorem 1.2.

2.1.1. Using Theorem 1.1. Parts (1) and (2a) follow immediately from the remark

just after Theorem 1.1. In (1), the semigroup Γ is N, Tn = Tn and Γ0 = pN. The

quotient Γ/Γ0 is finite and T1 = T is hypercyclic. In (2a), Γ is T×N, T(ξ,n) = ξ(ωT )n

and Γ0 = {1} × N. The quotient Γ/Γ0 is isomorphic to T and T(ω−1,1) = T is

hypercyclic. In both cases Γ is abelian and all operators Tγ , γ ∈ Γ has dense range.

The deduction of (3) from Theorem 1.1 is less straightforward. We take as Γ

the (additive) semigroup (0,∞) and Γ0 = aN, for some fixed a > 0. Then Γ/Γ0 is

well-defined and isomorphic to the circle group T, thanks to the canonical quotient

map π0 : (0,∞) → T defined by π0(t) = e2iπt/a (this map is indeed open since

we are considering Γ = (0,∞) rather than R+). Moreover, if z0 ∈ HC(Γ) then,

for any A > 0, the set (A,∞) · z0 := {Ts(z0); s > A} is dense in X because the

compact set {Ts(z0); s ∈ [0, A]} is nowhere dense. It follows that each operator

Tt, t > 0 has dense range, since (t,∞) · z0 ⊂ ran(Tt) by the semigroup property.

What remains to be shown is that some operator Tt, t > 0 is hypercyclic. This is in

fact an old result of Oxtoby and Ulam [17], which has nothing to do with linearity.

Assuming that the topological vector space X is metrizable, one can prove it by a

Baire category argument, as follows.

Since (0,∞) is separable, the space X is separable and metrizable, so it has

a countable basis of open sets. Let z0 ∈ HC(Γ). We show that z0 ∈ HC(Tt)

for comeager many t ∈ (0,∞). By the Baire category Theorem and since X is

second-countable, it is enough to show that for every fixed open set V ⊂ X and

any nontrivial interval (a, b) ⊂ (0,∞), one can find t ∈ (a, b) and n ∈ N such

that Tnt(z0) ∈ V . Now, it is easy to check that
⋃
n∈N(na, nb) contains an interval

(A,∞). Since (as observed above) the set {Ts(z0); s > A} is dense in X, one can

find s > A such that Ts(z0) ∈ V ; and by we have just said this s may be written

as s = nt with t ∈ (a, b). �

Remark. Once (3) is known to hold in the metrizable case, one can deduce the

result for a general topological vector space X by an argument due to K.-G.

Grosse-Erdmann and A. Peris [13]. The trick is the following: if Γ = (Tt)t≥0

is a 1-parameter locally equicontinuous semigroup of operators on X then, for any

neighbourhood W of 0 in X, one can find a Γ-invariant subspace N ⊂ X such

that N ⊂ W and a metrizable vector space topology τ on X/N , coarser than the

ususal quotient topology, such that the induced quotient semigroup ΓX/N is locally

equicontinuous on (X/N, τ). Taking this temporarily for granted, let us fix a > 0,

and let x ∈ X be any hypercyclic vector for Γ. It has to be shown that for any z ∈ X
and any neighbourhood O of 0 in X, one can find n ∈ N such that Tna(x) ∈ z+O.

Choose a neighbourhood W of 0 such that W + W ⊂ O, and let N be as above.

Then [x]X/N is a hypercyclic vector for the quotient semigroup ΓX/N because the

canonical quotient map is continuous from X onto (X/N, τ). By the metrizable
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case, it follows that one can find n ∈ N such that Tna(x) ∈ z +W +N ⊂ z +O.

To find the subspace N and the topology τ as above, we may assume that W is

balanced. Put W0 := W and use the local equicontinuity of Γ to get a decreasing

sequence (Wn)n≥0 of balanced neighbourhoods of 0 such that Wn+1 +Wn+1 ⊂Wn

and Tt(Wn+1) ⊂ Wn for each n and every t ∈ [0, n]. Then N :=
⋂
n≥0Wn is a

balanced additive subgroup of X, whence a linear subspace, and it is clearly Tt-

invariant for every t ∈ [0,∞[. The vector space topology τ on X/N is defined by

declaring that ([Wn]X/N )n≥0 is a neighbourhood basis at 0. This is a Hausdorff

topology since
⋂
n[Wn]X/N = {0}, so (X/N, τ) is metrizable since there is a

countable neighbourhood basis at 0. Finally, the quotient semigroup ΓX/N is locally

equicontinuous on (X/N, τ) because for any K ∈ R+ and any n ≥ 0, one can find

p such that Tt(Wp) ⊂Wn for all t ∈ [0,K] (e.g. p := 1 + max(n,K)).

2.1.2. Using Theorem 1.2. We now proceed to explain how to deduce Theorem

2.1 directly from Theorem 1.2. The first thing to do is of course to find a way of

detecting property (S) inside a linear dynamical system. This is the content of the

next lemma, where L(X) is equipped with the strong operator topology.

Lemma 2.1. Let X be a topological vector space, let T ∈ L(X), and let Z ⊂ X be

T -invariant. Assume that we have at hand at multiplicative semigroup M⊂ L(X)

containing I and T and an operator R ∈ L(X) such that Z is invariant under every

operator of the form αR + βM , where M ∈ M and α, β ≥ 0 are not both 0. Then

the dynamical system (Z, T ) has property (S) provided one of the following holds:

• M is path-connected and T has a recurrent point z ∈ Z such that R(z) = z;

• M is compact, path-connected and locally path-connected, and T has a

recurrent point in Z.

Proof. We first recall that a set C ⊂ X is said to be star-shaped at some point c ∈ C
if [c, v] ⊂ C for any v ∈ C. Clearly, any star-shaped set is simply path-connected.

Moreover, any point c ∈ X has a neighbourhood basis consisting of sets which are

star-shaped at c (even though the topological vector space X is not assumed to be

locally convex); and since the property of being star-shaped at c is preserved under

intersections, it follows that if a set C ⊂ X is star-shaped at c, then C is locally

path-connected at c.

Now, let us fix a T -recurrent point z ∈ Z. We put A :=M·z = {M(z); M ∈M}
and B := {sR(z)+(1−s)M(z); s ∈ [0, 1],M ∈M}. Then z ∈ A ⊂ B ⊂ Z and A is

T -invariant. Moreover, in both cases A is path-connected and B =
⋃
v∈A[R(z), v]

is star-shaped at R(z), hence simply path-connected. If R(z) = z, then B is

star-shaped at z, hence locally path-connected at z. If M is compact and locally

path-connected then B is locally path-connected, being a continuous image of the

compact locally path-connected space [0, 1]×M.

2
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8 É. Matheron

Corollary 2.1. Let X be a topological vector space, let T ∈ L(X), and let Z ⊂ X
be T -invariant. In each of the following 3 cases, the dynamical system (Z, T ) has

property (S).

(i) T is hypercyclic and Z = HC(T );

(ii) T = λ0I for some λ ∈ T and there is an operator R ∈ L(X) such that Z is

invariant under αR+ β′I whenever (α, β′) 6= (0, 0).

(iii) Z = HC(T ) and T = Ta for some a > 0, where T = (Tt)t≥0 is a 1-parameter

hypercyclic semigroup on X.

Proof. (i) Recall that P (T ) has dense range for any nonzero polynomial P , so

that Z = HC(T ) is invariant under P (T ). Moreover, any z ∈ Z is obviously T -

recurrent. Denoting by P+ the set of all nonzero polynomials with nonnegative

coefficients and applying Lemma 2.1 with R = I and the convex multiplicative

semigroup M := {P (T ); P ∈ P+}, the result follows.

(ii) Since λ0 ∈ T, any z ∈ Z is T -recurrent. Apply Lemma 2.1 with the semigroup

M := {λI; λ ∈ T}.
(iii) Note that Z = HC(T ) is indeed Ta-invariant because Ta has dense range

(as already observed) and commutes with T . By Corollary 3.1 below, Ta has a

recurrent point in Z. Moreover, Tt + µI has dense range for any t > 0 and every

µ ∈ K by [7] Lemma 2.1, so that Z is invariant under any operator of the form

αI+βTt, t, α, β ≥ 0, (α, β) 6= (0, 0). Applying Lemma 2.1 withM = T and R = I,

the result follows. 2

We can now give the

Proof of Theorem 2.1. We take Γ = N, Γ0 = pN in case (1), Γ = T × S (where S
has the discrete topology), Γ0 = {1} × S in case (2b), and Γ = (0,∞), Γ0 = aN in

case (3). Put Γ∗ := {γ ∈ Γ; HC(Γ) is Tγ−invariant}. In each case, we just have

to show that if χ ∈ Γ̂ is a nontrivial character such that Γ0 ⊂ ker(χ), then one

can find γ ∈ Γ∗ such that χ(γ) 6= 1 and the dynamical system (HC(Γ), Tγ) has

property (S). We fix the character χ, and we put Z := HC(Γ).

In case (1), Γ∗ = Γ since Γ is abelian and Tn has dense range for all n ∈ N.

Since χ is nontrivial and 1 generates Γ = N, we have χ(1) 6= 1; and since the

operator T1 = T is hypercyclic, the dynamical system (HC(Γ), T1) = (HC(T ), T )

has property (S) by Corollary 2.1 (i).

In case (2b), we may assume that 1 = I ∈ S since HC(S ∪ {I}) = HC(S).

Then one can find λ0 ∈ T such that χ(λ0, I) 6= 1, since otherwise χ(λ, S) =

χ(λ, I)χ(1, S) = 1 for every (λ, S) ∈ Γ. Since T(λ0,I) = λ0I, we have (λ0, I) ∈ Γ∗.

If R is the operator appearing in (2b), then Z = HC(Γ) is invariant under αR+β′I

for every (α, β′) 6= (0, 0) since αR+ β′I has dense range and commutes with Γ. By

Corollary 2.1 (ii), the dynamical system (HC(Γ), T(λ0,I)) has property (S).

In case (3), Γ∗ = Γ because Γ is abelian and all operators Tt, t > 0 have dense

range. By Corollary 2.1 (iii), the dynamical system (Z, Ta) has property (S) for

every a ∈ Γ. Thus, we may pick any a ∈ Γ such that χ(a) 6= 1. 2
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2.2. Shkarin’s Theorem. The following theorem is the main result of [21].

Theorem 2.2. Let T : X → X be a continuous point transitive map on a

topological space X. Assume that one can find a nonempty set Y ⊂ Trans(T )

which is T -invariant, simply path-connected and locally path-connected. Let also G

be a monothetic compact group, and let g be a topological generator of G. Then,

for any x ∈ Trans(T ), the set {(gn, Tn(x)); n ≥ 1} is dense in G×X.

Remark 1. The “linear” consequence quoted in the introduction is obtained by

taking e.g. Y := {P (T )x; P polynomial 6= 0}, for some T -hypercyclic vector x.

Parts (1) and (2a) in Theorem 2.1 follow quite easily from this result, but part (2b)

does not. The deduction of (3) seems to require a metrizability assumption, just

like in the first proof of Theorem 2.1 given above.

Remark 2. When the space X is compact and metrizable, Shkarin’s theorem is

essentially proved (but not stated) in [9] and [18]. It is not clear that the proofs

given there can be adapted to give the result for an arbitrary topological space X.

Let us see how Shkarin’s theorem can be deduced from Theorem 1.2.

Proof of Theorem 2.2. We first note the following slight subtlety: to show that the

set {(gn, Tn(x)); n ≥ 1} is dense in G × X for any x ∈ Trans(T ), it is in fact

enough to show that {(gn, Tn(x)); n ≥ 0} is dense. Indeed, since the set Y is

connected and dense in X, the space X has no isolated points (unless it is reduced

to a single point, in which case there is nothing to prove). Hence G × X has no

isolated points either and we may replace “n ≥ 1” by “n ≥ 0”.

Accordingly, we take Γ = G × Z+ (and not G × N), T(ξ,n)(h, x) = (ξh, Tn(x)),

and Γ0 = {(gn, n); n ∈ Z+}. Since G is abelian (being monothetic), the map

π0 : Γ → G defined by π0(ξ, n) = g−nξ is a continuous homomorphism from Γ

onto G with kernel Γ0, and π0 is easily seen to be open. Thus, Γ/Γ0 ' G is well-

defined, compact and abelian. Moreover, Γ0 · X is dense in X and Trans(Γ) is

Γ-invariant because Γ is abelian and every Tγ has dense range. Finally, it is clear

that Trans(Γ) = G× Trans(T ).

Now, let χ ∈ Γ̂ be a nontrivial character such that Γ0 ⊂ ker(χ). Then we

must have χ(1G, 1) 6= 1. Indeed, otherwise χ(1G, n) = χ(1G, 1)n = 1 for every

n ∈ Z+, and hence χ(ξ, n) = χ(ξ, 0)χ(1G, n) depends only on ξ ∈ G. But since

χ(g, 1) = 1, it follows that χ(gk, n) = χ(gk, k) = 1 for all k ∈ N and all n ∈ Z+,

a contradiction since χ is nontrivial and g is a topological generator of G. Now,

it follows at once from the assumptions of Shkarin’s theorem that the dynamical

system (Trans(Γ), T(1G,1)) = (G × Trans(T ), IG × T ) has property (S): just put

A = B := {1G} × Y . 2

3. Compact quotients of semigroups

3.1. Definition of the quotient. By a quotient map of a topological semigroup

Γ, we mean any continous and open homomorphism π : Γ → G from Γ onto some
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topological group G. As the following trivial lemma shows, quotient maps are well

suited to define ... quotients.

Lemma 3.1. Let Γ be a topological semigroup, and let π : Γ→ G be a quotient map

of Γ. Let also φ : Γ→ H be a continuous homomorphism from Γ into a topological

group H, and assume that ker(π) ⊂ ker(φ). Then φ factors through the quotient

map π : Γ→ G: there is a unique continuous homomorphism φ̃ : G→ H such that

φ = φ̃ ◦ π.

Proof. The only thing we have to check is that if γ1, γ2 ∈ Γ satisfy π(γ1) = π(γ2)

then φ(γ1) = φ(γ2). Once this is done, one can unambiguously define φ̃ : G → H

by the requirement φ = φ̃ ◦π (the continuity of φ̃ coming from the open-ness of π).

Since π is onto, one can find ξ ∈ Γ such that π(ξ) = g−1, where π(γ1) = g = π(γ2).

Then π(γ1ξ) = 1G = π(γ2ξ), i.e. γ1ξ ∈ ker(π) and γ2ξ ∈ ker(π). Hence

φ(γ1ξ) = 1G = φ(γ2ξ), so that φ(γ1) = φ(ξ)−1 = φ(γ2). 2

It follows from this lemma that if π : Γ → G and π′ : Γ → G′ are two quotient

maps of Γ then the topological groups G and G′ are isomorphic, and in fact there

is a unique topological isomorphism J : G→ G′ such that J ◦ π = π′. Thus, given

a subsemigroup Γ0 ⊂ Γ, it makes sense to speak of the quotient topological group

Γ/Γ0 provided there is a quotient map of Γ with kernel Γ0, and one can even speak

of “the canonical quotient map” π0 : Γ→ Γ/Γ0.

3.2. Fundamental domains. It is well-known that any continous and open map

π : E → F from a completely metrizable space E onto a topological space F is

compact covering, i.e. each compact set L ⊂ F is the image of some compact set

K ⊂ E (see e.g. [6] IX.2, Proposition 18). In the context of compact quotients of

semigroups, we have the following more precise result, which will be essential for

our purpose.

Lemma 3.2. Let Γ be a completely metrizable topological semigroup, and let Γ0 be

a subsemigroup of Γ. Assume that Γ/Γ0 is well-defined and compact. Then, for

any γ0 ∈ Γ0, there exists a compact set K0 ⊂ Γ such that the following properties

hold :

• K0 ∩ Γ0 = {γ0};

• for any γ ∈ Γ, one can find k ∈ K0 such that γk ∈ Γ0 and kγ ∈ Γ0.

Proof. Let d be a compatible complete metric on Γ, and let π0 : Γ → Γ/Γ0 be the

canonical quotient map. Let us also put A = {γ0} ∪ (Γ \ Γ0). Finally, let (εn)n≥1

be a decreasing sequence of positive numbers tending to 0.

For any point γ ∈ A, choose an open set V 1
γ such that γ ∈ V 1

γ and diam(V 1
γ ) ≤ ε1,

and moreover V 1
γ ∩Γ0 = ∅ if γ 6= γ0 (this can be done since Γ0 is closed in Γ). The

sets π0(V 1
γ ), γ ∈ A obviously cover Γ/Γ0. Since the quotient map π0 : Γ → Γ/Γ0

is open and G = Γ/Γ0 is compact, one can find a finite set I1 ⊂ A such that
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π0(W1) = G, where W1 =
⋃
γ∈I1 V

1
γ . Note that W1 ∩ Γ0 ⊂ V 1

γ0 , so W1 ∩ Γ0 has

diameter at most ε1; and of course γ0 ∈W1.

Now repeat the construction with A replaced by A1 := (W1\Γ0)∪{γ0}, choosing

open sets V 2
γ with diameter at most ε2 and such that Vγ ∩Γ0 = ∅ if γ 6= γ0. We also

require that each V 2
γ is contained in V 1

γ′ for some γ′ ∈ I1. This produces a finite

set I2 ⊂ Γ and an open set W2. Proceeding inductively, we construct a sequence

of open sets Wn ⊂ Γ and a sequence of finite sets In ⊂ Γ such that the following

properties hold :

(i) Wn has the form Wn =
⋃
γ∈In V

n
γ , where diam(V nγ ) ≤ εn;

(ii) each V n+1
γ is contained in V nγ′ for some γ′ ∈ In;

(iii) π0(Wn) = G;

(iv) γ0 ∈Wn and diam(Wn ∩ Γ0) ≤ εn.

Now, put K0 =
⋂
n≥1Wn. Then K0 is a compact subset of Γ by (i), and

K0 ∩ Γ0 = {γ0} by (iv). Moreover, it follows from (ii) and (iii) that π0(K0) = G.

Indeed, let us fix g ∈ G. Consider the set Tg made up of of all finite sequences of

the form (γ1, . . . , γn), where γk ∈ Ik, g ∈ π0(V kγ ) for all k, and V k′γk′ ⊂ V
k
γk

whenever

k′ > k. Then Tg is a finitely branching tree (with respect to the extension ordering),

which contains arbitrarily long finite sequences by (ii) and (iii). By König’s infinity

Lemma, the tree Tg has an infinite branch. In other words, one can find an infinite

sequence (γn) ∈
∏
n≥1 In such that V n+1

γn+1 ⊂ V nγn and g ∈ π0(V nγn) for all n ≥ 1. For

each n, pick a point ξn ∈ V nγn such that π0(ξn) = g. Then (ξn) is a Cauchy sequence

in Γ whose limit ξ belongs to
⋂
n≥1 V

n
γn ⊂ K0, and π0(ξ) = g by the continuity of

π0.

To conclude the proof, let γ ∈ Γ be arbitray. Pick a point k ∈ K0 such that

π0(k) = π0(γ)−1. Then π0(γk) = 1G = π0(kγ), so that γk ∈ Γ0 and kγ ∈ Γ0. 2

Remark 1. Any compact set K0 ⊂ Γ satisfying the conclusion of Lemma 3.2 wil be

called a fundamental domain for (Γ/Γ0, γ0).

Remark 2. In all the “concrete” applications we have in mind, the existence of a

fundamental domain is obvious. For example, when Γ = N, Γ = pN and γ0 = p

we may take K0 = {p}; when Γ = (0,∞), Γ0 = aN and γ0 = a we may take

K0 = [a/2, 3a/2]; and when Γ = G× Γ0 where G is a compact group we may take

K0 = G× {γ0}.

3.3. Recurrence. As an application of Lemma 3.2, we now prove a result

concerning recurrent points. We have already used a very special case of it in

Section 2 (see the second proof of Theorem 2.1). However, this particular case does

not appear to be very much easier to prove than the general result.
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Let us first recall some well-known terminology. If I is any set, we denote by 2I

the power set of I. A family F ⊂ is said to be co-hereditary if it is upward closed

under inclusion, i.e. F 3 F ⊂ F ′ implies F ′ ∈ F . A co-hereditary F ⊂ 2I is proper

if F 6= ∅ and all sets F ∈ F are nonempty. A filter of subsets of I is a proper

co-hereditary family F ⊂ 2I which is closed under finite intersections.

Let (X,Γ) be a dynamical system, and let F be a proper co-hereditary family

of subsets of Γ. A point x ∈ X is said to be F-recurrent if the set

N(x, V ) := {γ ∈ Γ; γ · x ∈ V }
belongs to F for any neighbourhood V of x. When Γ is (infinite and) discrete

and F = F∞, the family of all infinite subsets of Γ, this yields the usual notion of

recurrence. In particular, when Γ = N, (X,Γ) = (X,T ), the F∞-recurrent points

are simply the T -recurrent points.

If F ⊂ 2Γ is a proper co-hereditary family, the dual family F∗ is the family of

all sets F ∗ ⊂ Γ such that F ∗ ∩ F 6= ∅ for every F ∈ F . Clearly F∗ is also proper

and co-hereditary, and it is not hard to check that (F∗)∗ = F . Moreover, a point

x ∈ X is F∗-recurrent if and only if x ∈ F · x for every F ∈ F ; and when F is a

filter, this means that one can find a net (γj) ⊂ Γ such that γj · x→ x and γj ∈ F
eventually for any F ∈ F .

An natural example is obtained by considering the family F← of all “terminal”

subsets of Γ: a set F is in F← iff it contains Γτ for some τ ∈ Γ. When Γ = N, this

is the family of cofinite sets, so (F←)∗-recurrence is just T -recurrence; and when

Γ = (0,∞), a point x ∈ is (F←)∗-recurrent iff there is some net (ti) ⊂ Γ tending to

+∞ such that Tti(x) → x. Another natural example is when Γ is locally compact

and non-compact, and F is the family of all (punctured) neighbourhoods of ∞. In

this case, a point x ∈ X is F∗-recurrent iff there is a net (ti) ⊂ Γ tending to ∞
(which does not mean that ti → +∞ in the case Γ = (0,∞)) such that Tti(x)→ x.

If Γ0 is a subset of Γ and F ⊂ 2Γ, we put F ∩Γ0 := {F ∩Γ0; F ∈ F}. Of course,

F ∩ Γ0 is co-hereditary if F is, but F ∩ Γ0 may not be proper (if F is), i.e. it may

contain ∅.

Lemma 3.3. Let (X,Γ) be a dynamical system with a completeley metrizable acting

semigroup Γ, and let Γ0 be a subsemigroup of Γ. Assume that Γ/Γ0 is well-defined

and compact. Let also F ⊂ 2Γ be a filter of subsets of Γ, invariant under right-

translations, i.e. F ∈ F implies Fτ ∈ F for every τ ∈ Γ. Finally, let γ0 ∈ Γ0.

Assume that there exists a fundamental domain K0 for (Γ/Γ0, γ0) with the following

property: for any α ∈ Γ and every F ∈ F , the set {ξ ∈ Γ; K0α ξ ⊂ F} belongs to

F . Then (F ∩ Γ0 is proper and) for any F∗- recurrent x ∈ X, the point Tγ0(x) is

(F ∩ Γ0)∗- recurrent.

Proof. Let x ∈ X be Γ-recurrent. We have to show that γ0x ∈ (F ∩ Γ0) · (γ0x) for

every F ∈ F ; so we fix F ∈ F and we put F0 = F ∩ Γ0. We are looking for a net

(τi) ⊂ F ∩ Γ0 such that τiγ0x→ γ0x.

Put G := Γ/Γ0 and let π0 : Γ → G be the canonical quotient map. We first

show that one can find a net (γi) ⊂ Γ such that K0γi ⊂ F , γiγ0 · x → x and
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π0(γiγ0) → 1G. To do this, we have to check that for each neighbourhood V

of x and each neighbourhood O of 1G, one can find γ ∈ Γ such that K0γ ⊂ F ,

π0(γγ0) ∈ O and (γγ0) · x ∈ V .

Since x is F∗- recurrent and F is a filter, one can find a net (λj) ⊂ Γ such that

λj · x→ x and λj ∈ B eventually for any B ∈ F . By compactness, we may assume

that π0(λj)→ g ∈ G. By compactness of G again, we may choose a positive integer

N such that gN ∈ O, and then a neighbourhood W of g such that
∏N
i=1 gi ∈ O

whenever g1, . . . , gN ∈ W . Now pick j1 such that λj1 · x ∈ V and π0(λj1) ∈ W ,

then j2 such that (λj1λj2) · x ∈ V (i.e. λj2 · x ∈ T−1
λ1

(V )) and π0(λj2) ∈W , ..., and

finally jN such that (λj1 · · ·λjN ) · x ∈ V , π0(λjN ) ∈W and λjN may be written as

λjN = ξγ0 for some ξ ∈ γ such that (K0λj1 · · ·λjN−1
) · ξ ⊂ F . This can be done

since by assumption the set A := {ξ ∈ Γ; (K0λj1 · · ·λjN−1
) · ξ ⊂ F} is in F , and

so is B = A · γ0 since F is invariant under right-translations. Then λ := λj1 · · ·λjN
may be written as λ = γγ0 where γ has the required properties.

Having our net (γi) at hand, we may pick ki ∈ K0 such that τi := kiγi ∈ Γ0 for

each i. Then τi ∈ F ∩ Γ0 by the choice of γi. By compactness, we may assume

that ki → k ∈ K0. Then (kiγiγ0) · x → k · x, by the joint continuity of the

map (γ, z) 7→ γ · z. Now, π0(kiγiγ0) = 1G = π0(γ0) and π0(γiγ0) → 1G, hence

π0(ki) → 1G. It follows that π0(k) = 1G, so that k ∈ K0 ∩ Γ0 and hence k = γ0.

Thus, we have found a net (τi) ⊂ F ∩ Γ0 such that τiγ0 · x→ γ0 · x, as required. 2

The particular case of Lemma 3.3 that was used in Section 2 reads as follows:

Corollary 3.1. Let (Tt)t≥0 be a locally equicontinuous semigroup of operators on

a topological vector space X, and let x ∈ X. Assume that there is a net (ti) tending

to +∞ such that Tti(x)→ x. Then, for each a > 0, the point Ta(x) is Ta-recurrent.

Proof. Apply Lemma 3.3 with Γ = (0,∞), Γ0 = aN, γ0 = a and the family F← of

all terminal subsets of Γ. The family F← is indeed a filter because Γ is abelian. 2

4. Proofs of Theorems 1.1 and 1.2

In this section, we prove Theorems 1.1 and 1.2. The proofs rely on a general abstract

result about non-transitive subsemigroups (Theorem 4.1) and a lemma concerning

dynamical systems with property (S) (Lemma 4.1). For the sake of readability,

we first state Theorem 4.1, then state and prove Lemma 4.1, then give the proofs

of Theorems 1.1 and 1.2, and finally prove the key Theorem 4.1. The following

definition will be useful throughout.

Definition. Let (X,Γ) and (X ′,Γ) be two dynamical system (with the same acting

semigroup Γ). Let also Z ⊂ X. Then the dynamical system (X ′,Γ) is said to be

a pseudo-factor of (Z,Γ) if there is a continuous map p : Z → X ′ such that

p(γ · z) = γ · p(z) whenever (z, γ) ∈ Z × Γ and γ · z ∈ Z.

When Z is Γ-invariant and the above map p : Z → X ′ is onto, the dynamical

system (X ′,Γ) is a factor of the (well-defined) dynamical system (Z,Γ). This is

a basic notion in topological dynamics, which justifies somehow the terminology
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“pseudo-factor”. However, in the present case the set Z is not assumed to be Γ-

invariant (so that, strictly speaking, there is no dynamical system (Z,Γ)), and the

pseudo-factoring map p is not even assumed to have dense range.

4.1. Eigencharacters and eigenfunctions. Let (X,Γ) be a dynamical system, and

let Z ⊂ X. A character χ ∈ Γ̂ is an eigencharacter for (Z,Γ) if there exists a

continuous function f : Z → T such that f(γ ·z) = χ(γ)f(z) whenever (z, γ) ∈ Z×Γ

and γ · z ∈ Z. Such a function f is called an eigenfunction associated with χ.

This terminology calls for some comments.

Remark 1. As in the above definition of pseudo-factors, the set Z is not assumed

to be Γ-invariant.

Remark 2. One may call “eigenfunction for (Z,Γ)” any map f : Z → T such

that f(γ · z) = χ(γ)f(z) whenever (z, γ) ∈ Z × Γ and γ · z ∈ Z, for some map

χ → C. Putting ΓZ := {γ ∈ Γ; γ · Z ⊂ Z}, it is easily checked that χ induces a

homomorphism from the semigroup ΓZ into the circle group T, hence a character

of ΓZ if f is continuous. However, it is a priori unclear whether χ can be extended

to a character of Γ, i.e. to an eigencharacter for (Z,Γ).

Remark 3. An eigenfunction for a dynamical system (Z,N) = (Z, T ) is nothing

else but a pseudo-factoring maps from (Z, T ) into a dynamical system of the form

(T, τg), where g ∈ T and τg is the (left) translation by g. Such dynamical systems

are ususally called Kronecker systems; see below.

The following result is the key to the proofs of Theorems 1.1 and 1.2.

Theorem 4.1. Let (X,Γ) be a point transitive dynamical system, with a completely

metrizable acting semigroup Γ. Let also Γ0 be a sub-semigroup of Γ such that

G = Γ/Γ0 is well-defined, compact and abelian. Finally, assume that Γ0 · X is

dense in X. If Trans(Γ) 6= Trans(Γ0), then there is a nontrivial character χ ∈ Γ̂

which is an eigencharacter for (Trans(Γ),Γ) and such that Γ0 ⊂ ker(χ).

There seems to be no hope of reversing the implication in Theorem 4.1: after all,

there may be no pair (z, γ) ∈ Trans(Γ)× Γ such that γ · z ∈ Trans(Γ). However,

if Trans(Γ) is Γ-invariant then we do get a rather intuitive characterization of the

non-transitivity of Γ0. This holds in particular if Γ is abelian and all maps Tγ ,

γ ∈ Γ have dense range.

Corollary 4.1. Let (X,Γ) be a point transitive dynamical system, with a

completely metrizable acting semigroup Γ, and let Γ0 be a sub-semigroup of Γ such

that G = Γ/Γ0 is well-defined, compact and abelian. Assume that Γ0 ·X is dense

in X and that Trans(Γ) is Γ- invariant. Then the following are equivalent:

(i) there is some point x ∈ X which is Γ-transitive but not Γ0-transitive;
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(ii) the dynamical system (Trans(Γ),Γ) admits a nontrivial eigencharacter which

is trivial on Γ0;

(iii) the dynamical system (Trans(Γ),Γ) admits a continous, non constant

eigenfunction which is constant on every Γ0-orbit;

(iv) the sub-semigroup Γ0 has no transitive points.

Proof. That (i) implies (ii) is the content of Theorem 4.1, and the implications

(ii) =⇒ (iii) =⇒ (iv) =⇒ (i) are obvious. 2

Thus, we see that (under the assumptions of Corollary 4.1) Γ and the sub-

semigroup Γ0 have the same transitive points provided that Γ0 is already known to

be point transitive. It would be nice to have a simple direct proof of this result.

4.2. Property (S) and Kronecker systems. In this sub-section, we prove that

dynamical systems with property (S) have no nontrivial Kronecker pseudo-factors.

Let us first recall the relevant definition.

Definition. A Kronecker system is a dynamical system of the form (K, τg), where

K is a compact abelian group and τg is the translation by some fixed element g ∈ K.

It is nontrivial if g 6= 1K .

This definition is slightly nonstandard: usually, it is required that g is a

topological generator of K. This does not really matter since one can consider

instead of K the closed subgroup of K generated by g. On the other hand, it is

important to note that the compact group K is assumed to be abelian. It follows

that if a Kronecker system (K, τg) is nontrivial then it has a nontrivial Kronecker

pseudo-factor of the form (T, τh). Indeed, if χ : K → T is any character of K such

that χ(g) 6= 1 then χ is a pseudo-factoring map from (K, τg) into the nontrivial

system (T, τχ(g)).

For the sake of brevity, we shall say that a dynamical system (X,T ) is anti-

Kronecker if it has no nontrivial Kronecker pseudo-factor. The proof of the next

lemma is greatly inspired from that of Lemma 2.7 in [21].

Lemma 4.1. Dynamical systems with property (S) are anti-Kronecker.

Proof. Let (Z, T ) have property (S), and assume that (Z, T ) has a nontrivial

Kronecker pseudo-factor (K, τg), with witness p : Z → K. As noticed a few lines

above, we may assume that K = T.

Choose z,A,B according to he definition of property (S). Since the set B is

simply path-connected, one can define a map f : B → R as follows: for any x ∈ B,

f(x) is the winding number w(p◦αx) of p◦αx, for any path αx inside B starting at

z and ending up at x. Moreover, this map is continuous at z because B is locally

path-connected at z. Hence, we can choose an open neighbourhood V of z such

that |w(p ◦ α)| < 1 for any path α inside B with endpoints in V .

Since z is T -recurrent, we can find a large positive integer N such that TN (z) ∈
V . Now, let α0 be a continuous path inside A with initial point z and terminal
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point T (z), and for any i ∈ {0, . . . , N − 1}, put αi := T i ◦ α0, so that αi is a

path inside A with initial point T i(z) and terminal point T i+1(z). Now let α be

the concatenation of α0, . . . , αN−1. This is a path inside B with endpoints in V ,

so |w(p ◦ α)| < 1. However, w(p ◦ α) =
∑N−1
i=0 w(p ◦ αi). Since p(T (x)) = gp(x)

for any x ∈ Z, we see that p ◦ αi = gi · (p ◦ α0) for every i ∈ {0, . . . , N − 1},
so that w(p ◦ αi) = w(p ◦ α0). Hence, we get w(p ◦ α) = N w(p ◦ α0). Finally,

w0 := w(p ◦ α0) is nonzero since p ◦ α0 has endpoints p(z) and gp(z) 6= p(z) (we

are assuming that g 6= 1). Thus, we get |w(p ◦ α)| ≥ 1 if N is large enough, since

w0 does not depend on N . This is a contradiction. 2

Remark 1. It follows from Lemma 4.1 that if (X,T ) is a dynamical system with

at least one recurrent point and X is simply path-connected and locally path

connected, then (X,T ) is anti-Kronecker. In particular, if X is compact, simply

path-connected and locally path-connected, then any dynamical system (X,T ) is

anti-Kronecker. This was proved by Furstenberg in [9].

Remark 2. Lemma 4.1 would no longer be true if the compact group K were

allowed to be non-abelian in the definition of a Kronecker system. Indeed, let

K be any simply path-connected and locally path connected compact group (e.g.

K := SU(2), the group of all unitary (complex) 2×2 matrices M with det(M) = 1).

Then, for any g ∈ K, the “Kronecker” dynamical system (K, τg) has property (S).

However, what Lemma 4.1 really says is that if a dynamical system of the

form (K, τg) happens to be a pseudo-factor of some dynamical system (Z, T )

with property (S), then g belongs to the closed subgroup K ′ generated by the

commutators of K (i.e. all h ∈ K of the form aba−1b−1). Indeed, K ′ is a closed

normal subgroup of K and the quotient group K/K ′ is abelian, so the dynamical

system (K/K ′, τ[g]) is a Kronecker pseudo-factor of (Z, T ) and hence [g] = 1 in

K/K ′.

Remark 3. When the ground space X is compact and metrizable, a minimal

dynamical system (X,T ) is anti-Kronecker if and only if the continuous map T

is weakly mixing, i.e. T × T is point transitive on X ×X. This is a well-known

result due independently to Keynes-Robertson [15] and Petersen [19] (see [11],

Theorem 2.3). When X is not compact, this needs not be true. For example, if

T is a hypercyclic operator then (HC(T ), T ) is anti-Kronecker (by Corollary 2.1),

but T needs not be weakly mixing by [20].

4.3. Proofs of Theorems 1.1 and 1.2.

4.3.1. Proof of Theorem 1.2. Towards a contradiction, assume that there exists

some Γ-transitive point x ∈ X which is not Γ0-transitive. By Theorem 4.1, there

is a nontrivial eigencharacter χ ∈ Γ̂ for (Trans(Γ),Γ) such that Γ0 ⊂ ker(χ). Let

f : Trans(Γ)→ T be an associated eigenfunction, i.e. f(γ ·z) = χ(γ)f(z) whenever

(z, γ) ∈ Trans(Γ)× Γ and γ · z ∈ Trans(Γ).
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By assumption, one can find γ ∈ Γ such that g := χ(γ) 6= 1 and a Tγ-invariant

set Z ⊂ Trans(Γ) such that the dynamical system (Z, Tγ) has property (S). But

since f(Tγ(z)) = gf(z) for all z ∈ Z, the nontrivial Kronecker system (T, τg) is a

pseudo-factor of (Z, Tγ), which contradicts Lemma 4.1.

2

4.3.2. Proof of Theorem 1.1. By Theorem 4.1, it is enough to prove that there

is no nontrivial eigencharacter for (HC(Γ),Γ) whose kernel contain Γ0. We show

that in fact any eigencharacter for (HC(Γ),Γ) is trivial. Let χ be such a character,

and let f : HC(Γ) → T be an associated eigenfunction. By assumption, there is

at least one γ ∈ Γ such that T := Tγ is hypercyclic; pick any z ∈ HC(T ). Then

Tn(z) ∈ HC(T ) ⊂ HC(Γ) and f(Tn(z)) = χ(γ)nf(z) for all n ∈ N. If χ(γ) = 1

then, since {Tn(z); n ∈ N} is dense in X, it follows that f is constant, and we

are done since χ(γ′) = f(γ′ · z)/f(z) for every γ′ ∈ Γ. Here, the Γ-invariance of

HC(Γ) was used since we needed f(γ′ · z) to be well-defined for every γ′ ∈ Γ. If

g := χ(γ) 6= 1, then the nontrivial Kronecker system (T, τg) is pseudo-factor of

(HC(T ), T ), a contradiction since the latter is anti-Kronecker by Corollary 2.1. 2

4.4. Products, quotients, and proof of Theorem 4.1. This sub-section is devoted

to the proof of Theorem 4.1. The following notation will be useful.

Notation. Let (Z,Λ) be a dynamical system. Given z, z′ ∈ Z, we write z
Λ−→ z′ if

z′ ∈ Λ · z; and we write z
Λ←→ z′ when both z

Λ−→ z′ and z′
Λ−→ z.

Let (X,Γ) be a dynamical system, and let Γ0 is a subsemigroup of Γ such that

G = Γ/Γ0 is well-defined. Then Γ acts in a natural way on the product space

G×X:

γ · (g, x) = (π0(γ)g, γ · x) ,

where π0 : Γ → G is the quotient map. The dynamical system (G × X,Γ) may

be called the diagonal product extension of (X,Γ) via the quotient map π0. To

emphasize the dependence on the sub-semigroup Γ0, we write (G×X,π0×Γ) instead

of (G×X,Γ). The next lemma (and its corollary below) relates the transitivity of

Γ0 to that of π0 × Γ.

Lemma 4.2. Let (X,Γ) be a dynamical system, with a completely metrizable acting

semigroup Γ, and let Γ0 be a sub-semigroup of Γ. Let also x ∈ X. Assume that

G = Γ/Γ0 is well-defined and compact, and that Γ0 · Γx = Γ · x. If (1G, x)
π0×Γ−−−→

(g, x) for every g ∈ G then Γ0x = Γx.

Proof. Assume that (1G, x)
π0×Γ−−−→ (g, x) for every g ∈ G. Since (Γ0Γ)x is known

to be dense in Γx, it is enough to show that γ0 · z ∈ Γ0x for any γ0 ∈ Γ0 and

every z ∈ Γx. (This fact was implicit in the proof of Lemma 3.3.) Let us fix γ0

and z = ξ · x, and let K0 be a fundamental domain for (Γ/Γ0, γ0). By assumption,
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there is a net (ξi) ⊂ Γ such that π0(ξi)→ π0(ξ)−1 and ξi · x→ x. Choose ki ∈ K0

such that γi := ki(ξξi) ∈ Γ0. By compactness, we may assume that the net (ki)

is convergent, ki → k ∈ K0. Since π0(kiξiξ) = 1G and π0(ξξi) → 1G, we see that

π0(k) = 1G, so that k ∈ Γ0 ∩K0 and hence k = γ0. Now, γi · x→ (kξ) · x = γ0 · z,
by the joint continuity of the map (γ, u) 7→ γ · u. Thus, we have shown that

γ0 · z ∈ Γ0 · x, as required.

2

Corollary 4.2. Under the hypotheses of Lemma 4.2, assume additionally that Tξ
has dense range for a dense set of ξ ∈ Γ. Then x is Γ0-transitive iff (1G, x) is

(π0 × Γ)-transitive in G×X.

Proof. Assume first that x ∈ Trans(Γ0). Then, obviously, (1G, x)
π0×Γ−−−→ (1G, z)

for any z ∈ X. Hence, (1G, x)
π0×Γ−−−→ (π0(ξ), ξ · z) for all (ξ, z) ∈ Γ ×X; and since

Tξ has dense range for a dense set of ξ, it follows that (1G, x) is (π0×Γ)-transitive.

Conversely, if (1G, x) is (π0 × Γ)-transitive then Γ0x = Γx = X, by the lemma.

2

We now use Lemma 4.2 to relate the Γ0-orbits with the actions of Γ on the coset

spaces associated with subgroups of G = Γ/Γ0. If H is a closed subgroup of G then

Γ acts in a natural way on G/H, the space of left cosets defined by H; namely, if

γ ∈ Γ and gH ∈ G/H then γ · (gH) = (π0(γ)g)H. We shall refer to the dynamical

system (G/H,Γ) defined by this action as the canonical action (G/H,Γ).

Proposition 4.1. Let (X,Γ) be a dynamical system, with a completely metrizable

acting semigroup Γ, and let Γ0 be a sub-semigroup of Γ such that that G = Γ/Γ0 is

well-defined and compact. Let also x ∈ X and assume that x
Γ−→ x. Finally, put

H(x) := {g ∈ G; (1G, x)
π0×Γ−−−→ (g, x)} .

(a) The set H(x) is a closed subgroup of G.

(b) Assume that Γ0 · Γx = Γ · x. If Γ0 · x 6= Γ · x then H(x) is a proper subgroup

of G.

(c) Put E(x) := {y ∈ X; x
Γ←→ y}. Then the canonical action (G/H(x),Γ) is a

pseudo-factor of (E(x),Γ).

Proof. For any x, y ∈ X, let us put

Hy,x := {g ∈ G; (1G, x)
π0×Γ−−−→ (g, y)} .

Thus, g ∈ Hy,x iff there is a net (γi) ⊂ Γ such that π0(γi) → g and γi · x → y.

It follows at once from the compactness of G that Hy,x is nonempty if and only if

x
Γ−→ y. Moreover, it is an elementary exercise to show that

Hz,y ·Hy,x ⊂ Hz,x
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for any x, y, z ∈ X. Since x
Γ−→ x, it follows that H(x) = Hx,x is a nonempty closed

sub-semigroup of the compact group G, and hence in fact a closed subgroup of G,

by a well-known (and easy) argument. This proves (a).

Part (b) follows at once from Lemma 4.2.

Let us now prove (c). We put H := H(x), and for any set A ⊂ G, we denote by

AH the image of A in the coset space G/H.

We first claim that if y ∈ E(x), then Hy,xH is reduced to a single point.

Indeed, since y
Γ−→ x we may pick v0 ∈ Hx,y. If u is any point in Hy,x, then

v0u ∈ Hx,y ·Hy,x ⊂ Hx,x = H, so that uH = v−1
0 H. Thus, Hy,xH contains at most

one point, hence exactly one point since Hy,x 6= ∅.
Now, we define a map p : E(x) → G/H as follows: if y ∈ E(x) then {p(y)} =

Hy,xH. This map p is easily seen to be continuous: indeed, if C is any closed subset

of G/H, then p−1(C) = {y ∈ E(x); ∃g ∈ G : (g, y) ∈ Γ · (1G, x) and gH ∈ C} is

closed in E(x) because G is compact and the relation R(g, y) appearing after the

existential quantifier is closed in G× E(x). Moreover, if y ∈ E(x) and γ ∈ Γ then

π0(γ) · Hy,x ⊂ Hγ·y,x. It follows that γ · (Hy,xH) = (π0(γ) · Hy,x)H ⊂ Hγ·y,xH,

so that p(γ · y) = γ · p(y) if y ∈ E(x) and γ · y ∈ E(x). This shows that p is a

pseudo-factoring map from (E(x),Γ) into (G/H,Γ). 2

Remark. With the notation of the above proof, we see that (being a subgroup of

G) Hx,x contains 1G as soon as x
Γ−→ x. When Γ = N, i.e. (X,Γ) = (X,T ) for

some continuous map T : X → X, it follows that if x ∈ X is a recurrent point for

T then, for any compact group G and every g ∈ G, the point (1G, x) is a recurrent

point for τg×T : G×X → G×X. This is quite a well-known result (see e.g. [10]).

The point in Shkarin’s theorem 2.2 is that with some additional assumptions, one

can replace “recurrent” by “transitive”.

Corollary 4.3. Let (X,Γ) be a dynamical system, with a completely metrizable

acting semigroup Γ, and let Γ0 be a sub-semigroup of Γ such that that G = Γ/Γ0 is

well-defined and compact and Γ0 ·X is dense in X. If Trans(Γ) 6= Trans(Γ0), then

there is a proper closed subgroup H ⊂ G such that the canonical action (G/H,Γ)

is a pseudo-factor of (Trans(Γ),Γ).

Proof. Assume that Trans(Γ) 6= Trans(Γ0) and let us pick any point x ∈
Trans(Γ) \ Trans(Γ0). Since Γ0 · X is dense in X and x ∈ Trans(Γ), we have

(Γ0Γ) · x = X = Γ · x. Moreover, E(x) = Trans(Γ). By Proposition 4.1, the result

follows. 2

It is now a very short step to the

Proof of Theorem 4.1. Assume that Trans(Γ) 6= Trans(Γ0). Then, Corollary 4.3

provides us with a proper closed subgroup H ⊂ G such that the canonical action

(G/H,Γ) is a pseudo-factor of (Trans(Γ),Γ), with witness p : Trans(Γ) → G/H.

Since the compact group G is abelian, one can find a nontrivial character φ ∈ Ĝ
such that H ⊂ ker(φ). Let us denote by [φ] the character of G/H induced by φ. If
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we put χ := φ◦π0 (where π0 : Γ→ G is the canonical quotient map) and f := [φ]◦p,
then χ is a nontrivial character of Γ such that Γ0 ⊂ ker(χ), and f(γ · z) = χ(γ)f(z)

whenever (z, γ) ∈ Trans(Γ)×Γ and γ · z ∈ Trans(Γ). This concludes the proof. 2

5. Further results

5.1. Supercyclic semigroups. Let X be a topological vector space over K = R or

C. A linear dynamical system (X,Γ) is supercyclic if there is some x ∈ X whose

projective Γ-orbit KΓ · x := {λTγ(x); λ ∈ K , γ ∈ Γ} is dense in X; equivalently,

if the dynamical system (X,K × Γ) is hypercyclic, where K is considered as a

multiplicative semigroup and K × Γ acts on X in the obvious way. The set of all

supercyclic vectors for Γ is denoted by SC(Γ). When Γ = N, (X,Γ) = (X,T ),

one says that the operator T is supercyclic. More generally, a dynamical system

(X,Γ) is Λ-supercyclic for a given multiplicative semigroup Λ ⊂ K, if there is

some x ∈ X such that ΛΓ · x is dense in X. The following result is a supercyclic

version of Theorem 1.1. As shown in [5], it holds on complex topological vector

spaces only.

Proposition 5.1. Let (X,Γ) be a supercyclic linear dynamical system, where X

is a complex topological vector space and the acting semigroup Γ is completely

metrizable and abelian. Let Γ0 be a subsemigroup of Γ such that Γ/Γ0 is well-

defined and compact. Assume that all operators Tγ have dense range and that at

least one Tγ is supercyclic. Then (X,Γ0) is supercyclic, with the same supercyclic

vectors as (X,Γ).

For the proof, it is convenient to make use of the projective space PX associated

with X. Recall that PX is the quotient space (X \ {0})/≡ , where u ≡ v iff u

and v are colinear. The space PX is equipped with the quotient topology, and we

denote by P : X \{0} → PX the natural quotient map. This map is continuous (by

definition), and it is easily seen to be also open.

Any operator T ∈ L(X) respects the colinearity relation ≡, and hence T induces

in a natural way a continuous map PT : PX → PX. Moreover, it is easily checked

(using the open-ness of the quotient map P) that T is supercyclic if and only if

PT is point transitive on PX, and that Trans(PT ) = P(SC(T )). In particular,

Trans(PT ) is PT -invariant. The proof of Proposition 5.1 relies on the following

analogue of Corollary 2.1.

Lemma 5.1. Let X be a complex topological vector space. If T ∈ L(X) is

supercyclic, then the dynamical system (Trans(PT ),PT ) has property (S).

Proof. We may clearly assume that dim(X) > 1. Then X is in fact infinite-

dimensional since otherwise there are no supercyclic operators on X. We start

with the following

Fact. Let Z be a linear subspace of X, and let H be a closed, affine subspace of Z.

Then P(H \ {0}) is locally path-connected and simply path-connected.
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Proof of Fact. Replacing Z by the linear span of H, we may assume that either

H = Z or H is a closed hyperplane in Z.

Since any point of H has an open neighbourhood basis consisting of star-shaped

sets, H \{0} is locally path-connected. Moreover, since we are considering complex

spaces, H \{0} is also simply path-connected except when H = Z and dim(Z) = 1,

in which case there is nothing to prove since P(M \{0}) is reduced to a single point.

So it is enough to show that

(1) the restriction of P to H \ {0} is open from H \ {0} onto P(H \ {0});

(2) any closed path in P(H \ {0}) can be lifted to a closed path in H \ {0}.

Assume first that H = Z, i.e. H is a linear subspace of X. Then (1) is clear

because H \ {0} is ≡-saturated, and (2) is also clear for the same reason since it is

well-known that any closed path in PX can be lifted to a closed path in X \ {0}
(see e.g. [21] Lemma A.3).

Assume now that H is a closed hyperplane in Z, i.e. H = {h ∈ Z; φ(h) = 1}
for some continuous linear functional φ : Z → C. If V is an open set in H, then

its ≡-saturation Ṽ is open in Z \ {0} since Ṽ = {z ∈ Z; φ(z) 6= 0 and z
φ(z) ∈ V };

so (1) follows from the previous case. Similarly, (2) follows from the previous case

since if γ : [0, 1]→ Z \{0} is a closed path in Z \{0} such that P(γ(t)) ∈ P(H \{0})
for all t, then the formula γH(t) := γ(t)

φ(γ(t)) makes sense and defines a closed path in

H \ {0} such that P ◦ γH = P ◦ γ. 2

Let us now fix a supercyclic operator T ∈ L(X), and let z be any supercyclic

vector for T . Then P(z) is a transitive point for PT and hence a recurrent point.

So it is enough to find a T -invariant set M ⊂ X \ {0} such that z ∈ M ⊂ SC(T )

and P(M) is locally path-connected and simply path-connected. As is well-known

(see e.g. [24]), two cases may occur.

Case 1. P (T ) has dense range for every polynomial P 6= 0.

In this case, we put H = Z := span {Tn(z); n ≥ 0}. Then M := H \ {0} has

the required properties by the above Fact.

Case 2. There is a complex number λ0 6= 0 such that (T − λ0I)(X) has codimension

1 in X and P (T ) has dense range for every polynomial P with P (λ0) 6= 0.

Replacing T by λ−1
0 T , we may in fact assume that λ0 = 1 (notice that

P(µT ) = PT for any µ ∈ C∗). We put Z := span {Tn(z); n ≥ 0} and

M = H := {P (T )z; P polynomial, P (1) = 1}. By the above fact, we just have to

check that H is closed in Z. Let φ be a continuous linear functional on X such that

ker(φ) = (T − I)(X). Then T ∗(φ) = φ (where T ∗ is the adjoint operator), so we

have φ(P (T )x) = P (1)φ(x) for any x ∈ X and every polynomial P . Since φ(z) 6= 0,

we may assume that φ(z) = 1, and it follows that H = {h ∈ Z; φ(h) = 1}. This

shows that H is indeed closed in Z, and the proof is complete.

2
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Proof of Proposition 5.1. Let us denote by the symbols PΓ and PΓ0 the semigroups

Γ and Γ0 acting on the projective space PX. Then PΓ is point transitive (with

Trans(PΓ) = P(SC(Γ))) and we have to show that PΓ0 is also transitive, with

the same transitive points. By Theorem 4.1, it is enough to check that any

eigencharacter χ for (Trans(PΓ),PΓ) is trivial. Let us fix such a character χ, and

let p : Trans(PΓ) → T be an associated eigenfunction. Towards a contradiction,

we assume that χ is nontrivial, so that p is non-constant.

By assumption, one can pick γ ∈ Γ such that the operator T = Tγ is supercyclic.

Then the induced map PT is transitive on PX. Since Trans(PT ) is contained

in Trans(PΓ), we have p((PT )n(z)) = gnp(z) for any z ∈ Trans(PT ) and every

n ∈ N, where g := χ(γ). Since p is non-constant and Trans(PT ) = P(SC(T )) is

dense in PX, it follows that g 6= 1. Thus, we see that the nontrivial Kronecker

system (T, τg) is a pseudo-factor of the dynamical system (Trans(PT ),PT ). This

contradicts Lemma 5.1.

2

As in the hypercyclic case, one can easily deduce from Proposition 5.1 the

supercyclic versions of Ansari’s and Conejero-Müller-Peris’ theorems. The Ansari

case (powers) goes back to [1]. The Conejero-Müller-Peris case (1-parameter

semigroups) was obtained recently by S. Shkarin in [22]. Shkarin’s proof is quite

interesting and rather different from the one we are about to give. Unlike the one

in [22], our proof works in the metrizable case only, but it can be adapted to give

the result without additional assumption on X; see below.

Corollary 5.1. Let X be a complex topological vector space.

(1) If T ∈ L(X) is supercyclic then so is T p for any positive integer p, with the

same supercyclic vectors.

(2) Assume that X is metrizable. If (Tt)t≥0 is a jointly continuous supercyclic

semigroup on X, then every operator Ta, a > 0 is supercyclic, with the same

supercyclic vectors as the semigroup (Tt).

Proof. Part (1) is immediate. For Part (2), the only thing to check is that some

operator Tt is supercyclic. Let x be any supercyclic vector for the semigroup

(Ts)s≥0. Then the set {λTs(x); λ ∈ C, s ≥ A} is dense in X for any A > 0, because

TA has dense range (see below) and commutes with every Ts. Using this and the

metrizability of X, a simple Baire category argument shows that x is Tt-supercyclic

for a comeager set of t (see the first proof of Theorem 2.1).

To show that TA has dense range for every A > 0, we may assume that

dim(X) > 1. It is in fact enough to show that Tε has dense range for some

ε > 0, since nε ≥ A for some n ∈ N and hence Ran(TA) ⊃ Ran(Tnε ) by the

semigroup property. Otherwise (taking again a supercyclic vector x for (Ts)), the

set {λTs(x); λ ∈ C, s ≥ ε} is nowhere dense for any ε > 0 since it is contained in

the nowhere dense subspace Ran(Tε), and hence the set {λTs(x); λ ∈ C, s < ε} is

dense in X. It follows that for any z ∈ X, one can find a net (λi, εi) ⊂ C×R+ with
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εi → 0 such that λiTεi(x)→ z. If |λi| → ∞ then Tεi(x)→ 0, a contradiction since

Tεi(x) → x. So the net (λi) has a convergent subnet, and it follows that z ∈ Cx
for any z ∈ X, a contradiction since dim(X) > 1. 2

Remark. Part (2) holds in fact without any metrizability assumption on X.

Indeed, the general result may be deduced from the metrizable case exactly as

for hypercyclic semigroups (see the remark just after the first proof of Theorem

2.1). Alternatively, one may use a variant of Proposition 5.1 where the assumption

“some Tγ is supercyclic” is replaced by “(Trans(PΓ),PTγ) is anti-Kronecker for

every γ ∈ Γ”. If one proceeds in this way, the key point is to show that if

Γ = (Ts)s≥0 is a supercyclic semigroup on X then, for any t > 0, the dynamical

system (Trans(PΓ),PTt) has property (S). This, in turn, is proved exactly as

Lemma 5.1 once the following two facts are established.

(i) one can find a supercylic vector z for the semigroup (Ts)s≥0 and a net

(λi, ni) ⊂ C× N with ni →∞ such that λiTnit(z)→ z.

(ii) either P (Tt) has dense range for every polynomial P 6= 0, or there is a complex

number λ0 6= 0 such that (Tt − λ0I)(X) has codimension 1 in X and P (Tt)

has dense range for any polynomial P with P (λ0) 6= 0.

Indeed, (i) ensures that Pz ∈ Trans(PΓ) and that Pz is PTt-recurrent, whereas (ii)

is just what is needed for imitating the proof of Lemma 5.1.

The proof of (i) is essentially the same as that of Corollary 3.1. To prove (ii),

one key fact is that if H is any closed, Γ-invariant subspace of X then H has

infinite codimension or codimension at most 1. Since Γ induces a 1-parameter

supercyclic semigroup on the quotient space X/H, this follows because there are no

supercyclic 1-parameter semigroups on a complex finite-dimensional space Z unless

dim(Z) ∈ {0, 1} ([23] Lemma 5.1). The second key fact ([22] Lemma 2.5) is that

λI is never supercyclic on a space with dimension > 1, so that Hλ := (Tt − λI)(X)

has codimension at most 1 for any λ ∈ C. Now, assume that Hλ0
has codimension

1 for some λ0 ∈ C. Then λ0 6= 0 (because Tt has dense range). If λ 6= λ0, then

the Γ-invariant supspace Hλ ∩Hλ0
has codimension at most 2, so in fact at most

1, and hence we have either Hλ = X or Hλ = Hλ0 . The latter is impossible since

Tt would then act as both λI and λ0I on the corresponding (nontrivial) quotient

space. Thus, we see that Hλ = X, i.e. Tt − λI has dense range for every λ 6= λ0.

This concludes the proof.

Proposition 5.1 can also be used in tandem with the León-Müller theorem to get

the following result about positively supercyclic semigroups.

Corollary 5.2. Let (X,Γ) be a supercyclic linear dynamical system, where X is a

complex topological vector space and the acting semigroup Γ is completely metrizable

and abelian. Let Γ0 be a subsemigroup of Γ such that Γ/Γ0 is well-defined. Assume

that Γ/Γ0 is compact and that at least one operator Tγ is supercyclic. Moreover,

assume that one can find an operator R commuting with all Tγ , γ ∈ Γ0 such that
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R−µI has dense range for every µ ∈ C. Then (X,Γ0) is R+-supercyclic, and every

supercyclic vector for Γ is in fact R+-supercyclic for Γ0.

Proof. Applying the León-Müller theorem (Theorem 2.1 (2b)) to the semigroup

S = {rTγ ; r > 0, γ ∈ Γ0}, we see that any supercyclic vector for Γ0 is in fact

R+-supercyclic. Hence, the result follows at once from Proposition 5.1. 2

Corollary 5.3. Let (Tt)t≥0 be a jointly continuous supercyclic semigroup on a

complex topological vector space. Assume that Tt − µI has dense range for some

t > 0 and all µ ∈ C. Then each operator Ta, a > 0 is positively supercyclic and

every supercyclic vector for the semigroup (Tt) is in fact positively supercyclic for

Ta.

5.2. Other variations on the main results. The following results can be easily

deduced from the proof of Theorem 1.2. Recall that a dynamical system (Z,Γ) is

said to be minimal if every Γ-orbit is dense.

Proposition 5.2. Let (Z,Γ) be a minimal dynamical system with a completely

metrizable acting semigroup Γ, and let Γ0 be a sub-semigroup of Γ such that Γ/Γ0

is well-defined and Γ0 ·Z is dense in Z. Then (Z,Γ0) is also minimal provided one

of the following holds:

(1) Γ/Γ0 is finite and Z is connected;

(2) Γ/Γ0 is compact and abelian, every Tγ has a recurrent point, and Z is simply

path-connected and locally path-connected.

(3) Γ/Γ0 is compact and abelian, and there is at least one γ ∈ Γ such that Tγ is

weakly mixing.

Proof. Part (2) follows from Theorem 1.2 as stated, since Trans(Γ) = Z.

To prove (1), we use Corollary 4.3. If Γ0 · x 6= Z for some x ∈ Z then one

can find a proper closed subgroup H ⊂ G := Γ/Γ0 such that the canonical action

(G/H,Γ) is a pseudo-factor of (Z,Γ). However, G/H is finite and Z is connected,

so any pseudo-factoring map from (Z,Γ) into (G/H,Γ) must be constant. This is

a contradiction.

To prove (3), it is enough to show that if T : Z → Z is weakly mixing, then

the dynamical system (Z, T ) is anti-Kronecker. This is quite well-known and easy

to check, as follows. Towards a contradiction, assume that (Z, T ) has a nontrivial

Kronecker pseudo-factor (K, τg), and let f : (Z, T )→ (K, τg) be a pseudo-factoring

map. If (z0, z
′
0) is a (T ×T )-transitive point in Z ×Z then putting a0 := f(z0) and

a′0 := f(z′0), the set {(gna0, g
na′0); n ∈ N} is dense in f(Z) × f(Z). In particular,

this set contains (a0, a0) in its closure, which is clearly not possible unless a0 = a′0.

Since f is non-constant, this is a contradiction. 2
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Remark. One can use (1) to prove Ansari’s theorem as well as its supercyclic version.

In fact, if Λ is any multiplicative sub-semigroup of C∗ and if T is a Λ-supercyclic

operator on a (complex) topological vector space X, then T p is Λ-supercyclic for

any positive integer p, with the same Λ-supercyclic vectors. To see this, apply (1)

with Γ = Λ×N and Γ0 = Λ×pN. Denoting by Z the set of all Λ-supercyclic vectors

for T , the dynamical system (Z,Γ) is minimal. Hence, it is enough to check that

Z is connected. Now, the operator T is supercyclic, so there is a complex number

λ0 6= 0 such that P (T ) has dense range for every polynomial P with P (λ0) 6= 0.

Then, for any z ∈ Z, the set {P (T )z; P (λ0) 6= 0} is contained in Z. Since this set

is connected and dense in X, this concludes the proof.

Another related result is the following proposition, which should be compared

with Shkarin’s theorem. In the case of a compact ground space X, this result can

be extracted from [18].

Proposition 5.3. Let (X,T ) be a point transitive dynamical system, and let

x ∈ Trans(T ). Let also G be a compact metrizable abelian group. Moreover, assume

that G is connected. Then the set of all g ∈ G such that {(gn, Tn(x)); n ∈ N} is

dense in G×X is a residual subset of G.

Proof. Let Γ := G×Z+ act on G×X as expected, T(ξ,n)(h, z) = (ξh, Tn(z)). Then

Trans(Γ) = G× Trans(T ) and Trans(Γ) is Γ-invariant.

Let us denote by M the set of all g ∈ G such that the set {(gn, Tn(x)); n ∈ N}
is not dense in G ×X. If g ∈ M , then {(gn, Tn(x)); n ∈ Z+} is not dense either

because (1G, x) is a recurrent point of τg × T (see the remark after Proposition

4.1). By Theorem 4.1 applied with Γ0 = Γg := {(gn, n); n ∈ Z+}, one

can find a nontrivial character φg ∈ Γ̂ and a (nonconstant) continuous function

fg : G×Trans(T )→ T such that φg(g, 1) = 1 and fg(ξ, T
n(x)) = φg(ξ, n)fg(1G, x)

for all (ξ, n) ∈ Γ. Putting χg(ξ) := φg(ξ, 0) and αg := φg(1G, 1), this becomes

fg(ξ, T
n(x)) = χg(ξ)α

n
g fg(1G, x). Moreover, we have αg = χg(g)−1 since φg(g, 1) =

1, hence we get fg(ξ, T
n(x)) = χg(ξg

−n)fg(1G, x). Since fg is nonconstant and

x ∈ Trans(T ), it follows in particular that the character χg is nontrivial. Moreover,

it is apparent that the function fg is in fact uniquely determined by the character

χg, up to a multiplicative constant. Hence, if g1, g2 ∈ M may be associated with

the same character χ ∈ Ĝ, then χ(g1) = χ(g2). Thus, denoting by Ĝ∗ the set of all

nontrivial characters of G, we have arrived at the following conclusion: there is a

family of complex numbers (αχ)χ∈Ĝ∗ ⊂ T such that M ⊂
⋃
χ∈Ĝ∗ χ

−1(αχ). Now,

since G is connected, every nontrivial character χ has a nowhere dense kernel, and

hence nowhere dense level sets. Since Ĝ is countable (because G is metrizable), it

follows that M is a set of the first Baire category, which concludes the proof. 2

Remark 1. Taking a trivial space X = {x0}, it follows that any compact, connected

metrizable abelian group is monothetic, with a residual set of topological generators.

This is, of course, quite well-known. Actually, this is a characterization of

connectedness within the class of compact metrizable abelian groups. Indeed, if
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G is not connected, then it has a proper clopen subgroup H, and no h ∈ H can

be a topological generator of G. On the other hand, there are compact metrizable

monothetic groups which are not connected, e.g. G = T× Z2.

Remark 2. It could seem natural to expect that {(gn, Tn(x)); n ∈ N} is dense

in G × X for any topological generator g of G. However, this needs not be true.

Consider for example X = G = T and T = τg : T → T, where g is a topological

generator of T.

5.3. Anti-Kronecker systems. The following proposition gives a characterization

of anti-Kronecker systems. This result is implicit in [21], and also in [18] when the

space X is compact.

Proposition 5.4. For a minimal dynamical system (X,T ), the following are

equivalent.

(i) (X,T ) is anti-Kronecker;

(ii) (K ×X, τg × T ) is minimal for every minimal Kronecker system (K, τg);

(iii) (K×X, τg×T ) is point transitive for every minimal Kronecker system (K, τg).

Proof. If (ii) fails to hold for some minimal Kronecker system (K, τg) then, as in

the proof of Proposition 5.3, one can find a continuous function f : K × X → T
and a unimodular complex number α 6= 1 such that f(k, T (x)) = αf(k, x) for all

(k, x) ∈ K × X (we have indeed α 6= 1 because α = χ(g)−1 for some nontrivial

character χ ∈ K̂ and g is a topological generator of K). Then the map p : X → T
defined by p(x) := f(1, x) is a pseudo-factoring map from (X,T ) into the nontrivial

Kronecker system (T, τα). This shows that (i) implies (ii).

That (ii) implies (iii) is trivial. Finally, assume that (X,T ) has a nontrivial

Kronecker pseudo-factor (K, τg) with pseudo-factoring map p : X → K. Let K̃ be

the closed subgroup of K generated by g, so that the Kronecker dynamical system

(K̃, τg) is minimal. Replacing p(x) by p(x0)−1p(x), we may assume that p(x0) = 1K
for some x0 ∈ X. Then p(Tn(x0)) = gn for all n ∈ N, and since x0 is T -transitive

it follows that p(X) ⊂ K̃. Therefore, the dynamical system (K̃ × K̃, τg × τg) is a

pseudo-factor of (K̃ ×X, τg × T ) with pseudo-factoring map q : K̃ ×X → K̃ × K̃
defined by q(k, x) = (k, p(x)). If (K̃ × X, τg × T ) is point transitive, then so is

(K̃ × K̃, τg × τg) because q has dense range, which is clearly not possible unless

K̃ = {1}, i.e. g = 1. This shows that (iii) implies (i). 2

Corollary 5.4. If X is a simply path-connected and locally path-connected

compact metric space, then any minimal dynamical system (X,T ) is weakly mixing.

Proof. By Shkarin’s theorem and Proposition 5.4, the minimal dynamical system

(X,T ) is anti-Kronecker, and hence T is weakly mixing because X is compact (see

Remark 3 after Lemma 4.1). 2
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5.4. Group topologies on orbits. Let (X,Γ) be a dynamical system, and assume

that the acting semigroup Γ is a group. If x ∈ X has trivial stabilizer (i.e. γ ·x = x

only if γ = 1) then the orbit Γ · x may be identified (as a set) with Γ and hence it

is canonically equipped with a group structure, obtained by transfering the group

operation of Γ. The original topology on Γ · x (i.e. its topology as a subspace of

X) is in general strictly coarser than the group topology induced by Γ, and it has

in fact no reason for being a group topology. Now, the following simple remark

shows that group topologies on Γ · x are closely related to eigencharacters for the

dynamical system (Γ · x,Γ) (which is, of course, not surprising).

Remark 5.1. Let (X,Γ) be a dynamical system, where Γ is a completely metrizable

abelian group, and let x ∈ X have trivial stabilizer. Let also Γ0 be a co-compact

subgroup of Γ. Then the following are equivalent:

(i) there is a nontrivial eigencharacter for the dynamical system (Γ · x,Γ) which

is trivial on Γ0;

(ii) there is a (perhaps not Hausdorff) group topology σ on Γ · x which is coarser

than the original topology and such that Γ0 · x is not dense in (Γ · x, σ).

Proof. Identifying Γ · x with Γ, let us denote by σx the topology on Γ · x generated

by all eigencharacters for the dynamical system (Γ · x,Γ). Equivalently, σx is

the topology generated by all continuous eigenfunctions f for (Γ · x,Γ) such that

f(x) = 1. By its very definition, σx is a group topology on Γ · x coarser than

the original topology, and the eigencharacters of (Γ · x,Γ) are characters of the

topological group (Γ · x, σ). This shows that (i) implies (ii).

Conversely, assume that there is a coarser group topology σ on Γ · x such that

Γ0 ·x is not dense in (Γ ·x, σ). Let us endow the quotient group Γ ·x/Γ0 ·x ' Γ/Γ0

with the quotient topology induced by the group topology σ. Since σ is coarser

than the original topological topology on Γ · x, which is in turn coarser than the

group topology induced by Γ, this topology is coarser than the quotient topology

of Γ/Γ0, whence Γ ·x/Γ0 ·x is compact (perhaps not Hausdorff). Since Γ0 ·x is not

dense in (Γ · x, σ), it follows that there is a nontrivial character on Γ · x/Γ0 · x, and

hence a nontrivial character f on (Γ · x, σ) such that Γ0 · x ⊂ ker(f). Since σ is

coarser than the original topology on Γ ·x, the map f is continuous with respect to

this topology. Thus, we have found a nonconstant eigenfunction for the dynamical

system (Γ · x,Γ) which is constant on Γ0 · x. 2

Applying Theorem 4.1, we immediately deduce

Proposition 5.5. Let (X,Γ) be a dynamical system, where Γ is a completely

metrizable abelian group, and let x ∈ X have trivial stabilizer. Let also Γ0 be

a co-compact subgroup of Γ. Then Γ0 · x 6= Γ · x if and only if there is a group

topology σ on Γ · x which is coarser than the original topology and such that Γ0 · x
is not dense in (Γ · x, σ).
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6. Concluding remarks

We conclude the paper with some additional remarks and questions.

1. The following statement is a direct generalization of both Theorems 1.1 and

1.2. Assume that Γ/Γ0 is compact and abelian, and that Γ0 · X is dense in X.

Then Γ and Γ0 have the same transitive points provided the following holds: for

each nontrivial eigencharacter χ for (Trans(Γ),Γ) such that ker(χ) ⊃ Γ0, one can

find γ ∈ Γ such that χ(γ) 6= 1 and a Tγ-invariant set Z ⊂ Trans(Γ) such that

the dynamical system (Z, Tγ) has property (S). However, this statement looks quite

artificial. Indeed, in view of Theorem 4.1 and Lemma 4.1, it can be formulated as

follows: If one can find a character χ ∈ Γ̂ witnessing that Trans(Γ) 6= Trans(Γ0)

then one can find γ ∈ Γ witnessing that χ cannot exist (!)

2. Compactness of the quotient group Γ/Γ0 is essential in the proofs of Theorems

1.1 and 1.2. The following remark shows that this is not due to a defect in the

proofs. Recall that a topological space is said to be Polish if it is separable and

completely metrizable. Recall also that a representation of a topological group

Γ is just a linear dynamical system (X,Γ), where X is a topological vector space

(more accurately, the representation is the homomorphism γ 7→ Tγ from Γ into the

linear group GL(X)).

Remark 6.1. Let Γ be a Polish locally compact abelian group, and let Γ0 be a

closed subgroup of Γ. If Γ/Γ0 is non-compact then one can find a hypercyclic

representation (H,Γ) on a separable infinite-dimensional Hilbert space H such that

(H,Γ0) is not hypercyclic. Moreover, this representation has the following property:

Tγ is hypercyclic for any γ ∈ Γ such that π0(γ)k → ∞ as k → ∞. (Such a γ can

always be found if Γ is compactly generated).

This remark is an immediate consequence of the next lemma.

Lemma 6.1. If G is a Polish, locally compact and non-compact abelian group

then G admits a hypercyclic representation (H, G) on some (separable) infinite-

dimensional Hilbert space H. Moreover, the representation may be chosen in such

a way that Tg is hypercyclic for every g ∈ G such that gk →∞ as k →∞ (if there

is any).

Proof of Remark 6.1. Apply the lemma withG := Γ/Γ0 and put Tγ := Tπ0(γ), γ ∈ Γ,

where π0 : Γ→ G is the canonical quotient map. If Γ is compactly generated then,

by the “structure theorem” for locally compact abelian groups (see [14], Theorem

9.8), the compactly generated group G = Γ/Γ0 has the form Rn × Zm ×K, where

K is a compact group; and either n or m is nonzero since G is non-compact. So

one can indeed find γ ∈ Γ such that π0(γ)k →∞ as k →∞.

2

Proof of Lemma 6.1. The proof is the same as in the well-known cases G = Z and

G = R. Consider the weighted L2-space H := L2
w(G), where w : G → (0,∞) is a

positive continuous function such that w ∈ C0(G) and supg∈G
w(ξ−1g)
w(g) <∞ for any
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ξ ∈ G, and let G act on H by translations, i.e. Tξf(g) = f(ξg). Then the dynamical

system (H, G) is easily seen to satisfy the “group version” of Kitai’s Criterion for

hypercyclicity: there is a dense set D ⊂ H (namely D := C00(G), the set of all

compactly supported continuous functions on G) and a group (Sξ)ξ∈G defined on

D (namely Sξ := T−1
ξ ) such that TξSξ(u) → u and both Tξ(u), Sξ(u) tend to 0 as

ξ →∞, for any u ∈ D.

To construct the “weight” w : G → (0,∞), one may proceed as follows. Write

G =
⋃
i≥0Ei, where (Ei) is an increasing sequence of compact sets such that

E0 = {1} and every compact subset of G is contained in the interior of some Ei. Put

C0 := E0, and define inductively a sequence of compact sets (Ci)i≥0 ⊂ G as follows:

Ci+1 = Eni+1 , where ni+1 is the smallest n such that Ci ∪
⋃
j,j′≤i CjCj′ ⊂ E̊n.

Then
⋃
i≥0 Ci = G, Ci ⊂ C̊i+1 for all i and CiCj ⊂ Ci+j for all i, j ≥ 0. Now,

use the Tietze extension theorem to find a continuous function i : G → [0,∞[

such that i(g) ≡ 0 on C0, i(g) ≡ 2i + 2 on C2i+2 \ C̊2i+1 for all i ≥ 0 and

2i ≤ i(g) ≤ 2i + 2 on C̊2i+1 \ C2i. Define the weight w by w(g) := 2−i(g). Then

w ∈ C0(G) because i(g) ≥ 2i whenever g ∈ G \ C2i (so that i(g)→∞ as g →∞).

Moreover, since g ∈ Ci(g)+2 for all g and i(g) ≤ k + 1 whenever g ∈ Ck, we see

that i(gg′) ≤ i(g) + i(g′) + 5 for all g, g′ ∈ G, and hence w(gg′) ≥ 2−5w(g)w(g′)

. It follows that infg∈G
w(ξg)
w(g) > 0 for all ξ ∈ G, so that supg∈G

w(ξ−1g)
w(g) < ∞, as

required.

2

Incidentally, the following question may be interesting. Let Γ be a non-compact

Polish group. Is it always possible to find a hypercyclic Hilbert space representation

of Γ, or at least a hypercyclic representation on some Banach space X? Otherwise,

for which Polish groups Γ is it possible to find such a representation?

3. In Theorem 1.1 or Corollary 1.1, the assumption that some operator Tγ
is hypercyclic may look unnecessarily strong and not very natural. However, the

following example (essentially taken from [21]) shows that this assumption cannot

be simply removed.

Example 6.1. Let X be a complex separable (infinite-dimensional) Banach space,

and let (Tt)t∈R be any 1-parameter hypercyclic C0-group on X. Let α be any

real number such that α/π 6∈ Q, choose C > 1, and let (T(s,t))(s,t)∈R×R be the

2-parameters group defined on X ⊕ C by T(s,t) := Tt ⊕ Cs−teiαtI. Then the group

(T(s,t))(s,t)∈R×R is hypercyclic but the subgroup generated by T(1,0) and T(0,1) is not.

Proof. Since the set {Cm−neiαn; (m,n) ∈ Z × Z} is nowhere dense in R, it is

clear that the group generated by T(1,0) and T(0,1) is not hypercyclic. Now, let

x be any hypercyclic vector for the group (Tt)t∈R. Then either {Tt(x); t ≤ 0}
or {Tt(x); t ≥ 0} is somewhere dense in X, and hence everywhere dense by the

Costakis-Peris theorem [8]. Thus, we may assume that x is in fact hypercyclic

for the semigroup (Tt)t≥0. By the Conejero-Müller-Peris theorem and Shkarin’s

theorem (!), it follows that the set {(Tn(x), eiαn); n ∈ N} is dense in X ×T. Thus,

given any vector z = u⊕ reiθ ∈ X ⊕C, one can first find n ∈ N such that C−n < r
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and Tn(x) ⊕ einα is close to u ⊕ eiθ, and then s ∈ R+ such that Cs−n = r to

get that T(s,n)(x, 1) = Tn(x) ⊕ Cs−neinα is close to z. This shows that the group

(Ts,t)(s,t)∈R×R is hypercyclic, with hypercyclic vector x⊕ 1. 2

Nevertheless, the assumption that some Tγ is hypercyclic should not be

considered as “necessary”. Indeed, as shown by F. Bayart in [2], there exist

hypercyclic holomorphic groups (Tz)z∈C such that no single operator Tz is

hypercyclic, and yet the subgroup generated by any basis (z1, z2) of C = R2 is

hypercyclic.

4. Still regarding the same assumption, it would be nice to have a simple direct

proof (without any metrizability assumption) of the fact that if a 1-parameter

semigroup of operators (Tt)t≥0 is hypercyclic, then there is at least one hypercyclic

operator in it.

5. Even if all operators in a linear dynamical system (X,Γ) are hypercyclic, they

may not have the same hypercyclic vectors, and in fact they may have no common

hypercyclic vector at all. As shown in [2], this can even happen with a holomorphic

group (Tz)z∈C.

6. Shkarin’s theorem and Proposition 5.4 suggest the following question: is

it possible to characterize “intrinsically” the anti-Kroneckerness of a dynamical

system (X,T )? As already said, when X is compact and metrizable, anti-

Kroneckerness is equivalent to weak mixing (i.e. point transitivity of T × T ), and

this can be characterized in terms of the sets N(U, V ) := {n ∈ N; Tn(U)∩ V 6= ∅}:
a dynamical system (X,T ) is weakly mixing iff each set N(U, V ) contains arbitrarily

long intervals. A similar question may be asked for mildly mixing systems. A

dynamical system (X,T ) is said to be mildly mixing if, for any point transitive

compact dynamical system (K,S), the dynamical system (K ×X,S × T ) is point

transitive. In the compact case, mild mixing can also be characterized in terms of

the sets N(U, V ); see [11]. The linear version of this problem is the following: is

it possible to characterize the linear operators T such that S × T is hypercyclic for

any hypercyclic operator S?

7. It follows easily from Shkarin’s theorem that if T is a hypercyclic operator

on some topological vector space X and if x ∈ HC(T ) then, for each nonempty

open set W ⊂ X, the set N(x,W ) = {n ∈ N; Tn(x) ∈ W} is dense in bZ, the

Bohr compactification of Z. However, T may be non-weakly mixing by [20].

In this case, by the characterization of weakly mixing systems mentioned above,

one can find W such that the difference set N(x,W ) − N(x,W ) (which is equal

to N(W,W )) does not contain arbitrarily long intervals, because each set N(U, V )

contains a translate of some N(W,W ). Moreover, one can also find W such that

N(x,W )−N(x,W ) does not have bounded gaps (see [12]). Thus, we have examples

of sets of integers which are dense in bZ but with some smallness property. It may

be quite interesting to investigate this further.

8. A group extension of a dynamical system (X,T ) is dynamical system of

the form (G×X, T̃ ), where G is a topological group and T̃ (ξ, x) = (g(x)ξ, T (x)) for
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some continuous map g : X → G. If g is a constant map, one gets the dynamical

system (G×X, τg × T ). It is well-known that if x ∈ X is a recurrent point for T ,

then (1G, x) is a recurrent point for any compact group extension of (X,T ) (see

[10]). This leads to the following question: is there a Shkarin’s theorem for general

compact group extensions?

8’. Group extensions are particular cases of skew products. Skew products of

a different type directly connected to linear dynamics are studied in [3].

9. As already mentionned, the general ideas involved in the proofs of Theorems

1.1 and 1.2 go back to the paper [9] by H. Furstenberg. The setting of [9] is that

of a group Γ acting on a compact metric space (X, d), and the purpose is to get a

structure theorem for distal dynamical systems (X,Γ). A dynamical system is said

to be distal if infγ∈Γ d(γ · x, γ · y) > 0 whenever x 6= y. One notable consequence

of the work done in [9] is that every nontrivial minimal distal system (X,Γ) has

a nontrivial eigencharacter. Comparing this with Theorem 4.1, we see that very

loosely speaking, the distality condition is replaced in our setting by the assumption

“Trans(Γ0) 6= Trans(Γ)”, and the compactness of the ground space X is replaced

by that of the quotient group Γ/Γ0. All of this is of course quite vague, but it looks

plausible that some more general theorem is hiding somewhere.

10. It would be interesting to know if something general can still be said if the

quotient group Γ/Γ0 is not assumed to be abelian. In particular, is Theorem 1.1

still true without this assumption?
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32 É. Matheron

[15] H. B. Keynes, J. B. Robertson, Eigenvalue theorems in topological transformation groups.

Trans. Amer. Math. Soc. 139 (1969), 359–369.
[16] F. León Saavedra, V. Müller, Rotations of hypercyclic and supercyclic operators. Integral.

Equations Operator Theory 50 (2004), 385–391.

[17] J. Oxtoby, S. Ulam, Measure-preserving homeomorphisms and metrical transitivity. Ann.
of Math. 42 (1941), 874–920.

[18] W. Parry, Compact abelian group extensions of discrete dynamical systems. Probability

Theory and Related Fields (Z. Wahrscheinlichkeitstheorie verw. GeL) 13 (1969), 95–113.
[19] K. Petersen, Disjointnness and weak mixing of minimal sets. Proc. Amer. Math. Soc. 24

(1970), 278–280.

[20] M. De La Rosa, C. Read, A hypercyclic operator whose direct sum is not hypercyclic.
Journal of Operator Theory 61 (2009), 369–380.

[21] S. Shkarin, Universal elements for non-linear operators and their applications. J. Math.
Anal. Appl. 348 (2008), 193–210.

[22] S. Shkarin, On supercyclicity of operators from a supercyclic semigroup. J. Math. Anal.

Appl. (to appear).
[23] S. Shkarin, Hypercyclic and mixing operator semigroups. Proc. Edinb. Math. Soc. (to

appear).

[24] J. Wengenroth, Hypercyclic operators on non-locally convex spaces. Proc. Amer. Math.
Soc. 131 (2003), 1759–1761.

Prepared using etds.cls


