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Abstract

We estimate the essential norm of a weighted composition operator relatively to

the class of Dunford-Pettis operators or the class of weakly compact operators, on

the space H∞ of Dirichlet series. As particular cases, we obtain the precise value

of the generalized essential norm of a composition operator and of a multiplication

operator.
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0 Introduction

The aim of this paper is to investigate the complete continuity and weak compactness
of weighted composition operators on the space H∞ of Dirichlet series. The composition
operators were investigated so far in many papers. The monographs [CmC] and [S] are
very good survey on this topic. The composition operators are very often investigated
on Hp spaces (1 < p < ∞), but, on Hp spaces, their weak compactness and complete
continuity are trivial problems (because of reflexivity). The investigation in the setting
of Dirichlet series is more recent: see, for example, [B2], [GH] and [Q2].

Let us recall some terminology. We are going to work on some half planes Cθ, with
θ ≥ 0:

Cθ = {s ∈ C| Re(s) > θ}.

The space H(C0) denotes the space of analytic functions on C0.
The space H∞ of Dirichlet series is

H∞ = {f ∈ H(C0)| f bounded, f(s) =
∑

n≥1

ann
−s on some half plane Cε with ε > 0}.

(In fact, a result of Bohr [Bo] implies that any ε > 0 works in the definition)



The space H∞ is the version of the classical Hardy space H∞ in the setting of Dirichlet
series.

It is natural to introduce the equivalent to the disk algebra

A = {f ∈ H∞| f continuous on C0}.

Both spaces H∞ and A are normed by ‖f‖∞ = sup {|f(s)|; s ∈ C0}.
Before getting interested in some special properties of composition operators on H∞,

we have to know when they are defined. Actually, the case H∞ is less complicated than
the case of general Hp spaces: An analytic function ϕ : C0 → C0 defines a bounded
composition operator Cϕ : f 7→ f ◦ϕ on H∞ if and only if ϕ(s) = α0s+

∑

n≥1 αnn
−s, with

α0 ∈ N (see [B1] after Cor2. p. 217, or [B2] p.65). In the sequel, we shall always assume
that ϕ fulfills this condition. We then have ‖Cϕ‖ = 1.

The characterization of the compactness for composition operators the space H∞ of
Dirichlet series is due to Bayart [B1]Th.18. Actually, Bayart estimates the (classical)
essential norm of a composition operator on H∞. Let us recall his result:

Theorem. [B1],[B2] Let Cϕ be a composition operator on H∞.
Cϕ is compact if and only if ϕ(C0) ⊂ Cε for some ε > 0.

The compactness of weighted composition operators was studied in the classical frame
of the disk algebra in [K]. Some extensions of this results are studied in [L], where
generalized essentials norms are computed.

We are going to use rather elementary techniques, adapted from [L], to estimate the
essential norm, relatively to Dunford-Pettis operators and weakly compact operators, of
weighted composition operators on H∞.

We first precise some terminology:

Definition 0.1 Let X, Y be Banach spaces and I a closed subspace of operator of the
space B(X, Y ) of bounded operators from X to Y . The essential norm of T ∈ B(X, Y )
relatively to I is the distance from T to I:

‖T‖
e,I

= inf{‖T + S‖; S ∈ I}.

This is the canonical norm on the quotient space B(X, Y )/I.
If morevover I is an ideal of the space B(X) then B(X)/I is an algebra.

The classical case corresponds to the case of compact operators I = K(X, Y ) (in this
case, the preceeding quotient space is the Calkin algebra). In the sequel, we get interested
in the case of weakly compact operators: I = W(X, Y ); and in the case of completely
continuous operators (= Dunford-Pettis operators): I = DP(X, Y ). Compact operators
are both weakly compact and completely continuous.

Recall that a Banach space X has the Dunford-Pettis property if, for every Banach
space Y and every operator T : X → Y which is weakly compact, T maps a weakly
Cauchy sequence in X into a norm Cauchy sequence. A good survey on the subject (until
the early eighties) is the paper of Diestel [D]. A Banach space X has the property (V )
of Pe lczyński if, for every Banach space Y and every operator T : X → Y which is not
weakly compact, there exists a subspace X0 of X isomorphic to c0 such that T|X0

is an
isomorphic embedding.
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If the space of Dirichlet series H∞ had both property (V ) and the Dunford-Pettis
property, then the two ideals W(H∞, Y ) and DP(H∞, Y ) would coincide, for every Banach
Y . It turns out that H∞ does not have property (V ) and it is unknown whether H∞ has
the Dunford-Pettis property.

Claim. H∞ does not have property (V )(we have no reference for this remark). We
are going to see this as a consequence of the Bohr inequality. This reads as follows (see
[Q1]):

∑

p∈P

|ap| ≤ ‖f‖∞ for every f ∈ H∞

where P stands for the set of prime numbers.
This means that the space {f ∈ H∞| f(s) =

∑

p∈P

app
−s} is a complemented subspace

of H∞, isomorphic to ℓ1. Thus, the underlying projection can neither be weakly compact,
nor fix a copy of c0. This proves the claim.

Let us point out too that the same remark implies that the space H∞ does not verify
the Grothendieck Theorem: the projection (given by the Bohr inequality) from H∞ to ℓ1

is bounded and cannot be 2-summing.

Given u ∈ H∞ and an analytic function ϕ from C0 to C0 defining a composition
operator, we shall study in the paper the (generalized) essential norm of the weighted
composition operator Tu,ϕ:

Tu,ϕ(f) = u.(f ◦ ϕ) where f ∈ H∞.

Of course, when u = 1I, this operator is the classical composition operator and simply
denoted by Cϕ. When ϕ = IdC0

, this operator is the multiplication operator Mu by u.
Observe that Tu,ϕ is always bounded from H∞ to H∞, with ‖Tu,ϕ‖ = ‖u‖∞, where

‖u‖∞ = sup{|u(s)|; s ∈ C0}.
The following quantity plays a crucial role in the estimate of the essential norm: we

define
nϕ(u) = lim

r→0+
sup {|u(s)|; s ∈ C0 , Re(ϕ(s)) ≤ r}

which defines a finite number since u is bounded.
If inf Re(ϕ) > 0 then nϕ(u) = 0 (i.e. the supremum over the empty set is taken as 0).

1 Characterization of weak compactness and com-

plete continuity.

We first need the following lemma.

Lemma 1.1 Let (hn)n≥0 be a sequence in the disk algebra A(D), to which we associate
the sequence in A defined by Hn(s) = hn(2−s).

If (hn)n≥0 is weakly Cauchy in A(D), then (Hn)n≥0 is weakly Cauchy in A.
Moreover

i) (Hn)n≥0 is weakly null if and only if Hn(ix) → 0, for every x ∈ R.
ii) (Hn)n≥0 is weakly Cauchy if and only if (Hn(ix)) is convergent, for every x ∈ R.
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Proof. First notice that in i) and ii) the “only if” part is obvious since H 7→ H(ix)
clearly defines a linear functional on A for each x ∈ R.

Observe that, for every h ∈ A(D), H(s) = h(2−s) defines a function in A. Indeed,
if h(z) =

∑

cjz
j for z in the open unit disk D, then H(s) =

∑

cj2
−js is convergent for

s ∈ C0. Moreover H is continuous on iR.
Now, let ξ be a linear functional on A. We can define a linear functional on A(D) in

the following way: χ(h) = ξ(H), with H(s) = h(2−s). The first part of the lemma easily
follows: ξ(Hn) converges.

Thus, there is a Borel measure µ on T such that ξ(H) =
∫

T

hdµ. We can conclude the

“if” part in i) and ii) because Hn(ix) = hn(2−ix) and the dominated convergence Theorem
applies.

Now, we can establish the following characterization, which is a generalization of Th.18
[B1].

Theorem 1.2 With the previous notations, the following assertions are equivalent

1) Tu,ϕ : A → H∞ is completely continuous.

2) Tu,ϕ : A → H∞ is weakly compact.

3) nϕ(u) = 0.

4) Tu,ϕ : H∞ → H∞ is compact.

Proof. Obviously 4 implies 1 and 2.

1 ⇒ 3. Assume that inf Re(ϕ) = 0 and nϕ(u) > ε0 > 0.
Choose any sequence sj ∈ C0 such that Re(ϕ(sj)) converges to 0 and |u(sj)| ≥ ε0.

Extracting a subsequence if necessary, we may suppose that 2−ϕ(sj) converges to some a,
belonging to the torus. We shall write a = 2−iα where α ∈ R.

Now, we consider the sequence of functions Fn(s) = fn(2−s) where fn(z) = 2−n(āz+1)n

lies in the unit ball of the disk algebra. (Fn) is clearly a weakly Cauchy sequence in A
thanks to Lemma 1.1.ii. Actually Fn(s) → 0 for every s ∈ C0 \ {iα} and Fn(iα) = 1.

The operator Tu,ϕ being a Dunford-Pettis operator, the sequence (u.Fn◦ϕ)n∈N
is norm-

Cauchy, hence converging to some σ ∈ H∞. But for every fixed s ∈ C0, u(s).Fn ◦ ϕ(s)
converges both to 0 and σ(s), so that σ = 0.

Fixing ε > 0, there exists n0 such that sup
s∈C0

|u(s)Fn0
◦ϕ(s)| ≤ ε · Choosing s = sj0 with

j0 large enough to realize |Fn0
◦ ϕ(sj0)| ≥ 1 − ε, we have:

ε ≥ |u(sj0)|(1 − ε) ≥ (1 − ε)ε0.

As ε is arbitrary, this gives a contradiction.

2 ⇒ 3. Assume that inf Re(ϕ) = 0 and nϕ(u) > ε0 > 0. In the same way, choose
any sequence sj ∈ C0 such that Re(ϕ(sj)) converges to 0 and |u(sj)| ≥ ε0. We may
assume that 2−ϕ(sj) converges to some a = 2−iα ∈ T and we consider the same sequence of
functions Fn. The operator Tu,ϕ being a weakly compact operator, there exists a sequence
on integers (nk) such that (u.Fnk

◦ ϕ)k∈N
is weakly convergent to some σ ∈ H∞. Testing
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the weak convergence on the point evaluation δs ∈ (H∞)∗, for each s ∈ C0, we obtain
that σ = 0.

By the Mazur Theorem, there exists a convex combination of these functions which is
norm convergent to 0:

∑

k∈Im

ck u.(Fnk
◦ ϕ) −→ 0

where ck ≥ 0 and
∑

k∈Im

ck = 1.

Now, fixing ε ∈ (0, ε0/2), we have for a suitable m0

sup
s∈C0

∣

∣

∣

∣

∑

k∈Im0

ck u(s).Fnk
(ϕ(s))

∣

∣

∣

∣

≤ ε.

So, for every j

ε0

∣

∣

∣

∣

∑

k∈Im0

ck.Fnk
(ϕ(sj))

∣

∣

∣

∣

≤

∣

∣

∣

∣

∑

k∈Im0

ck u(sj).Fnk
(ϕ(sj))

∣

∣

∣

∣

≤ ε.

Letting j tends to infinity, we have Fnk
(ϕ(sj)) → Fnk

(iα) = 1, for each k ∈ Im0
, so

that

ε0 = ε0

∣

∣

∣

∣

∑

k∈Im0

ck

∣

∣

∣

∣

≤ ε.

This gives a contradiction.

3 ⇒ 4. Note that Tu,ϕ = Mu ◦ Cϕ.
If inf Re(ϕ) > 0 then ϕ(C0) ⊂ Cε for some ε > 0 and Cϕ is compact thanks to Bayart’s

Theorem, recalled in the introduction.
If inf Re(ϕ) = 0 and lim

r→0+
sup {|u(s)|; s ∈ C0 , Re(ϕ(s)) ≤ r} = 0 then Tu,ϕ is compact.

Indeed, given a sequence in the unit ball of H∞, we can extract a subsequence (fn)n

uniformly converging on every half plane Cθ, with θ > 0. This is due to a version for
Dirichlet series of the classical Montel Theorem, proved by Bayart (see [B1] Lemma 18
or Lemme 5.2 [B2]). Hence, given ε > 0, we choose θ > 0 such that, when Re(ϕ(s)) ≤ θ,
|u(s)| ≤ ε. Then we have

‖u.(fn − fm) ◦ ϕ‖∞ ≤ max
{

‖u‖∞. sup
ϕ(s)∈Cθ

|(fn − fm) ◦ ϕ(s)|; 2ε
}

which is less than 2ε, when n,m are large enough.

Corollary 1.3 Let Cϕ be a composition operator on H∞. The following assertions are
equivalent.

i) Cϕ is completely continuous.
ii) Cϕ is weakly compact.

iii) Cϕ is compact.
iv) inf Re(ϕ) > 0.

Proof. If inf Re(ϕ) > 0, it is actually compact. If Cϕ is completely continuous (resp.
weakly compact) on H∞ then its restriction to A is as well. The result follows from the
preceding theorem in the case u = 1I.
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Remark. We have the same results when the operators act from A into itself (under
the extra assumption that ϕ ∈ A).

We recall that ϕ∗ denotes the (non tangential) boundary values of ϕ: it is defined
almost everywhere on the imaginary axis. From Theorem 1.2, we can deduce

Corollary 1.4 Let u ∈ H∞.

1) Assume that E = {y ∈ R|Re(ϕ∗(iy)) = 0} has positive Lebesgue measure.
Then Tu,ϕ is weakly compact or completely continuous if and only if u = 0.

2) Mu : A → H∞ is weakly compact or completely continuous if and only if u = 0.

Proof. Under the hypothesis of weak compactness or complete continuity of Tu,ϕ, we
have nϕ(u) = 0, due to Theorem 1.2. Let us fix ε > 0 and take r > 0 such that for every
s ∈ C0:

Re(ϕ(s)) < r =⇒ |u(s)| ≤ ε.

Now fix ε > 0. The hypothesis on ϕ implies that, for almost every y ∈ E and any
sequence (xn)n in R

∗+:
Re(ϕ(sn)) −→ Re(ϕ∗(iy)) = 0

where sn = xn + iy (actually, we could replace sn by any sequence in C0 non tangentially
converging to iy).

But for almost every y ∈ E (let’s say for y ∈ E0 where E0 ⊂ E has positive Lebesgue
measure): u(sn) −→ u∗(iy), the boundary value of u, defined almost everywhere on the
imaginary axis.

Therefore, for every y ∈ E0 and n large enough, we have Re(ϕ(sn)) < r, hence
|u∗(iy)| ≤ ε. Since ε > 0 is arbitrary the boundary value of u vanishes on a set of positive
Lebesgue measure, so u = 0 everywhere on C0.

The second point is an immediate consequence of the first one.

2 Essential norms.

In the sequel, X denotes either A or H∞. We shall adapt techniques of section 1 to
compute essential norms. We get a generalization of the Theorem of Bayart in several
directions. We first need the following lower estimate

Lemma 2.1 Let u ∈ H∞ and ϕ : C0 → C0 defining a composition operator. We assume
that I ⊂ W(X,H∞) ⊕DP(X,H∞).

Then
nϕ(u) ≤ ‖Tu,ϕ‖e,I

.

Proof. The proof mixes the one of Theorem 1.2 with the one of [B1] (relying on an
idea due to Zheng [Z]) and is very similar to the one given in [L] in the frame of classical
Hardy spaces. For sake of completeness, we give a detailed proof. We already know that
‖Tu,ϕ‖e,I

= 0 if and only if Tu,ϕ is completely continuous if and only if nϕ(u) = 0 if and
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only if Tu,ϕ is compact. We assume now that Tu,ϕ is not compact and this implies that
inf Re(ϕ) = 0.

We choose a sequence sj ∈ C0 such that Re(ϕ(sj)) converges to 0 and |u(sj)| converges
to nϕ(u). We may assume that 2−ϕ(sj) converges to some a = 2−iα.

We introduce the sequence of functions (where n ≥ 2)

Hn(s) =
nā2−s − (n − 1)

n − (n − 1)ā2−s
,

which lies in the unit ball of A.
Obviously, Hn(s) = hn(2−s) where hn lies in the unit ball of the disk algebra, with

hn(z) −→ −1 for every z ∈ D\{a} and hn(a) = 1. So, Hn(s) −→ −1 for every s ∈ C0\{iα}
and Hn(iα) = 1.

Now, let S ∈ I. Let us write S = D + W , where W is weakly compact and D is
Dunford-Pettis.

As D ∈ DP(X,H∞) and the sequence (Hn)n is a weakly Cauchy sequence by Lemma
1.1., the sequence (D(Hn))n is a Cauchy sequence, hence convergent to some ∆ ∈ H∞.

As W ∈ W(X,H∞), up to an extraction, the sequence (S(Hn))n is weakly convergent

to some w ∈ H∞. By the Mazur Theorem, we can find some ck ≥ 0 with
∑

k∈Im

ck = 1,

where Im ⊂ N; and
∑

k∈Im

ckW (Hk) → w. Moreover, we can assume that sup Im < inf Im+1.

Introducing H̃m =
∑

k∈Im

ckHk, we have: for every s ∈ C0, H̃m(s) → −1 and for every

m, H̃m(ϕ(sj)) → 1. Clearly, (D(H̃n))n is norm convergent to ∆, so (S(H̃n))n is norm
convergent to σ = ∆ + w.

For every integer n:

‖(Tu,ϕ − S)(H̃n)‖∞ ≥ ‖Tu,ϕ(H̃n) − σ‖∞ − ‖S(H̃n) − σ‖∞

and we already know that ‖S(H̃n) − σ‖∞ −→ 0.
For every s ∈ C0 \ {iα}, we have |u(s).H̃n ◦ ϕ(s) − σ(s)| −→ |σ(s) + u(s)|.

If |σ(s0) + u(s0)| > nϕ(u) for some s0 ∈ C0, then

‖Tu,ϕ−S‖ ≥ lim‖(Tu,ϕ−S)(H̃n)‖∞ ≥ lim|u(s0).H̃n◦ϕ(s0)−σ(s0)| = |σ(s0)+u(s0)| ≥ nϕ(u).

If not, then ‖σ + u‖∞ ≤ nϕ(u) and for every s ∈ C0, |σ(s) − u(s)| ≥ 2|u(s)| − nϕ(u). We
have for every n ≥ 2 and every integer j:

‖Tu,ϕ − S‖ ≥ |u(sj).H̃n ◦ ϕ(sj) − σ(sj)| − ‖S(H̃n) − σ‖∞

≥ 2|u(sj)| − nϕ(u) − |u(sj)|.|H̃n ◦ ϕ(sj) − 1| − ‖S(H̃n) − σ‖∞.

Letting first j tend to infinity, we obtain ‖Tu,ϕ − S‖ ≥ nϕ(u) − ‖S(H̃n) − σ‖∞.
At last, letting n tend to infinity, we have ‖Tu,ϕ − S‖ ≥ nϕ(u).
The conclusion follows.
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For the upper estimate, we have

Lemma 2.2 Let u ∈ H∞ and ϕ : C0 → C0 defining a composition operator.
Then

‖Tu,ϕ‖e
≤ inf{2nϕ(u), ‖u‖∞}.

Proof. Fix ε > 0. There exists r ∈ (0, 1) such that for every s ∈ C0,

Re(ϕ(s)) ≤ r =⇒ |u(s)| ≤ nϕ(u) + ε.

Now, fixing ρ > 0 for a while, we introduce the operator defined for s ∈ C0 by

S(f)(s) = u(s).f(ϕ(s) + ρ).

In other words, S = Tu,ϕρ
with ϕρ = ϕ+ρ. By the Theorem of Bayart, S is a compact

operator since ϕρ(C0) ⊂ Cρ. We have

‖Tu,ϕ − S‖ = sup
f∈H∞

‖f‖∞≤1

sup
Re(ϕ(s))>0

|u(s)|.|f ◦ ϕ(s) − f ◦ (ϕ(s) + ρ)|.

First observe that

sup
f∈H∞

‖f‖∞≤1

sup
Re(ϕ(s))≤r

|u(s)|.|f ◦ ϕ(s) − f ◦ (ϕ(s) + ρ)| ≤ 2(nϕ(u) + ε).

On the other hand, we claim that

sup
f∈H∞

‖f‖∞≤1

sup
Re(ϕ(s))>r

|f ◦ ϕ(s) − f ◦ (ϕ(s) + ρ)|
ρ→0+

−−−−−→ 0

Indeed,

sup
f∈H∞

‖f‖∞≤1

sup
Re(ϕ(s))>r

|f ◦ ϕ(s) − f ◦ (ϕ(s) + ρ)| ≤ sup
f∈H∞

‖f‖∞≤1

sup
Re(w)>r

|f(w) − f(w + ρ)|

and using the analogue for Dirichlet series of the Montel Theorem (cited above), it is easy
to see that

lim
ρ→0+

sup
Re(w)>r

sup
f∈H∞

‖f‖∞≤1

|f(w) − f(w + ρ)| = 0.

So we can choose ρ > 0 such that

sup
f∈H∞

‖f‖∞≤1

sup
Re(ϕ(s))>r

|f ◦ ϕ(s) − f ◦ (ϕ(s) + ρ)| ≤ ε.

Finally, ‖Tu,ϕ − S‖ ≤ max {ε‖u‖∞; 2(nϕ(u) + ε)}.

As ε > 0 is arbitrary, we conclude ‖Tu,ϕ‖e
≤ 2nϕ(u). This gives the result.
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We summarize our results in the following theorem.

Theorem 2.3 Let u ∈ H∞ and ϕ : C0 → C0 defining a composition operator. We
assume that K(X,H∞) ⊂ I ⊂ W(X,H∞) ⊕DP(X,H∞).

Then

‖Tu,ϕ‖e,I
≈ nϕ(u).

More precisely

nϕ(u) ≤ ‖Tu,ϕ‖e,I
≤ inf{2nϕ(u), ‖u‖∞}.

As a particular case, when nϕ(u) = ‖u‖∞, the equality holds: ‖Tu,ϕ‖e,I
= ‖Tu,ϕ‖e

= ‖u‖∞.

We specify two particular cases.

Corollary 2.4 Let u ∈ H∞ and ϕ : C0 → C0 defining a composition operator. We
assume that K(X,H∞) ⊂ I ⊂ W(X,H∞) ⊕DP(X,H∞).

1) ‖Mu‖e,I
= ‖Mu‖e

= ‖u‖∞.

2) ‖Cϕ‖e,I
= 1 if inf Re(ϕ) = 0 and ‖Cϕ‖e,I

= 0 if inf Re(ϕ) > 0
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