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Unsupervised Bayesian linear unmixing of
gene expression microarrays
Cécile Bazot1*, Nicolas Dobigeon1*, Jean-Yves Tourneret1, Aimee K Zaas2, Geoffrey S Ginsburg2 and

Alfred O Hero III3

Abstract

Background: This paper introduces a new constrained model and the corresponding algorithm, called unsupervised

Bayesian linear unmixing (uBLU), to identify biological signatures from high dimensional assays like gene expression

microarrays. The basis for uBLU is a Bayesian model for the data samples which are represented as an additive mixture

of random positive gene signatures, called factors, with random positive mixing coefficients, called factor scores, that

specify the relative contribution of each signature to a specific sample. The particularity of the proposed method is

that uBLU constrains the factor loadings to be non-negative and the factor scores to be probability distributions over

the factors. Furthermore, it also provides estimates of the number of factors. A Gibbs sampling strategy is adopted

here to generate random samples according to the posterior distribution of the factors, factor scores, and number of

factors. These samples are then used to estimate all the unknown parameters.

Results: Firstly, the proposed uBLU method is applied to several simulated datasets with known ground truth and

compared with previous factor decomposition methods, such as principal component analysis (PCA), non negative

matrix factorization (NMF), Bayesian factor regression modeling (BFRM), and the gradient-based algorithm for general

matrix factorization (GB-GMF). Secondly, we illustrate the application of uBLU on a real time-evolving gene expression

dataset from a recent viral challenge study in which individuals have been inoculated with influenza

A/H3N2/Wisconsin. We show that the uBLU method significantly outperforms the other methods on the simulated

and real data sets considered here.

Conclusions: The results obtained on synthetic and real data illustrate the accuracy of the proposed uBLU method

when compared to other factor decomposition methods from the literature (PCA, NMF, BFRM, and GB-GMF). The

uBLU method identifies an inflammatory component closely associated with clinical symptom scores collected during

the study. Using a constrained model allows recovery of all the inflammatory genes in a single factor.

Background
Factor analysis methods such as principal component

analysis (PCA) have been widely studied and can be used

for discovering the patterns of differential expression in

time course and/or multiple treatment biological experi-

ments using gene or protein microarray samples. These

methods aim at finding a decomposition of the observa-

tionmatrix Y ∈ RG×N whose rows (respectively columns)

are indexed by gene index (respectively sample index).

Typically, in gene expression analysis, the number N of
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samples is much less than the number G of genes. For

example, in an Affymetrix HU133 gene chip, the num-

ber G of genes may range from ten to twenty thousand

depending on the type of chip description file (CDF) pro-

cessing used to translate the oligonucleotide fragments to

gene labels whereas we only analyze about a hundred of

samples.

This decomposition expresses each of the N samples as

a particular linear combination of R characteristic gene

expression signatures, also referred to as factors, with

appropriate proportions (or contributions), called factor

scores, following a linear mixing model

Y = MA + N (1)



where M ∈ RG×R represents the factor loading matrix,

A ∈ R
R×N the factor score matrix and N ∈ R

G×N

is a matrix containing noise samples. Each sample yi
(i = 1, . . . ,N), corresponding to the i-th column of the

observed gene expression matrix Y, is a vector of G gene

expression levels that can be expressed as

yi =

R∑

r=1

mrar,i + ni = Mai + ni (2)

wheremr is the r-th column ofM, ar,i denotes the (r, i)-th

element of the matrixA, ai and ni are the i-th column ofA

andN respectively. The number of factors R in the decom-

position is usually much less than the number of sam-

ples N. Traditional factor analysis methods such as PCA

require the experimenter to specify the desired number

of factors to be estimated. However, some recent Bayesian

factor analysis methods are totally unsupervised in the

sense that the number of factors is directly estimated from

the data [1-3].

The model (1) is identical to the standard factor anal-

ysis model [4] for which the columns of M are called

factors and should correspond to biological signatures (or

pathways). Note that the elements of the matrix M are

referred to as factor loadings, and the columns ofA are the

factor scores. Approaches to fitting the model (1) to data

include principal component analysis [5,6], least squares

matrix factorization [7,8], finite mixture modeling [9,10],

and Bayesian factor analysis [4,11,12].

This paper presents a new Bayesian factor analysis

method called unsupervised Bayesian linear unmixing

(uBLU), that estimates the number of factors and incorpo-

rates non-negativity constraints on the factors and factor

scores, as well as a sum-to-one constraint for the factor

scores. The uBLU method presented here differs from the

BLU method, developed in [13] for hyperspectral imag-

ing and applied to gene microarray expression analysis

in [14]. Note that BLU requires user specification of the

number of factors while uBLU determines the number of

factors using Bayesian birth-death model. The positivity

and sum-to-one constraints are natural in gene microar-

ray analysis when the entries of the observation matrix are

non-negative and when a proportional decomposition is

desired. Thus each factor score corresponds to the con-

centration (or proportion) of a particular factor to a given

sample. The advantage of this representation for gene

expression analysis is twofold: i) the factor scores corre-

spond to the strengths of each gene contributing to that

factor; ii) for each gene chip the factor scores give the rel-

ative abundance of each factor present in the chip. For

example, a gene having a large loading level (close to one)

for a particular factor should have a small loading (close to

zero) for all other factors. In this way, as opposed to other

factor analysis methods, there is less multiplexing making

it easier to associate specific genes to specific factors and

vice versa.

A similar approach, based on NMR spectral imaging

and called the Bayesian decomposition (BD), has been

previously developed by Moloshok et al. and applied to

gene expression data [11]. More recently, the coordi-

nated gene activity in pattern sets method (CoGAPS),

available as an open R-source [12], combines the GAPS-

MCMC matrix factorization algorithm with a threshold-

independent statistic to infer activity in specific gene

sets. However, these approaches require cold restarts of

the algorithm with different number of factors and with

different random seeds to avoid the large number of

local minima encountered in the process of fitting the

matrix factorization modelMA to the data Y. In contrast,

the proposed uBLU algorithm uses a judicious model to

reduce sensitivity to local minima rather than using cold

restarts. The novelty of the uBLU model is that it con-

sists of: (1) a birth-death process to infer the number

of factors; (2) a positivity constraint on the loading and

score matrices M, A to restrict the space of solutions; (3)

a sum-to-one constraint on the columns of A to further

restrict the solution space. The uBLU model is justified

for non-negative data problems like gene expression anal-

ysis and produces an estimate of the non-negative factors

in addition to their proportional representation in each

sample.

Bayesian linear unmixing, traditionally used for hyper-

spectral image analysis (see [13] for example), is one

of many possible factor analysis methods that could

be applied to gene expression analysis. These methods

include non-negative matrix factorization (NMF) [7,8],

independent component analysis (ICA) [15], Bayesian

decomposition (BD) [11], PCA [5], bi-clustering [16],

penalized matrix decomposition (PMD) [2], Bayesian fac-

tor regression modeling (BFRM) [1], and more recently

the gradient-based algorithm of Nikulin et al. for general

matrix factorization (GB-GMF) [17]. Contrary to uBLU,

the PCA, ICA, BFRM, GB-GMF, bi-clustering and PMD

methods do not account for non-negativity of the factor

loadings and factor scores. On the other hand, NMF does

not account for sum-to-one constraints on the columns of

the factor score matrix. Contrary to PCA and ICA, uBLU

does not impose orthogonality or independence on the

factors, as well as the GB-GMF algorithm. These relaxed

assumptions might better represent what is known about

the preponderance of overlap and dependency in bio-

logical pathways. Finally, uBLU naturally accommodates

Bayesian estimation of the number of factors, like BFRM.

Note that BFRM has been specifically developed for gene

expression data [1].

In this paper we provide comparative studies that estab-

lish quantitative performance advantages of the proposed

constrained model and its corresponding uBLU algorithm



with respect to PCA, NMF, BFRM and GB-GMF for time-

varying gene expression analysis, using synthetic data with

known ground truth. We also illustrate the application

of uBLU to the analysis of a real gene expression dataset

from a recent viral challenge study [18] in which sev-

eral subjects were administered viral inoculum and gene

expression time course data were collected over a period

of several days. Using these data, we may infer relation-

ships between genes and symptoms and examine how the

human host response to viral infection evolves with time.

Methods
Mathematical constrainedmodel

Let yi represent a gene microarray vector of G gene

expression levels. The elements of yi have units of

hybridization abundance levels with non-negative values.

In the context of gene expression data, the starting point

for Bayesian linear unmixing is the linear mixing model

(LMM)

yi =

R∑

r=1

mrar,i + ni, (3)

where R is the number of distinct gene signatures that

can be present in the chip, mr =
[
m1,r , . . . ,mG,r

]T
is the

r-th gene signature vector, mg,r ≥ 0 is the strength of

the g-th gene (g = 1, . . . ,G) in the r-th signature (r =

1, . . . ,R), and ar,i is the relative contribution of the r-th

signature vector to the i-th sample yi, where ar,i ∈[ 0, 1]

and
∑R

r=1 ar,i = 1. Here ni denotes the residual error of

the LMM representation. For a matrix of N data samples

Y =
[
y1, . . . , yN

]
∈ R

G×N , the LMM can be rewritten

with matrix notations

Y = MA + N, (4)

where M = [m1, . . . ,mR] ∈ R
G×R, A = [a1, . . . , aN ]

∈ RR×N andN = [n1, . . . ,nN ] ∈ RG×N represent the fac-

tor score matrix, the factor loading matrix and the noise

matrix, respectively. The matrices M, A satisfy positivity

and sum-to-one constraints defined by

mg,r ≥ 0, ar,i ≥ 0, and [ 1, . . . , 1]A =[ 1, . . . , 1] ,

(5)

wheremg,r denotes the (g, r)-th element of matrixM. The

constraints (5) arise naturally when dealing with positive

data for which one is seeking the relative contribution of

positive factors that have the same numerical characteris-

tics as the data, i.e., the signaturemr is itself interpretable

as a vector of hybridization abundances.

The objective of linear unmixing is to simultaneously

estimate the factor matrix M and the factor score matrix

A from the available N data samples. The representa-

tion (1) is rank deficient since A has rank N − 1. This

presents algorithmic challenges for solving the unmixing

problem. Several algorithms have been proposed in the

context of hyperspectral imaging to solve similar prob-

lems [6,19]. Most of these algorithms perform unmixing

in a two step procedure where M is estimated first using

an endmember extraction algorithm (EEA) followed by

a constrained linear least squares step to estimate A. A

common (but restrictive) assumption in these algorithms

is that some samples in the dataset are “pure” in the

sense that the linear combination of (2) contains a unique

factor, saymr , with factor score ar,i. Recently, this assump-

tion has been relaxed by applying a hierarchical Bayesian

approach, called Bayesian linear unmixing (BLU). The

resulting algorithm requires the number R of factors to

be specified (see [13] for details). Here we extend BLU to

a fully unsupervised algorithm, called unsupervised BLU

(uBLU), that estimates R using a birth-death model and

a Gibbs sampler. The Gibbs sampler produces an esti-

mate of the entire joint posterior distribution of the model

parameters, resulting in a fully Bayesian estimator of the

number of factors R, the factor loadings M, and the fac-

tor scores A. The uBLU model is described in the next

subsection and the Gibbs sampling algorithm is given in

the Appendix. In the Results and discussion section below

we demonstrate the performance advantages of uBLU

as a factor analysis model for simulated and real gene

expression data.

Unsupervised Bayesian linear unmixing algorithm

The BLU algorithm studied in [13] generates samples dis-

tributed according to the posterior distribution of M and

A given the number R of factors for appropriate prior

distributions assigned to the mixing parameters in (2).

First, the residual errors ni in (2) are assumed to be

independent identically distributed (i.i.d.) according to

zero-mean Gaussian distributions: ni ∼ N
(
0G, σ

2IG
)
for

i = 1, . . . ,N , where IG denotes the identity matrix of

dimension G × G.

The number of factors R to be estimated by the pro-

posed uBLU algorithm is assigned a discrete uniform prior

distribution on [ 2, . . . ,Rmax]

P[R = k]=
1

Rmax − 1
, for R = 2, . . . ,Rmax, (6)

where Rmax is the maximal number of factors present in

the mixture.

Because of the constraints in (5), the data samples yi
(i = 1, . . . ,N) live in a lower-dimensional subspace ofRK

(whose dimension is upper-bounded by K −1) denoted as

VK−1 (Rmax − 1 ≤ K ≤ G). This subspace can be iden-

tified by a standard dimension reduction procedure, such

as PCA. Hence, instead of estimating the factor loadings

mr ∈ R
G (r = 1, . . . ,R), we propose to estimate their



corresponding projections tr ∈ R
K onto this subspace.

Specifically, these projections can be represented as

tr = P(mr − ȳ) (7)

where ȳ = 1
N

∑N
i=1 yi is the empirical mean of the data

matrix Y and P is the (K − 1) × G appropriate projection

matrix that projects onto VK−1, which can be constructed

from the principal eigenvectors of the empirical covari-

ance matrix of Y. This dimension reduction procedure

allows us to work in a lower-dimensional subspace with-

out loss of information, and reduces significantly the com-

putational complexity of the Bayes estimator of the factor

loadings. A multivariate Gaussian distribution (MGD)

truncated on a subset Tr is chosen as prior distribution for

the projected factors tr . The subset Tr is defined in order

to ensure the non-negativity constraint onmr (see [13])

tr ∈ Tr ⇔ {mg,r ≥ 0,∀g = 1, . . . ,G}. (8)

More precisely, Tr is obtained by noting thatmr = P−1tr+

ȳ and by looking for the vectors tr such that all compo-

nents of P−1tr + ȳ are non-negative. To estimate the mean

vectors er of these truncated MGDs, one can use a stan-

dard endmember extraction algorithm (EEA) common in

hyperspectral imaging, e.g. N-FINDR [19]. To summarize,

the prior distribution for the projected factor tr is

tr|er , s
2
r ∼ NTr

(
er , s

2
r IR−1

)
(9)

where NTr

(
er , s

2
r IR−1

)
denotes the truncated MGD with

mean vector er and covariance matrix s2r IR−1, with s2r a

fixed hyperparameter. Assuming the vectors tr , for r =

1, . . . ,R, are a priori independent, the prior distribution

for the projected factor matrix T = [t1, . . . , tR] is

f
(
T|E, s2,R

)
∝

R∏

r=1

exp

[
−

‖tr − er‖
2

2s2r

]
1Tr (tr) (10)

where ∝ stands for “proportional to”, ‖·‖ is the standard

l2-norm, 1X (·) denotes the indicator function on the set

X , E = [e1, . . . , eR] and s2 =
[
s21, . . . , s

2
R

]
.

The sum-to-one constraint for the factor scores ai, for

each observed sample i (i = 1, . . . ,N), allows this vector

ai to be rewritten as

ai =

(
a1:R−1,i

aR,i

)
with a1:R−1,i =

[
a1,i, . . . , aR−1,i

]T
,

(11)

and aR,i = 1 −
∑R−1

r=1 ar,i. Note here that any compo-

nent of ai could be expressed as a function of the others,

i.e., ar,i = 1 −
∑

k 
=r ak,i. The last component aR,i has

been chosen here for notation simplicity. To ensure the

positivity constraint, the subvectors a1:R−1,i must belong

to the simplex

S = {a1:R−1,i |
∥∥a1:R−1,i

∥∥
1

≤ 1 and ai � 0}, (12)

where ‖·‖1 is the l1 norm (‖ai‖1 =
∑R

r=1 |ar,i|) and

ai � 0 stands for the set of inequalities {ar,i ≥ 0}r=1,...,R.

Following the model in [13], we propose to assign uni-

form distributions over the simplex S as priors for the

subvectors a1:R−1,i (i = 1, . . . ,N), i.e.,

f
(
a1:R−1,i|R

)
= 1S

(
a1:R−1,i

)
. (13)

For the prior distribution on the variance σ 2 of the

residual errors we chose a conjugate inverse-Gamma dis-

tribution with parameters ν/2 and γ /2

σ 2|ν, γ ∼ IG
(ν

2
,
γ

2

)
. (14)

The shape parameter ν is a fixed hyperparameter whereas

the scale parameter γ will be adjustable, as in [13]. A non-

informative Jeffreys’ prior is chosen as prior distribution

for the hyperparameter γ , i.e.,

f (γ ) ∝
1

γ
1R+(γ ). (15)

The resulting hierarchical structure of the proposed

uBLU model is summarized in the directed acyclic graph

(DAG) presented in Additional file 1: Figure S1.

The model defined in (1) and the Gaussian assumption

for the noise vectors n1, . . . ,nN allow the likelihood of

y1, . . . , yN to be determined

f (Y|�) =

(
1

2πσ 2

)GN
2

exp

[
−

∑N
i=1

∥∥yi − Mai
∥∥2

2σ 2

]
.

(16)

Multiplying this likelihood by the parameter priors

defined in (10), (13), (14) and (6), and integrating out the

nuisance parameter γ , the posterior distribution of the

unknown parameter vector � = {M,A, σ 2,R} can be

expressed as

f (�|Y) =

∫
f (�, γ |Y) dγ

∝

∫
f (Y|�) f (�|γ ) f (γ ) dγ .

(17)

Considering the parameters to be a priori independent,

the following result can be obtained

f (�|γ ) = f (A|R) f
(
T|E, s2,R

)
f
(
σ 2|ν, γ

)
f (R) (18)

where f (A|R), f
(
T|E, s2,R

)
and f

(
σ 2|ν, γ

)
are respec-

tively the prior distributions of the factor score matrix A,

the projected factor matrix T and the noise variance σ 2

previously defined.



Due to the constraints enforced on the data, the poste-

rior distribution f (M,A,R|Y) obtained from the proposed

hierarchical structure is too complex to derive analytical

expressions of the Bayesian estimators, e.g., the minimum

mean square (MMSE) and maximum a posteriori (MAP)

estimators. In such case, it is natural to use Markov chain

Monte Carlo (MCMC) methods [20] to generate samples

M(t), A(t) and R(t) asymptotically distributed according

to f (M,A,R|Y). However, the dimensions of the factor

loading matrix M and the factor score matrix A depend

on the unknown number R of signatures to be identified.

As a consequence, sampling from f (M,A,R|Y) requires

exploring parameter spaces of different dimensions. To

solve this dimension matching problem, we include a

birth/death process within the MCMC procedure. Specif-

ically, a birth, death or switch move is chosen at each iter-

ation of the algorithm (see the Appendix and [21]). This

birth-death model differs from the classical reversible-

jumpMCMC (RJ-MCMC) (as defined in [21]) in the sense

that, for the birth-death model, each move is accepted

or rejected at each iteration using the likelihood ratio

between the current state and the new state proposed

by the algorithm. The factor matrix M, the factor score

matrix A and the noise variance σ 2 are then updated,

conditionally upon the number of factors R, using Gibbs

moves.

After a sufficient number of iterations (Nmc iterations,

including a burn-in period of Nbi iterations), the tradi-

tional Bayesian estimators (e.g., MMSE and MAP) can be

approximated using the generated samples M(t), A(t) and

R(t). First, the generated samples are used to approximate

the MAP estimator of the number of factors

R̂MAP = argmax
k∈{2,...,Rmax}

P[R = k|Y]

≈ argmax
k∈{2,...,Rmax}

Nk

Nr

(19)

where Nk is the number of generated samples R(Nbi+1),

. . . ,R(Nmc) satisfying R(t) = k and Nr = Nmc − Nbi.

Then, conditioned on R̂MAP, the joint MAP estimator(
M̂MAP, ÂMAP

)
of the factor and factor score matrices is

determined as follows

(
M̂MAP, ÂMAP

)
≈ argmax

t=Nbi+1,...,Nmc

f
(
M(t),A(t)|Y,R= R̂MAP

)
.

(20)

Results and discussion
The proposed method consists of estimating simultane-

ously the matrices M and A defined in (1), under the

positivity and sum-to-one constraints mentioned previ-

ously, in a fully unsupervised framework, i.e., the number

of factors R is also estimated from the data. A Gibbs

sampler algorithm is designed that generates samples dis-

tributed according to the posterior distribution associated

to the proposed uBLU model. For more details about the

Gibbs sampling strategy, see the Appendix.

Simulations on synthetic data

To illustrate the performance of the proposed Bayesian

factor decomposition, we first present simulations con-

ducted on synthetic data. More extensive simulation

results are reported in the Additional file 1.

Simulation scenario

Several synthetic datasetsD1, . . . ,D4 were generated. The

experiments presented here correspond to the expression

values of G = 512 genes (for datasets D1, D3 and D4)

or G = 12000 genes (for dataset D2) with N = 128

samples. Each sample is composed of exactly R = 3

factors mixed using the linear mixing model in (1). The

factors of the first dataset D1 have been generated so

that only a few genes affect each factor. For the second

dataset D2, realistic factors have been extracted from real

genetic datasets. The third datasetD3 has been generated

enforcing the factors to be orthogonal but not necessar-

ily positive whereas in the forth dataset, D4, factors are

orthogonal and positive. These simulation conditions are

summarized in Table 1.

In each case, the R = 3 factors were mixed in random

proportions (factor scores), with positivity and sum-to-

one constraints. All synthetic datasets were corrupted by

an i.i.d. Gaussian noise sequence. The signal-to-noise ratio

is SNRi = 20 dB where SNRi = G−1σ−2
∥∥∥
∑R

r=1mrar,i

∥∥∥
2

for each sample i (i = 1, . . . ,N).

Proposedmethod (uBLU)

The first step of the algorithm consists of estimating

the number of factors R involved in the mixture, and

hence determining the dimensions of the matrices M

and A, using the maximum a posteriori (MAP) estimator

R̂MAP. The second step of the algorithm consists of esti-

mating the unknown model parameters (M, A and σ 2)

given R̂MAP. The estimated posterior distributions of the

unknown model parameters are given in Additional file 1:

Figure S5 and validate the proposed Bayesian model.

The burn-in period and number of Gibbs samples were

determined using quantitative methods described in the

Additional file 1: Section “Convergence diagnosis”.

Table 1 Synthetic datasetsD1, . . . ,D4

D1 Peaky factors

D2 Realistic factors

D3 Orthogonal factors

D4 Orthogonal and positive factors



Comparison to othermethods

The performance of the proposed uBLU algorithm is com-

pared with other existing factor decomposition methods

including PCA, NMF, BFRM and GB-GMF by using the

following criteria, which are common measures used to

compare factor analysis algorithms,

• the factor mean square errors (MSE)

MSE2r =
1

G

∥∥m̂r − mr

∥∥2 , r = 1, . . . ,R

where m̂r is the estimated r-th factor loading vector,
• the global MSE of factor scores

GMSE2r =
1

N

N∑

i=1

(
âr,i − ar,i

)2
, r = 1, . . . ,R

where âr,i is the estimated proportion of the r-th
factor in the i-th sample,

• the reconstruction error (RE)

RE =
1

NG

N∑

i=1

∥∥yi − ŷi
∥∥2 (21)

where ŷi =
∑R

r=1 m̂râr,i is the estimate of yi,
• the spectral angle distance (SAD) betweenmr and its

estimate m̂r for each factor r = 1, . . . ,R

SADr = arccos

(
m̂T

r mr∥∥m̂r

∥∥ ‖mr‖

)

where arccos(·) is the inverse cosine function,
• the global spectral angle distance (GSAD) between yi

(the i-th observation vector) and ŷi (its estimate)

GSAD =
1

N

N∑

i=1

arccos

(
ŷTi yi∥∥ŷi
∥∥ ∥∥yi

∥∥

)
,

• the computational time.

The proposed uBLU algorithm, the PCA, NMF and

GB-GMF methods were implemented in Matlab 7.8.0

(R2009a). The BFRM software (version 2.0) was down-

loaded from [22] and implemented with default values

for the parameters. All methods were implemented on an

Intel(R) Core(TM)2 Duo processor.

Simulation results are reported in Tables 2, 3, 4 and 5.

Note that the positivity and sum-to-one constraints that

are enforced on the data for the proposed uBLU algorithm

avoid the scale ambiguity inherent to any factor decom-

position problem. Conversely, for the other factor decom-

position methods (PCA, NMF, BFRM and GB-GMF), if

{M,A} is an admissible solution, {MB,BTA} is also admis-

sible for any scaling and permutation matrix B. Hence a

re-scaling is required to identify appropriate permutations

before computing MSEs and GMSEs. Moreover, when

PCA, NMF, BFRM and GB-GMF methods are run for

R = 4, we only considered the 3 factors yielding the 3

smallest SADs values.

These results show that the uBLU method is more flex-

ible since it provides better unmixing performance across

all of the considered synthetic datasetsD1, . . . ,D4 as com-

pared to other existing factorizationmethods (PCA, NMF,

BFRM and GB-GMF). Moreover, uBLU has the following

advantages: i) it is fully unsupervised and does not require

the number of factors to be specified as a prior knowledge,

ii) due to the constraints, the factors and factor scores

are estimated without scale ambiguity. The disadvantage

is the execution time: uBLU requires more computation

due to the Gibbs sampling.

Evaluation on gene expression data

Here the proposed algorithm is illustrated on a real time-

evolving gene expression data from recent viral challenge

studies on influenza A/H3N2/Wisconsin. The data are

available at GEO, accession number GSE30550.

Details on data collection

We briefly describe the dataset. For more details the

reader is referred to [14,18]. H3N2 dataset consists of

the gene expression levels of N = 267 Affymetrix chips

collected on 17 healthy human volunteers experimentally

infected with influenza A/Wisconsin/67/2005 (H3N2). A

clinical symptom score was assigned to each sample by

clinicians who participated in the study. Nine of the 17

subjects (those labeled Z01, Z05, Z06, Z07, Z08, Z10, Z12,

Z13, and Z15 in Figure 1c) became clinically ill during the

study. These labels are only used as ground truth to quan-

tify performance and are not available to the uBLU algo-

rithm. The challenge consists of inoculating intranasally

a dose of 106 TCID50 Influenza A manufactured and

processed under current good manufacturing practices

(cGMP) by Baxter BioScience. Peripheral blood microar-

ray analysis was performed at multiple time instants cor-

responding to baseline (24 hours prior to inoculation with

virus), then at 8 hour intervals for the initial 120 hours and

then 24 hours for two further days. Each sample consisted

of over G = 12000 gene expression values after stan-

dard microarray data normalization with RMA using the

custom brain array cdf [14]. No other preprocessing was

applied prior to running the five unsupervised methods

(uBLU, PCA, NMF, BFRM, and GB-GMF).

Application of the proposed uBLU algorithm

The uBLU algorithm was run with Nmc = 10000 Monte

Carlo iterations, including a burn-in period of Nbi = 1000

iterations. uBLU allows the posterior distribution of the

number of factors R, depicted in Figure 1a, to be esti-

mated. The results show that the MAP estimate of the



Table 2 Simulation results for datasetD1

(a) R = 2

uBLU PCA NMF BFRM GB-GMF

MSE2r (×10−2) 0.39 N/A N/A 205.99 267.42

0.60 6.04 61.12 N/A N/A

0.54 0.97 9.78 325.58 67.14

GMSE2r (×10−3) 0.04 N/A N/A 64.39 226.58

0.04 2.00 2.00 N/A N/A

0.05 0.30 0.28 75.87 41.33

SAD2
r (×10−1) 0.46 N/A N/A 21.69 12.48

0.29 3.49 3.50 N/A N/A

0.28 1.49 1.50 23.24 27.43

GSAD (×10−2) 3.39 20.38 20.38 24.04 37.35

RE 0.18 9.12 9.12 1.94 9.16

Time (s) 1.24 × 103 0.03 0.71 47.15 0.39 × 103

(b) R = 3

uBLU PCA NMF BFRM GB-GMF

MSE2r (×10−2)

0.39 6.01 0.48 212.30 40.27

0.60 6.53 0.45 681.42 147.74

0.54 5.86 0.28 137.22 94.90

GMSE2r (×10−3)

0.04 6.62 0.19 76.09 45.29

0.04 2.40 0.01 142.72 17.37

0.05 0.84 0.05 76.22 33.78

SAD2
r (×10−1)

0.46 1.86 0.53 10.68 11.86

0.29 1.18 0.31 15.18 12.50

0.28 1.36 0.26 5.33 13.96

GSAD (×10−2) 3.37 3.39 3.38 24.23 33.38

RE 0.18 0.18 0.18 1.84 0.18

Time (s) 1.24 × 103 0.10 0.95 53.60 0.56 × 103

(c) R = 4

uBLU PCA NMF BFRM GB-GMF

MSE2r (×10−2)

0.39 6.02 87.78 205.66 195.89

0.60 6.53 0.45 247.96 101.34

0.54 8.03 0.26 330.01 68.69

GMSE2r (×10−3)

0.04 23.82 26.56 64.59 57.58

0.04 11.70 0.23 114.02 3.10

0.05 6.37 18.04 75.47 27.72

SAD2
r (×10−1)

0.46 1.86 6.14 9.74 8.84

0.29 1.18 0.31 22.15 26.80

0.28 1.36 0.26 8.17 27.32

GSAD (×10−2) 3.39 3.34 3.36 28.62 29.23

RE 0.18 0.18 0.18 2.08 0.18

Time (s) 1.24 × 103 0.11 0.96 63.88 0.70 × 103

MSEs, GMSEs, SADs, GSADs, REs and computational times between the proposed uBLU algorithm and PCA, NMF, BFRM and GB-GMFmethods.



Table 3 Simulation results for datasetD2

(a) R = 2

uBLU PCA NMF BFRM GB-GMF

MSE2r 0.09 1.97 N/A N/A N/A

0.14 N/A 1.06 37.67 58.75

0.14 0.12 26.68 52.09 150.09

GMSE2r (×10−1) 0.34 0.01 N/A N/A N/A

0.15 N/A 1.12 1.17 22.37

0.09 0.94 6.24 0.62 1.18

SAD2
r (×10−1) 0.39 0.44 N/A N/A N/A

0.48 N/A 1.32 16.53 13.34

0.47 0.44 3.72 15.21 18.14

GSAD (×10−2) 1.51 1.02 1.53 37.99 129.40

RE (×10−2) 0.64 1.62 1.65 0.65 5.47

Time (s) 22.06 × 103 0.29 32.02 4.07 × 103 9.24 × 103

(b) R = 3

uBLU PCA NMF BFRM GB-GMF

MSE2r 0.09 1.97 14.87 24.41 61.00

0.14 0.01 20.53 50.59 58.31

0.14 0.09 14.02 35.89 65.11

GMSE2r (×10−1) 0.34 0.03 0.34 1.41 4.80

0.15 0.02 2.44 0.65 9.40

0.09 0.05 0.92 1.19 5.40

SAD2
r (×10−1) 0.39 0.44 2.84 14.35 13.72

0.48 0.12 4.75 15.47 13.62

0.47 0.37 4.00 17.50 15.82

GSAD (×10−2) 1.02 1.02 1.49 29.29 129.29

RE (×10−2) 0.64 0.63 1.55 0.75 1.62

Time (s) 22.06 × 103 0.28 45.91 5.37 × 103 16.59 × 103

(c) R = 4

uBLU PCA NMF BFRM GB-GMF

MSE2r 0.09 1.97 13.13 24.25 64.90

0.14 0.01 20.53 50.52 64.09

0.14 0.09 14.02 28.32 69.99

GMSE2r (×10−1) 0.34 0.09 0.20 1.42 15.12

0.15 0.48 1.00 0.65 9.55

0.09 0.05 0.44 1.31 7.73

SAD2
r (×10−1) 0.39 0.44 2.54 14.74 14.53

0.48 0.13 5.52 15.45 14.55

0.47 0.37 4.79 16.45 16.17

GSAD (×10−2) 1.02 1.01 1.06 40.36 129.29

RE (×10−2) 0.64 0.63 0.69 0.86 1.50

Time (s) 22.06 × 103 0.54 55.86 5.59 × 103 16.59 × 103

MSEs, GMSEs, SADs, GSADs, REs and computational times between the proposed uBLU algorithm and PCA, NMF, BFRM and GB-GMFmethods.



Table 4 Simulation results for datasetD3

(a) R = 2

uBLU PCA NMF BFRM GB-GMF

MSE2r (×10−3) 0.01 0.83 0.82 N/A 1.14

0.85 0.80 0.92 1.34 2.30

1.15 N/A N/A 1.36 N/A

GMSE2r (×10−2) 7.75 7.29 7.72 N/A 8.94

7.76 0.47 0.48 12.30 11.86

9.84 N/A N/A 11.05 N/A

SAD2
r (×10−1) 0.59 7.09 7.04 N/A 15.55

7.13 6.71 7.19 8.41 16.43

8.71 N/A N/A 8.54 N/A

GSAD (×10−1) 3.23 2.58 2.59 6.59 15.26

RE (×10−4) 3.11 0.70 0.70 0.47 2.50

Time (s) 1.59 × 103 0.01 0.70 42.02 0.40 × 103

(b) R = 3

uBLU PCA NMF BFRM GB-GMF

MSE2r (×10−3) 0.01 0.15 0.15 1.74 1.20

0.85 1.02 0.76 1.76 2.26

1.15 1.57 1.03 1.55 2.40

GMSE2r (×10−2) 7.75 14.89 2.80 11.40 14.09

7.76 0.11 0.40 12.11 12.33

9.84 0.11 0.30 10.94 12.76

SAD2
r (×10−1) 0.59 2.60 2.47 11.34 15.76

7.13 7.16 6.59 9.45 16.40

8.71 8.80 7.67 9.06 15.66

GSAD (×10−1) 3.23 2.58 1.71 6.88 15.20

RE (×10−4) 3.11 0.27 0.29 0.49 2.44

Time (s) 1.59 × 103 0.10 1.24 59.72 0.54 × 103

(c) R = 4

uBLU PCA NMF BFRM GB-GMF

MSE2r (×10−3) 0.01 0.02 1.43 1.43 1.19

0.85 1.48 5.49 3.92 2.06

1.15 1.68 0.90 1.88 2.33

GMSE2r (×10−2) 7.75 13.78 20.56 16.66 13.15

7.76 4.35 12.36 15.34 11.75

9.84 3.99 2.67 11.25 13.29

SAD2
r (×10−1) 0.59 0.97 10.27 10.24 15.97

7.13 7.93 15.78 16.45 14.92

8.71 8.66 6.93 10.98 15.89

GSAD (×10−1) 3.23 1.17 1.20 5.51 15.98

RE (×10−4) 3.11 0.16 0.16 0.41 2.45

Time (s) 1.59 × 103 0.13 1.15 67.71 0.69 × 103

MSEs, GMSEs, SADs, GSADs, REs and computational times between the proposed uBLU algorithm and PCA, NMF, BFRM and GB-GMFmethods.



Table 5 Simulation results for datasetD4

(a) R = 2

uBLU PCA NMF BFRM GB-GMF

MSE2r (×10−2) 0.02 N/A 5.12 N/A N/A

1.61 0.01 3.59 15.35 18.69

0.05 0.44 N/A 14.42 19.20

GMSE2r (×10−1) 0.28 N/A 3.23 N/A N/A

0.87 0.02 2.65 0.33 1.62

0.69 0.76 N/A 0.50 1.30

SAD2
r (×10−1) 0.34 N/A 4.25 N/A N/A

3.08 0.17 3.71 14.90 14.89

0.51 0.68 N/A 15.59 15.70

GSAD (×10−2) 4.97 5.24 5.25 157.09 156.19

RE (×10−4) 4.49 4.88 4.89 19.34 8.48

Time (s) 1.61 × 103 0.02 1.36 35.29 0.40 × 103

(b) R = 3

uBLU PCA NMF BFRM GB-GMF

MSE2r (×10−2) 0.02 0.01 6.18 18.38 21.63

1.61 0.01 4.79 16.10 19.55

0.05 0.09 4.21 15.04 19.85

GMSE2r (×10−1) 0.28 0.05 1.67 1.44 1.29

0.87 0.05 1.01 0.37 1.75

0.69 0.05 0.94 0.26 1.17

SAD2
r (×10−1) 0.34 0.27 4.12 15.21 15.65

3.08 0.17 4.09 15.26 15.90

0.51 0.32 4.16 16.07 15.36

GSAD (×10−2) 4.97 4.95 4.99 157.08 154.80

RE (×10−4) 4.49 4.34 4.36 25.00 8.48

Time (s) 1.61 × 103 0.10 1.78 41.05 0.55 × 103

(c) R = 4

uBLU PCA NMF BFRM GB-GMF

MSE2r (×10−2) 0.02 0.01 6.98 17.51 21.60

1.61 0.01 7.30 15.07 19.03

0.05 0.07 4.27 14.55 19.14

GMSE2r (×10−1) 0.28 0.22 0.65 0.75 1.29

0.87 0.51 0.91 0.77 1.18

0.69 0.05 0.56 0.56 1.33

SAD2
r (×10−1) 0.34 0.27 4.41 15.61 15.51

3.08 0.19 4.81 16.31 14.77

0.51 0.33 4.00 15.84 15.26

GSAD (×10−2) 4.97 4.91 4.94 156.76 162.63

RE (×10−4) 4.49 4.30 4.33 13.48 8.29

Time (s) 1.61 × 103 0.16 1.56 48.22 0.70 × 103

MSEs, GMSEs, SADs, GSADs, REs and computational times between the proposed uBLU algorithm and PCA, NMF, BFRM and GB-GMFmethods.



Figure 1 Experimental results on the H3N2 viral challenge dataset of gene expression profiles. (a) Estimated posterior distribution of the

number of factors R. (b) Factor loadings ranked by decreasing dominance. (c) Heatmap of the factor scores of the inflammatory component clearly

separates symptomatic subjects (bottom 9 rows) and the time course of their molecular inflammatory response. The five black colored pixels

indicate samples that were not assayed.

number of factors is R̂MAP = 4 (more than 90% of the gen-

erated Gibbs samples of the number of factors were equal

to 4).

Figure 2 shows the reconstruction error RE(t) as a func-

tion of the number of iterations (t = 1, . . .). The recon-

struction errors are computed from the observed gene

expression data matrix and the estimates of the factor and

factor score matrix M and A at each iteration. Figure 2

also indicates that the number of burn-in andMonte Carlo

samples Nbi = 1000 and Nmc = 10000 are sufficient.

The different factors are depicted in Figure 1b where

the G genes have been reordered so that the dominant

genes are grouped together in each factor. Factors are then

ordered with respect to their maximum loading. Specifi-

cally, the k-th sharp peak in the figure occurs at the gene

index that has maximal loading in factor k. Genes to the

right of this dominant gene up to the (k + 1)-st peak

also dominate in this k-th factor, but at a lower degree.

uBLU identifies a strong factor (the first factor, in red) by

virtue of its significantly larger proportion of highly dom-

inant genes. Many of the genes in this strong factor are

recognizable as immune response genes that regulate pat-

tern recognition, interferon, and inflammation pathways

in respiratory viral response. A very similar factor was

found in a different analysis [14,18] of this dataset and

here we call it the “inflammatory component”.



Figure 2 Reconstruction error and estimated number of factors as a function of the number of iterations (H3N2 challenge data). Top:

Reconstruction error (RE(t)) computed from the observation matrix Y and the estimated matricesM(t) and A(t) as a function of the iteration index t.

Bottom: Estimated number of factors R(t) as a function of the iteration number t.

The factor scores corresponding to this inflamma-

tory component are shown in Figure 1c, where they

are rendered as an image whose columns (respectively

rows) index the subjects (respectively the different time

sampling instants). Figure 1c shows that uBLU clearly

separates the samples of subjects exhibiting symptoms

(associated with the last 9 rows) from those who remain

asymptomatic (associated with the first 8 rows), when

the estimated number of factors is R̂ = 4. Moreover,

this symptom factor can be used to segment the data

matrix into 3 states: pre-onset-symptomatic (before sig-

nificant symptoms occur), post-onset-symptomatic and

asymptomatic.

Furthermore, this inflammatory factor identified by the

proposed uBLU algorithm is most highly represented in

those samples associated with acute flu symptoms, as

measured bymodified Jackson scores (see [14], Figure 1B).

The dominant gene contributors to this inflamma-

tory component correspond to well-known transcrip-

tion factors controlling immune response, inflammatory

response and antigen presentation – see Table 6. The

reader is referred to [14,18] for more details on clinical

determination of symptom scores and biological signifi-

cance of the inflammatory component genes.

For comparison we applied a supervised version of the

proposed uBLU algorithm to the H3N2 dataset. This was

Table 6 NCI-curated pathway associations of group of genes contributing to uBLU inflammatory component

Pathway name Genes P-value

IFN-gamma pathway CASP1, CEBPB, IL1B, IRF1, IRF9, PRKCD, SOCS1, STAT1,
STAT3

1.34e-09

PDGFR-beta signaling pathway DOCK4, EIF2AK2, FYN, HCK, LYN, PRKCD, SLA, SRC,
STAT1, STAT3, STAT5A, STAT5B

3.26e-08

IL23-mediated signaling events CCL2, CXCL1, CXCL9, IL1B, STAT1, STAT3, STAT5A 2.18e-07

Signaling events mediated by TCPTP EIF2AK2, SRC, STAT1, STAT3, STAT5A, STAT5B, STAT6 6.38e-07

Signaling events mediated by PTP1B FYN, HCK, LYN, SRC, STAT3, STAT5A, STAT5B 2.40e-06

GMCSF-mediated signaling events CCL2, LYN, STAT1, STAT3, STAT5A, STAT5B 3.70e-06

IL12-mediated signaling events HLA-A, IL1B, SOCS1, STAT1, STAT3, STAT5A, STAT6 1.32e-05

IL6-mediated signaling events CEBPB, HCK, IRF1, PRKCD, STAT1, STAT3 1.80e-05

NCI-curated pathway associations of group of genes contributing to uBLU inflammatory component, whose factor scores are shown in Figure 1 (Source: NCI pathway

interaction database http://pid.nci.nih.gov). Genes in uBLU factor are significantly better represented in the NCI-curated pathways than the genes in NMF (compare

p-values here to those in Table 8).

http://pid.nci.nih.gov


implemented by setting the number of factors to R = 4

and using the algorithm [13] to jointly estimate M and

A. The inflammatory component found by the super-

vised algorithm was virtually identical to the one found by

the proposed algorithm (uBLU) that automatically selects

R = 4.

Comparison to othermethods

The uBLU algorithm is compared with four matrix factor-

ization algorithms, i.e. PCA, NMF, BFRM and GB-GMF

methods.

Figure 3 depicts the different factors, ordered so that

the inflammatory group is the leftmost one (in red).

The factor loadings obtained with NMF or PCA reveal

the inflammatory component. However, there are fewer

highly dominant genes in the NMF and PCA loadings for

this factor as compared to uBLU. The BFRMandGB-GMF

methods found four pathways, several overlapping with

those of uBLU, NMF and PCA.

The factor scores of the five matrix factorization meth-

ods corresponding to the inflammatory component are

depicted in Figure 4. This figure shows that the uBLU and

the NMF methods are better able to attain a high con-

trast separation between the acutely symptomatic samples

and the other samples. This is confirmed by the evalua-

tion of the Fisher criteria (22) between these two regions

(see Table 7). Indeed, denote by
(
μpos, σ

2
pos

)
the empirical

mean and variance of the scores associated with the Npos

samples in the acute symptomatic state (bright colored

samples in the lower right rectangle of Figure 1c). Denote

Figure 3 Factor loadings ranked by decreasing dominance for H3N2 challenge data. uBLU shows a particularly strong component (Figure 1b),

the group ♯1, that corresponds to the well-known inflammatory pathway. NMF and PCA algorithms also reveal an inflammatory component, but it

includes fewer relevant genes than uBLU. See Figure 4 for the corresponding factor scores.



Figure 4 Heatmaps of the factor scores of the inflammatory component for H3N2 challenge data. The inflammatory factor determined by

the proposed uBLU method (a) shows higher contrast between symptomatic and asymptomatic subjects than the other methods. The five black

colored pixels of the heatmaps indicate samples that were not assayed.



Table 7 Simulation results for real H3N2 dataset

uBLU PCA NMF BFRM GB-GMF

Fisher criteria (×10−2) (22) 6.20 2.03 6.17 4.68 2.30

RE 6.48.10−2 4.89 7.31.10−2 4.82 9.51.10−2

Time ≈ 12 h 1.5 s 116 s ≈ 47min ≈ 10 h

Number of iterations 10 000 N/A 5 000 10 000 500

Measure of the Fisher linear discriminant measure ([23], p. 119) between post-onset symptomatic samples and the other samples on heatmaps (Figure 4),

reconstruction error (RE) between the observed data and the MAP estimators, computational times (for an implementation in MATLAB 7.8.0 (R2009a) on a 3 GHz

Intel(R) Core(TM)2 Duo processor), and corresponding number of iterations.

by
(
μpos, σ

2
pos

)
the same parameters for the remaining

samples. The Fisher linear discriminant measure ([23],

p. 119) is defined as

(
μpos − μpos

)2

Nposσ 2
pos + (N − Npos)σ 2

pos
. (22)

To compare the biological relevance of the inflamma-

tory genes found by uBLU to those found by the other

methods we performed gene enrichment analysis (GEA).

Here we only report GEA comparisons between uBLU

and NMF. Tables 6 and 8 show the pathway enrich-

ment associated with the top 200 genes found by uBLU

and NMF, respectively, using NCI pathway interaction

database (http://pid.nci.nih.gov). The uBLU genes are sig-

nificantly better associated with the NCI-curated path-

ways than the NMF genes. In particular, the two most

enriched pathways, IFN-gamma and PDGFR beta signal-

ing, associated with the uBLU genes have much higher

statistical significance (lower p-value) than any of the

pathways associated with NMF.

Figure 5 shows how the factor scores of the dominant

factor can be used as features to cluster samples. Euclidean

multidimensional scaling (MDS) [24] is used to map the

factor score vector for each sample as a coordinate in the

plane. Each sample is embedded with a color and a size,

denoting the state of the subject (asymptomatic subjects

in blue, symptomatic subjects in red) and the time stamp,

respectively. These figures show that uBLU can separate

sick and healthy subjects, as well as or better than NMF,

BFRM and GB-GMF.

One can conclude from these comparisons that, when

applied on the H3N2 dataset, the proposed uBLU algo-

rithm outperforms PCA, NMF, BFRM, and GB-GMF

algorithms in terms of finding genes with higher path-

way enrichment and achieving higher contrast of the acute

symptom states.

The computational times required by the five consid-

ered matrix factorization methods, including the pro-

posed uBLU algorithm, when applied to this real dataset,

are reported in Table 7. The GB-GMF algorithm is slightly

faster than the proposed algorithm but does not identify

the inflammatory component or achieve good contrast of

the acute symptom states in the H3N2 challenge study.

Conclusions
This paper proposes a new Bayesian unmixing algorithm

for discovering signatures in high dimensional biologi-

cal data, and specifically for gene expression microarrays.

An interesting property of the proposed algorithm is that

it provides positive factor loadings to ensure positivity

as well as sum-to-one constraints for the factor scores.

Table 8 NCI-curated pathway associations of group of genes contributing to NMF inflammatory component

Pathway name Genes P-value

IL23-mediated signaling events CCL2, CXCL1, CXCL9, IL1B, JAK2, STAT1, STAT5A 2.18e-07

IL12-mediated signaling events GADD45B, IL1B, JAK2, MAP2K6, SOCS1, STAT1,
STAT5A, STAT6

1.10e-06

IFN-gamma pathway CASP1, IL1B, IRF9, JAK2, SOCS1, STAT1 1.07e-05

Signaling events mediated by TCPTP EIF2AK2, PIK3R2, STAT1, STAT5A, STAT5B, STAT6 1.07e-05

IL27-mediated signaling events IL1B, JAK2, STAT1, STAT2, STAT5A 1.22e-05

CXCR3-mediated signaling events CXCL10, CXCL11, CXCL13, CXCL9, MAP2K6, PIK3R2 1.23e-05

GMCSF-mediated signaling events CCL2, JAK2, STAT1, STAT5A, STAT5B 6.24e-05

PDGFR-beta signaling pathway EIF2AK2, JAK2, PIK3R2, ARAP1, DOCK4, STAT1, STAT5A,
STAT5B

1.38e-04

NCI-curated pathway associations of group of genes contributing to NMF inflammatory component, whose factor scores are shown in Figure 4 (Source: NCI pathway

interaction database http://pid.nci.nih.gov). Genes in uBLU factor are significantly better represented in the NCI-curated pathways than the genes in NMF (compare

p-values here to those in Table 6).

http://pid.nci.nih.gov
http://pid.nci.nih.gov


Figure 5 Chip clouds after demixing for H3N2 challenge data. These figures show the scatter of the four dimensional factor score vectors

(projected onto the plane using MDS) for each algorithm that was compared to uBLU. uBLU, NMF and BFRM obtain a clean separation of samples of

symptomatic (red points) and asymptomatic (blue points) subjects whereas the separation is less clear with PCA. In these scatter plots the size of a

point is proportional to the time at which the sample was taken during challenge study.



The advantages of these constraints are that they lead

to better discrimination between sick and healthy indi-

viduals, and they recover the inflammatory genes in a

unique factor, the inflammatory component. The pro-

posed algorithm is fully unsupervised in the sense that

it does not depend on any labeling of the samples and

that it can infer the number of factors directly from the

observation data matrix. Finally, as any Bayesian algo-

rithm, the Monte Carlo-based procedure investigated in

this study provides point estimates as well as confidence

intervals for the unknown parameters, contrary to many

existing factor decomposition methods such as PCA or

NMF.

Simulation results performed on synthetic and real data

demonstrated significant improvements. Indeed, when

applied to real time-evolving gene expression datasets,

the uBLU algorithm revealed an inflammatory factor with

higher contrast between subjects who would become

symptomatic from those who would remain asymp-

tomatic (as determined by comparing to ground truth

clinical labels).

In this study, the time samples were modeled as inde-

pendent. Future works include extensions of the proposed

model to account for time dependency between samples.

Appendix A: Gibbs sampler
This appendix providesmore details about the Gibbs sam-

pler strategy to generate samples {M(t),A(t), σ 2(t)
,R(t)}

distributed according to the joint distribution

f
(
M,A, σ 2,R|Y

)
(the reader is referred to [25] for more

details about the Gibbs sampler and MCMC methods).

This joint distribution can be obtained by integrating out

the hyperparameter γ from f (�, γ |Y) defined in (18) and

can be written

f
(
M,A, σ 2,R|Y

)
∝ f

(
Y|M,A, σ 2,R

)

× f
(
T|E, s2,R

)

× f (A|R)

× f
(
σ 2

)
f (R)

(23)

where the dimensions of the matricesM, T, andA depend

on the unknown number of factors R and the priors have

been defined in the Section “Methods”.

The different steps of the Gibbs sampler are detailed

below.

Inference of the number of factors

The proposed unsupervised algorithm includes a

birth/death process for inferring the number of factors R,

i.e., it generates samples R in addition to M and A. More

precisely, at iteration t of the algorithm, a birth, death

or switch move is randomly chosen with probabilities

bR(t) , dR(t) and sR(t) . The birth and death moves con-

sist of increasing or decreasing by 1 the number R of

factors using a reversible jump step (see [21] for more

details), whereas the switch move does not change the

dimension of R and requires the use of a Metropolis-

Hastings acceptance procedure. Let consider a move,

at iteration index t, from the state {M(t),A(t),R(t)} to

the new state {M⋆,A⋆,R⋆}. The birth, death and switch

moves are defined as follows, similar to those used in [26]

(Algorithms 3, 4 and 5).

• Birthmove:When a birth move is proposed, a new

signaturem⋆ is randomly generated to build

M⋆ =
[
M(t),m⋆

]
. The new corresponding space is

checked so that the signatures are sufficiently distinct

and separate from one another. Then, a new factor

score coefficient is drawn, for each vector ai
(i = 1, . . . ,N), from a Beta distribution B

(
1,R(t)

)
,

and the new factor score matrix, denoted as A⋆, is

re-scaled to sum to one.
• Deathmove:When a death move is proposed, one

of the factors ofM(t), and its corresponding factor

score coefficients, are randomly removed. The

remaining factor scores are re-scaled to ensure the

sum-to-one constraint.
• Switchmove:When a switch move is proposed, a

signaturem⋆ is randomly chosen and replaced with

another signature randomly generated. If the new

signature is too close to another, its corresponding

factor scores are proportionately distributed among

its closest factors. Indeed, the switch move consists of

creating a new signature (birth move) and deleting

another one (death move) in a faster single step.

Each move is then accepted or rejected according to

an empirical acceptance probability: the likelihood ratio

between the actual state and the proposed new state.

The factor matrix M, the factor score matrix A and

the noise variance σ 2 are then updated, conditionally

upon the number of factors R, using the following Gibbs

steps.

Generation of samples according to f
(

T|A, σ 2,R, Y
)

Sampling from the joint conditional f (T|A, σ 2,R,Y) is

achieved by updating each column of T using Gibbs

moves. Let denote T\r the matrix T whose r-th column

has been removed. The posterior distribution of tr is the

following truncated multivariate Gaussian distribution

(MGD)

tr|T\r , ar , σ
2,Y ∼ NTr (τ r ,Ŵr) (24)



where

Ŵr =

[∑N

i=1
a2r,iP�−1PT +

1

s2r
IR

]−1

,

τ r = Ŵr

[∑N

i=1
ar,iP�−1

ǫr,i +
1

s2r
er

]
,

ǫr,i = yi − ar,iȳ −
∑

j 
=r
ar,imj.

(25)

Formore details on howwe generate realizations from this

truncated distribution, see [13].

Generation of samples according to f
(

a1:R−1,i|T, σ
2,R, Y

)

Straightforward computations lead to the posterior distri-

bution of each element of a1:R−1,i

f
(
a1:R−1,i|T, σ

2,R,Y
)

∝ exp

[
−
1

2
āT1:R−1,i�

−1
1:R−1,iā1:R−1,i

]

× 1S
(
a1:R−1,i

)

(26)

where

ā1:R−1,i = a1:R−1,i − μ1:R−1,i,

�1:R−1,i =
[
M

T
\R�

−1M\R

]−1
,

μ1:R−1,i = �1:R−1,i

[
M

T
\R�

−1M\R

]
,

M\R = M\R − mR1
T
R−1,

(27)

1R−1 = [1, . . . , 1] ∈ RR−1 and M\R denotes the factor

loading matrix M whose R-th column has been removed.

Figure 6 Contribution of each constraint on the scores of the inflammatory factor (H3N2 challenge data). The five black colored pixels of the

heatmaps indicate samples that were not assayed. Note that when only the sum-to-one constraint is applied, non-negativity is not guaranteed.

However, for this dataset the sum-to-one factor scores turn out to take on non-negative values for the inflammatory factor (but not for the other

factors).



Table 9 Contribution of each of uBLU’s constraints

Without Positivity Sum-to-one Positivity and

constraints sum-to-one

P-value of the “IFN-gamma pathway” 6.00.10−2 2.05.10−2 2.17.10−1 1.34 .10−9

P-value of the “IL23-mediated signaling events” 2.60.10−1 8.37.10−2 2.28.10−2 2.18.10−7

Benefit of constraints in uBLU in terms of gene enrichment in the NCI-curated IFN-gamma and IL23-mediated pathways. As in Tables 6 and 8, the top 200 genes in the

inflammatory components, whose scores are shown in Figures 6(a-d), were analyzed using the NCI Pathway Interaction Database. Both positivity and sum-to-one

constraints are necessary for uBLU to reveal these two pathways with the high significance (p-value less than 10−6).

Equation (26) shows that the factor score distribution is

an MGD truncated on the simplex S defined in (12).

Generation of samples according to f
(

σ
2|T, A,R, Y

)

Using (14) and (16), one can show that the conditional dis-

tribution f (σ 2|M,A,Y) is the following inverse-Gamma

distribution

σ 2|M,A,Y ∼ IG

(
GN

2
,
1

2

N∑

i=1

∥∥yi − Mai
∥∥2

)
. (28)

Appendix B: Contribution of each of uBLU’s
constraints
To illustrate the advantage of enforcing non-negativity

and sum-to-one constraints on the factors and on the

factor scores, as detailed in the Methods section, we eval-

uated the effect of successively stripping out these con-

straints from uBLU. In particular we implemented uBLU

under the following conditions: i) without any constraints,

ii) with only the positivity constraints on the factors and

the scores, iii) with only the sum-to-one constraint on

the scores, and iv) with both positivity and sum-to-one

constraint on factors and scores as proposed in (5).

Figures 6 display heatmaps of the factor scores of the

inflammatory component. The segmentation into two

main regions (post-symptomatic samples and asymp-

tomatic samples) becomes apparent only when the sum-

to-one constraint is enforced on the scores. To quantify

the benefit that is visible in Figure 6 we performed a GEA

analysis, reported in Table 9, on the top 200 genes found

in each of the inflammatory components found by uBLU

implemented with no constraints, positivity constraints,

sum-to-one constraints, and both constraints. The table

shows that both constraints are necessary to obtain the

best enrichment scores (lowest possible p-values).

Additional file

Additional file 1: Supplementary materials on algorithm details and

performance validation. Directed acyclic graph (DAG) of the model and

flowchart of the proposed algorithm are provided in this additional file.

More results on synthetic datasets are also presented to validate the

proposed Bayesian algorithm, including a convergence diagnosis.
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