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Abstract

We compute the essential norm of a composition operator relatively to the class
of Dunford-Pettis opertors or weakly compact operators, on some uniform algebras
of analytic functions. Even in the frame of H* (resp. the disk algebra), this is new,
as well for the polydisk algebras and the polyball algebras. This is a consequence
of a general study of weighted composition operators.

Key Words : composition operators, essential norm, analytic functions, weakly compact
operators, Dunford-Pettis operators.
AMS classification : 46E15, 47B10, 47B33.

0 Introduction

The aim of this paper is to investigate the eventual default of complete continuity or weak
compactness of a composition operators on uniform algebras of analytic functions. This
includes the case of the space H* of bounded analytic functions on the open unit disk D
of the complex plane, and the case of the disk algebra A(ID), more generally the polydisk
and polyball algebras.

The composition operators were investigated so far in many ways. They are very often
investigated on H? spaces (1 < p < 00). But on such spaces, their weak compactness and
complete continuity are trivial problems (because of reflexivity). The monographs [CmC]
and [S] are very good survey on this topic. Another very interesting survey is the paper
[J].

The characterization of the weak compactness for composition operators on the clas-
sical spaces H* and A(DD) is not new : this is due to Aron, Galindo and Lindstrom
[AGL] (see Ulger [U] too). The author recovered this result in [L] as a consequence of a
characterization of (general) weakly compact operators on H*°. The characterization of
complete continuity of composition operators was settled in [GLR] (see [GGL] too).

On the other hand, weak compactness and complete continuity of the multiplication
operator were considered in [JL], but for spaces C'(K), L' or H.



We are going to use very elementary technics to estimate the essential norm relatively
to Dunford-Pettis operators and weakly compact operators. This generalizes the result of
Zheng [Z] on the (classical) essential norm of a composition operator on H*>. Moreover,
the results cited above ([AGL],[GLR]) are recovered in a very simple way. We generalize
too all these results, mixing classical composition operators with a multiplication operators
i.e. studying weighted composition operators. The compact case was already considered
on the disk algebra by Kamowitz in [K]. In that direction too, the results are generalized.
Weighted composition operators were also studied by Contreras and Hernandez-Diaz in
[CD] but on spaces HP with 1 < p < 0.

In the first part, we treat the classical case of one variable analytic functions. In the
second part, we adapt the method to study the case of general analytic functions on the
open unit ball of a complex Banach space. Even for the Calkin algebra, as far as we know,
this is new.

Now, we precise some definitions of classical classes of operators ideals. We refer to
[DJT] to know more on the subject.

Definition 0.1 Let X be a Banach space. X has the Dunford-Pettis property if for every
weakly null sequence (x,) in X and every weakly null sequence (x%) in X*, then x}(x,)
tends to zero.

Equivalently, for every Banach space Y and every operator T : X — Y which is
weakly compact, T maps a weakly Cauchy sequence in X into a norm Cauchy sequence.

A good survey on the subject (until the early eighties) is the paper of Diestel [Di].

Definition 0.2 Let X be a Banach space. X has the property (V) of Pelczyniski if, for
every non relatively weakly compact bounded set K C X*, there exists a weakly uncondi-
tionaly series 3 xy in X such that inf sup{|k(z,)[; k € K} > 0.

Equivalently, for every Banach space Y and every operator T : X — Y which is not
weakly compact, there exists a subspace X, of X isomorphic to c, such that Tix, is an
1somorphic embedding.

We are going to extend results known for the Calkin algebra, to some other ideals of
operators. Let us precise the terminology.

Definition 0.3 Let X, Y be Banach spaces and I a closed subspace of operator of the
space B(X,Y') of bounded operators from X toY. The essential norm of T € B(X,Y) is
the distance from T to ZL:

I

= inf{||T+ S|; S € I}.

This is the canonical norm on the quotient space B(X,Y)/T.
If morevover T is an ideal of the space B(X) then B(X)/Z is an algebra.

The classical case corresponds to the case of compact operators Z = IC(X,Y") (in this
case, the preceeding quotient space is the Calkin algebra). In the sequel, we get interested
in the case of weakly compact operators: Z = W(X,Y); and in the case of completely
continuous operators (= Dunford-Pettis operators): Z = DP(X,Y). Compact operators
are both weakly compact and completely continuous.

Note that X = H* (resp. the disk algebra, the polydisk algebra and the polyball
algebra) has the Dunford-Pettis property (see [C], [B1] and [B2]) and this implies that



W(X,Y) C DP(X,Y), for every Banach space Y. On the other hand, X = H* (resp. the
disk algebra, the polydisk algebra and the polyball algebra) has the Pelczyriski property
and this implies that DP(X,Y) € W(X,Y) (see [D], [B1] and [B2]). So actually, in
this framework, the two notions of weak compactness and complete continuity coincide.
Nevertheless, we are going to give self-contained proofs, hence we do not require the
(non-trivial) results cited above. That’s why we are able to treat the case of more general
spaces, where such properties are not known.

We introduce the following operator: given an analytic bounded function u on the unit
ball B of the Banach space E and an analytic function ¢ from B to B, we shall study in
the paper the (generalized) essential norm of the weighted composition operator T, :

Tuo(f)=u.foop where f is analytic on B.

Of course, when v = T, this operator is a classical composition operator and is simply
denoted by C,. When ¢ = Idp, this operator is the multiplication operator by w.

Observe that T, , is always bounded from the space of bounded analytic functions
on B to the space of analytic bounded functions on B, with ||T;, .|| = ||u||c, where
Julloo = sup{u(=)]; = € B},

The following quantity plays a crucial role in the estimate of the essential norm: we
define

ne(u) = lim  |u(2)] = linln sup {|u(z)]; z € B and ||¢(2)|| > r}
le()]| =1~ r—17
B

z
ze

which defines a finite number since u is bounded.

When |||l < 1, ie. ©(B)NIB =0, then n,(u) = 0 (i.e. the supremum over the
empty set is taken as 0).

As the spirit of this area of mathematics is to consider analytic functions, we shall
assume in the paper that u is analytic, nevertheless all the results can be easily adapted
under the only assumption of continuity. Under such an assumption, the operators are
not defined anymore into H*°, but the space of continuous bounded functions on B. It is
actually easier to study these operators, removing the analycity of w.

1 The one variable case.

In that section, we are going to compute the essential norm relatively both to Dunford-
Pettis operators and to weakly compact operators, on H* and A(D). We first establish
the following characterization, which is a generalization of Th. 1.2 [K].

With the previous notations.

Theorem 1.1 The following assertions are equivalent
1)T,,: A(D) — H* is completely continuous.
2) Ty A(D) — H™ is weakly compact.
3) ny(u) = 0.

4) Ty : H® — H* is compact.



In the previous statement, the third assertion clearly implies that urw**l(ﬁf) =0 (a.e.),
where, as usual, we denote by ¢*, resp. u*, the boundary values of ¢, resp. u (defined
almost everywhere on T by radial limit).

An important point of the proof is that we are going to avoid the requirement to the
Dunford-Pettis property, as this will be done in the general case (see the second section
below).

Proof. Obviously 4 implies 1 and 2.

1 = 3. Assume that ||¢|l = 1 and n,(u) > &o > 0.

Choose any sequence z; € D such that |¢(z;)| converges to 1 and |u(z;)| > €. Extract-
ing a subsequence if necessary, we may suppose that ¢(z;) converges to some a, belonging
to the torus. Now, we consider the sequence of functions f,(z) = 27"(az + 1)", which lies
in the unit ball of the disk algebra. This is clearly a weakly-Cauchy sequence: for every
ze D\ {a}, fu(z) = 0; and f,(a) = 1.

The operator T, , being a Dunford-Pettis operator, the sequence (u. f,, 0¢), .\ is norm-
Cauchy, hence converging to some o € H*. But for every fixed z € D, u(z).f, o ¢(z)
converges both to 0 and o(z), so that o = 0.

Fixing € > 0, this gives ng such that sup,cp, |u(2) fn, 0 p(2)] < e-

Choosing z = z;, with jj large enough to have |f,, o p(z;,)| > 1 — ¢, we have:

e 2 fu(zj,)|(1 =€) 2 (1 - €)eo.

As € is arbitrary, this gives a contradiction.

2 = 3. Assume that ||¢||coc = 1 and ny,(u) > g9 > 0. The idea is very closed to the
previous argument. Choose any sequence z; € D such that |p(z;)| converges to 1 and
|u(zj)| > €o. We may assume that ¢(z;) converges to some a € T. Now, we consider the
same sequence of functions f,(z) = 27"(az + 1)".

The operator T, , being a weakly compact operator, there exists a sequence on integers
(nx) such that (u.fy, © ¢)yey is weakly convergent to some o € H*. Testing the weak
convergence on the Dirac 6, € (H*)*, for every fixed z € D, we obtain that o = 0.

By the Mazur Theorem, there exists a convex combination of these functions which is
norm convergent to 0:

Z Ck U fr, 0 p — 0
k€L,

where ¢, > 0 and Z c, = 1.
kElm
Now, fixing € € (0,£0/2), we have for a suitable mg and every j

€0

Yo au(2) fu (9(2)] < e

kEIm,,

> cufule(z)] <

kEImy,

S eul)-fulp(5))] < su

k€ Imy €D

Letting j tends to infinity, we have f,, (¢(2;)) — fn.(a) =1 for each k so that

60260‘ Z Ck

kEImy,

<e.

This gives a contradiction.

3 = 4. Point out that T}, , = M, o C,.



If [|¢|lo < 1 then C, is compact (see the remark below).
If |olo=1and  lim wu(z) =0 then T, is compact. Indeed, given a sequence

lle(2)]|—1~
zeD

in the unit ball of H*, we can extract a subsequence (f,,), converging on every compact
subsets of D. Given € > 0, we choose a compact disk K C D such that, when ¢(2) ¢ K,
|u(z)| < e. Then we have

- = fin) @ Pl < max { o sup |(fo = fu)()]52¢}

p(z)eK

which is less than 2¢, when n,m are large enough, by uniform convergence on the
compact set p(K). n

Remark. Note that the preceeding result implies that a composition operator C, on
H® is completely continuous if and only if it is weakly compact if and only if ||¢]|e < 1.
Indeed, if [|¢||s < 1, it is actually compact (and even nuclear) and if C, is completely
continuous (resp. weakly compact) on H> then its restriction to the disk algebra is as
well. The result follows from the preceding theorem with u = 1.

We have the same results when the operators act on A(D) (under the extra assumption
that p € A(D)).

Corollary 1.2 Let u: D — C be a bounded analytic map.

1) Assume that ¢*~(T) has positive measure. Then Ty, 18 weakly compact or com-
pletely continuous if and only if u = 0.

2) In particular, if we assume that M, : A(D) — H™ is weakly compact or completely
continuous. Then u = 0.

Proof. If T;, , is weakly compact or completely continuous, it follows immediatly from
the preceeding theorem that u* = 0 on a set of positive measure. As u € H*, we obtain
that u = 0. [ ]

In this section, X denotes either A(D) or H*.

In the sequel, we shall adapt our argument to compute essential norms. We generalize
the proposition in the following way. This is also a generalization of the result of Zheng
[Z] in several directions.

We first have a majorization

Lemma 1.3 Let ¢ : D — D be an analytic map, u : D — C be a bounded analytic

function.
Then
1Tull. < inf{2n4(w), [[ullso}-
Proof. Obviously, ||Tuell. < |Tuell = [l
Fix € > 0. There exists 7 € (0,1) such that sup |u(z)| < ny(u) 4+ €. Denoting by

le(2)]2r
zeDb

Fy the Féjer kernel, we consider the operator defined by

S(E) = w2 By x (o) =) 3 (1= 577 e ),



N

where N is choosen large enough to verify ¥ < e(1 —r) and N1l Z nr' <e.

n=1
S is a finite rank operator and the lemma is proved as soon as we prove that

| T — S| < max(2n,(u) + 2¢, 2¢||u| o).

Clearly, for every f in the unit ball of H*, ||(T,,, — S)(f)|| is less than

pq )\-’(f ~ Py # f)(gp(z))‘}

max su Fy %
{ \sangzr z)|. ‘ f—Fnxf)le

We have
sup UL = B * ()] < (o) + ) sup| (7 = Py # )w)

which is less than 2(n,,(u) +¢), by the properties of the Féjer kernel and the maximum

modulus principle.
On the other hand, for every z € D such that |p(z)| < r, we have

A = Fy )] < (3 > N A+ Y e e))

n=N+1

so that
N 7J\r
S0 (= By # e < oo 3 7 + 1) < 2l

This gives the result. [ ]

Another kind of proof could be given. This will be done in the next section (see Lemma

2.4).
On the other hand , we have the lower estimate:

Lemma 1.4 Letu € H® and ¢ : D — D be an analytic map.
We assume that T C W(X, H*) = DP(X, H®).

Then
np(u) < || Tupll. -

Proof. The idea of the proof is a mix of the one of theorem 1.1 and the one of Zheng
[Z). We already know that ||13,[/., = 0 if and only if T}, is completely continuous if
and only if n,(u) = 0 if and only if T, is compact. We assume now that T, , is not
completely continuous and this implies that ||¢||. = 1.

We choose a sequence z; € D such that ¢(z;) converges to some a € T and |u(z;)]

converges to ny(u).
We introduce the sequence of functions (where n > 2)

naz — (n—1)

falz) = n—(n—1)az

which lies in the unit ball of the disk algebra.
Obviously, f,(z) — —1 for every z € D\ {a} and f,(a) = 1.

6



Now, let S € Z. As the sequence (f,), is a weakly-Cauchy sequence, the sequence
(S(fn)), is a norm Cauchy sequence, hence converging to some o € H*. Observe that
for every n,

(T = S)(fa)lloo = 1 Tup(fr) = olloc = 1S(f2) — o lloo
and we already know that ||S(f,) — 0l/cc — 0.

For every z € D\ {a}, we have f,(z) — —1 so that for every z € D\ {a},

[w(2).fn 0 @(2) — 0(2)] — |u(z) + o(2)].
If Ju(wo) + o(wp)| > ny(u) for some wy € D, then

|1 T2so =S = [T =) (fa)lloo = Tim|u(wo). fuop(wo)—o(wo)| = [u(wo)+0o(wo)| = ny(w).

If not, then ||u + ol|oc < ny(u) and for every z € D, |u(z) — o(2)| > 2|u(z)| — ny(u).
We have for every n > 2 and every integer j:

[Tue = Sl = u(z))-fn 0 (25) =0 (2)] = [15(fn) = ol

> 2lu(z;)] — ne(u) — [u(z) |1 fa 0 ©(z) = 1 = [[S(fn) = 0l

Letting first j tend to infinity (and not forgetting that u is bounded on D), we obtain
for every integer n > 2

[T = Sl 2 1p(u) = [15(fn) = ollco-

Then, letting n tend to infinity, we have ||T;, , — S| > n,(u). u

Remark: we could have given another proof for weak compactness (avoiding the argu-
ment of the coincidence of W(X, H*®) and DP(X, H*)): this will be done below when
we shall study the general case (see Lemma 2.3).

The following theorem gives a generalization of previously known results on the sub-
ject.

Theorem 1.5 Let u € H* and ¢ : D — D be an analytic map. We assume that

K(X,H®)CZ CcW(X,H*®)=DP(X,H>).
Then

HTu,w“e,I ~ nq,(u).

More precisely

np(u) < [[Tupll. » < nf{2ne(u), ulleo}-

As a particular case, when ny(u) = ||ul|s, the equality holds: | T, ||, ; = [|Tuell. = ||ulco-

Proof. We obviously have |7, .|, < |[Tuel.. The result follows from the two
preceding lemmas. u



The following immediatly follows

e

Corollary 1.6 Let u : D — C be a bounded analytic map. Then ||[M,|,, = ||M.,

[l co-

We are able to obtain the exact value of the essential norms of the operators 7T, , when
¢ has some contacts with T on thin sets, for instance on a finite set. More generally, we
define the property 7 for ¢ : D — D (analytic) by

There exists a compact set K C T, with Haar measure 0, such that:
For every sequence (z,) in D converging to k € D, with |p(z,)] — 1, we have k € K.

Clearly, if ¢ € A(D), this property means that ¢ ~(T) has Haar measure 0.
Proposition 1.7 Let u € A(D) and ¢ : D — D be an analytic map with property T .

We assume that K(X, H®) CZ C W(X,H*) = DP(X, H®).
Then

ITuell.r = T

e ™ nv(u).

Actually, the proof shows that we could assume only that v is bounded and wk is
continuous.
Proof. By the Rudin-Carleson Theorem, there exists some v € A(ID), with v = u on
K and [[o]lac < .
We claim that T, is compact since n,(u —v) = 0. Indeed, ny,(u —v) < sup |u — v
K

by property 7.
Obviously, || Ty,

e S Tue = Tumvgll = Toell < llolloe < llujxlloc = np(w). =

2 The several variable case.

We are going to fix a general frame: B shall denote in this section the open unit ball
of a complex Banach space (E,||.]|). A function f : B — C is analytic if it is Fréchet
differentiable. The space H>°(B) is then the space of bounded analytic functions on B (see
[Din] to know more on the subject). The space A(B) the space of uniformly continuous
analytic functions on B. These two spaces are equipped with the uniform norm

[ flloe = sup [£(2)]
z€EB

The case £ = C and B = D corresponds clearly to the classical case. When d > 2, we
have the two following special cases, which we are particularly interested in:

- When the space C? is equipped with the sup-norm ||(21,...,24)[lcc = sup |2,
1<j<d
the framework is the polydisk algebra: B = D¢,

- When the space C? is equipped with the hermitian norm [|(z1, ..., z4)[[3 = > |7]%

the framework is the polyball algebra B = B<.
Let ¢ be an analytic function from B into itself and C, the associated composition
operator. In the sequel,

[olloe = sup [l(2)]-
z€B



We also consider u € H*(B) and we are going to study the operator T,,,. We shall
denote by X either A(B) or H*(B).

The results are essentially the same than the one obtained in the one variable case.
The proofs mainly use the same ideas and tools. Nevertheless, we first need the following
specific lemma.

Lemma 2.1 Let £ in the unit ball of the dual of E.
The sequence of functions

ng(5) = (= 1)
FE B ) = T e

is a weak Cauchy sequence in the space A(B).

Proof. First, (f,,) clearly belongs to the unit ball of A(B). Actually, the key point is

t—(n—1
that f, = F, o &, where F,(t) = n” is a weak Cauchy sequence in the space of
n—(n—
continuous function on D. Obviously, F,(t) — —1 for every ¢t € D, with ¢ # 1. We have

fa(l) = 1.

Let v € A(B)*. By the Hahn-Banach theorem, we obtain 7 belonging to the dual of
C(B), the space of continuous functions on B (the norm closure of B). We can define a
linear continuous functional y on C(D) in the following way

heCD)r— v(hof)
The classical Riesz representation Theorem gives us a Borel measure i on D such that

for every h € C'(D), x(h) = /7 hdp. But, we have by the Lebesgue domination theorem,
D

v(fa) = x(Fn) — p({1}) = n(D\{1}).

This implies that the sequence (f,) is a weak Cauchy sequence in the space A(B). m

The following result is a consequence of Montel’s Theorem, similar to Th 1.1 (3 = 4).

Lemma 2.2 [AGL] Let ¢ : B — B be an analytic map. We assume that ||¢||e < 1 and
o(B) relatively compact. Then C, is compact.

Proof. See Prop 3[AGL)]. u

We have the following lemma, similar to lemma 1.4.

Lemma 2.3 Let uw € H®(B) and ¢ : B — B be analytic with ||¢||cc = 1 and o(B)
relatively weakly compact. We assume that T C W(X, H>*(B)) & DP(X, H>*(B)).
Then

np(u) < | Tuell. -

When FE is reflexive (e.g. finite dimensionnal), the relative weak compactness assump-
tion on ¢(B) is automatically fullfiled.

Proof. First, we begin with some preliminary remarks. There exists z; € B such
that ||¢(z;)|| converges to 1. Up to an extraction, we may suppose that ¢(z;) is weakly
converging to some a € B. Actually, |la|| = 1. We choose ¢ in the unit sphere of the dual
of E such that (a) = |la|]| = 1.



ng(z) —(n—1)

n—(n— DE(=)
clearly lies in the unit ball of A(B).
Let S € Z. We have S = D+ W, where D € DP(X, H*(B)) and W € W(X, H*(B)).
By Lemma 2.1, the sequence ( f,,),, is a weakly-Cauchy sequence, the sequence (D(f,)),,
is a norm Cauchy sequence, hence converging to some A € H*(B). On the other hand,
a subsequence of W(f,) is weakly convergent to some w € H*(B), so by the Mazur

Theorem, we can find some ¢, > 0 with Z ¢, = 1, where I,,, C N; and Z W (fr) — w.
kel ke€lm
Moreover, we can assume that sup I, < inf [, 1.

Writing f,,, = > ¢k fr, we have: for every z € B, fm(z) — —1 and for every m,
k€lm

fm(9(2;)) — 1. Tt is clear that (D(f,,)), is norm convergent to A, so (S(f,,)), is norm
convergent to o = A + w.
The argument now follows the lines of the proof of lemma 1.4 and we obtain

We introduce the sequence of functions z € B —— f,(z) = which

1T = Sl = ng(u).

For the upper estimate, we have a similar result to Lemma 1.3. We present here an
alternative argument.

Lemma 2.4 Let ¢ : B — B be analytic with p(B) relatively compact and u : D — C be
a bounded analytic function.
Then

[Tl < inf{2n4(w), [[ulloo}-
Proof. Fix € > 0. There exists r € (0, 1) such that | :?%) [u(2)] < np(u) + .
w(z)||>r
zeB

We consider the operator defined by

S(N(z) = ulz).f(pe(2)),

where p is chosen in (0,1), close enough to 1 to verify > (1 — p")r" <e.
n>0
By Lemma 2.2, S is a compact operator since |[pp]le < p < 1 and ¢(B) is relatively
compact.
For every f in the unit ball of X and every z € B, we have the Taylor expansion

f&) = X d (0).(2)
n>0 """
where d” f(0) denotes the n'* differential in the point 0, and ()™ = (z,..., 2).
1
Hence, (T, — 8)(f)(2) = u(2) 3 —(1 = p")d"£(0).(0(2))".

n>0 """

1
Since —||d" f(0)[| < || flloc <1, we obtain, when [l¢(2)[| <,
n!

(T = YO < Nulloo D2 (1= M)l < lullo-e.

n>0

10



On the other hand, when ||¢(z)|| > r, we have

(T = YN < (rplw) + ) (@D + 1 (pp (] ) < 2Angw) + ).
Finally,
[T = S| < max {eflulloc; 2(n(u) + €)}-
As ¢ > 0 is arbitrary, we conclude |7}, ||, < 2n,(u). This gives the result. n
The following theorem is the main result of this section.
Theorem 2.5 Let u € H*(B) and ¢ : B — B be analytic. We assume that ¢(B) is
relatively compact and that K(X, H*(B)) CZ C W(X, H>*(B)) ® DP(X, H*(B)).

Then
[jeame

e, T ~ n§0<u>
More precisely
() < [|Tupll, r < inf{2n(u), [luflo}-

As a particular case, when ny(u) = ||ul|e, the equality holds: ||T,.,

eI HTu,tp

o = l[flo-

Of course, when F is finite dimensionnal, the compactness assumption can be forgot-
ten.
Proof. This is an immediate consequence of the preceeding lemmas. [ ]

We specify two particular cases.

Corollary 2.6 Let u € H*(B) and ¢ : B — B be analytic with o(B) relatively compact.
We assume that K(X, H*(B)) C Z C W(X, H*(B)) @ DP(X, H*(B)).

DMyl = IMull. = [lufloo
2)1Cy

ez = Lifllglle=1and |G,

e =0 [lpllo <1
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