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ABOUT BREZIS-MERLE PROBLEM WITH HOLDERIAN CONDITION: THE CASE OF THREE BLOW-UP POINTS

set Ω of R 2 :

We assume that :

and,

On the other hand, if we assume that V i s-holderian with 1/2 < s ≤ 1, and,

Ω

V i e u i dy ≤ 32π -ǫ, ǫ > 0 then we have a compactness result, namely: sup

INTRODUCTION AND MAIN RESULTS

We set ∆ = ∂ 11 + ∂ 22 on open set Ω of R 2 with a smooth boundary.

We consider the following problem on Ω ⊂ R 2 :

(P ) -∆u i = V i e ui u i = 0 in Ω ⊂ R 3 , in ∂Ω.
We assume that, Ω e ui dy ≤ C, and,

0 ≤ V i ≤ b < +∞
The previous equation is called, the Prescribed Scalar Curvature equation, in relation with conformal change of metrics. The function V i is the prescribed curvature.

Here, we try to find some a priori estimates for sequences of the previous problem. Equations of this type were studied by many authors, see [START_REF] Bahoura | About Brezis-Merle Problem with holderian condition: the case of one or two blow-up points[END_REF][START_REF] Brezis | A sup+inf inequality for some nonlinear elliptic equations involving exponential nonlinearities[END_REF][START_REF] Brezis | Uniform estimates and blow-up bihavior for solutions of -∆u = V e u in two dimensions[END_REF][START_REF] Chen | A priori Estimates for solutions to Nonlinear Elliptic Equations[END_REF][START_REF] Chen | A sharp sup+inf inequality for a nonlinear elliptic equation in R 2[END_REF][START_REF] Cheng | On the asymptotic behavior of solutions of the conformal Gaussian curvature equations in R 2[END_REF][START_REF] Yy | Harnack Type Inequality: the Method of Moving Planes[END_REF][START_REF] Yy | Blow-up Analysis for Solutions of -∆u = V e u in Dimension Two[END_REF][START_REF] Ma | Convergence for a Liouville equation[END_REF][START_REF] Shafrir | A sup+inf inequality for the equation -∆u = V e u[END_REF][START_REF] Zhang | Blowup solutions of some nonlinear elliptic equations involving exponential nonlinearities[END_REF]. We can see in [START_REF] Brezis | Uniform estimates and blow-up bihavior for solutions of -∆u = V e u in two dimensions[END_REF], different results for the solutions of those type of equations with or without boundaries conditions and, with minimal conditions on V , for example we suppose V i ≥ 0 and V i ∈ L p (Ω) or V i e ui ∈ L p (Ω) with p ∈ [1, +∞].

Among other results, we can see in [START_REF] Brezis | Uniform estimates and blow-up bihavior for solutions of -∆u = V e u in two dimensions[END_REF], the following important Theorem, Theorem A (Brezis-Merle [START_REF] Brezis | Uniform estimates and blow-up bihavior for solutions of -∆u = V e u in two dimensions[END_REF]).If (u i ) i and (V i ) i are two sequences of functions relatively to the previous problem (P ) with, 0 < a ≤ V i ≤ b < +∞, and without the boundary condition, then, for all compact set K of Ω,

1 sup K u i ≤ c = c(a, b, m, K, Ω) if inf Ω u i ≥ m.
A simple consequence of this theorem is that, if we assume u i = 0 on ∂Ω then, the sequence (u i ) i is locally uniformly bounded. We can find in [START_REF] Brezis | Uniform estimates and blow-up bihavior for solutions of -∆u = V e u in two dimensions[END_REF] an interior estimate if we assume a = 0, but we need an assumption on the integral of e ui . We have in [START_REF] Brezis | Uniform estimates and blow-up bihavior for solutions of -∆u = V e u in two dimensions[END_REF]:

Theorem B (Brezis-Merle [START_REF] Brezis | Uniform estimates and blow-up bihavior for solutions of -∆u = V e u in two dimensions[END_REF]).If (u i ) i and (V i ) i are two sequences of functions relatively to the previous problem (P ) with, 0 ≤ V i ≤ b < +∞, and, Ω e ui dy ≤ C, then, for all compact set K of Ω, sup

K u i ≤ c = c(b, C, K, Ω).
If, we assume V with more regularity, we can have another type of estimates, sup + inf. It was proved, by Shafrir, see [START_REF] Shafrir | A sup+inf inequality for the equation -∆u = V e u[END_REF], that, if (u i ) i , (V i ) i are two sequences of functions solutions of the previous equation without assumption on the boundary and, 0 < a ≤ V i ≤ b < +∞, then we have the following interior estimate:

C a b sup K u i + inf Ω u i ≤ c = c(a, b, K, Ω).
We can see in [START_REF] Chen | A sharp sup+inf inequality for a nonlinear elliptic equation in R 2[END_REF], an explicit value of C a b = a b . In his proof, Shafrir has used the Stokes formula and an isoperimetric inequality. For Chen-Lin, they have used the blow-up analysis combined with some geometric type inequality for the integral curvature.

Now, if we suppose (V i ) i uniformly Lipschitzian with A the Lipschitz constant, then, C(a/b) = 1 and c = c(a, b, A, K, Ω), see Brézis-Li-Shafrir [START_REF] Brezis | A sup+inf inequality for some nonlinear elliptic equations involving exponential nonlinearities[END_REF]. This result was extended for Hölderian sequences (V i ) i by Chen-Lin, see [START_REF] Chen | A sharp sup+inf inequality for a nonlinear elliptic equation in R 2[END_REF]. Also, we can see in [START_REF] Yy | Harnack Type Inequality: the Method of Moving Planes[END_REF], an extension of the Brezis-Li-Shafrir to compact Riemann surface without boundary. We can see in [START_REF] Yy | Blow-up Analysis for Solutions of -∆u = V e u in Dimension Two[END_REF] explicit form, (8πm, m ∈ N * exactly), for the numbers in front of the Dirac masses, when the solutions blowup. Here, the notion of isolated blow-up point is used. Also, we can see in [START_REF] Zhang | Blowup solutions of some nonlinear elliptic equations involving exponential nonlinearities[END_REF] refined estimates near the isolated blow-up points and the bubbling behavior of the blow-up sequences.

In [START_REF] Brezis | Uniform estimates and blow-up bihavior for solutions of -∆u = V e u in two dimensions[END_REF], Brezis and Merle proposed the following Problem: Problem (Brezis-Merle [START_REF] Brezis | Uniform estimates and blow-up bihavior for solutions of -∆u = V e u in two dimensions[END_REF]).If (u i ) i and (V i ) i are two sequences of functions relatively to the previous problem (P ) with,

0 ≤ V i → V in C 0 (Ω). Ω e ui dy ≤ C,

Is it possible to prove that:

sup

Ω u i ≤ c = c(C, V, Ω) ?
Here, we assume more regularity on V i , we suppose that

V i ≥ 0 is C s (s-holderian) (1/2 < s ≤ 1) .
We give the answer where bC < 32π.

In the similar way, we have in dimension n ≥ 3, with different methods, some a priori estimates of the type sup × inf for equation of the type:

-∆u + n -2 4(n -1) R g (x)u = V (x)u (n+2)/(n-2) on M.
where R g is the scalar curvature of a riemannian manifold M , and V is a function. The operator ∆ = ∇ i (∇ i ) is the Laplace-Beltrami operator on M . When V ≡ 1 and M compact, the previous equation is the Yamabe equation. T. Aubin and R. Scheon solved the Yamabe problem, see for example [START_REF] Aubin | Some Nonlinear Problems in Riemannian Geometry[END_REF]. If V is not a constant function, the previous equation is called a prescribing curvature equation, we have many existence results see also [START_REF] Aubin | Some Nonlinear Problems in Riemannian Geometry[END_REF], for a detailed summary.

We can see in [START_REF] Brezis | A sup+inf inequality for some nonlinear elliptic equations involving exponential nonlinearities[END_REF], [START_REF] Caffarelli | Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth[END_REF], [START_REF] Gidas | Symmetry and related properties via the maximum principle[END_REF], some results for elliptic equations of this type, and, some application of the method of moving-plane to obtain uniform estimates and estimates of type sup × inf. See also, [START_REF] Siu | The existence of Kahler-Einstein metrics on manifolds with positive anticanonical line bundle and a suitable finite symmetry group[END_REF], [START_REF] Tian | A Harnack type inequality for certain complex Monge-Ampre equations[END_REF] for other sup + inf inequalities.

In [START_REF] Caffarelli | Asymptotic symmetry and local behavior of semilinear elliptic equations with critical Sobolev growth[END_REF], we have a classification result for singular and non-singular solution of the Yamabe equation on open set of R n and on R n . The method used is of moving-plane and some other estimates.

In [START_REF] Gidas | Symmetry and related properties via the maximum principle[END_REF], we have a basic description of the method of moving-plane, and, in [START_REF] Brezis | A sup+inf inequality for some nonlinear elliptic equations involving exponential nonlinearities[END_REF], we have an application of this method, namely; inequality of type sup + inf on a bounded domain of R 2 .

Returning to ourk wrok, we give a compactness result for the Brezis-Merle Problem when the energy is less than 32π -ǫ, ǫ > 0. In fact, we extend the result of the author, see [START_REF] Bahoura | About Brezis-Merle Problem with holderian condition: the case of one or two blow-up points[END_REF]. We argue by contradiction and we use some asymptotic estimates for the blow-up functions. Also, we use a term of the Pohozaev identity to conclude to a contradiction.

Our main result is:

Theorem. Assume that, V i is uniformly s-holderian with 1/2 < s ≤ 1, and, B1 (0) 
V i e ui dy ≤ 32π -ǫ, ǫ > 0, then we have:

sup Ω u i ≤ c = c(b, C, A, s, Ω).
for solutions of the problem (P ), here A is the holderian constant of V i .

PROOF OF THE RESULT:

Proof of the theorem: Without loss of generality, we can assume that Ω = B 1 (0) the unit ball centered on the origin.

Here, G is the Green function of the Laplacian with Dirichlet condition on B 1 (0). We have (in complex notation):

G(x, y) = 1 2π log |1 -xy| |x -y| ,
we can write:

u i (x) = B1(0) G(x, y)V i (y)e ui(y) dy,
We assume that we are in the case of one blow-up point. Following the notation of a previous paper, see [START_REF] Bahoura | About Brezis-Merle Problem with holderian condition: the case of one or two blow-up points[END_REF], we have:

max Ω u i = u i (x i ) → +∞, δ i = d(x i , ∂Ω) → 0,
for ǫ > 0 small enough, and |y| = ǫ,

u i (x i + δ i y) ≤ C ǫ ,
and, the sup + inf inequality gives:

u i (x i ) + 4 log δ i ≤ C.
Also, we have the following estimates which imply the smallness for a term of the Pohozaev identity:

||∇u i || L q (B(xi,δiǫ ′ )) = o(1). ∀ 1 ≤ q < 2.
We have; because V i is s-holderian with 1/2 < s ≤ 1, the following term of the Pohozaev identity tends to 0

J i = B(xi,δiǫ ′ ) < x i 1 |∇(u i -u) > (V i -V i (x i ))e ui dy = o(1).
Now, we set:

r i = e -ui(xi)/2 , we write, for |θ| ≤ δ i ǫ ′ r i , 0 < ǫ ′ < 1 4 , u i (x i + r i θ) = Ω G(x i + r i θ, y)V i (y)e ui(y) dx = = Ω-B(xi,2δiǫ ′ ) G(x i , y)V i e ui(y) dy + B(xi,2δiǫ ′ ) G(x i + r i θ, y)V i e ui(y) dy = We write, y = x i + r i θ, with | θ| ≤ 2 δ i r i ǫ ′ , u i (x i + r i θ) = B(0,2 δ i r i ǫ ′ ) 1 2π log |1 -(x i + r i θ)(x i + r i θ)| r i |θ -θ| V i e ui(y) r 2 i dy+ + Ω-B(xi,2δiǫ ′ ) G(x i + r i θ, y)V i e ui(y) dy u i (x i ) = Ω-B(xi,2δiǫ ′ ) G(x i , y)V i e ui(y) dy + B(xi,2δiǫ ′ ) G(x i , y)V i e ui(y) dy
Hence,

u i (x i ) = B(0,2 δ i r i ǫ ′ ) 1 2π log |1 -xi (x i + r i θ)| r i | θ| V i e ui(y) r 2 i dy+ + Ω-B(xi,2δiǫ ′ ) G(x i , y)V i e ui(y) dy
We look to the difference,

v i (θ) = u i (x i + r i θ) -u i (x i ) = B(0,2 δ i r i ǫ ′ ) 1 2π log | θ| |θ -θ| V i e ui(y) r 2 i dy + h 1 + h 2 ,
where,

h 1 (θ) = Ω-B(xi,2δiǫ ′ ) G(x i + r i θ, y)V i e ui(y) dy - Ω-B(xi,2δiǫ ′ ) G(x i , y)V i e ui(y) dy,
and,

h 2 (θ) = B(0,2δiǫ ′ ) 1 2π log |1 -(x i + r i θ)y| |1 -xi y| V i e ui(y) dy.
Remark that, h 1 and h 2 are two harmonic functions, uniformly bounded.

According to the maximum principle, the harmonic function G(x i +r i θ, .) on Ω-B(x i , 2δ i ǫ ′ ) take its maximum on the boundary of B(x i , 2δ i ǫ ′ ), we can compute this maximum:

G(x i +r i θ, y i ) = 1 2π log |1 -(x i + r i θ)y i | |x i + r i θ -y i | ≃ 1 2π log (|1 + |x i |)δ i -δ i (3ǫ ′ + o(1))| δ i ǫ ′ ≤ C ǫ ′ < +∞ with y i = x i + 2δ i θ i ǫ ′ , |θ i | = 1, and |r i θ| ≤ δ i ǫ ′ .
We can remark, for |θ| ≤ δ i ǫ ′ r i , that v i is such that:

v i = h 1 + h 2 + B(0,2 δ i r i ǫ ′ ) 1 2π log | θ| |θ -θ| V i e ui(y) r 2 i dy, v i = h 1 + h 2 + B(0,2 δ i r i ǫ ′ ) 1 2π log | θ| |θ -θ| V i (x i + r i θ)e vi( θ) d θ,
with h 1 and h 2 , the two uniformly bounded harmonic functions.

Remark: In the case of 2 or 3 blow-up points, and if we consider the half ball, we have supplemntary terms, around the 2 other blow-up terms. Note that the Green function of the half ball is quasi-similar to the one of the unit ball and our computations are the same if we consider the half ball.

We assume that, the blow-up limit is 0 and we take:

G(x, y) = 1 2π log |1 -xy| |x -y| - 1 2π log |1 -xy| |x -y| , .
Asymptotic estimates and the case of one, two and three blow-up points :

By the asymptotic estimates of Cheng-Lin see [START_REF] Cheng | On the asymptotic behavior of solutions of the conformal Gaussian curvature equations in R 2[END_REF], we can see that, we have the following uniform estimates at infinity:

Lemma 2.1. ∀ ǫ, ǫ ′ > 0, ∃ k ǫ,ǫ ′ ∈ R + , i ǫ,ǫ ′ ∈ N and C ǫ,ǫ ′ > 0, such that for i ≥ i ǫ,ǫ ′ and k ǫ,ǫ ′ ≤ |θ| ≤ δ i ǫ ′ r i (-4 -ǫ) log |θ| -C ǫ,ǫ ′ ≤ v i (θ) ≤ (-4 + ǫ) log |θ| + C ǫ,ǫ ′ ,
For the proof, we consider the three following sets:

A 1 = { θ, | θ| ≤ k ǫ }, A 2 = { θ, |θ -θ| ≤ |θ| 2 , | θ| ≥ k ǫ },
and,

A 3 = { θ, |θ -θ| ≥ |θ| 2 , | θ| ≥ k ǫ }.
where k ǫ is such that;

8π(1 -ǫ) ≤ B(0,kǫ) V i (x i + r i θ)e vi( θ) d θ = B(xi,kǫe -u i (x i )/2 )
V i e ui(y) dy ≤ 8π(1 + ǫ).

In fact, if we assume that we have one blow-up point:

B(0, δ i 2r i ) V i (x i + r i θ)e vi( θ) d θ = B(xi, δ i 
2 )

V i e ui(y) dy → 8π,

To have the uniform bounds C ǫ > 0, we need to bound uniformly the following quantity:

A i = B(0, δ i 2r i ) 1 2π log | θ|V i e ui(y) r 2 i dy = B(0, δ i 2r i ) 1 2π log | θ|V i e vi( θ) d θ.
To obtain this uniform bound, we use the CC.Chen and C.S. Lin computations, see [START_REF] Chen | A sharp sup+inf inequality for a nonlinear elliptic equation in R 2[END_REF], to have the existence of a sequence l i → +∞ such that:

B(0,li) 1 2π log | θ|V i e vi( θ) d θ ≤ C,
and, on the other hand, the computations of YY.Li and I. Shafrir, see [START_REF] Yy | Blow-up Analysis for Solutions of -∆u = V e u in Dimension Two[END_REF], to have, for

l i ≤ | θ| ≤ δ i 2r i : e vi( θ) ≤ C | θ| 2β+2 ,
for some 0 < β < 1.

Finaly,

A i ≤ C.
Remark that, in the estimate of CC.Chen and C.S Lin, see [START_REF] Chen | A sharp sup+inf inequality for a nonlinear elliptic equation in R 2[END_REF], we need the assumption that V i is sholderian with 0 < s ≤ 1.

To explain more the previous lemma, we write:

-2πv i + 2πh 1 + 2πh 2 = - B(0,2 δ i r i ǫ ′ )∩A1 1 2π log | θ| |θ -θ| V i (x i + r i θ)e vi( θ) d θ+, - B(0,2 δ i r i ǫ ′ )∩A2 1 2π log | θ| |θ -θ| V i (x i + r i θ)e vi( θ) d θ+ - B(0,2 δ i r i ǫ ′ )∩A3 1 2π log | θ| |θ -θ| V i (x i + r i θ)e vi( θ) d θ = = -I 1 -I 2 -I 3 .
For I 2 , we have: |θ -θ| ≤ | θ|, hence, -I 2 ≤ 0.

For I 1 , it is easy to see that:

-I 1 ≤ log |θ| A1 V i (x i + r i θ)e vi( θ) d θ + C,
with C a constant independant of x and i. Here we use the estimates of Chen-Lin. Since, |θ -θ| ≤ | θ| + |θ| ≤ | θ||θ| for |θ|, | θ| ≥ 1, we have:

-I 3 ≤ log |θ| A3 V i (x i + r i θ)e vi( θ) d θ,
Thus,

-2πv i + 2πh 1 + 2πh 2 ≤ log |θ| A1∪A3 V i (x i + r i θ)e vi( θ) d θ + C,
Hence,

-2πv i + 2πh 1 + 2πh 2 ≤ (8π + ǫ) log |θ| + C, Thus, v i -h 1 -h 2 ≥ (-4 -ǫ) log |θ| -C.
For the rest of the proof, we use the same argument as in Cheng-Lin, see [START_REF] Cheng | On the asymptotic behavior of solutions of the conformal Gaussian curvature equations in R 2[END_REF].

We write:

v i -h 1 -h 2 = B(0,2 δ i r i ǫ ′ )∩A1 1 2π log | θ| |θ -θ| V i (x i + r i θ)e vi( θ) d θ+, + B(0,2 δ i r i ǫ ′ )∩A2 1 2π log | θ| |θ -θ| V i (x i + r i θ)e vi( θ) d θ+ + B(0,2 δ i r i ǫ ′ )∩A3 1 2π log | θ| |θ -θ| V i (x i + r i θ)e vi( θ) d θ = = I 1 + I 2 + I 3 .
We have:

I 1 ≤ -log |θ| A1 1 2π V i (x i + r i θ)e vi( θ) d θ + C,
with C a constant independant of x and i. Here we use the estimates of Chen-Lin. For I 3 , we have:

I 3 ≤ 1.
For I 2 , we have:

I 2 ≤ 1 2π {| θ-θ|≤|θ| -σ } log 1 |θ -θ| V i (x i + r i θ)e vi( θ) d θ + ǫ 2 log |θ|,
Hence,

v i -h 1 -h 2 ≤ (-4 + ǫ) log |θ| + 1 2π {| θ-θ|≤|θ| -σ } log 1 |θ -θ| V i (x i + r i θ)e vi( θ) d θ.
As in [START_REF] Cheng | On the asymptotic behavior of solutions of the conformal Gaussian curvature equations in R 2[END_REF], we can prove that, (h 1 and h 2 are harmonic and satisfy the mean value theorem):

v i -h 1 -h 2 - {| θ-θ|=r=|θ| -σ } (v i -h 1 -h 2 ) = 1 2π Br (x) log r |θ -θ| V i (x i + r i θ)e vi( θ) d θ {| θ-θ|=r=|θ| -σ } (v i -h 1 -h 2 ) ≤ (-4 + ǫ) log |θ|.
As in the proof of the theorem 1.1 of [START_REF] Cheng | On the asymptotic behavior of solutions of the conformal Gaussian curvature equations in R 2[END_REF], we use the Brezis-Merle estimate and the two previous estimates to prove that for θ large enough, we have:

v i -h 1 -h 2 ≤ (-4 + ǫ) log |θ| + C.
To see this : (We write v i -h 1 -h 2 = k + q, with q harmonic with the same boundary value as v i , we use Brezis-Merle estimate). Note that, h 1 and h 2 are uniformly bounded. Let Ω = B r (θ), where r = 2|θ| -σ we have:

-∆k = V i e k+q in Ω, k = 0 on ∂Ω.
By the Brezis-Merle estimate:

Ω e 2k ≤ C 1 |θ| -2σ .
We use the fact that q is harmonic to have:

q(θ) ≤ Cq(0) + (C -1)(-min Ω q -).
By the previous computations we have:

min Ω q -= min ∂Ω q -= min ∂Ω (v i -h 1 -h 2 ) -≥ (-4 -ǫ) log |θ| -C,
and by the previous mean value estimate, we have:

q(0) = {| θ-θ|=r=|θ| -σ } (v i -h 1 -h 2 ) ≤ (-4 + ǫ) log |θ|.
Thus,

q(θ) ≤ C log |θ|.
Here C is a constant independant of i and σ.

We have by the same computations as in the proof of the theorem 1.1 of [START_REF] Cheng | On the asymptotic behavior of solutions of the conformal Gaussian curvature equations in R 2[END_REF] to conclude that:

{| θ-θ|≤|θ| -σ } e 2vi ≤ |θ| -2σ+2C ,
and by Cauchy-Schwarz inequality, we have:

1 2π {| θ-θ|≤|θ| -σ } log 1 |θ -θ| V i (x i + r i θ)e vi( θ) d θ 2 ≤ C,
and that, for θ and σ large enough:

v i -h 1 -h 2 ≤ (-4 + ǫ) log |θ| + C.
Now, we extend the previous asymptotic estimates to the first derivatives: we have, after derivation under the integral:

∂ j v i = ∂ j h 1 + ∂ j h 2 + B(0,2 δ i r i ǫ ′ ) 1 2π θ j -θj |θ -θ| 2 V i e ui(y) r 2 i dy,
In other words, we have:

∂ j v i = ∂ j h 1 + ∂ j h 2 + B(0,2 δ i r i ǫ ′ ) 1 2π θ j -θj |θ -θ| 2 V i (x i + r i θ)e vi( θ) d θ,
We have the following lemma:

Lemma 2.2. ∀ ǫ, ǫ ′ > 0 ∃ k ǫ,ǫ ′ ∈ R + , i ǫ,ǫ ′ ∈ N, such that, for i ≥ i ǫ,ǫ ′ and k ǫ,ǫ ′ ≤ |θ| ≤ δ i ǫ ′ r i , ∂ j v i (θ) ≃ ∂ j u 0 (θ) ± ǫ |θ| + C r i δ i ,
where u 0 is the solution to:

-∆u 0 = V (0)e u0 , in R 2 .
For the proof, we consider the three following sets:

A 1 = { θ, | θ| ≤ k ǫ }, A 2 = { θ, |θ -θ| ≤ |θ| 2 , | θ| ≥ k ǫ },
and,

A 3 = { θ, |θ -θ| ≥ |θ| 2 , | θ| ≥ k ǫ }.
where k ǫ is such that;

8π(1 -ǫ) ≤ B(0,kǫ) V i (x i + r i θ)e vi( θ) d θ = B(xi,kǫe -u i (x i )/2 )
V i e ui(y) dy ≤ 8π(1 + ǫ).

Remark 1: In the case of 2 or 3 blow-up points, and if we consider the half ball, we have supplemntary terms, around the 2 other blow-up terms. Note that the Green function of the half ball is quasi-similar to the one of the unit ball. In the case of 3 blow-up points, we have the following supplementary term ( x i is the principal blow-up point and y i and t i the 2 other blow-up points):

C 1 r i d(x i , y i ) + C 2 r i d(x i , t i ) .
We assume that, the blow-up limit is 0 and we take:

G(x, y) = 1 2π log |1 -xy| |x -y| - 1 2π log |1 -xy| |x -y| , .
In the previous computations, we have considered the unit ball, but by a conformal transformation , we can have the same estimates on the half ball, with a coefficient of the conformal transformation. We can assume the estimates on the half ball. Now, we consider the following term of the Pohozaev identity

J i = B(xi,δiǫ ′ ) < x i 1 |∇(u i -u) > (V i -V i (x i ))e ui dy,
We want to show that this term tends to 0 as i tends to infinity. We can reduce the problem, after integration by parts, to the following integral:

J ′ i = δ i B(xi,δiǫ ′ ) ∂ 1 u i V i e ui dy = δ i B(xi,δiǫ ′ ) ∂ 1 u i (-∆u i )
But, if we take y = x i + r i θ, with, |θ| ≤ δ i ǫ ′ r i , we have:

J ′ i = δ i r i B(0, δ i r i ǫ ′ ) ∂ 1 v i (-∆v i ) = = δ i r i ∂B(0, δ i r i ǫ ′ ) (∂ 1 v i ) 2 2 ν 1 - (∂ 2 v i ) 2 2 ν 1 + (∂ 1 v i )(∂ 2 v i )ν 2 dσ i ,
Thus, if we use the uniform asymptotic estimates, we can see that, we reduce the computation to the Pohozaev identity for the limit blow-up function (which equal to 0), plus terms in ǫ|θ| and |θ|. First, we tend i to infinity, after ǫ to 0 and finaly , we tend ǫ ′ to 0 .

With this method we can have a compactness result for 3 blow-ups points. First, we can see the case of 3 exteriors blow-up points, then by the previous formulation we have a compactness result, it is the case for one of the following cases ( if we set δ i , δ ′ i and δ ′′ i for the radii of each exterior blow-up) :

d(x i , y i ) δ i → +∞ and d(x i , t i ) δ i → +∞, or, d(y i , x i ) δ ′ i → +∞ and d(y i , t i ) δ ′ i → +∞, or, d(t i , x i ) δ ′′ i → +∞ and d(t i , y i ) δ ′′ i → +∞,
or, the case when the distance to two exterior blow-up points is of order the radii. In this last case, we divide the region in 3 parts and use the Pohozaev identity directly. In fact, we are reduced to the case of two blow-up points.

In fact, in the case of 3 exterior blow-up points. By the previous formulation around each exterior blow-up point we look to the one of the 3 first cases. For example, assume the first case. Then we work around the first blow-up. In fact we have, for 3 blow-up points :

Lemma 2.3. ∀ ǫ > 0, ǫ ′ > 0 ∃ k ǫ,ǫ ′ ∈ R + , i ǫ,ǫ ′ ∈ N and C ǫ,ǫ ′ > 0, such that, for i ≥ i ǫ,ǫ ′ and k ǫ,ǫ ′ ≤ |θ| ≤ δ i ǫ ′ r i , (-4 -ǫ) log |θ| -C ǫ,ǫ ′ ≤ v i (θ) ≤ (-4 + ǫ) log |θ| + C ǫ,ǫ ′ , and, ∂ j v i ≃ ∂ j u 0 (θ) ± ǫ |θ| + C r i δ i 2 |θ| + m × r i δ i + C 1 r i d(x i , y i ) + C 2 r i d(x i , t i )
Proof of the compactness : By using the lemma we can see that we have the compactness, because: (to understand this, it is sufficient to do the computations for the half ball directly by using the Green function of the half ball directly).

We have after using the previous term of the Pohozaev identity:

o(1) = J ′ i = m ′ + C 1 o(1) + C 2 o(1), 0 = lim ǫ ′ lim ǫ lim i J ′ i = m ′ , which contradict the fact that m ′ > 0.
Proof of the second estimate of the lemma:

For the proof, we consider the three following sets:

A 1 = { θ, | θ| ≤ k ǫ }, A 2 = { θ, |θ -θ| ≤ |θ| 2 , | θ| ≥ k ǫ },
and,

A 3 = { θ, |θ -θ| ≥ |θ| 2 , | θ| ≥ k ǫ }.
where k ǫ (large enough), is such that;

8π(1 -ǫ) ≤ B(0,kǫ) V i (x i + r i θ)e vi( θ) d θ = B(xi,kǫe -u i (x i )/2 )
V i e ui(y) dy ≤ 8π(1 + ǫ).

We write:

∂ j v i -∂ j h 1 -∂ j h 2 = B(0,2 δ i r i ǫ ′ ) 1 2π
θ j -θj |θ -θ| 2 V i (x i + r i θ)e vi( θ) d θ,

∂ j v i -∂ j h 1 -∂ j h 2 = A1 1 2π
θ j -θj |θ -θ| 2 V i (x i +r i θ)e vi( θ) d θ+ A2∪A3 1 2π

θ j -θj |θ -θ| 2 V i (x i +r i θ)e vi( θ) d θ Using the estimates of v i , we obtain:

∂ j v i -∂ j h 1 -∂ j h 2 = o(1) |θ| + A1 1 2π θ j -θj |θ -θ| 2 V 0 e u0( θ) d θ+ A2∪A3 1 2π
θ j -θj |θ -θ| 2 V i (x i +r i θ)e vi( θ) d θ Thus,

∂ j v i -∂ j h 1 -∂ j h 2 = ∂ j u 0 + o(1) |θ| + A2∪A3 1 2π
θ j -θj |θ -θ| 2 V i (x i + r i θ)e vi( θ) d θ Finaly,

∂ j v i -∂ j h 1 -∂ j h 2 -∂ j u 0 = o(1) |θ| + A2∪A3 1 2π
θ j -θj |θ -θ| 2 V i (x i + r i θ)e vi( θ) d θ.

For A 2 and A 3 , we have: for θ large enough and ǫ 0 small enough.

| A3 1 
Finaly, we have:

|∂ j v i -∂ j h 1 -∂ j h 2 -∂ j u 0 | ≤ ǫ |θ| ,
for θ large enough. Now, it is easy to see from the definition of h 1 and h 2 that:

|∂ j h 1 -∂ j h 2 -m r i δ i | ≤ C 1 r i d(x i , y i ) + C 2 r i d(x i , t i ) Thus, |∂ j v i -∂ j u 0 -m r i δ i | ≤ C 1 r i d(x i , y i )
+ C 2 r i d(x i , t i ) for θ large enough.

  2π θ j -θj |θ -θ| 2 V i (x i + r i θ)e vi( θ) d θ| ≤ For θ ∈ A 2 , | θ| ≥ |θ| 2 and, | θ| ≥ |θ -θ| 2, and we use the estimate of v i to have:θj |θ -θ| 2 V i (x i + r i θ)e vi( θ) d θ| ≤ C|θ| |θ| 4-ǫ0 ≤

	because,	1 2π {| θ|≥kǫ} θ j ǫ 1 |θ| V i (x i + r i θ)e vi( θ) d θ ≤ {| θ|≥kǫ} V | A2 1 2π |θ| ,	ǫ |θ|	,

i (x i + r i θ)e vi( θ) d θ → 0,

for k ǫ large enough.