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��������� A simple mesoscale model was developed for discontinuous dynamic recrystallization. 

The material is described on a grain scale as a set of N (variable) spherical grains. Each grain is 

characterized by two internal variables: its diameter and dislocation density (assumed homogeneous 

within the grain). Each grain is then considered in turn as an inclusion, embedded in a homogeneous 

equivalent matrix, the properties of which are obtained by averaging over all the grains. The model 

includes: (i) a grain boundary migration equation driving the evolution of grain size via the mobility 

of grain boundaries, which is coupled with (ii) a dislocation-density evolution equation, such as the 

Yoshie–Laasraoui–Jonas or Kocks–Mecking relationship, involving strain hardening and dynamic 

recovery, and (iii) an equation governing the total number of grains in the system due to the nuclea-

tion of new grains. The model can be used to predict transient and steady-state flow stresses, 

recrystallized fractions, and grain-size distributions. The effect of the distribution of grain-boundary 

mobilities has been investigated. 
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During the thermomechanical processing of superalloys, dynamic recrystallization controls micro-

structure evolution and thus important aspects of the mechanical behavior in service. For instance, 

grain boundary migration plays an important role because it is one of the main phenomena control-

ling the final grain size. The present paper returns to a model of discontinuous dynamic 

recrystallization (DDRX) presented at Thermec’2009 Berlin [1]. This mesoscale model was already 

validated in terms of mean values but grain size distributions looked rare and in this paper, the ef-

fect of the distribution of grain-boundary mobilities is described. 
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When deterministic evolution equations (i.e., with no stochastic terms) are used, all grains of the 

same age have undergone identical evolution and therefore have the same diameter D and dislo-

cation density .ρ Hence, all properties of the grains in the model are one-parameter distributions,

and each grain is characterized by its age. The following functions can then be introduced: 

– at time t, the number of present grains nucleated at the instant ,τ ( ),N tτ (number per volume

unit); 

– the plastic strain within the grain ( ) ( ), d ,
τ

ε τ ε= ∫ �
t

t u u in which the strain rate ε� is assumed to be

the same for each grain (using the classical Taylor homogeneous strain crystal-plasticity assump-

tion); 

– the strain hardening of the grain as represented by its dislocation density ( ), tρ τ (length per vol-

ume unit); 
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– the grain diameter ( ), .D tτ
A number of constraints connect the various functions; e.g., the overall volume is constant at all

times, i.e., 

( ) ( )3

06
, , , d 1.τ τ τπ∀ =∫

t

t N t D t (1) 
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Several mechanisms contribute to the evolution of grain-property distributions: 
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� A simple grain boundary migration law, based on differences in 

strain hardening between adjacent grains, or more specifically between a specific grain and the 

equivalent homogeneous matrix, is assumed, i.e., 

( ) ( ) ( ) ( ), 2 , ,D t t M t t
τ
τ ρ ρ τ∂ ∂ = −  � (2) 

in which M is the grain boundary mobility and � is the line energy of the dislocations. Such a form 

and the introduction of the average dislocation density ρ are justified by using an average over the

matrix surrounding the grain. 

Because plastic deformation occurs without volume change, ρ must be a surface weighted aver-

age, 

( ) ( ) ( ) ( ) ( ) ( )2 2

0 0
, , , d , , d .ρ ρ τ τ τ τ τ τ τ= ∫ ∫

t t

t t N t D t N t D t (3) 

As a consequence of grain size evolution, “old” grains (which have large dislocation densities) 

decrease in diameter and eventually disappear. They are replaced by new ones as described in sec-

tion (iii) below. 
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�� Strain hardening and dynamic recovery are assumed to be described for 

each grain by the same equation, ( )d d ,ρ ε ρ=� in which ( )ρ� can depend on temperature as

well as on strain rate (in the same way for each grain). 

Several forms of strain hardening and dynamic recovery law can be used, e.g., the Yoshie–

Laasraoui–Jonas law, ( ) ;h rρ ρ= −� the Kocks–Mecking law, ( ) ;h rρ ρ= −� the power law,

( ) 1 .Hν νρ ρ+=� In each case, the various parameters are temperature and strain-rate dependent.

A variant exists which takes into account the additional softening due to grain boundary migra-

tion; but this law is then no longer a local one because it also depends, via the grain boundary 

migration velocity, on the average dislocation density [2–4]. 
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�� The nucleation of new grains ( )τ=t is postulated to be propor-

tional to the grain boundary surface ( )S t and is of the form ( ) ( ),
τ
τ∂ ∂ = =N t t t

( ) ( ),ρ  f t S t where t is the current time and S is the grain surface area per unit volume; in prac-

tice, the latter function is specified as ( ) N .pf kρ ρ= The exponent of the Derby relationship

between grain size and stress is related to the exponent ;p the unique integer value for p compatible 

with experimental Derby exponent is 3 [4]. In the present work 3p = is assumed, although p could

be fitted for specific sets of data. 

Using the above equations, the change with time of the grain-size and other distributions are de-

termined as shown schematically in Fig. 1. 
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#�����$� Schematic evolution of the grain size distribution in the DDRX model 

The flow stress σ associated with this grain-size distribution is assumed to be given by

.bσ αµ ρ=

�������������%� ������

When the material is strained at a constant strain rate and temperature, a steady state is obtained 

after some time (or strain) during which new grains continuously replace old ones. 

The distribution ( ),N tτ is then ( )τ−N t  (i.e. steady state) and the diameter distribution is a

function of the average dislocation density according to a specific equation (which depends only 

on ,ρ the dependence on ε� and temperature being implicitly included in ).ρ Under such a steady-

state condition, Eq. 2 can be integrated to give: 

( ) ( ), 2 , ,D M Fε ρ ρε ε ρ ε= −   �� (4) 

in which ( )F ε is the strain hardening and dynamic recovery potential, defined by ( )ρ ε =

( )( ), .F
ρ

ε ρ ε∂ ∂

The determination of model parameters from rheological experiments and grain size measure-

ments was deeply analyzed in [1]. It is worth to note that grain-boundary mobility and nucleation 

parameter are expressed as closed forms from the steady-state stress and the average of the steady-

state grain size [4]. 
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The steady-state distribution of grain size ( )g D associated with such a one-parameter distribution

can be obtained from ( ) ( ) ( )1 1

end,
− −

+ −
 = − g D dD dt dD dt t in which endt is the lifetime of the grains

and the indices + or – are associated with growing and decreasing grains, respectively. The above 

distribution patently tends to infinity when max

−→D D  in which maxD is the maximal grain diameter

(D=Dmax trivially implies dD/dt=0) when the grain is in the middle of its life (in fact when ρ ρ= ).

More precisely, ( )g D  is simply derived as in [5] with some additional assumptions:

( )
( )max max

1
.

2
=

−
g D

D D D
(5) 
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This analytical distribution is presented in Fig. 2a with its histogram counterpart from the numerical 

implementation, very close to the analytical result, confirming the coherency between both analyti-

cal and numerical methods despite the unusual obtained shape of the distribution. 
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#�����'� Grain-size histograms (6 µm-width class) in the DDRX model for pure nickel at 900 °C 

strained at 0.1 s
–1

 – M coefficient of variation: (����)�$(�*����)�'(�*����)�+(�*���� – Continuous

line is the analytical solution for fixed M value as in the (a) case, final drop is due to the partial last 

class (252–258 µm, maximal diameter about 255.5 µm) 

If any model parameter (impacting the maximal grain diameter) is now distributed, the grain-size 

distribution is altered by convolution with the newly induced Dmax distribution (principally among 

other interactions). In [5], the effect of the distribution of the strain hardening parameter (related to 

Taylor factor) was studied. The present paper focuses on the effect of an M-distribution introduc-

tion. As this mean-field model does not account for any topological features, it can be useful to 

artificially integrate them using such M-distribution because grain boundary velocities are clearly 

affected by local surroundings and not only mean fields. 
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So, at nucleation of each grain, a certain mobility M is now affected to the new grain following a 

Gaussian distribution centered on the previous average value. Figure 2 compares 4 coefficients of 

variation (spread is thus characterized by the ratio standard deviation over mean): 0, 10 %, 20 %, 

and 30 %. In such a way, grain-size distributions are clearly smoothers and look more like grain-

size measurements with a few larger grains. 

Before validating this encouraging result, it is necessary to check the weak influence of the M-

distribution on average (over grains) outputs of the model such as flow stress (see Fig. 3a), mean 

grain size or recrystallized fraction (see Fig. 3b). 
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#�����+� Comparisons between not distributed and Gaussian distributed grain-boundary mobility 

in terms of flow stress (a) and recrystallized fraction (b) 

It can be concluded that, as expected, the effect of introducing an M-distribution leads to variations, 

with respect to mean field values, that can be neglected. 

Usually grain size distributions are characterized by microscopy on a plane leading to a distorted 

distribution (less probability to see small grains and smaller appearing grains). In order to simulate 

these effects, the distribution of the apparent equivalent diameter on a 2D metallographic plane was 

computed from the 3D real diameter distribution located in Fig. 2d (M coefficient of variation: 0.30) 

and it is shown in Fig. 4. Let be µr(i) and µa(i) the number of grains in the class I, respectively,  of 

the real 3D diameter (per volume unit) and the apparent 2D equivalent diameter (per area unit). The 

apparent diameter histogram is built using the relationship: 

( )22 2 2

a r( ) ( ) 1 ,
=

 = ∆ − − − −  ∑
k

j i

µ i µ j j i j i  (6) 

in which ∆ is the class width. The apparent diameter histogram clearly looks like typical metallo-

graphic characterizations. 
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#�����,� Histogram of apparent equivalent diameter (metallographic) obtained from the 3D real 

diameter of grain-size distribution in continuous line (M-coefficient of variation 0.3) 
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The mean field model of DDRX is a powerful tool to predict the material behavior during dynamic 

recrystallization, particularly the steady state behavior in terms of averages over the grains (flow 

stresses, mean size, recrystallized fraction,…). For distributed properties, such as grain-size distri-

bution, the model fails with fixed parameters but it can be successful if some model parameters (e.g. 

grain boundary mobility) are also reasonably distributed in comparison to neighborhood effects in 

the aggregate. 
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