Pascal Lefèvre 
  
Essential norms of weighted composition operators on the space H ∞ of Dirichlet series

Keywords: composition operator, essential norm, Dirichlet series, weakly compact operator, Dunford-Pettis operators AMS classification : 30B50, 46E15, 47B10, 47B33

We estimate the essential norm of a weighted composition operator relatively to the class of Dunford-Pettis operators or the class of weakly compact operators, on the space H ∞ of Dirichlet series. As particular cases, we obtain the precise value of the generalized essential norm of a composition operator and of a multiplication operator.

Introduction

The aim of this paper is to investigate the complete continuity and weak compactness of weighted composition operators on the space H ∞ of Dirichlet series. The composition operators were investigated so far in many papers. The monographs [CmC] and [S] are very good survey on this topic. The composition operators are very often investigated on H p spaces (1 < p < ∞), but, on H p spaces, their weak compactness and complete continuity are trivial problems (because of reflexivity). The investigation in the setting of Dirichlet series is more recent: see, for example, [B2], [GH] and [Q2].

Let us recall some terminology. We are going to work on some half planes C θ , with θ ≥ 0:

C θ = {s ∈ C| Re(s) > θ}.
The space H(C 0 ) denotes the space of analytic functions on C 0 .

The space H ∞ of Dirichlet series is

H ∞ = {f ∈ H(C 0 )| f bounded, f (s) = n≥1
a n n -s on some half plane C ε with ε > 0}.

(In fact, a result of Bohr [Bo] implies that any ε > 0 works in the definition)

The space H ∞ is the version of the classical Hardy space H ∞ in the setting of Dirichlet series.

It is natural to introduce the equivalent to the disk algebra

A = {f ∈ H ∞ | f continuous on C 0 }.
Both spaces H ∞ and A are normed by

f ∞ = sup {|f (s)|; s ∈ C 0 }.
Before getting interested in some special properties of composition operators on H ∞ , we have to know when they are defined. Actually, the case H ∞ is less complicated than the case of general H p spaces: An analytic function ϕ : [B1] after Cor2. p. 217, or [B2] p.65). In the sequel, we shall always assume that ϕ fulfills this condition. We then have C ϕ = 1.

C 0 → C 0 defines a bounded composition operator C ϕ : f → f • ϕ on H ∞ if and only if ϕ(s) = α 0 s + n≥1 α n n -s , with α 0 ∈ N (see
The characterization of the compactness for composition operators the space H ∞ of Dirichlet series is due to Bayart [B1]Th.18. Actually, Bayart estimates the (classical) essential norm of a composition operator on H ∞ . Let us recall his result:

Theorem. [B1],[B2] Let C ϕ be a composition operator on H ∞ . C ϕ is compact if and only if ϕ(C 0 ) ⊂ C ε for some ε > 0.
The compactness of weighted composition operators was studied in the classical frame of the disk algebra in [K]. Some extensions of this results are studied in [L], where generalized essentials norms are computed.

We are going to use rather elementary techniques, adapted from [L], to estimate the essential norm, relatively to Dunford-Pettis operators and weakly compact operators, of weighted composition operators on H ∞ .

We first precise some terminology: Definition 0.1 Let X, Y be Banach spaces and I a closed subspace of operator of the space B(X, Y ) of bounded operators from X to Y . The essential norm of T ∈ B(X, Y ) relatively to I is the distance from T to I:

T e,I = inf{ T + S ; S ∈ I}.
This is the canonical norm on the quotient space B(X, Y )/I. If morevover I is an ideal of the space B(X) then B(X)/I is an algebra.

The classical case corresponds to the case of compact operators I = K(X, Y ) (in this case, the preceeding quotient space is the Calkin algebra). In the sequel, we get interested in the case of weakly compact operators: I = W(X, Y ); and in the case of completely continuous operators (= Dunford-Pettis operators): I = DP(X, Y ). Compact operators are both weakly compact and completely continuous.

Recall that a Banach space X has the Dunford-Pettis property if, for every Banach space Y and every operator T : X → Y which is weakly compact, T maps a weakly Cauchy sequence in X into a norm Cauchy sequence. A good survey on the subject (until the early eighties) is the paper of Diestel [D]. A Banach space X has the property (V ) of Pe lczyński if, for every Banach space Y and every operator T : X → Y which is not weakly compact, there exists a subspace X 0 of X isomorphic to c 0 such that T |X 0 is an isomorphic embedding.

If the space of Dirichlet series H ∞ had both property (V ) and the Dunford-Pettis property, then the two ideals W(H ∞ , Y ) and DP(H ∞ , Y ) would coincide, for every Banach Y . It turns out that H ∞ does not have property (V ) and it is unknown whether H ∞ has the Dunford-Pettis property.

Claim. H ∞ does not have property (V )(we have no reference for this remark). We are going to see this as a consequence of the Bohr inequality. This reads as follows (see [Q1]):

p∈P |a p | ≤ f ∞ for every f ∈ H ∞
where P stands for the set of prime numbers.

This means that the space {f ∈ H

∞ | f (s) = p∈P a p p -s } is a complemented subspace of H ∞ , isomorphic to ℓ 1 .
Thus, the underlying projection can neither be weakly compact, nor fix a copy of c 0 . This proves the claim.

Let us point out too that the same remark implies that the space H ∞ does not verify the Grothendieck Theorem: the projection (given by the Bohr inequality) from H ∞ to ℓ 1 is bounded and cannot be 2-summing.

Given u ∈ H ∞ and an analytic function ϕ from C 0 to C 0 defining a composition operator, we shall study in the paper the (generalized) essential norm of the weighted composition operator T u,ϕ :

T u,ϕ (f ) = u.(f • ϕ) where f ∈ H ∞ .
Of course, when u = 1I, this operator is the classical composition operator and simply denoted by C ϕ . When ϕ = Id C 0 , this operator is the multiplication operator M u by u.

Observe that T u,ϕ is always bounded from

H ∞ to H ∞ , with T u,ϕ = u ∞ , where u ∞ = sup{|u(s)|; s ∈ C 0 }.
The following quantity plays a crucial role in the estimate of the essential norm: we define n ϕ (u) = lim r→0 + sup {|u(s)|; s ∈ C 0 , Re(ϕ(s)) ≤ r} which defines a finite number since u is bounded. If inf Re(ϕ) > 0 then n ϕ (u) = 0 (i.e. the supremum over the empty set is taken as 0).

1 Characterization of weak compactness and complete continuity.

We first need the following lemma.

Lemma 1.1 Let (h n ) n≥0 be a sequence in the disk algebra A (D), to which we associate the sequence in A defined by

H n (s) = h n (2 -s ). If (h n ) n≥0 is weakly Cauchy in A(D), then (H n ) n≥0 is weakly Cauchy in A. Moreover i) (H n ) n≥0 is weakly null if and only if H n (ix) → 0, for every x ∈ R. ii) (H n ) n≥0 is weakly Cauchy if and only if (H n (ix)) is convergent, for every x ∈ R.
Proof. First notice that in i) and ii) the "only if" part is obvious since H → H(ix) clearly defines a linear functional on A for each x ∈ R.

Observe that, for every

h ∈ A(D), H(s) = h(2 -s ) defines a function in A. Indeed, if h(z) = c j z j for z in the open unit disk D, then H(s) = c j 2 -js is convergent for s ∈ C 0 . Moreover H is continuous on iR.
Now, let ξ be a linear functional on A. We can define a linear functional on A(D) in the following way: χ(h) = ξ(H), with H(s) = h(2 -s ). The first part of the lemma easily follows: ξ(H n ) converges.

Thus, there is a Borel measure µ on T such that ξ(H) = T hdµ. We can conclude the "if" part in i) and ii) because H n (ix) = h n (2 -ix ) and the dominated convergence Theorem applies. Now, we can establish the following characterization, which is a generalization of Th.18 [B1].

Theorem 1.2 With the previous notations, the following assertions are equivalent

1) T u,ϕ : A → H ∞ is completely continuous. 2) T u,ϕ : A → H ∞ is weakly compact. 3) n ϕ (u) = 0. 4) T u,ϕ : H ∞ → H ∞ is compact.
Proof. Obviously 4 implies 1 and 2. 1 ⇒ 3. Assume that inf Re(ϕ) = 0 and n ϕ (u) > ε 0 > 0. Choose any sequence s j ∈ C 0 such that Re(ϕ(s j )) converges to 0 and |u(s j )| ≥ ε 0 . Extracting a subsequence if necessary, we may suppose that 2 -ϕ(s j ) converges to some a, belonging to the torus. We shall write a = 2 -iα where α ∈ R. Now, we consider the sequence of functions F n (s) = f n (2 -s ) where f n (z) = 2 -n (āz+1) n lies in the unit ball of the disk algebra. (F n ) is clearly a weakly Cauchy sequence in A thanks to Lemma 1.1.ii. Actually F n (s) → 0 for every s ∈ C 0 \ {iα} and F n (iα) = 1.

The operator T u,ϕ being a Dunford-Pettis operator, the sequence (u.F n •ϕ) n∈N is norm-Cauchy, hence converging to some σ ∈ H ∞ . But for every fixed s ∈ C 0 , u(s).F n • ϕ(s) converges both to 0 and σ(s), so that σ = 0.

Fixing ε > 0, there exists n 0 such that sup

s∈C 0 |u(s)F n 0 • ϕ(s)| ≤ ε • Choosing s = s j 0 with j 0 large enough to realize |F n 0 • ϕ(s j 0 )| ≥ 1 -ε, we have: ε ≥ |u(s j 0 )|(1 -ε) ≥ (1 -ε)ε 0 .
As ε is arbitrary, this gives a contradiction.

2 ⇒ 3. Assume that inf Re(ϕ) = 0 and n ϕ (u) > ε 0 > 0. In the same way, choose any sequence s j ∈ C 0 such that Re(ϕ(s j )) converges to 0 and |u(s j )| ≥ ε 0 . We may assume that 2 -ϕ(s j ) converges to some a = 2 -iα ∈ T and we consider the same sequence of functions F n . The operator T u,ϕ being a weakly compact operator, there exists a sequence on integers (n k ) such that (u.F n k • ϕ) k∈N is weakly convergent to some σ ∈ H ∞ . Testing the weak convergence on the point evaluation δ s ∈ (H ∞ ) * , for each s ∈ C 0 , we obtain that σ = 0.

By the Mazur Theorem, there exists a convex combination of these functions which is norm convergent to 0:

k∈Im c k u.(F n k • ϕ) -→ 0 where c k ≥ 0 and k∈Im c k = 1. Now, fixing ε ∈ (0, ε 0 /2), we have for a suitable m 0 sup s∈C 0 k∈Im 0 c k u(s).F n k (ϕ(s)) ≤ ε. So, for every j ε 0 k∈Im 0 c k .F n k (ϕ(s j )) ≤ k∈Im 0 c k u(s j ).F n k (ϕ(s j )) ≤ ε.
Letting j tends to infinity, we have

F n k (ϕ(s j )) → F n k (iα) = 1, for each k ∈ I m 0 , so that ε 0 = ε 0 k∈Im 0 c k ≤ ε.
This gives a contradiction.

3 ⇒ 4. Note that T u,ϕ = M u • C ϕ .
If inf Re(ϕ) > 0 then ϕ(C 0 ) ⊂ C ε for some ε > 0 and C ϕ is compact thanks to Bayart's Theorem, recalled in the introduction.

If inf Re(ϕ) = 0 and lim r→0 + sup {|u(s)|; s ∈ C 0 , Re(ϕ(s)) ≤ r} = 0 then T u,ϕ is compact. Indeed, given a sequence in the unit ball of H ∞ , we can extract a subsequence (f n ) n uniformly converging on every half plane C θ , with θ > 0. This is due to a version for Dirichlet series of the classical Montel Theorem, proved by Bayart (see [B1] Lemma 18 or Lemme 5.2 [B2]). Hence, given ε > 0, we choose θ > 0 such that, when Re(ϕ(s

)) ≤ θ, |u(s)| ≤ ε. Then we have u.(f n -f m ) • ϕ ∞ ≤ max u ∞ . sup ϕ(s)∈C θ |(f n -f m ) • ϕ(s)|; 2ε
which is less than 2ε, when n, m are large enough.

Corollary 1.3 Let C ϕ be a composition operator on H ∞ . The following assertions are equivalent.

i

) C ϕ is completely continuous. ii) C ϕ is weakly compact. iii) C ϕ is compact. iv) inf Re(ϕ) > 0.
Proof. If inf Re(ϕ) > 0, it is actually compact. If C ϕ is completely continuous (resp. weakly compact) on H ∞ then its restriction to A is as well. The result follows from the preceding theorem in the case u = 1I. only if T u,ϕ is compact. We assume now that T u,ϕ is not compact and this implies that inf Re(ϕ) = 0.

We choose a sequence s j ∈ C 0 such that Re(ϕ(s j )) converges to 0 and |u(s j )| converges to n ϕ (u). We may assume that 2 -ϕ(s j ) converges to some a = 2 -iα .

We introduce the sequence of functions (where n ≥ 2)

H n (s) = nā2 -s -(n -1) n -(n -1)ā2 -s ,
which lies in the unit ball of A.

Obviously, H n (s) = h n (2 -s ) where h n lies in the unit ball of the disk algebra, with h n (z) -→ -1 for every z ∈ D\{a} and h n (a) = 1. So, H n (s) -→ -1 for every s ∈ C 0 \{iα} and H n (iα) = 1. Now, let S ∈ I. Let us write S = D + W , where W is weakly compact and D is Dunford-Pettis.

As D ∈ DP(X, H ∞ ) and the sequence (H n ) n is a weakly Cauchy sequence by Lemma 1.1., the sequence (D(H n )) n is a Cauchy sequence, hence convergent to some ∆ ∈ H ∞ .

As W ∈ W(X, H ∞ ), up to an extraction, the sequence (S(H n )) n is weakly convergent to some w ∈ H ∞ . By the Mazur Theorem, we can find some c k ≥ 0 with Introducing Hm = k∈Im c k H k , we have: for every s ∈ C 0 , Hm (s) → -1 and for every m, Hm (ϕ(s j )) → 1. Clearly, (D( Hn )) n is norm convergent to ∆, so (S( Hn )) n is norm convergent to σ = ∆ + w.

For every integer n:

(T u,ϕ -S)( Hn ) ∞ ≥ T u,ϕ ( Hn ) -σ ∞ -S( Hn ) -σ ∞
and we already know that S( Hn ) -σ ∞ -→ 0.

For every s ∈ C 0 \ {iα}, we have |u(s).

Hn • ϕ(s) -σ(s)| -→ |σ(s) + u(s)|. If |σ(s 0 ) + u(s 0 )| > n ϕ (u) for some s 0 ∈ C 0 , then T u,ϕ -S ≥ lim (T u,ϕ -S)( Hn ) ∞ ≥ lim|u(s 0 ). Hn •ϕ(s 0 )-σ(s 0 )| = |σ(s 0 )+u(s 0 )| ≥ n ϕ (u). If not, then σ + u ∞ ≤ n ϕ (u) and for every s ∈ C 0 , |σ(s) -u(s)| ≥ 2|u(s)| -n ϕ (u).
We have for every n ≥ 2 and every integer j:

T u,ϕ -S ≥ |u(s j ). Hn • ϕ(s j ) -σ(s j )| -S( Hn ) -σ ∞ ≥ 2|u(s j )| -n ϕ (u) -|u(s j )|.| Hn • ϕ(s j ) -1| -S( Hn ) -σ ∞ .
Letting first j tend to infinity, we obtain T u,ϕ -S ≥ n ϕ (u) -S( Hn ) -σ ∞ . At last, letting n tend to infinity, we have T u,ϕ -S ≥ n ϕ (u). The conclusion follows.

For the upper estimate, we have Lemma 2.2 Let u ∈ H ∞ and ϕ : C 0 → C 0 defining a composition operator.

Then

T u,ϕ e ≤ inf{2n ϕ (u), u ∞ }.
Proof. Fix ε > 0. There exists r ∈ (0, 1) such that for every s ∈ C 0 ,

Re(ϕ(s)) ≤ r =⇒ |u(s)| ≤ n ϕ (u) + ε.
Now, fixing ρ > 0 for a while, we introduce the operator defined for s ∈ C 0 by

S(f )(s) = u(s).f (ϕ(s) + ρ).
In other words, S = T u,ϕρ with ϕ ρ = ϕ + ρ. By the Theorem of Bayart, S is a compact operator since ϕ ρ (C 0 ) ⊂ C ρ . We have As ε > 0 is arbitrary, we conclude T u,ϕ e ≤ 2n ϕ (u). This gives the result.

T u,ϕ -S = sup f ∈H ∞ f ∞≤1 sup Re(ϕ(s))>0 |u(s)|.|f • ϕ(s) -f • (ϕ(s) + ρ)|. First observe that sup f ∈H ∞ f ∞≤1 sup Re(ϕ(s))≤r |u(s)|.|f • ϕ(s) -f • (ϕ(s) + ρ)| ≤ 2(n ϕ (u) + ε).
We summarize our results in the following theorem.

Theorem 2.3 Let u ∈ H ∞ and ϕ : C 0 → C 0 defining a composition operator. We assume that K(X, H ∞ ) ⊂ I ⊂ W(X, H ∞ ) ⊕ DP(X, H ∞ ). Then T u,ϕ e,I ≈ n ϕ (u).

More precisely

n ϕ (u) ≤ T u,ϕ e,I ≤ inf{2n ϕ (u), u ∞ }.

As a particular case, when n ϕ (u) = u ∞ , the equality holds: T u,ϕ e,I = T u,ϕ e = u ∞ .

We specify two particular cases.

Corollary 2.4 Let u ∈ H ∞ and ϕ : C 0 → C 0 defining a composition operator. We assume that K(X, H ∞ ) ⊂ I ⊂ W(X, H ∞ ) ⊕ DP(X, H ∞ ).

1) M u e,I = M u e = u ∞ .

2) C ϕ e,I = 1 if inf Re(ϕ) = 0 and C ϕ e,I = 0 if inf Re(ϕ) > 0

  k∈Im c k = 1, where I m ⊂ N; and k∈Im c k W (H k ) → w. Moreover, we can assume that sup I m < inf I m+1 .

  |f • ϕ(s) -f • (ϕ(s) + ρ)| ≤ sup f ∈H ∞ f ∞≤1 sup Re(w)>r |f (w) -f (w + ρ)|and using the analogue for Dirichlet series of the Montel Theorem (cited above), it is easy to|f • ϕ(s) -f • (ϕ(s) + ρ)| ≤ ε.

  ϕ -S ≤ max {ε u ∞ ; 2(n ϕ (u) + ε)}.
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Remark. We have the same results when the operators act from A into itself (under the extra assumption that ϕ ∈ A).

We recall that ϕ * denotes the (non tangential) boundary values of ϕ: it is defined almost everywhere on the imaginary axis. From Theorem 1.2, we can deduce

1) Assume that E = {y ∈ R| Re(ϕ * (iy)) = 0} has positive Lebesgue measure. Then T u,ϕ is weakly compact or completely continuous if and only if u = 0.

2) M u : A → H ∞ is weakly compact or completely continuous if and only if u = 0.

Proof. Under the hypothesis of weak compactness or complete continuity of T u,ϕ , we have n ϕ (u) = 0, due to Theorem 1.2. Let us fix ε > 0 and take r > 0 such that for every

Now fix ε > 0. The hypothesis on ϕ implies that, for almost every y ∈ E and any sequence (

where s n = x n + iy (actually, we could replace s n by any sequence in C 0 non tangentially converging to iy).

But for almost every y ∈ E (let's say for y ∈ E 0 where E 0 ⊂ E has positive Lebesgue measure): u(s n ) -→ u * (iy), the boundary value of u, defined almost everywhere on the imaginary axis.

Therefore, for every y ∈ E 0 and n large enough, we have Re(ϕ(s n )) < r, hence |u * (iy)| ≤ ε. Since ε > 0 is arbitrary the boundary value of u vanishes on a set of positive Lebesgue measure, so u = 0 everywhere on C 0 .

The second point is an immediate consequence of the first one.

2 Essential norms.

In the sequel, X denotes either A or H ∞ . We shall adapt techniques of section 1 to compute essential norms. We get a generalization of the Theorem of Bayart in several directions. We first need the following lower estimate Lemma 2.1 Let u ∈ H ∞ and ϕ : C 0 → C 0 defining a composition operator. We assume that I ⊂ W(X, H ∞ ) ⊕ DP(X, H ∞ ).

Then n ϕ (u) ≤ T u,ϕ e,I .

Proof. The proof mixes the one of Theorem 1.2 with the one of [B1] (relying on an idea due to Zheng [Z]) and is very similar to the one given in [L] in the frame of classical Hardy spaces. For sake of completeness, we give a detailed proof. We already know that T u,ϕ e,I = 0 if and only if T u,ϕ is completely continuous if and only if n ϕ (u) = 0 if and